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Abstract

T1 and ECV mapping are quantitative methods for myocardial tissue char-

acterization using cardiac MRI, and are highly relevant for the diagnosis of

diffuse myocardial diseases. Since the maps are calculated pixel-by-pixel from

a set of MRI images with different T1-weighting, it is critical to assure ex-

act spatial correspondence between these images. However, in practice, dif-

ferent sources of motion e.g. cardiac motion, respiratory motion or patient

motion, hamper accurate T1 and ECV calculation such that retrospective mo-

tion correction is required. We propose a new robust non-rigid registration

framework combining a data-driven initialization with a model-based registra-

tion approach, which uses a model for T1 relaxation to avoid direct registra-

tion of images with highly varying contrast. The registration between native

T1 and enhanced T1 to obtain a motion free ECV map is also calculated us-

ing information from T1 model-fitting. The method was validated on three

datasets recorded with two substantially different acquisition protocols (MOLLI

(dataset 1 (n=15) and dataset 2 (n=29)) and STONE (dataset 3 (n = 210))),

one in breath-hold condition and one free-breathing. The average Dice coef-

ficient increased from 72.6±12.1% to 82.3±7.4% (P<0.05) and mean bound-

ary error decreased from 2.91±1.51mm to 1.62±0.80mm (P<0.05) for motion
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correction in a single T1-weighted image sequence (3 datasets) while average

Dice coefficient increased from 63.4±22.5% to 79.2±8.5% (P<0.05) and mean

boundary error decreased from 3.26±2.64mm to 1.77±0.86mm (P<0.05) be-

tween native and enhanced sequences (dataset 1 and 2). Overall, the native T1

SD error decreased from 67.32±32.57ms to 58.11±21.59ms (P<0.05), enhanced

SD error from 30.15±25ms to 22.74±8.94ms (P<0.05) and ECV SD error from

10.08±9.59% to 5.42±3.21% (P<0.05) (dataset 1 and 2).

Keywords: cardiac T1 mapping, cardiac ECV mapping, motion correction,

image registration

1. Introduction

Accurate measurement of myocardial T1 and extra cellular volume (ECV)

using cardiac MRI is highly relevant for the diagnosis of diffuse myocardial

diseases such as diffuse fibrosis, amyloidosis and Anderson Fabry disease (Schel-

bert and Messroghli (2016); Haaf et al. (2017)). Compared to the conventional5

late gadolinium enhanced (LGE) images where diagnosis is based on the sub-

jective assessment of relative contrast differences, T1 and ECV mapping allow

quantitative characterization of the myocardium. In T1 mapping, a map of the

longitudinal relaxation time (T1) is obtained by fitting an exponential curve to

each pixel in a sequence of T1-weighted images, acquired over multiple heart cy-10

cles, using a dedicated imaging protocol e.g. the Modified Look-Locker Inversion

recovery protocol (MOLLI) (Messroghli et al. (2004)) or the free-breathing mul-

tislice slice-interleaved T1 sequence (STONE) (Weingärtner et al. (2015)). In

MOLLI, 2D T1-weighted images are typically acquired using two or three inver-

sion pulses with multiple read-outs after each inversion pulse, while in STONE,15

a single image is acquired after each inversion, in theory eliminating disturbance

of the relaxation curve by multiple read-outs. Additionally, an ECV map (Kell-

man et al. (2013)) can be constructed by combining the T1 map before (native)

and after (enhanced) gadolinium contrast injection.

Motion artifacts in the pixel-wise T1 map, and consequently in the pixel-20
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wise ECV map, appear when the sequence of T1-weighted images is misaligned

due to involuntary patient motion, cardiac motion and/or respiratory motion.

Despite ECG-gating and acquisition in mid- or end-diastole, artifacts can result

from heart-rate related triggering errors or drifts, which appear as stochas-

tic non-rigid motion over the images. Respiration related motion is generally25

more continuous in time and is often limited by imposing breath hold during

acquisition, although also a trend towards free-breathing acquisition, using a

respiratory navigator, is notable. However, even in breath-held acquisitions,

respiratory-related motion artifacts cannot be eliminated completely due to the

subject’s inability or noncompliance to repeated breath-hold instructions in a30

usually long cardiac MRI exam, diaphragmatic drift or septal shifts resulting

from pressure differences between both ventricles during a breath-hold. Retro-

spective non-rigid motion correction is thus imperative for correct quantification

of T1 in the whole myocardium.

The use of off-the-shelf state-of-the-art generic data-driven image registra-35

tion approaches (Viergever et al. (2016)) for this application is complicated by

the intrinsic complexity of the image data, including contrast inversion, partial

volume effects and signal nulling for images acquired near the zero crossing of

the T1 relaxation curve (Xue et al. (2012)), such that dedicated approaches are

needed. Furthermore, obtaining a motion-free set of T1-weighted images re-40

quires aligning more than two images implying that also a registration strategy

(i.e. pairwise to reference or groupwise) should be specified.

In Roujol et al. (2015), a local non-rigid registration framework based on

optical flow was developed that simultaneously estimated the motion field and

the intensity variation to cope with the large variations in contrast. All im-45

ages are transformed to a reference image, which is chosen to be the image

with the largest or second largest inversion time (TI). In Huizinga et al. (2016),

a groupwise method for quantitative MRI, including T1 mapping, was pro-

posed whereby all images are registered simultaneously to a mean space by

minimization of a cost function based on principal component analysis (PCA),50

assuming a non-specific low dimensional signal model. This method was vali-
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dated on human cardiac data in Tao et al. (2018). Guyader et al. (2016) uses

a theoretically-derived total-correlation-based metric instead of the empirically-

determined PCA-based cost in the same framework. Recently, Zhang et al.

(2018) proposed to perform motion correction in T1 mapping by maximizing55

the similarity of normalized gradient fields between the reference image (the

image with longest TI) and any other image, combined with an elastic regu-

larizer. The same algorithm is used to perform registration between the native

and enhanced T1 map.

