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Introduction
Duchenne muscular dystrophy (DMD) is one of the most 

common X-linked lethal diseases, affecting 1 in 3,500 newborn 

males. DMD results from mutations in the gene coding for 

the protein dystrophin, which localizes at the innerface of the 

sarcolemma. Dystrophin associates with a large complex of mem-

brane proteins, called the dystrophin glycoprotein complex, 

which is important for cell membrane integrity (Hoffman et al., 

1987; Ervasti and Campbell, 1991). Without the dystrophin 

complex to tether the actin cytoskeleton inside the muscle cell 

to the extracellular matrix, forces generated by the muscle fi ber 

result in tears of sarcolemma, leading to muscle damage (for 

review see Campbell, 1995). The mdx mouse strain is the most 

widely used animal model for DMD, having a nonsense mutation 

in exon 23, which eliminates dystrophin expression  (Sicinski 

et al., 1989; Durbeej and Campbell, 2002). Human patients 

with DMD and mdx mice suffer from progressive muscle cell 

degeneration and regeneration episodes. Ultimately, however, 

the dystrophic muscle damage cannot be repaired any longer, and 

the dystrophic myofi bers become gradually replaced, initially 

by fi brotic infi ltrates and subsequently by fat tissue (Stedman 

et al., 1991).

DMD remains an incurable and devastating disease. Ther-

apies based on the restoration of dystrophin expression or the 

administration of dystrophin+ stem cells are promising but are 

still in the preclinical phase (Goyenvalle et al., 2004; Gregorevic 

et al., 2006; Montarras et al., 2005; Sampaolesi et al., 2006; 

Shi and Garry, 2006; Welch et al., 2007). Intense research ef-

forts have identifi ed muscle-specifi c factors regulating muscle 

progenitor cell (satellite cell [SC]) functions (i.e., proliferation 

and differentiation), which also play a key role in mdx muscle 

regeneration (e.g., Pax7, MyoD family members, etc.; Megeney 

et al., 1996; Sabourin et al., 1999; Seale et al., 2000; Charge and 

 Rudnicki, 2004; Oustanina et al., 2004; Kuang et al., 2006). How-

ever, these intrinsic factors will be diffi cult to target throughout 

the musculature when developing alternative therapies to treat 

DMD disease.

Mounting evidence indicates a critical involvement of ex-

trinsic factors in DMD disease progression and the recovery of 

uPA defi ciency exacerbates muscular dystrophy 
in MDX mice

Mònica Suelves,1 Berta Vidal,1,3 Antonio L. Serrano,1,3 Marc Tjwa,4 Josep Roma,4 Roser López-Alemany,8 

Aernout Luttun,5 María Martínez de Lagrán,2,6 Maria Àngels Díaz,8 Mercè Jardí,1,3 Manuel Roig,7 Mara Dierssen,2,6 

Mieke Dewerchin,4 Peter Carmeliet,4 and Pura Muñoz-Cánoves1,3

1Program on Differentiation and Cancer and 2Program on Genes and Disease, Center for Genomic Regulation, E-08003 Barcelona, Spain
3Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, E-08003 Barcelona, Spain
4Center for Transgene Technology and Gene Therapy, Flanders Institute for Biotechnology, and 5Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, 
Leuven B-3000, Belgium

6Centro de Investigación Biomédica en Red de Enfermedades Raras, E-08003 Barcelona, Spain
7Grup de Recerca de Malalties Neuro-metabòliques, Hospital Universitari Vall d’Hebron, E-08035 Barcelona, Spain
8Institut d’Investigació Biomèdica de Bellvitge, E-08907 Barcelona, Spain

 D
uchenne muscular dystrophy (DMD) is a fatal and 

incurable muscle degenerative disorder. We iden-

tify a function of the protease urokinase plasmino-

gen activator (uPA) in mdx mice, a mouse model of DMD. 

The expression of uPA is induced in mdx dystrophic mus-

cle, and the genetic loss of uPA in mdx mice exacerbated 

muscle dystrophy and reduced muscular function. Bone 

marrow (BM) transplantation experiments revealed a criti-

cal function for BM-derived uPA in mdx muscle repair via 

three mechanisms: (1) by promoting the infi ltration of BM-

derived infl ammatory cells; (2) by preventing the exces-

sive deposition of fi brin; and (3) by promoting myoblast 

migration. Interestingly, genetic loss of the uPA receptor in 

mdx mice did not exacerbate muscular dystrophy in mdx 

mice, suggesting that uPA exerts its effects independently 

of its receptor. These fi ndings underscore the importance 

of uPA in muscular dystrophy.
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injured muscles. Indeed, infi ltrated infl ammatory cells release 

several cytokines and growth factors that modulate muscle de-

generation, infl ammation, and regeneration (e.g., TNFα, VEGF, 

and nitric oxide synthase; Collins and Grounds, 2001; Wehling 

et al., 2001; Germani et al., 2003; Grounds and Torrisi, 2004; 

Chen et al., 2005, 2006; Tidball, 2005; Brunelli et al., 2007). We 

previously reported a critical role of the protease urokinase 

plasminogen activator (uPA) in the recovery of experimentally 

injured muscle (Lluis et al., 2001). Among the several enzy-

matic functions of uPA, the most classic one is the ability to 

convert the zymogen plasminogen into active plasmin, whose 

classic role is degradation of the fi brinogen end product fi brin 

(from here on, we refer to both by the term fi brin/ogen). By 

binding of uPA to its uPA receptor (uPAR), uPAR localizes 

the conversion of plasminogen to plasmin to the cell surface, 

thereby increasing pericellular proteolysis. In addition, uPAR 

also allows uPA to induce intracellular signaling, thereby pro-

moting cell proliferation and migration (Blasi and Carmeliet, 

2002; Mondino and Blasi, 2004). Importantly, uPA and plasmin 

promote infl ammatory cell infi ltration and repair of injured 

muscle, whereas the role of uPAR herein remains unclear (Lluis 

et al., 2001; Suelves et al., 2002). As the role of uPA and uPAR 

in mdx dystrophy remains unknown, we therefore intercrossed 

mdx mice with mice lacking either uPA (uPA−/−) or uPAR 

(uPAR−/−) and examined disease progression and its pathologi-

cal features.

Results
Expression of uPA in mdx muscle 
dystrophy
We previously showed that uPA mediates the recovery of exper-

imentally injured muscle (Lluis et al., 2001), but its role in mdx 

dystrophy remains unknown. Therefore, we fi rst analyzed by 

zymography uPA activity in mdx muscle extracts before and af-

ter the onset of muscle degeneration. At 14 d of age (i.e., before 

disease onset), the activity levels of uPA were undetectable in 

wild-type (WT) mice and in mdx mice (unpublished data). In 

contrast, after disease onset (i.e., 30 d of age), the activity levels 

of uPA were increased in mdx muscle but not in WT muscle 

(Fig. 1). These changes were specifi c for uPA, as no lytic band 

corresponding to tPA (at 72 kD) was detected by zymography 

(Fig. 1). Thus, uPA activity is specifi cally increased in mdx dys-

trophic muscle during disease.