Model-based approaches on the other hand exploit the underlying T1 relax-60

ation model, such that direct registration between images with largely different

or inverted contrast can be avoided. In Xue et al. (2012), motion free-synthetic

images resembling the original contrasts are constructed based on a crude initial

T1 estimate to guide the registration. This initial T1 map is estimated from two

images with respectively the shortest and longest TI, which have been registered65

to avoid motion artifacts. Alignment between the synthetic and original images

is achieved with a fast variational non-rigid image registration framework. In

Van De Giessen et al. (2013), the error on the exponential curve fitting, which

is assumed to increase in case of misalignment, is directly used as registration

criterion to spatially align the images obtained from a Look-Locker sequence. In70

this acquisition sequence, no ECG-gating is performed and more T1-weighted

images (typically 30) are used. In practice, this is implemented as an iterative

approach, which alternately fits the exponential curve pixel-by-pixel through

the datapoints and minimizes the error between the model intensities and the

real intensities. Both steps use the sum-of-squared differences as optimization75

metric. A limitation of these model-based algorithms is however that a good

initialization for T1 is required, which in practice involves a sufficiently accurate

initialization of the registration. Furthermore, relying on the model is compli-

cated by the need for signal polarity restoration when magnitude-reconstructed

images are used.80

A third category of registration methods, besides data-driven and model-

based approaches, is a segmentation-based registration approach. In such ap-
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proach, correspondence of segmentations of myocardium or other structures

among the different images is used as similarity criterion for motion correction.

An example for native T1 mapping was recently presented in El-Rewaidy et al.85

(2018) where a segmentation of the myocardium in every T1-weighted image

is obtained using an active shape model (ASM). Registration is subsequently

achieved by estimating rigid- and non-rigid transformation parameters to align

all contours to the reference contour, which is chosen to be the contour of the

image with maximal contrast (shortest TI). A registration based on a global90

segmentation of the myocardium alone has as main disadvantage that corre-

spondence of images is only enforced at endo- and epicardium, which is an

important limitation in case of focal diseases (e.g. focal fibrosis or myocardial

infarction).

Related to the problem of motion correction for T1 mapping is motion cor-95

rection in myocardial perfusion imaging (Gupta et al. (2012)), for which a chal-

lenge has been organized at STACOM 2014 (Pontre et al. (2016)). In perfusion

imaging, also a set of T1-weighted images with different contrast is available, al-

though there are typically more images (∼40-60), thus requiring a longer breath-

hold (45-50s) (Gupta et al. (2012)). Furthermore, whereas for T1 mapping the100

intensity of the left ventricle (LV) and right ventricle (RV) blood pool can be

assumed to be identical in one image, this is not the case in perfusion imaging.

For this problem, also model-based approaches have been presented e.g. by

Likhite et al. (2015). In their method, they construct model images based on a

diffusion model, which requires the arterial input function from the RV blood105

pool. The model is thus not only dependent on the intensity values of a single

pixel as is the case for T1 mapping and requires a prior segmentation.

In this paper, we present a model-based registration method for T1 map-

ping, which iteratively minimizes the errors on the T1 curve fit by registering

each image to its corresponding model derived from estimated parameters dur-110

ing T1 curve fitting. Compared to existing model-based algorithms, we propose

a robust data-driven initial registration to avoid large bias in the initial T1

estimate in cases with large motion. Robustness is assured by automatically
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determining an optimal registration sequence for each image and by exploiting

specific knowledge about the acquisition to identify the low-signal images in the115

sequence that are difficult to register, requiring specific attention. Additionally,

we choose to use a two parameter exponential model instead of a three param-

eter model during registration to further increase robustness. Finally, we also

integrate co-registration of the native and enhanced images in the framework to

obtain motion free ECV maps. We validated our algorithm on different in-vivo120

datasets using both segmentation-based error metrics and metrics directly rep-

resenting the reliability of T1 and ECV values. An initial version of this work

was presented in Tilborghs et al. (2017a) and Tilborghs et al. (2017b). New

contributions in this paper are:

• Two parameter instead of three parameter model for model-based regis-125

tration to increase robustness and convergence

• New method for co-registration, which uses the parameters of the two

parameter exponential model and thereby optimally integrates the infor-

mation contained in both scans

• Validation on a publicly available dataset acquired using a free-breathing130

multi-slice protocol (El-Rewaidy et al. (2018))

2. Methods

2.1. Registration framework

The proposed algorithm combines a data-driven initialization with a model-

based refinement. The data-driven initialization is required to obtain a robust135

first estimate for the pixelwise T1 before exploiting the T1-relaxation model.

This combined method is applied to both native and enhanced scans separately.

A motion free ECV map is additionally obtained by co-registration. An overview

of the method is given in Fig. 1.
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Figure 1: Overview of registration framework. During the data-driven initialization and

model-based registration, native (n, light connection arrows) and enhanced (e, dark connection

arrows) images are handled separately. nsn and nse are the number of native and enhanced

images respectively. The co-registration warps the enhanced images in the native image space.

After registration, motion corrected native T1 map, enhanced T1 map and ECV map are

calculated.

2.1.1. Motion correction for T1 mapping140

Data-driven initialization. The data-driven initialization considers all pairwise

registrations between all images I1 to Ins in the scan simultaneously and applies

a global optimization approach to find an optimal reference image and optimal

registration sequences to minimize registration failures. The optimization is

based on a symmetric measure C(a, b) for the registration affinity between any145

two images Ia and Ib, which takes into account 1) the consistency Cc(a, b) be-

tween their forward T a→b and backward T b→a affine registration transformation

and 2) the similarity Cs of each image with all other images in the scan after

affine registration, which acts as a penalty term to discourage registration of

dissimilar images:150

C(a, b) = (Cc(a, b) + Cc(b, a)) + w · (Cs(a) + Cs(b)), (1)
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where

Cc(a, b) =
∥∥(T b→a · T a→b − I) · ca

∥∥ (2)

with ca a set of samples in image Ia on which the registrations are evaluated

and

Cs(a) =
1∑

i MI(T (a), i) + MI(a, T (i))
(3)

the inverse of the total mutual information (MI) of image Ia with any other

image Ii. The two terms are balanced by the weight w to have a more or less155

equal contribution to the cost C(a, b). The Floyd-Warshall algorithm (Floyd

(1962)) is subsequently applied to the cost matrix C to determine the sequence

of pairwise image registrations for which the total accumulated cost Copt(a, b)

to transform any image Ia to any image Ib is minimal. For example, the cost

C(a, b) of transforming Ia → Ib might be larger than the sum of the cost to160

transform Ia → Ic and Ic → Ib, resulting in Copt(a, b) = C(a, c) +C(c, b) in this

case. Finally, the cost for choosing every image Ia as reference image is calcu-

lated as Ctot(a) =
∑

i Copt(i, a). The image Ir for which Ctot(r) is minimal, is

selected as reference image.

The required pairwise registrations are subsequently refined by non-rigid reg-165

istration. Each image is then warped to the reference image by concatenating

the transformations according to its optimal registration sequence.

Because images with low signal were found to be difficult to register with any

other image, they are treated differently to increase registration robustness.