Genetic loss of uPA exacerbates mdx 
dystrophic disease
To evaluate whether uPA would affect the disease course in 

mdx mice, we intercrossed mdx mice with uPA−/− mice and 

phenotyped uPA+/+mdx (from here on referred to as mdx) and 

uPA−/−mdx littermates. Both genotypes were healthy at birth 

and did not show any signs of muscle injury or differences in 

muscle size before disease onset (14 d of age; Fig. 2, a and d; 

and Table S1, available at http://www.jcb.org/cgi/content/full/

jcb.200705127/DC1). Beyond 3–4 wk of age, obvious signs of 

muscle dystrophy were detectable in mdx and uPA−/−mdx mice. 

However, compared with mdx mice, uPA−/−mdx mice suffered 

from a much more severe dystrophinopathy, at least up to 4 mo of 

age, as characterized by a more widespread and extensive myo-

fi ber degeneration and necrosis (Fig. 2 a). Indeed, uPA−/−mdx 

muscles contained larger areas of muscle damage and signifi -

cantly more clusters of degenerated myofi bers (P < 0.05; Fig. 

2 b). Furthermore, von Kossa–stained calcium deposits, which 

are typically found in necrotic myopathies (Franco and Lansman, 

1990), were almost exclusively detected in uPA−/−mdx but 

minimally in mdx muscle (Fig. 2 c). Moreover, the number of 

centrally nucleated fi bers (indicator of muscle regeneration) was 

lower in uPA−/−mdx than in mdx muscle (Fig. 2 e). Consistent 

with this, the mean muscle cross-sectional area and myofi ber 

size were smaller in uPA−/−mdx mice as compared with mdx 

mice (Fig. 2 d and Table S1).

To ascertain worsening in the pathology of the whole skel-

etal musculature, we measured the serum levels of creatine ki-

nase (CK), a biomarker of sarcolemmal damage (Bulfi eld et al., 

1984). Consistent with the more severe muscle degeneration, 

uPA−/−mdx mice showed approximately twofold higher serum 

CK levels as compared with mdx mice at 2.5 mo of age (Fig. 

2 f). To determine the functional status of the diseased muscle, 

we used grip-strength and treadmill assays. Compared with mdx 

mice, muscle strength at 2.5 mo of age was substantially de-

creased in uPA−/−mdx mice in both assays (Fig. 2 g). Altogether, 

these fi ndings provide histological, biochemical, and functional 

evidence that uPA defi ciency aggravates muscle degeneration 

and attenuates regeneration in mdx muscle.

BM-derived uPA promotes the 
infi ltration of infl ammatory cells into mdx 
dystrophic muscle
In experimentally injured muscle, uPA is produced by SCs and 

by infl ammatory cells (Lluis et al., 2001). Although T lympho-

cytes and neutrophils also infi ltrate dystrophic mdx muscles, in-

fi ltrated macrophages appear to be the major infl ammatory cell 

type (Fig. S1 a, available at http://www.jcb.org/cgi/content/full/

jcb.200705127/DC1; Engel and Arahata, 1986; Pimorady-

 Esfahani et al., 1997; Spencer et al., 2001; Tidball, 2005). We 

fi rst aimed to analyze the impact of uPA defi ciency in the infl am-

matory response in mdx muscular dystrophy. Before disease onset 

(i.e., at 14 d of age), Mac-1+ macrophages and T-11+ T lympho-

cytes were rarely detected in mdx or uPA−/−mdx muscles (Fig. 

3 a). After disease onset (i.e., at 30 d of age), these infl ammatory 

cells had infi ltrated the dystrophic muscle of mdx mice (Fig. 3 a). 

However, compared with mdx mice, the number of infi ltrated 

Figure 1. Increased activity of uPA in mdx muscle dystrophy. Zymo-
graphic analysis of WT, mdx, and uPA−/− muscles. Purifi ed murine uPA 
(45 kD) and tPA (72 kD) were used as a control for activity (+).
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Mac-1+ and T-11+ cells in uPA−/−mdx muscle was reduced up 

to �50% (Fig. 3 a). Consistent with this, the loss of uPA also 

reduced the number of infi ltrated infl ammatory cells in cardio-

toxin (CTX)-injured muscle (Fig. S2 a). This was not the result 

of a genotypic difference in the number of circulating leuko-

cytes in the peripheral blood (unpublished data).

This reduced infi ltration and accumulation of infl amma-

tory cells in uPA−/−mdx dystrophic muscles was likely attribut-

able to the fact that they lack the uPA needed to invade injured 

tissues. Indeed, when performing in vitro migration experi-

ments, uPA−/−mdx and uPA−/− macrophages were found to 

 migrate less compared with control cells (Figs. 3 b and S2 b). 

Therefore, we evaluated whether the conditional restoration of 

uPA expression in the bone marrow (BM) of uPA−/−mdx mice 

achieved via the transplantation of uPA+/+mdx BM (termed 

uPA−/−mdx(mdx-BM) mice from here on) could revert the defi cient 

infl ammatory response. As a negative control, we transplanted 

uPA−/−mdx BM into uPA−/−mdx mice (uPA−/−mdx(uPA−/−mdx-BM) 

mice). We also transplanted WT BM into uPA−/− recipient mice 

(termed uPA−/−(WT-BM) mice from here on) or into WT mice 

(WT(WT-BM) mice) and induced muscle injury by intramuscular 

injection of CTX (supplemental material, available at http://

www.jcb.org/cgi/content/full/jcb.200705127/DC1). In both ex-

periments, we found that the transplantation of uPA-expressing 

BM increased the infi ltration of infl ammatory cells into dystro-

phic or injured uPA-defi cient muscles. Indeed, compared with 

uPA−/−mdx(uPA−/−mdx-BM) mice, muscles in uPA−/−mdx(mdx-BM) 

mice became infi ltrated with plenty of (uPA expressing) infl am-

matory cells (Fig. 3 c); likewise, infl ammatory cells accumu-

lated in the damaged muscle in uPA−/−(WT-BM) mice to the levels 

found in WT or WT(WT-BM) mice (Fig. S2 c). Together, these data 

demonstrate that uPA is critical for infl ammatory cells to infi l-

trate the degenerating myofi bers of mdx mice.

BM-derived uPA attenuates the 
degeneration of mdx dystrophic muscle
There is increasing evidence that the infl ammatory response 

can promote both muscle injury and repair (Tidball, 2005; 

Figure 2. uPA defi ciency exacerbates mdx 
muscle degeneration. (a) Muscle sections of 
mdx and uPA−/−mdx mice of 2 and 3 wk of age 
and of 1–4 mo of age were stained with HE. 
Nonphagocytosed necrotic fi bers in uPA−/−

mdx muscle sections are indicated with arrows. 
(b) Percentage of total muscle-degenerating area 
of 1-mo-old mice (left) and mean number of de-
generating groups (DGs) containing >10 fi bers 
per muscle section (right) at the indicated ages. 
(c) Von Kossa staining of muscles of uPA−/−, 
mdx, and uPA−/−mdx mice (at 1 mo of age). 
(d) Reduced muscle size in uPA−/−mdx mice. (left) 
HE staining of gastrocnemius muscle sections 
(at the indicated ages). (right) Muscle cross-
sectional area (CSA; at the indicated ages). 
(e) Reduced muscle regeneration in uPA−/−mdx 
mice. Percentage of central nucleated fi bers 
(CNF; at the indicated ages). (f) Increased 
 muscle damage in uPA−/−mdx mice. Serum CK 
 levels in mdx and uPA−/−mdx mice at 2.5 mo of 
age. (g) Reduced muscle strength in uPA−/−mdx 
mice. Comparison of functional muscle strength 
between mdx and uPA−/−mdx mice at 2.5 mo 
of age in grip strength (left) and treadmill assays 
(middle and right) as described in Materials 
and methods. Data are means ± SEM (error 
bars). n = 10 animals per group. *, P < 0.05. 
Bars (a and c), 50 μm; (d) 300 μm.
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Arnold et al., 2007; Pelosi et al., 2007; Tidball and Wehling-

Henricks, 2007). Therefore, we evaluated whether the transplanta-

tion of uPA-expressing BM also attenuated muscle degeneration 

in mdx mice. Compared with uPA−/−mdx(uPA−/−mdx-BM) mice, mus-

cles in uPA−/−mdx(mdx-BM) mice exhibited less severe signs of 

degeneration at 2 mo after transplantation (Fig. 4 a). Consistent 

with this, serum CK levels were lower in uPA−/−mdx(mdx-BM) 

than in uPA−/−mdx(uPA−/−mdx-BM) mice (Fig. 4 b). Thus, uPA-

 expressing BM-derived cells attenuate muscle degeneration 

in uPA−/−mdx mice. Consistent with this notion, muscle dam-

age was reduced and regeneration was rescued in uPA−/−(WT-BM) 

mice at 10 d and 25 d after CTX injury, respectively, where-

as degeneration persisted in nontransplanted uPA-defi cient 

mice (Fig. 4 c).

Reduction of fi brin/ogen levels by BM-
derived uPA or by ancrod treatment 
reduces the exacerbated degeneration 
of uPA−/−mdx mice
We previously showed that the persistent muscle degeneration 

in uPA−/− mice after injury was mediated, at least in part, by the 

impaired dissolution of intramuscular fi brin/ogen deposits 

(Lluis et al., 2001). Therefore, we analyzed in mdx and uPA−/−

mdx muscle the extent of fi brin/ogen accumulation before and 

after disease onset. Before disease onset (14 d of age), fi brin/

ogen was undetectable by immunostaining or Western blotting 

in mdx and uPA−/−mdx muscles (unpublished data). However, 

at the fi rst disease peak (30 d of age), fi brin/ogen deposits were 

readily detectable in muscles of both genotypes (Fig. 5 a). 

Importantly, however, compared with mdx muscles, fi brin/ogen 

deposition was increased in uPA−/−mdx muscles up to 2.5-fold 

(Fig. 5 a). Interestingly, the prior transplantation of uPA-expressing 

BM cells attenuated this increased deposition of fi brin/ogen in 

uPA−/−mdx mice (Fig. 5 b) and in uPA−/− mice challenged with 

CTX (Fig. S2 d).

To directly prove that the increased accumulation of 

fibrin/ogen mediated the exacerbated dystrophic disease in 

uPA−/−mdx mice, we depleted the circulating fi brinogen lev-

els by administering the defi brinogenating snake venom an-

crod to uPA−/−mdx mice. Daily delivery of ancrod (1 U per day) 

starting at 12 d after birth and continuing for 18 d thereafter 

effectively reduced the accumulation of fi brin/ogen in uPA−/−

mdx muscles (Fig. 5 c). Importantly, compared with saline, 

the area of degenerated muscle in uPA−/−mdx mice was sig-

nifi cantly reduced (P < 0.05) by ancrod therapy, indicating 

that the increased deposition of fi brin/ogen mediated the se-

vere muscle dystrophy in uPA−/−mdx mice (Fig. 5, d and e). 

In addition, compared with saline, fewer muscle groups con-

taining >10 degenerating fi bers were found in ancrod-treated 

uPA−/−mdx mice (Fig. 5 e). However, ancrod treatment in 

uPA−/−mdx mice failed to completely rescue the exacerbated 

muscle dystrophy phenotype of uPA−/−mdx mice. Indeed, 

compared with mdx mice, the muscle degeneration area was 

still larger in ancrod-treated uPA−/−mdx mice (compare Fig. 

5 e with Fig. 2 b). This incomplete rescue might be attributable 

to the fi nding that infl ammatory infi ltration remained halted in 

Figure 3. BM-derived uPA promotes the infi ltration of 
infl ammatory cells into mdx dystrophic muscle. (a) uPA 
defi ciency reduces the infl ammatory response in mdx 
dystrophic muscle. Number of Mac-1– and T-11–posi-
tive cells in muscle sections of mdx and uPA−/−mdx 
mice at 14 d of age (i.e., before the onset of degenera-
tion) and at 30 d of age (15 d after the onset of degen-
eration). (b) uPA defi ciency reduces mdx macrophage 
migration in vitro. Migration assays were performed in 
transwells. Conditioned medium from mdx mouse pri-
mary SC cultures was placed in the lower chamber of 
the transwell. Macrophages obtained from mdx or 
uPA−/−mdx mice were placed in the upper chambers. 
Experiments (three) were performed in duplicate. The 
value 100% was arbitrarily given to the number of 
migrating mdx macrophages. (c) Number of Mac-1– and 
T-11–positive cells in muscle sections of uPA−/−mdx 
mice transplanted with BM from uPA−/−mdx or mdx 
donor mice, respectively. Data are means ± SEM (error 
bars). n = 4 animals per group. *, P < 0.05.
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uPA−/−mdx mice after ancrod treatment (Fig. 5 f). This result 

further underscores the importance of BM-derived uPA in the 

infi ltration of infl ammatory cells (Fig. 3). Thus, BM-derived 

uPA is required for dissolving fi brin/ogen deposits in dystro-

phic mdx muscles, but it also mediates processes independent 

of fi brinolysis.