These images are automatically detected in the scan based on their average sig-170

nal intensity over the region of interest (ROI) (Sec. 2.3) and are initially only

aligned affinely with the reference image, based on the affine registrations of

their adjacent images in acquisition order, assuming the affine motion compo-

nent to be continuous.

175

Model-based registration. The intensities s(t) in corresponding pixels of the im-

ages of a T1-weighted scan, acquired at timepoints t after the inversion pulse,
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follow an exponential model of T1 relaxation. For the MOLLI acquisition pro-

tocol (Messroghli et al. (2004)), a three parameter model is commonly used:

180

s(t) = A−B · e−
t

Tapp , (4)

where A and B are dimensionless parameters, Tapp is the apparent T1 and the

true T1 is T1 = Tapp · (B
A − 1). From the estimated parameters A, B and

Tapp in Eq. 4, ideal model images Imt can be derived for every timepoint t in

the sequence with similar contrast as the original images It, but with reduced

motion artifacts (Fig. 2b). Hence, it is expected that in case of misalignment,185

the difference between Imt and It will increase (Mewton et al. (2011)). Following

this hypothesis, refinement of the registration can be achieved by transforming

It to minimize a similarity cost between Imt and It and iterating the estimation

of model parameters and the transformation step (Tilborghs et al. (2017b)).

However, since in practice relatively few images are obtained in the initial, most190

steeply ascending part of the exponential T1 relaxation curve, the intensities in

the images with low inversion time t will dominate the estimation of A, B and

Tapp. In case of misalignment of one or few of such images, the appearance of

corresponding model images will be dominated by the actual image itself, such

that no or only slow convergence of motion correction can be achieved.195

To improve convergence, we propose to use a more robust model (Fig. 2)

to calculate our model images Imt , which contains only two parameters (We-

ingärtner et al. (2015)):

s(t) = A∗ · (1− 2 · e− t
T1∗ ), (5)

where A∗ is a dimensionless parameter and T1∗ is an estimation for T1. The

optimal parameters are estimated using the Nelder-Mead simplex direct search200

algorithm (Lagarias et al. (1998)). Because magnitude-reconstructed images are

used in our experiments, the exponential curve cannot be fitted directly through

the image intensities as the polarity of the signals is unknown. Hence, we use

a multifitting approach (Nekolla et al. (1992)) where for each pixel, five curve
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(a)

(b)

Figure 2: (a) Curve fitting using the three (Eq. 4) and two parameter (Eq. 5) model for three

different pixels: myocardial pixel (green), LV blood pixel (red) and mixed pixel where the

first datapoint belongs to the LV blood pool and all other are part of the myocardium due to

misalignment of the images (blue). The two parameter curve shows an improved correction

of the first datapoint of the mixed pixel. (b) Five out of ten T1-weighted images acquired

using the MOLLI protocol: actual images, three and two parameter model images with the

myocardium (cross), blood (square) and mixed (circle) pixels indicated.

fittings are performed (none, one, two, three or four first points inverted). The205

curve fitting with the lowest squared error is considered to be the correct one.
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We iteratively repeat the calculation of model images using the two param-

eter model and the non-rigid registration of the actual images to the estimated

model images. In every step, a new T1∗ map and new model images with

reduced motion artifacts are obtained.210

2.1.2. Motion correction for ECV mapping

To obtain a motion free ECV map, alignment of the native and enhanced

T1 map is required. We propose to perform a joint registration of T1∗ maps

and images of the A∗ parameter of Eq. 5 by minimizing the sum of mutual

information between both image pairs:215

Cco(Tco, T1∗n, A
∗
n, T1∗e, A

∗
e) = MI(T1∗n, Tco(T1∗e)) + MI(A∗n, Tco(A∗e)) (6)

where Tco is the transformation applied to the enhanced images and the sub-

scripts n and e refer to the native and enhanced scan respectively. By exploiting

the complementary information in both images, a more robust motion correction

can be achieved. Furthermore, since both images are readily available from the

model-based registration for motion free T1 maps, no additional T1 calculation220

step has to be performed.

2.2. Construction of T1 and ECV maps

After motion correction, motion free T1 maps can be constructed using the

most appropriate relaxation model for the adopted acquisition protocol, e.g. the

three parameter model (Eq. 4) for MOLLI acquisitions or the two parameter225

model (Eq. 5) for STONE acquisitions. The chosen model for the final T1 map

is independent of the model used for registration.

Motion free ECV maps can additionally be obtained by combining native

and enhanced T1 maps:

ECV = (1−HCT ) ·
( 1

T1e
− 1

T1n
1

T1blood,e
− 1

T1blood,n

)
(7)

where HCT is the hematocrit of the patient, i.e. the percentage of red blood cells230

in the blood. The subscripts n and e refer to native and enhanced respectively
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and blood to reference blood T1 values obtained from a manually selected region

in the left ventricular blood pool.

2.3. Implementation

The proposed framework is implemented in Matlab and has been executed235

on an iMac with 3.5 GHz Intel Core i5 processor and 32 GB RAM. The pairwise

registrations are calculated using Elastix (Klein et al. (2010)).

Prior to registration, a rectangular ROI around the heart is manually selected

on the first image of each sequence in order to focus the registration on the heart

only and to decrease computational complexity. The co-registration additionally240

uses a registration mask representing the heart. This mask is automatically

segmented from the native T1 map obtained after initial data-driven registration

using low level segmentation techniques.

The non-rigid transformations are parameterized using a B-spline (Rueck-

ert et al. (1999)) regularized with a rigidity penalty (Staring et al. (2007)),245

which constrains deformation identically over the whole image domain. The

mutual information similarity measure is used for data-driven initialization and

co-registration. For the set of samples required to evaluate the pairwise affine

registrations (Eq. 2) in the data-driven initialization only one sample, the center

point in the ROI, is used, as using more points was not found to influence over-250

all performance. The model-based motion correction minimizes the normalized

cross-correlation between every corresponding actual image and model image

since their intensities are expected to be similar. We perform five steps of the

model-based motion correction.

Computation time to obtain two registered T1 maps (native and enhanced,255

typically about 10 images per scan) and a registered ECV map with this im-

plementation, which is not optimized for speed, is about fifteen minutes. The

model-based registration, including a new curve fitting in every iteration, takes

about 80s per iteration and thereby consumes major part of the time.
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2.4. Evaluation260

2.4.1. Phantom experiment: two versus three parameter model

To demonstrate the improved performance of our two parameter model reg-

istration versus a more straightforward three parameter model registration, we

compared the two methods on a physical phantom. The phantom was con-

structed using three cylinders representing respectively the native T1 of blood,265

myocardium and fat (Fig. 3a). Two native MOLLI-scans, shifted 5mm in the

vertical image direction, consisting of 10 T1-weighted images (repetition time

= 2.06ms, echo time = 0.93ms, FOV = 300 × 300mm2, acquisition matrix =

152x150, reconstructed pixel size = 1.17x1.17mm, slice thickness = 8mm, flip

angle = 35◦ and sensitivity encoding factor = 2) and assuming a heart rate of270

66 BPM were acquired with a 1.5T MR scanner (Ingenia, Philips Healthcare,

Best, the Netherlands) following the 5s(3s)3s MOLLI scheme. The two scans are

used to create 10 new sequences where for each sequence, one image is displaced

with respect to the others. We applied the model-based step of our registration

method (thus without data-driven initialization) to each of the new sequences275

and calculated the remaining average displacement error of the shifted image

after registration over a square region of interest.

2.4.2. In vivo validation

For the validation of our registration framework we used three different

datasets: (1) a dataset of healthy, young athletes (n = 15, males (M) = 7,280

age = 16+/-1 years), (2) a dataset containing all T1-weighted image sequences

from our CMR database with histologically confirmed cardiac amyloidosis in a

period of two years (n = 29, M = 24, age = 72+/-10 years) and (3) the publicly

available dataset of free-breathing T1 mapping data of El-Rewaidy et al. (2018)

(n = 210, M = 134, age = 57+/-14 years). The use of datasets 1 and 2 was285

approved by the ethical committee of our hospital (S60774). All datasets were

processed identically.

The 2D+time scans of dataset 1 and 2 were recorded using a 1.5 T MR scan-

ner (Achieva (athletes) and Achieva or Ingenia (amyloidosis patients), Philips
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(a)

(b)

(c)

Figure 3: (a) T1-weighted phantom images in order of increasing TI. (b) Residual displace-

ment, for an initial translation of 5mm in the vertical direction of each image separately, after

registration using a three (top) or two parameter (bottom) model. (c) Result when shifting

the first image (shortest TI) only (left panel) or the second image (2nd shortest TI) only (right

panel). Both panels show from left to right: ground truth image; original image (after initial

displacement); recovered image with three parameter model; recovered image with two pa-

rameter model. The bottom row shows the corresponding (three parameter fitted) T1 maps.

The larger residual displacements of the three parameter model shown in Fig. 3b result in a

disturbed T1 map, especially for image 1.

Healthcare, Best, the Netherlands) and a 6-channel (Achieva) or 32-channel (In-290

genia) cardiac phased array receiver coil. For the enhanced scans, 0.15 mmol/kg

of gadobutrol (Gadovist, Bayer Schering) was administered to the subjects. The

5s(3s)3s and the 4s(1s)3s(1s)2s MOLLI schemes (Messroghli et al. (2004); Kell-

man and Hansen (2014)), imposing breath-hold, were used for the native and

enhanced scans respectively. Following these schemes, 7 to 16 images per native295

scan and 9 to 16 images per enhanced scan were obtained (repetition time =

2.24±0.10ms, echo time = 1.03±0.05ms, flip angle = 35◦, sensitivity encoding
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factor = 2). The typical image geometry was FOV = 300 × 300mm2, acquisi-

tion matrix = 152 × 150, reconstructed pixel size = 1.17 × 1.17mm2 and slice

thickness = 10mm, although in about 12% of the image sequences a different300

FOV, matrix and pixel size was used e.g. FOV = 348 × 348mm2, acquisition

matrix = 176×174 , reconstructed pixel size = 1.09×1.09mm2. The mid-cavity

short-axis images of dataset 1 and short-axis (SAX) images at three levels (base,

mid and apical) as well as horizontal long axis (HLA) views of dataset 2 were

used for validation.305

The third dataset contains native SAX images at five levels from apical

to basal for 210 patients with known or suspected cardiovascular disease, ac-

quired using the STONE sequence (Weingärtner et al. (2015)). The scans were

recorded under free-breathing condition using a 1.5 T MR scanner (Achieva,

Philips Healthcare, Best, the Netherlands), a 32-channel cardiac phased array310

receiver coil and a respiratory navigator using prospective tracking with nav-

igator tracking slice factor of 0.6. Each scan contains 11 T1-weighted images

with repetition time = 2.7ms, echo time = 1.37ms, flip angle = 70◦, sensitivity

encoding factor = 1.5, FOV = 360× 351mm2, acquisition matrix = 172× 166,

reconstructed pixel size = 1.13× 1.13mm2 and slice thickness = 8mm.315

The endo- and epicardium were manually delineated on every (non-corrected)

T1-weighted image by two different, independent observers to assess the inter-

observer variability (dataset 1), or one observer (dataset 2 + 3). After reg-

istration, the segmentations were propagated to the reference image space by

applying the calculated transformations to binary images representing the my-320

ocardium.

For perfect image alignment and assuming no segmentation errors, the over-

lap of the myocardial segmentations should be optimal. This is assessed by the

Dice similarity coefficient DSC (Dice (1945)) averaged over all possible image

pairs (k, l) in a native or enhanced scan:325

DSCM =

∑ns
k=1

∑ns
l=1,l 6=k DSC(k, l)

ns · (ns− 1)
, (8)
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with

DSC(k, l) =
2 · (Sk

⋂
Sl)

Sk + Sl
, (9)

where Sk is the myocardium segmentation of image k and ns is the number of

images in the scan. To evaluate the result of co-registration, DSC(k, l) averaged

over all native-enhanced image pairs is used:

DSCM,co =

∑nsn
k=1

∑nse
l=1 DSC(k, l)

nsn · nse
. (10)

Furthermore, the global Dice similarity coefficient (Huizinga et al. (2016)),330

which assesses the overlap of all images simultaneously and is thereby sensi-

tive to the misregistration of a single image, is evaluated:

DSCG =
ns · (S1

⋂
S2...

⋂
Sns)

S1 + S2 + ... + Sns
. (11)

Additionally, the mean distance between endo- and epicardial contours of dif-

ferent images is calculated (Mean Boundary Error, MBE) and averaged over

all possible image pairs identically as for DSCM and DSCM,co.335

To assess the influence of the motion correction on actual T1 and ECV

values, accuracy of native and enhanced T1 values as well as of ECV values is

determined for the different cardiac segments proposed by the American Heart

Association (AHA) (Cerqueira et al. (2002)) before and after registration. The

different segments are obtained by manual delineation of the reference image.340

Segmental T1 and ECV accuracy are calculated similarly as in El-Rewaidy et al.