BM cell–derived uPA promotes regeneration 
by stimulating muscle cell migration
To further study the role of uPA during muscle regeneration, we 

used the model of CTX-induced muscle injury, wherein regen-

eration can be analyzed in a more time-controlled fashion. Con-

sistent with the mdx model, the loss of uPA impaired muscle 

regeneration in the CTX model (Fig. 4 c and supplemental 

material). Notably, transplantation of WT BM improved the de-

fective muscle regeneration in uPA−/− mice (uPA−/−(WT-BM) mice), 

thereby highlighting the importance of BM-derived uPA in 

muscle repair (Fig. 4 c). However, we found no evidence of a 

relevant direct contribution of BM-derived uPA-expressing cells 

to regenerating myofi bers (very few GFP-positive myofi bers 

were detected after transplanting GFP-labeled WT BM cells; 

Fig. S2 e), suggesting that these cells likely promoted muscle 

regeneration via paracrine pathways.

During myofi ber regeneration, resident SCs proliferate, 

migrate to, and fuse with the injured muscle fi bers. As the 

loss of uPA in the mdx and CTX models reduced the number of 

Figure 4. Transplantation of uPA-expressing 
BM ameliorates the severe uPA−/−mdx muscular 
dystrophy and rescues the regeneration defect 
in CTX-injured uPA−/− mice. (a and b) BM from 
mdx or uPA−/−mdx donor mice was trans-
planted into uPA−/−mdx mice, and different 
muscle parameters were analyzed at 2 mo 
after transplantation. (a) Histological analysis. 
(left) HE staining of muscle sections. (right) 
 Reduced degeneration in uPA−/−mdx mice 
transplanted with BM from mdx donor mice. 
Percentage of total muscle-degenerating area. 
DG, degenerating group. (b) Reduced muscle 
damage in uPA−/−mdx mice transplanted with 
BM from mdx donor mice as refl ected by de-
creased serum CK levels. (c) BM transplanta-
tion rescues the regeneration defect of uPA−/− 
mice. BM from WT mice was transplanted into 
uPA−/− mice (uPA−/−(WT-BM)) and into WT mice 
(WT(WT-BM)). At 6 wk after transplantation, muscle 
injury was induced by CTX injection in these 
mice as well as in aged-matched nontrans-
planted WT and uPA−/− mice. HE staining. 
Data are means ± SEM (error bars). n = 4 
animals per group. *, P < 0.05. Bars, 50 μm.
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 regenerating myofi bers (Figs. 2 and 4), we wondered whether 

uPA, which is expressed by SCs (Fig. S1 b; Lluis et al., 2001), 

might also affect SC functions. Activation and proliferation 

rates of SCs were comparable in mdx and uPA−/−mdx muscles 

or in CTX-challenged WT and uPA−/− muscles (Fig. 6 a). Con-

sistent with this, although uPA/plasmin mediates the activa-

tion of hepatocyte growth factor (HGF)/scatter factor (SF) and 

TGF-β1 (i.e., modulators of SC activation and proliferation; 

Naldini et al., 1992; Robertson et al., 1993; Odekon et al., 1994; 

Pimorady-Esfahani et al., 1997; Tatsumi et al., 1998; Yablonka-

Reuveni et al., 1999; Shefer et al., 2001), the active levels of 

these factors were comparable in mdx and uPA−/−mdx muscles 

or in WT and uPA−/− injured muscle (Fig. S3, available at 

http://www.jcb.org/cgi/content/full/jcb.200705127/DC1). Further-

more, SC–derived primary myoblasts from uPA−/− muscle 

showed normal proliferation and migration in vitro (Fig. 6, b–d). 

Interestingly, however, the addition of murine recombinant (r-uPA) 

stimulated the migration of WT and uPA−/− myoblasts in both 

scratch wounds and transwell assays (Fig. 6, c and d), although 

it failed to affect the proliferation rates (Fig. 6 b). Consistent 

with the promigratory effect of uPA, myoblast migration was 

increased in the presence of conditioned medium obtained from 

WT macrophage cultures (compared with nonconditioned con-

trol medium) but was only minimally stimulated by uPA−/− 

macrophage conditioned medium (Fig. 6 e). The migration in 

response to WT macrophage conditioned medium was abro-

gated when the uPA inhibitor amiloride was added (Fig. 6 e). 

Moreover, the absence of migration in response to uPA−/− 

 macrophage conditioned medium was restored by supplementation 

with r-uPA (Fig. 6 e). Thus, our data suggest that macrophage-

derived uPA might promote muscle regeneration by enhancing 

SC migration.

Dispensability of uPAR for muscle 
regeneration after injury and in mdx 
dystrophinopathy
By binding to uPAR, uPA is capable of exerting its proteo-

lytic effects at the pericellular level, but it also enables uPA to 

Figure 5. Reduction of fi brin/ogen levels by 
BM-derived uPA or by ancrod treatment re-
duces the exacerbated degeneration of uPA−/−

mdx mice. (a) Increased fi brin/ogen  deposition 
in the muscle of uPA−/−mdx mice. (top)  Western 
blotting analysis of extracts of WT, mdx, and 
uPA−/−mdx muscles at 30 d of age using an 
anti-fi brin/ogen antibody. α-Tubulin was ana-
lyzed as a loading control. (bottom) Fibrin/
ogen deposition in WT, mdx, and uPA−/−mdx 
muscles at 30 d of age was analyzed by 
immunohistochemistry. (b) Fibrin/ogen levels 
were quantifi ed in muscle sections of uPA−/−

mdx mice transplanted with BM from uPA−/−

mdx or mdx donor mice. Fibrin/ogen was 
detected by immunohistochemistry, quantifi ed, 
and represented as the percentage of total 
muscle area. n = 7. (c) 12-d-old uPA−/−mdx 
mice were intraperitoneally injected daily with 
ancrod or with saline solution for 18 d up to 
30 d of age. Comparison of fi brin/ogen levels 
in muscle of uPA−/−mdx mice (at 30 d of age) 
after ancrod or saline treatment. (d) HE staining 
of muscle sections. (e) Percentage of the total 
degenerating area of muscles (left) and mean 
number of degenerating groups (DGs) containing 
>10 fi bers (right) per muscle section. (f) Number 
of Mac-1– and T-11–positive cells in muscles of 
uPA−/−mdx mice of 30 d of age that had been 
treated for 18 d with saline or ancrod starting 
at 12 d of age. Data are means ± SEM (error 
bars). n = 4 animals per group. *, P < 0.05. 
Bar, 50 μm.
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promote cell proliferation and migration via nonproteolytic 

pathways (Blasi and Carmeliet, 2002; Mondino and Blasi, 

2004). We found that uPAR expression was induced in muscle 

extracts of WT mice after CTX injury and of mdx mice after 

disease onset (Fig. 7 a). Thus, we reasoned that the role of uPA 

in muscle regeneration might be dependent, at least in part, on 

its binding to uPAR. To directly evaluate this hypothesis, we 

performed CTX injury in muscles of WT and uPAR-defi cient 

mice (uPAR−/−), crossbred the mdx mice into the uPAR-

defi cient background (uPAR−/−mdx mice), and analyzed the con-

sequences of uPAR defi ciency on muscle regeneration in both 

models. CTX-induced muscle regeneration was indistinguish-

able between WT and uPAR−/− mice after histological analyses 

at 2, 10, and 25 d after injury (Fig. 7 b). Consistent with this, 

Figure 6. Macrophage-released uPA stimu-
lates SC migration. (a, top) Comparative anal-
ysis of activated satellite cells (SCs) in muscles 
of mdx and uPA−/−mdx mice. Freshly isolated 
SCs from muscles of mdx and uPA−/−mdx mice 
were analyzed for the expression of CD34 (SC 
marker) and MyoD (activated SC marker); the 
percentage of activated SCs positive for both 
CD34 and MyoD is represented. The 100% 
value referred to the total number of SCs 
(CD34 positive). (bottom) Comparative analy-
sis of SC proliferation in vivo. WT and uPA−/− 
muscles were injected with CTX, and, 24 h 
later, BrdU was injected intraperitoneally; 
18 h later, SCs were harvested and cultured for 
24 h. The percentage of SCs that had been 
BrdU labeled in vivo was determined by immuno-
cytochemistry and counted microscopically. 
n = 3 animals per group. (b) Effect of uPA in 
SC proliferation. WT and uPA−/− SCs were 
cultured in growth medium, and recombinant 
murine uPA (r-uPA) was added when indicated. 
Cells were labeled with BrdU for 2 h, and 
BrdU incorporation was determined as in 
panel a. (c and d) Effect of uPA on SC migra-
tion. Cell migration assays were performed on 
plates or transwells coated with matrigel. 
(c) Wound-healing assay in vitro of WT and 
uPA−/− SCs in the absence or presence of 
r-uPA. Cells were photographed at 0, 8, and 
24 h after wounding. (d) WT and uPA−/− SCs 
were added to the upper chamber of the trans-
well. 10 nM r-uPA was added to the lower 
chamber of the transwell when indicated. The 
value 100% was arbitrarily given to the number 
of WT SCs that had migrated. (e) Conditioned 
medium (CM) from WT and uPA−/− macro-
phages (MP) without or with supplementation 
of amiloride or r-uPA as indicated was placed 
in the lower chamber of the transwell, and SCs 
from WT mice were placed in the upper cham-
bers. Culture medium alone was used as a 
reference for basal migration. Migration of 
SCs in WT macrophage conditioned medium 
conditions was given an arbitrary value of 
100%. n = 3 experiments performed in tripli-
cate. *, P < 0.05 versus WT values; #, P < 
0.05 versus uPA−/− values. Data are means ± 
SEM (error bars).
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the infi ltration of infl ammatory cells was also not affected in 

the absence of uPAR (Fig. 7 b). Most importantly, the muscle 

cross-sectional area and the extent of muscular dystrophy were 

also similar in mdx and uPAR−/−mdx mice (Fig. 7, c and d). 

Indeed, the percentage of muscle degeneration was not differ-

ent between mdx and uPAR−/−mdx mice (Fig. 7 d). In addition, 

the number of infi ltrated macrophages and T cells did not differ 

between mdx and uPAR−/−mdx mice (Fig. 7 c). Interestingly, 

the percentage of centrally nucleated fi bers was slightly in-

creased in uPAR−/−mdx mice (Fig. 7 d); however, SC–derived 

primary myoblasts from uPAR−/− mice presented normal 

pro liferation and migration rates in vitro (Fig. S4, available 

at http://www.jcb.org/cgi/content/full/jcb.200705127/DC1). 

Altogether, these results demonstrate that uPAR is dispensable 

for muscle tissue remodeling during regeneration both after 

acute injury and in mdx muscle dystrophy and suggest that uPA 

regulates key processes during muscle regeneration in a uPAR-

independent manner.

Discussion
Despite intense research efforts, DMD is still an incurable and 

fatal disease. The principal fi nding of this study is that uPA 

plays an important reparative role in muscular dystrophy. 

 Indeed, uPA expression and activity increase during dystrophic 

disease, and the genetic loss of uPA exacerbated muscle dystro-

phinopathy and worsened muscle performance in the mdx 

mouse model of Duchenne’s disease. Importantly, these defects 

in the absence of uPA were largely rescued by the transplanta-

tion of uPA-expressing BM, thus highlighting the importance of 

Figure 7. uPAR is dispensable for muscle re-
generation. (a) Induction of uPAR expression in 
CTX-injured WT muscles and mdx muscle as 
shown by RT-PCR. (b, left) Muscle sections of 
control (noninjured) and CTX-injured WT and 
uPAR−/− mice stained with HE. (right) Number 
of Mac-1– and T-11–positive cells in muscle 
sections of WT and uPAR−/− mice at 2 d after 
CTX injury. (c, left) HE staining of 1-mo-old 
mdx and uPAR−/−mdx mice muscle sections. 
(middle and right) Number of Mac-1– and 
T-11–positive cells in muscle sections of mdx 
and uPAR−/−mdx mice at 30 d of age. (d, left) 
Muscle cross-sectional area (CSA) of 1-mo-old 
mdx and uPAR−/−mdx mice. (middle) Percentage 
of total muscle-degenerating area of 1-mo-old 
mdx and uPAR−/−mdx mice. (right) Percentage 
of central-nucleated fi bers (CNF) in 1-mo-old mdx 
and uPAR−/−mdx mice. Data are means ± SEM 
(error bars). n = 6 animals per group. *, P < 
0.05. Bars, 50 μm.
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uPA-secreting BM-derived cells in muscular dystrophy. Our data 

also indicated a critical role for fi brin/ogen deposits in dystrophic 

muscle and a crucial role for uPA to dissolve them. Notably, muscle 

dystrophinopathy was unaffected in the absence of uPAR, sug-

gesting that uPA exerts its effect independently of its receptor. 

Thus, these results underscore the important role of muscle-

extrinsic factors such as BM cell–derived uPA in DMD disease.