(2018) to be the mean of the difference between the pixelwise T1/ECV values

in the segment of interest and a ground truth T1/ECV value for this segment.

To calculate the ground truth T1/ECV values, a ground truth image alignment

is first obtained by warping all T1-weighted images to the reference image (see345

Sec. 2.1.1) using a thin-plate spline transformation model to exactly align the

manually delineated contours. The pixelwise T1/ECV values of these warped

images are calculated inside the manual segmentation of the reference image and

a single ground truth value per segment is obtained by averaging. Additionally,

standard deviation (SD) error, calculated according to Kellman et al. (2013),350

is used. This metric represents the SD of T1/ECV estimate in T1/ECV units
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for every pixel separately to construct so-called SD maps (see Fig. 4a) and is

obtained by transforming the SD of the error on the curve fit into the SD of the

estimated parameters (i.e. T1, ECV). The transformation of SD was derived

analytically in Kellman et al. (2013). The SD error was averaged per segment355

and reported similarly as for accuracy. We further calculated the septal T1 and

ECV values (segments 8 and 9) in dataset 1, using the contours of the reference

image, to define their range in this healthy group.

The statistical significance of all obtained results is assessed using the two-

sided Wilcoxon signed rank test with a significance level of 5%.360

2.4.3. Robustness

Robustness of the different steps of our approach is shown through four

separate experiments: 1) To demonstrate the need for data-driven initializa-

tion, DSCM , DSCG and MBE are additionally calculated for a registration

approach where the data-driven initialization is omitted. 2) We illustrate the365

improved performance of our data-driven initialization compared to a simpler

initialization, which performs a pairwise registration of each image to the im-

age with maximal TI, with an example. 3) The robustness of a two parameter

model compared to a three parameter model is evaluated on the native scans of

dataset 1 (n = 15). Similar to the phantom experiment, data-driven initializa-370

tion was omitted. 4) The robustness of our co-registration approach is shown

for two cases for which native and enhanced scans are difficult to align using one

of the two most straightforward registration approaches: registration of native

and enhanced T1-weighted image with maximal TI and registration of native

and enhanced T1 map directly.375

3. Results

3.1. Phantom experiment

Fig. 3a and 3b show respectively the different T1-weighted images in the

phantom scan (in order of increasing TI) and the remaining displacement error
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in vertical direction after model-based registration with a two or three parameter380

model when the corresponding image is initially translated. The translation of

images 3 to 10 can be equally well corrected by both models, but while the two

parameter model is able to obtain an average accuracy smaller than 1mm for

all images, the three parameter model completely fails to restore alignment if

the first image (lowest TI) is displaced (Fig. 3c).385

3.2. In vivo validation

The DSCM , DSCG and MBE for the three datasets and for different ob-

servers or slices are given in Tab. 1-4. All results are given as mean value

± standard deviation (std). The three datasets are considerably different in

prior motion, which is reflected in their DSCM , DSCG and MBE values before390

motion correction.

Dataset 1 contains notable motion, in particular also septal shift (e.g. Fig.

4a). For native scan, enhanced scan and co-registration, significant improve-

ment is obtained after registration. Furthermore, a significant difference can be

observed between the values for the different observers: the inter-observer DSC,395

evaluated before motion correction, is equal to 79.0± 5.1% and 76.9± 6.7% for

native and enhanced images respectively. Additionally, the endocardial MBE

equals 1.15±0.36mm and 1.30±0.39mm and the epicardial MBE 1.64±0.36mm

and 1.71± 0.42mm respectively. These values for the inter-observer variability

are typically lower (DSC) or higher (MBE) than the average results obtained400

after registration.

Dataset 2 is generally characterized by limited motion and a thicker my-

ocardium resulting in larger initial DSCM and DSCG. Statistically significant

increase of DSCM was only obtained for the native mid-cavity SAX image set,

for the enhanced HLA image set and for the co-registration of apical and mid-405

cavity SAX. DSCG only improved for co-registration of apical and mid-cavity

SAX image sets. A statistically significant decrease in MBE was additionally

obtained for the enhanced mid-cavity SAX image set. It can also be observed

that registration accuracy, as assessed by DSCM and DSCG (MBE) based on
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Table 1: DSCM , DSCG and MBE for dataset 1 before motion correction (ORIG), af-

ter model-based motion correction without data-driven initialization (REGnoDI) and after

the proposed motion correction (REG). The results were calculated using the manual con-

tours of two independent observers (Obs 1 and Obs 2). Statistically significant improvement

(P < 0.05) of REG vs ORIG is indicated with gray background. Statistically significant

improvement (P < 0.05) of REG vs REGnoDI is indicated with ∗. For every experiment, the

data of 15 subjects was used.

Dataset 1 Native Enhanced Co-reg

Obs 1 Obs 2 Obs 1 Obs 2 Obs 1 Obs 2

DSCM [%]

ORIG 79.1±9.2 84.8±7.7 76.4±17.3 81.1±1.3 39.4±20.7 52.5±21.5

REGnoDI 85.8±4.0 87.5±2.8 84.7±8.6 87.1±7.1 80.1±5.2 83.2±3.8

REG 85.7±3.7 87.0±3.4 86.0±5.8 88.0±4.9 80.5±4.0 83.6±2.8

DSCG[%]

ORIG 53.1±17.9 63.7±16.3 49.1±26.8 58.8±24.4 11.3±9.8 24.4±15.2

REGnoDI 62.1±9.5 67.1±7.2 57.2±18.1 64.5±18.5 42.1±15.9 50.4±15.3

REG 61.1±8.3 64.9±8.7 60.2±13.7 66.9±12.2 41.3±13.2 51.24±9.9

MBE[mm]

ORIG 1.17±0.48 1.21±0.53 1.40±1.29 1.58±1.41 3.76±1.81 3.74±1.96

REGnoDI 0.68±0.18 0.86±0.17 0.75±0.57 0.96±0.58* 0.97±0.29 1.20±0.27

REG 0.68±0.16 0.88±0.22 0.67±0.31 0.88±0.39 0.94±0.22 1.15±0.17

manually defined contours, is lower (higher) for apical slices, which is likely due410

to the more complicated and variable appearance (e.g. papillary muscles) of the

apex complicating both the registration as well as the manual segmentation.

Dataset 3, acquired under free-breathing condition, contains the largest mo-

tion of the three datasets. Statistically significant improvement after motion

correction is observed for all slices for DSCM , DSCG and MBE. Similarly to415

dataset 2, DSCM (DSCG) and MBE are respectively lowest and highest for

apical slices. Furthermore, MBE after motion correction is higher for dataset

3 compared to dataset 1 and 2 since free-breathing data is more challenging to

register e.g. because of a higher prevalence of out-of-plane motion. The results

also show that DSCG is a more conservative measure compared to DSCM .420
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Table 2: DSCM , DSCG and MBE for native and enhanced scans of dataset 2 before motion

correction (ORIG), after model-based motion correction without data-driven initialization

(REGnoDI) and after the proposed motion correction (REG). Statistically significant im-

provement (P < 0.05) of REG vs ORIG is indicated with gray background. No significant

difference between REGnoDI and REG was observed. The number of scans used for every

experiment (n) is indicated.

Dataset 2 SAX apex SAX mid SAX base HLA

Native n 16 30 17 28

DSCM [%] ORIG 82.9±7.4 87.2±7.1 88.6±5.4 89.4±4.9

REGnoDI 83.4±6.8 89.2±4.5 89.9±2.8 90.7±2.9

REG 83.2±7.0 89.7±2.9 89.8±2.7 90.0±3.0

DSCG[%] ORIG 56.2±16.9 67.1±16.4 67.9±16.0 72.1±13.0

REGnoDI 53.8±18.5 70.0±12.1 72.2±7.6 75.1±8.2

REG 53.2±19.3 71.1±9.0 71.4±7.5 72.5±8.3

MBE[mm] ORIG 1.22±0.38 1.27±0.78 1.09±0.44 1.16±0.49

REGnoDI 1.14±0.32 1.04±0.46 0.97±0.23 1.01±0.25

REG 1.15±0.32 0.98±0.24 0.98±0.23 1.08±0.2

Enhanced n 12 22 11 23

DSCM [%] ORIG 82.9±7.9 84.9±10.0 87.4±9.0 87.5±6.1

REGnoDI 83.9±5.5 88.0±5.6 88.3±8.1 89.6±3.7

REG 83.7±5.5 88.7±4.0 88.7±6.7 89.5±3.8

DSCG[%] ORIG 55.3±17.5 61.7±21.1 67.6±17.7 66.3±16.0

REGnoDI 53.9±14.6 65.0±15.3 68.0±18.0 70.4±9.9

REG 52.6±15.1 66.6±12.8 69.1±14.9 69.4±11.2

MBE[mm] ORIG 1.34±0.67 1.50±0.99 1.26±0.79 1.37±0.66

REGnoDI 1.23±2.35 1.18±0.54 1.13±0.53 1.11±0.34

REG 1.24±0.36 1.12±0.42 1.10±0.44 1.13±0.35

The final purpose of motion correction for T1 and ECV mapping is to obtain

more accurate T1 and ECV values. The visual improvement of T1 and ECV

maps after motion correction is shown for the three datasets in Fig. 4 and 5.

Fig. 4a shows native T1, enhanced T1 and ECV maps, together with their

corresponding SD errormaps (Kellman et al. (2013)) before and after motion425

correction for one subject of dataset 1, which clearly shows septal shift motion.
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Table 3: DSCM , DSCG and MBE for co-registration of dataset 2 before motion correction

(ORIG), after model-based motion correction without data-driven initialization (REGnoDI)

and after the proposed motion correction (REG). Statistically significant improvement (P <

0.05) of REG vs ORIG is indicated with gray background. No significant difference between

REGnoDI and REG was observed. The number of scans used for every experiment (n) is

indicated.

Dataset 2 SAX apex SAX mid SAX base HLA

Co-reg n 9 19 10 21

DSCM [%] ORIG 54.3±19.6 70.0±17.5 72.0±20.2 75.3±15.4

REGnoDI 71.0±10.3 82.1±6.1 81.6±9.3 80.9±7.9

REG 70.7±10.2 82.8±4.6 81.5±9.4 80.2±8.0

DSCG[%] ORIG 25.5±19.6 40.2±20.8 45.8±25.7 49.9±18.5

REGnoDI 32.2±17.2 51.6±14.5 53.7±2.08 56.8±10.7

REG 30.7±18.6 52.7±13.2 54.3±18.2 54.5±10.1

MBE[mm] ORIG 4.68±5.23 1.71±0.65 2.58±1.44 2.64±1.80

REGnoDI 2.25±1.90 1.71±0.65 1.78±0.84 2.10±1.07

REG 2.24±0.90 1.64±0.49 1.78±0.87 2.14±1.02

For dataset 2, one SAX mid-cavity case and one HLA case of two different

patients are shown in Fig. 4b. The increased native T1, increased ECV and

higher heterogeneity in the myocardium are all in agreement with the diagnosis

of cardiac amyloidosis in these patients. Since dataset 3 is acquired under free-430

breathing condition, the increase in image quality after motion correction is

even more pronounced (Fig 5).

Mean septal (native) T1 and ECV in dataset 1 significantly decreased re-

spectively from 1046±71ms and 37±9% before registration to 1010±24ms and

26±2% after registration. The accuracy and SD error before and after motion435

correction are given in Fig. 6 and 7 according to the AHA convention (Cerqueira

et al. (2002)). Due to frequent occurrence of septal motion in dataset 1, the

improvement in enhanced T1 accuracy is significant for segments 8 and 9. Im-

provement in ECV accuracy is significant for all segments in dataset 1, with

an average accuracy below 1.9% for each segment. This can be explained by440
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Table 4: DSCM , DSCG and MBE for dataset 3 before motion correction (ORIG), after

model-based motion correction without data-driven initialization (REGnoDI) and after the

proposed motion correction (REG). Statistically significant improvement (P < 0.05) of REG

vs ORIG is indicated with gray background, and statistically significant improvement (P <

0.05) of REG vs REGnoDI with ∗. All five views of 196 patients were used for validation.

Dataset 3 1 (apical) 2 3 4 5 (basal)

DSCM [%]

ORIG 64.9±11.5 68.8±11.1 71.3±10.2 72.2±10.4 73.8±9.9

REGnoDI 75.6±9.5 79.5±7.8 82.0±6.6∗ 82.1±7.4∗ 83.1±6.9∗

REG 75.8±9.2 80.2±6.7 82.8±5.4 83.0±5.9 83.9±5.5

DSCG[%]

ORIG 17.9±16.1 23.9±17.6 27.6±18.4 29.7±18.2 32.3±18.9

REGnoDI 39.6±17.6 47.4±15.6 53.2±14.4* 52.7±15.9* 54.8±15.6

REG 39.3±17.3 48.2±15.0 54.5±13.3 53.9±15.2 55.7±14.7

MBE[mm]

ORIG 3.28±1.49 3.19±1.39 3.19±1.36 3.34±1.47 3.15±1.35

REGnoDI 2.04±1.09 1.83±0.91* 1.72±0.81* 1.83±0.92* 1.74±0.86*

REG 2.01±1.73 1.73±0.76 1.61±0.64 1.71±0.74 1.63±0.73

the larger motion between native and enhanced scans compared to the mo-

tion between the images in one scan, illustrating that registration is crucial for

ECV mapping. Accuracy is also improved in dataset 2, except for the apical

segments. Furthermore, the SD error decreases significantly for all segments, ex-

cept for native T1 of segment 11 in dataset 1 and ECV of segment 2 in dataset 2.445

Due to the increased motion in dataset 3, significant improvement after motion

correction is obtained for every segment for both accuracy and SD error.