Our fi ndings not only showed that uPA was produced by 

BM-derived cells but also that these cells required uPA for their 

infi ltration into dystrophic muscle. Accordingly, macrophages 

showed reduced migration in vitro in the absence of uPA. It has 

long been proposed that infl ammation exacerbates muscular 

dystrophy via the release of cytotoxic cytokines and free radi-

cals, leading to myofi ber necrosis (Spencer and Tidball, 2001; 

Grounds and Torrisi, 2004; Hodgetts et al., 2006; Pizza et al., 

2005; Tidball, 2005), although recently, evidence has been ac-

cumulating on a positive role for infl ammatory cells during 

muscle regeneration (Tidball, 2005; Sonnet et al., 2006; Arnold 

et al., 2007; Pelosi et al., 2007; Tidball and Wehling-Henricks, 

2007). Indeed, we found less infl ammation but increased muscle 

degeneration in uPA−/−mdx mice, whereas the transplantation 

of uPA-expressing infl ammatory cells rescued these degenera-

tive defects. Thus, it is conceivable that infl ammatory cells re-

quire uPA to infi ltrate degenerating muscles of dystrophic mice 

and initiate the repair process. Indeed, macrophages might re-

quire uPA for the activation and phagocytosis of necrotic debris 

and for extracellular matrix remodeling. It has been demon-

strated that the activation and release of prorecovery cytokines by 

leukocytes is reduced in uPA−/− mice (Matsushima et al., 1986; 

Sitrin et al., 1996; Gyetko et al., 2002; Abraham et al., 2003) 

and that uPA−/− leukocytes have impaired phagocytosis capac-

ity (Gyetko et al., 2004). One potential mechanism underlying 

the uPA-mediated activation of leukocytes might involve mac-

tinin, an α-actinin fragment that promotes monocyte/macrophage 

maturation, whose formation is mediated by uPA (Luikart et al., 

2002; Luikart et al., 2006). Moreover, our data indicate that 

uPA-expressing infl ammatory cells are required for intramuscular 

fi brinolysis. Collectively, we propose that uPA drives the infi ltration 

and function of infl ammatory cells required to create a benefi cial 

environment for the repair of dystrophic muscle.

Another prerequisite for the effi cient regeneration of 

dystrophic muscle appears to be prevention of the excessive 

deposition of fi brin/ogen. Indeed, in mdx muscle, fi brin/ogen ac-

cumulates as the disease progresses but is absent before disease 

onset. In the absence of uPA, both dystrophinopathy and fi brin/

ogen accumulation were enhanced in mdx mice. Importantly, 

depletion of fibrinogen by ancrod treatment attenuated the 

severe muscle degeneration in uPA−/−mdx mice. Thus, removal 

of fi brin/ogen deposits appears to be required for the resolution 

of muscle damage in mdx mice. Unpublished fi ndings indeed 

indicated that fi brin/ogen promoted the persistent infl ammation 

and degeneration of mdx muscles. Thus, by preventing exces-

sive fi brin/ogen accumulation, uPA produced by BM-derived 

infl ammatory cells might attenuate muscle degeneration and 

persistent infl ammation in mdx mice.

Several studies have shown that both uPA and uPAR are 

expressed by a variety of cells of hematopoietic origin (Plesner 

et al., 1997; Blasi and Carmeliet, 2002; Mondino and Blasi, 

2004) and that both molecules are up-regulated during severe 

infections, supporting a role for the uPA–uPAR system in in-

fl ammatory responses. Indeed, in uPAR-defi cient mice, macro-

phages and neutrophils failed to infi ltrate the lungs of mice in 

response to microbial infections (Gyetko et al., 2000; Rijneveld 

et al., 2002) or to migrate to the infl amed peritoneum of thiogly-

collate-treated mice (May et al., 1998). Therefore, we reasoned 

that the critical role of uPA in driving the infi ltration and func-

tion of infl ammatory cells during mdx muscle regeneration 

might involve uPAR. However, our results clearly showed that 

the loss of uPAR did not affect the degeneration/regeneration 

process nor did it impair the infl ammatory response in dystro-

phic muscle, indicating that uPAR is not required for either 

 process. Consistent with this notion, no degeneration or infl am-

matory phenotype was observed in uPAR-defi cient mice after 

CTX injury. These results together with the reported observa-

tions that uPA and uPAR knockout mice have different suscep-

tibilities to several pathogenic infections or biological processes 

(Carmeliet et al., 1998; Gyetko et al., 2000, 2001; Rijneveld 

et al., 2002; Deindl et al., 2003) indicate that uPAR and uPA 

may operate at different steps and may even be independent of 

each other.

After the clearance of degenerating myofi bers by uPA+ 

infl ammatory cells, muscle regeneration also appears to require 

uPA. Indeed, in the absence of uPA, muscle regeneration was 

attenuated in mdx and CTX-injured muscle; the transplantation 

of uPA-expressing BM rescued this defect. In addition, although 

the migratory capacity of primary myoblasts from uPA−/− mus-

cle was normal, myoblast migration was enhanced in the pres-

ence of recombinant or macrophage-produced uPA. In contrast, 

the supplementation of r-uPA failed to affect their ability to pro-

liferate. Thus, our results suggest that uPA derived from infl am-

matory cells specifi cally promotes the migration of muscle cells. 

As uPA defi ciency failed to affect the activation of latent growth 

factors (e.g., HGF/SF or TGF-β1) in regenerating muscle in 

vivo, uPA might affect SC migration via alternative pathways. 

Unpublished fi ndings from our group suggest that the removal 

of fi brin/ogen deposits promotes SC migration. Notably, these 

data extend previous observations that uPA promotes the migra-

tion of C2C12 immortalized myoblasts and primary human 

 myoblasts by regulating membrane ruffl ing or by binding uPAR 

(Chazaud et al., 2000; Fibbi et al., 2001; El Fahime et al., 2002). 

However, we found that the genetic loss of uPAR did not affect 

primary myoblast migration.

DMD remains an incurable and fatal disease. No therapies 

correcting the primary defect in DMD (i.e., dystrophin replace-

ment) are yet available, and current DMD therapies have a 

 narrow therapeutic window (e.g., temporary effi cacy and severe 

side effects). Our study shows that uPA activity, by providing an 

adequate infl ammatory response and by promoting fi brinolysis 

and muscle regeneration, is benefi cial in mdx muscle dystrophy. 

Notably, we and others recently demonstrated that genetic loss 

of the uPA inhibitor PAI-1 accelerated the recovery of CTX-

 injured muscle (Koh et al., 2005; Suelves et al., 2005). Thus, 

stimulating uPA activity may constitute a novel potential alter-

native for DMD disease amelioration.
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Materials and methods
Generation of double mutant mice
uPA and uPAR knockout male mice (Carmeliet et al., 1994; Dewerchin 
et al., 1996) were crossed with mdx female mice (Jackson ImmunoResearch 
Laboratories). Male F1 mice were bred with mdx female mice, and their F2 
heterozygous uPA and uPAR male and female offspring were intercrossed. 
The resulting F3 generation showed the expected Mendelian distribution of 
uPA-WT, uPAR-WT, and heterozygous and homozygous defi cient geno-
types, all of them in an mdx background. The uPA−/− and uPAR−/− geno-
types were confi rmed by PCR of tail biopsy genomic DNA as previously 
described (Carmeliet et al., 1994; Dewerchin et al., 1996). The mdx geno-
type was confi rmed by Western blotting of muscle biopsies using an anti-
dystrophin antibody (1:200; Novocastra). All animal experiments were 
approved by the Catalan Government Animal Care Committee.

Morphometric analysis
At selected times, muscles of WT, uPA−/−, uPAR−/−, mdx, uPA−/−mdx, 
and uPAR−/−mdx mice were removed after cervical dislocation, frozen, 
and stored at −80°C before analysis. 10-μm sections were collected from 
the midbelly of muscles and stained with hematoxylin/eosin (HE). Images 
were acquired with a microscope (DMR; Leica) equipped with a camera 
(DFC300 FX; Leica) and using 10× 0.25 NA, 20× 0.40 NA, and 40× 
0.75 NA objectives (Leica). The acquisition software was the IM1000 pro-
gram (Leica). The cross-sectional areas of entire muscles and myofi bers 
were measured using the computer-assisted morphometric measurement 
Image 1.62c program (Scion).

Biochemical and functional assessment of muscle
Serum CK was measured with the indirect CK colorimetric assay kit and stan-
dards (Thermo Electron). For the grip strength assay, forearm grip strength 
was measured as tension force using a computerized force transducer (grip 
strength meter; Bioseb) to measure the peak force exerted by a mouse’s fore-
limbs as its grip was broken by the experimenter pulling the mouse by the 
base of the tail away from the transducer (Costa et al., 1999) of the grip 
strength meter (Meyer et al., 1979). Three trials of three measurements per 
trial were performed for each animal with a few minutes resting period be-
tween trials. The mean tension force (in newtons) was calculated for each 
group of mice. The 100% value was arbitrarily assigned to the recorded force 
of mdx mice (Fig. 2 g). For the treadmill assay, the treadmill apparatus 
 (Treadmill; Panlab) consisted of a belt set at a slope of 10° and varying in 
terms of rotational speed (5–150 rpm; Martinez de Lagran et al., 2004). At 
the end of the treadmill, an electrifi ed grid was placed on which footshocks 
(0.6 mA) were administered whenever the mice felt off the belt. The latency to 
fall off the belt (time of shocks in seconds) and the number of received shocks 
in consecutive trials with increasing fi xed rotational speeds (5, 10, 20, 30, 
40, and 50 rpm) with a cut-off period of 1 min per trial were registered. Ani-
mals were trained to walk on a motor-driven treadmill belt at constant speed 
(5 rpm) to obtain baseline values for locomotion in the intact state.

Von Kossa staining
Muscle sections were placed in a silver nitrate solution, exposed to strong 
light for 30 min, and rinsed in distilled water. Sections were treated with 
sodium thiosulphate, rinsed in distilled water, and counterstained with neu-
tral red. Finally, preparations were covered with aqueous mounting media 
and photographed.

Immunohistochemistry
The following primary antibodies were used for immunohistochemistry: anti–
Mac-1 (M1/70; Hybridoma Bank), anti-T11 conjugated with fl uorescein 
(1:50; Coulter Immunology), anti-fi brin/ogen (1:100; Nordic), anti-F4/80 
(1:200; Serotec), and anti-uPA (1:20; Santa Cruz Biotechnology, Inc.). De-
pending on the antibody, immunohistochemistry was performed with the ty-
ramide signal amplifi cation cyanine 3 system (PerkinElmer) or as previously 
described (Lluis et al., 2001; Suelves et al., 2002). Control experiments with-
out primary antibody demonstrated that the signals observed were specifi c.

Preparation of muscle extracts and Western blot analysis
Muscle extracts were prepared from gastrocnemius muscles in 100 mM 
Tris-HCl buffer, pH 7.6, containing 200 mM NaCl, 100 mM CaCl2, and 
0.4% Triton X-100. 50 μg of total protein was resolved by SDS-PAGE and 
transferred to polyvinylidene difl uoride membranes. Antibody dilutions 
were anti-fi brin/ogen at 1:3,000 (provided by K. Dano, Finsen Labora-
tory, Rigshospitalet, Copenhagen, Denmark) and anti–α-tubulin at 1:4,000 
(DM1A; Sigma-Aldrich).

Zymography
Zymography of muscle extracts was performed as previously described 
(Lluis et al., 2001). An SDS-PAGE gel was laid onto a casein gel, incu-
bated in a humid chamber at 37°C until caseinolytic bands (corresponding 
to uPA or/and tPA) were visualized, and photographed.

Systemic defi brinogenation
12-d-old uPA−/−mdx mice were daily injected intraperitoneally with ancrod 
(1 U ancrod/day; Sigma-Aldrich) or with a saline solution for 18 d and 
killed at 30 d of age. Muscles were dissected and frozen before analysis.

Analysis of muscle fi ber degeneration and regeneration
Muscle degeneration was determined microscopically and expressed as a 
percentage of the total muscle area. The number of DGs (degenerating groups) 
that contained >10 degenerating fi bers was counted in complete muscle cross 
sections of mdx and uPA−/−mdx mice. Muscle fi ber regeneration was deter-
mined microscopically and expressed as the percentage of total muscle fi bers 
containing central nuclei present in the entire cross section of the muscle.

Migration assays
Macrophage migration was assayed on transwells (3-μm pore size; 
 Beckton Dickinson). BM-derived macrophages were obtained as previously 
described (Celada et al., 1984) from mdx and uPA−/−mdx mice (or from 
WT and uPA−/− mice). 5 × 104 macrophages/transwell in RPMI 1640 
containing 1% FCS were added to the upper chamber of the transwell, and 
the conditioned medium of muscle SCs, which was previously concentrated 
fi vefold using the Centrifugal Filter Device (Millipore), was added to the 
lower chamber. SC migration was performed on 8-μm pore size transwells. 
SCs from WT or uPA−/− mice (5 × 104 cells/transwell) in Hams F-10 con-
taining 1% FCS were added to the upper chamber of transwells. Transwells 
were coated with matrigel before addition of the cells. When indicated, 10 nM 
recombinant murine uPA (Molecular Innovations) was added to the lower 
chamber of the transwell. Alternatively, conditioned medium of WT or 
uPA−/− macrophages, which were previously concentrated 2.5-fold and 
supplemented or not supplemented with 10 nM of murine r-uPA (Molecular 
Innovations) or 1 mM amiloride (Sigma-Aldrich), was added to the lower 
chamber. After 16 h of incubation at 37°C, cells on the fi lter’s upper 
surface were scraped off. Then, fi lters were fi xed in cold ethanol and stained 
with 5% crystal violet. Cells on the fi lter’s lower surface were counted (12 
fi elds per fi lter). Experiments were performed in triplicate.

Wound-healing assay in vitro
WT and uPA−/− SCs (2 × 105 cells) were plated in 12-well plates coated 
with matrigel (BD Biosciences). Once cells were attached to the matrix, a 
wound was performed across the well using a sterile pipette tip with an 
outer diameter of 500 μm. When indicated, 10 nM recombinant murine 
uPA was added to the culture media. Cells were then photographed at 
0, 8, and 24 h after wounding using a microscope with 10× magnifi cation 
(DMR; Leica). Experiments were performed in triplicate.