3.3. Robustness

Additionally, the motion correction was performed without data-driven ini-

tialization (REGnoDI in Tab. 1-4 and Fig. 5 and 7). This did not show any450

statistically significant deterioration compared to the proposed method for the

datasets acquired under breath-hold condition (dataset 1 and 2), except for the
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(a)

(b)

Figure 4: (a) From left to right: native T1, enhanced T1 and ECV maps and corresponding SD

errormaps (Kellman et al. (2013)) of dataset 1 before (ORIG) and after (REG) registration.

In this subject, septal shift motion can be observed before registration. (b) From left to right:

native T1, enhanced T1 and ECV maps before (ORIG) and after (REG) registration of the

mid-cavity short-axis slice of one patient (left) and the HLA slice of another patient (right) of

dataset 2. In amyloidosis patients, the native T1 and ECV in the myocardium are elevated,

as apparent in the case on the left.

MBE of enhanced scans of observer 2 in dataset 1. Because of the increased

initial motion in dataset 3, initialization is more important in this dataset. For

this dataset, omitting the data-driven initialization resulted in a significant de-455

terioration of accuracy in 15 out of 28 segments and of SD error in 11 out of 28

segments (Fig. 7).

Fig. 8 shows two examples of T1-weighted image sets before and after mo-

tion correction and illustrates the wide variety in content and global image

appearance. Especially the low-signal images (fourth image in both sets) are460

difficult to register with general purpose registration methods, but are success-

fully handled by our method. This is further illustrated in Fig. 9, which shows
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Figure 5: Native T1 maps before motion correction (ORIG), after model-based motion correc-

tion without data-driven initialization (REGnoDI) and with the proposed motion correction

method combining data-driven initialization and model-based registration (REG) of dataset

3 for five different patients and five different slices from apical to basal (left to right). Because

dataset 3 contains free-breathing data, motion correction is crucial for construction of T1

maps.

the result of our method and of a similar approach with an alternative data-

driven initialization. This alternative initialization registers every image to the

image with maximal TI. In the latter case, the second image (low signal image)465

is erroneously deformed.

The robustness of our two parameter model-based approach compared to

a more straightforward three parameter model-based approach is evaluated on

the native scans of dataset 1, using respective model-based approaches without

data-driven initialization. The improvement with the two parameter model was470

significant for DSCM (85.8 ± 4.0% vs 83.8 ± 5.9%), DSCG (62.1 ± 9.5% vs

56.7± 15.6%) and MBE (0.68± 0.18mm vs 0.78± 0.29mm).

Fig. 10 illustrates the robustness of our model-based similarity function for

co-registration (Eq. 6) compared to more standard co-registration approaches,

including registration of native and enhanced images with longest TI or regis-475

tration of native and enhanced T1 map directly. In Fig. 10a, the epicardium is

difficult to perceive in the long TI images due to fluid around the heart whereas
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(a)

(b)

Figure 6: Accuracy (left) and SD error (right) of native T1 (top), enhanced T1 (middle) and

ECV (bottom) before (ORIG) and after (REG) registration for (a) dataset 1 and (b) dataset

2. Segments which show a statistically significant improvement (P < 0.05) after registration

are indicated with +.
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Figure 7: Accuracy (top) and SD error (bottom) of native T1 before registration (ORIG),

after model-based motion correction without data-driven initialization (REGnoDI) and after

the proposed registration (REG) for dataset 3. Segments which show a statistically signifi-

cant improvement after registration (P < 0.05) are indicated with +. Segments in REGnoDI ,

which show both statistically significant improvement after registration (P < 0.05) and sig-

nificant deterioration compared to the proposed method (P < 0.05) are indicated with ∗. T1

and SD error are calculated with the two parameter model.

in Fig. 10b the registration of the two T1 maps directly will fail due to the

increased enhanced myocardial T1 shortening in amyloidosis patients. Joint

registration of A∗ and T1∗ map avoids these issues in both cases.480

4. Discussion

In this paper, we presented a method for motion correction for T1 and ECV

mapping, which combines a model-based approach with a data-driven initial-

ization. In model-based registration approaches, the underlying T1 relaxation

model is exploited such that direct registration between images with largely485

different or inverted contrast can be avoided, which is the main challenge when

performing registration on a set of T1-weighted images. A difficulty in this

model-based approach is that the model is estimated for every pixel separately

from a set of images, which is generally suboptimally aligned before motion cor-

rection, such that motion artifacts will also be present in the model images in490
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(a) (b)

Figure 8: Five images of a native MOLLI scan from two different patients from dataset 2: (a)

SA and (b) HLA images (in order of acquisition) before (ORIG) and after (REG) the proposed

motion correction. The second (SA) and last (HLA) image shown were automatically selected

as reference image. The reference contour is displayed on all images.

case of large motion (e.g. Fig. 2b, second image of three parameter model). To

circumvent motion artifacts in the model, Xue et al. (2012) proposes to do an

initial registration between the image with the shortest TI and the image with

the largest TI and uses these images to calculate the initial model images. How-

ever, decreasing the number of sample points for curve fitting will negatively495

affect the accuracy of the estimated parameters, resulting in model images with

a contrast that deviates from the actual image. Consequently, Xue et al. (2012)

adds an additional minimization process to create the final synthetic images

used for registration, in which also similarity of contrast to the actual images

is enforced. The construction of reliable model images based on curve fitting500
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Figure 9: T1-weighted images, in order of increasing TI, and T1 map after the proposed motion

correction (top, REG) and after registration with an alternative data-driven initialization

(bottom, REGLongTIinit). This alternative initialization registers every image to the image

with maximal TI. For REGLongTIinit, misregistration is observed in the second image (black

arrow), which results in a disturbed T1 map. The chosen reference image according to our

method (REF ) shows an increased contrast at the epicardium (white arrows) compared to

the image with maximal TI. Only images of the first inversion are shown.

alone, is thus essentially a compromise between on the one hand a higher simi-

larity in contrast with the actual images by using more images and on the other

hand a motion-free model by using only the images that are initially aligned by

e.g. a standard data-driven registration method.