Induction of muscle regeneration
Regeneration of skeletal muscle was induced by intramuscular injection of 
300 μl of 10−5 M CTX (Latoxan) in the gastrocnemius muscle group of the 
mice (Kherif et al., 1999). This concentration and volume were chosen to 
ensure maximum degeneration of the myofi bers. The experiments were 
performed in right hindlimb muscles, and contralateral intact muscles were 
used as a control. Morphological and biochemical examinations were per-
formed at 0, 2, 10, and 25 d after injury.

BM transplantation
Donor BM cells were obtained by fl ushing the femurs and tibiae of mdx or 
uPA−/−mdx mice with RPMI 1640 medium (Invitrogen) and were trans-
planted into 4-mo-old uPA−/−mdx mice after lethal irradiation (9 Gy). Alter-
natively, donor BM cells were obtained from WT mice and transplanted 
into 8-wk-old WT or uPA−/− mice. The reconstituting cells (5 × 106 cells) 
were injected intravenously into the tail of the recipient mice within 24 h 
after irradiation. Alternatively, donor BM cells were obtained from GFP 
mice (TgN-GFPU-5Nagy mice; provided by A. Nagy, Samuel Lunenfeld 
Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada) and 
were transplanted into 2-mo-old WT and uPA−/− mice. The mice were 
placed in sterile cages and fed with sterile chow until the reconstitution of 
BM was completed 8 wk after the transplantation. No changes in general 
health status were noted in the recipient mice. Regeneration of skeletal 
muscle in WT and uPA−/− mice was induced by the intramuscular injection 
of CTX as described in the previous section.
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SC isolation and FACS analysis of activated SCs
SCs were isolated from mdx and uPA−/−mdx mice of 2.5 mo of age as de-
scribed previously (Mitchell and Pavlath, 2004). For FACS analysis, 2 × 
105 SCs were used. SCs were permeabilized with 70% EtOH for 1 h at 
–20°C after incubation with an anti-CD34 antibody (FITC anti–mouse CD34; 
Ram34; BD Biosciences). Next, SCs were incubated with an anti-MyoD anti-
body (MyoD; Santa Cruz Biotechnology, Inc.) followed by incubation with 
a phycoerythrin-labeled secondary antibody (donkey anti–rabbit phyco-
erythrin; Abcam). Activated SCs were cells double positive for CD34 and 
MyoD. Experiments were performed in triplicate.

BrdU incorporation in vitro
WT, uPA−/−, and uPAR−/− SCs were cultured in Ham’s F-10 medium con-
taining 20% FBS. 3.5 × 104 cells were plated in 12-well plates. When in-
dicated, recombinant murine uPA (Molecular Innovations) was added to 
the culture medium at different concentrations (2, 10, or 50 nM). After 18 h, 
proliferating cells were labeled with 1.53 μg/ml BrdU (Sigma-Aldrich) 
for 2 h. BrdU-labeled cells were detected by immunocytochemistry and 
counted microscopically. Antibodies used for immunodetection were mono-
clonal rat anti-BrdU (1:500; Oxford Biotechnology) and biotin-SP–conjugated 
donkey anti–rat IgG (1:250; Jackson ImmunoResearch Laboratories). Experi-
ments were performed in triplicate.

BrdU incorporation in vivo
Gastrocnemius, quadriceps, and tibialis muscles from WT and uPA−/− 
mice were injected with CTX to induce muscle regeneration. 24 h after 
injury, 50 mg/kg BrdU was injected intraperitoneally. 18 h later, SCs 
were isolated as described previously (Mitchell and Pavlath, 2004) and 
cultured for 24 h in Ham’s F-10 medium containing 20% FBS. The per-
centage of SCs that had been BrdU labeled in vivo was determined by 
immunocytochemistry using a monoclonal rat anti-BrdU (as described 
above) and counted microscopically. Experiments were performed 
in triplicate.

RNA isolation and RT-PCR analysis
Total RNA was extracted from muscles or SCs using the commercially avail-
able Ultraspec RNA isolation system (Biotecx). For RT-PCR, 2 μg of total 
RNA were reverse transcribed using the fi rst-strand cDNA synthesis kit (GE 
Healthcare). Amplifi cation parameters were denaturation at 94°C for 30 s, 
annealing for 30 s at 50°C (uPAR) and 55°C (uPA and glyceraldehyde-
3-phosphate dehydrogenase), and extension at 72°C for 30 s. Primers for 
the detection of reverse transcriptase products were derived from different 
exons to distinguish RT-PCR products from genomic DNA contaminations. 
Primer sequences were as follows: uPAR (5′-G T G A C C C T C C A G A G C A C A-
G A A  -3′ and 5′-G C A G T G G G T G T A G T T G C A A C A -3′), uPA (5′-G G C A G T G-
T A C T T G G A G C T C C T -3′ and 5′-T A G A G C C T T C T G G C C A C A C T G -3′), and 
glyceraldehyde-3-phosphate dehydrogenase (5′-A C T C C C A C T C T T C C A C C-
T T C -3′ and 5′-T C T T G C T C A G T G T C C T T G C -3′). The expected product sizes 
were uPAR at 140 bp, uPA at 450 bp, and glyceraldehyde-3-phosphate 
dehydrogenase at 185 bp.

Measurement of activated HGF
Muscle extracts were analyzed for the presence of activated HGF by West-
ern blotting using a goat anti–αHGF antibody (1:100; Santa Cruz Biotech-
nology, Inc.), which recognizes the active form (60 kD) of mouse HGF.

Measurement of activated TGF-𝛃1
Crushed muscle extracts from mdx and uPA−/−mdx mice and from WT and 
uPA−/− mice after CTX injury were prepared as described previously (Chen 
and Quinn, 1992). The presence of activated TGF-β1 was analyzed using 
the Quantikine TGF-β1 immunoassay kit (R&D Systems) according to the 
manufacturer’s instructions.

Statistical analysis
All quantitative data were analyzed by t test. P < 0.05 was considered 
statistically signifi cant.

Online supplemental material
Table S1 shows a comparison of the morphometric properties of gastrocne-
mius muscle of WT, mdx, and uPA−/−mdx mice. Fig. S1 demonstrates that 
macrophages and SCs express uPA. Fig. S2 shows that BM transplantation 
rescues abnormal infl ammatory infi ltration and fi brin/ogen deposition in 
uPA−/− mice. Fig. S3 shows that uPA-defi cient muscles present normal acti-
vated TGF-β1 and HGF/SF levels. Fig. S4 shows that uPAR−/− SCs have 
normal proliferation and migration rates. Supplemental material contains a 
description of the impaired muscle regeneration in uPA-defi cient mice after 

CTX injury. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200705127/DC1.
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