In our method, the model-based registration is preceded by a global data-505

driven initialization approach such that the initial motion is already partially

corrected and convergence of the model-based registration is accelerated. The

data-driven approach tries to estimate the suitability of each image pair for

pairwise registration to avoid registration failures. However, this is insufficient

for accurate motion correction on itself since the appearance of images is too510

variable. For example, fat is perceived as high intensity structure in nearly all

images, except for images with very low TI. Images that are prone to regis-

tration failure are discarded for data-driven registration to increase robustness.

Different to our approach, Van De Giessen et al. (2013) performs model-based

registration of a Look-Locker image sequence without initialization.515

Furthermore, as shown in Fig. 2 and Fig. 3, using a two instead of three pa-

rameter model for construction of model images decreases the motion artifacts
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(a) (b)

Figure 10: Three different approaches for co-registration: registration of native and enhanced

image with maximal TI (top), registration of native and enhanced T1 map (middle) and joint

registration of T1∗ and A∗ images (Eq. 6). The images that are registered in every approach

are shown for a patient with fluid around the heart (a) and an amyloidosis patient (b). The

resulting ECV map after registration is also shown.

in the model images and thus increases the robustness of motion correction,

especially in images with low TI. The three parameter model however theoret-520

ically better describes the evolution in successive T1-weighted MOLLI images

than the two parameter model, such that intuitively, motion correction accuracy

will be further increased when a model-based registration step with the three

parameter model is performed after our proposed method. Since our initial ex-

periments did not show clinically relevant improvement with this approach, it525

was not analyzed further. For the data acquired using the STONE sequence,

Weingärtner et al. (2015) showed that the two parameter model is more precise

but less accurate than the three parameter model.

A drawback of our current method is the relatively long processing time. The530

cost function in data-driven initialization is constructed using the consistency
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of pairwise forward and backward affine registration transformations, implying

that ns2 affine registrations should be performed of which only few (∼ ns) are

finally used for transformation. However, this has only a limited effect on the

total computation time since the main part of it is attributed to the repeated535

pixelwise curve fittings in each iteration step. This dominance of the curve fit-

ting process on computation time was also reported by Xue et al. (2012) for

their method. In this respect, we expect the computation time for both meth-

ods (in similar implementations) to relate to each other proportionally to the

number of iterations performed, which was five for our method and two for Xue540

et al. (2012). To circumvent the long curve fitting times, the possibility to use

convolutional neural networks (CNNs) for T1 map regression, as was already

done for diffusion brain imaging (Golkov et al. (2016)), could be investigated in

the future. Another point for further improvement is the fact that we rely on a

fixed number of iterations in our current approach, while depending on the prior545

motion and available contrasts in the image set, convergence speed might vary.

It would therefore be useful to include a stopping condition, e.g. based on the

SD error inside the heart (see Fig. 4), that automatically evaluates the qual-

ity of image alignment and the improvement of image alignment in subsequent

iteration steps. Since discernible motion is present in only about 40 − 56% of550

MOLLI breath-held datasets according to Xue et al. (2012), Xue et al. (2013)

and Roujol et al. (2015)), such a quality evaluation metric might also be useful

to judge whether motion correction is a priori necessary.

For the registration of native and enhanced T1 maps to obtain a motion-free555

ECV map, two different approaches are found in literature: (1) registration of

native and enhanced T1 map directly (Zhang et al. (2018)), (2) registration of

native and enhanced images with the longest TI (Kellman et al. (2012)). We

proposed to perform co-registration by optimizing a similarity function, which

is the sum of the mutual information between images of the A∗ and T1∗ pa-560

rameters of Eq. 5 to optimally exploit the information of a complete set of T1-

weighted images, since both images contain complementary information. This
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especially improves the registration result in cases where different structures

appear equally intense in one of the images. For example, the epicardium can

be difficult to perceive in images with long TI when the heart is surrounded565

by fluid (Fig. 10a) or the enhanced T1 map can have low contrast between

myocardium and blood pool in case of amyloidosis (Fig. 10b). The reason to

choose the T1∗ and A∗ images over the T1, A and B images, which could be

obtained from Eq. 4 is that both image sets contain similar information, that

the former is readily available in our framework and that including both A and570

B images will lead to increasing computation time while the additional benefit

was found to be very limited in an initial experiment.

As no direct registration ground truth is available, we validated our method

using manual segmentations, as Xue et al. (2012); Roujol et al. (2015); Huizinga575

et al. (2016); Guyader et al. (2016); Van De Giessen et al. (2013); El-Rewaidy

et al. (2018). These are inherently biased by the segmentation strategy of the ob-

server as can be appreciated from the large inter-observer variability on dataset

1 (Tab. 1). The obtained DSCM (DSCG) of observer 1 is consistently smaller

than that of observer 2. Furthermore, since it is difficult to delineate the my-580

ocardium in low contrast images or low signal images, also intra-observer vari-

ability is likely in these segmentations, which can introduce additional bias on

DSCM , DSCG and MBE. Nevertheless, we included the segmentations of all

images as alignment of these images is also crucial for accurate T1 estimation

since their pixel intensities are located in the initial, most steeply ascending part585

of the exponential T1 relaxation curve (see Sec. 2.1.1). In our results, we found

significant improvement of DSCM , DSCG and MBE after motion correction.

However, the significance of the difference between the values before and after

motion correction is not only dependent on the registration algorithm itself, but

also on the amount of motion initially present in the images. For data with little590

or no motion, the purpose cannot be to significantly increase DSC, but rather

not to deteriorate it. In Tab. 1-4, both DSCM and DSCG are shown where

DSCM represents the average overlap between any two images and DSCG gives
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the percentage of myocardial area in which there is overlap for all images used

to construct a T1/ECV map. In this sense, DSCG might seem a more valu-595

able measure to judge the quality of T1 and ECV but it might be too rigorous

since misalignment of every image has not the same effect on calculated T1 and

ECV. To obtain a more valuable measure of motion correction, which directly

represents the improvement of T1 or ECV accuracy, the deviation in T1 due

to misalignment of every image should be determined and should be taken into600

account in the validation measure. Due to the large variation in image contrast,

TI and T1 among images and patients, this is however a difficult task. As an

alternative, segmental T1 and ECV accuracy and SD error were calculated. To

calculate the accuracy, a ground-truth reference T1 and ECV value is needed,

which we obtained by assuming perfect image alignment if the manual contours605

exactly overlap, while as discussed before, these contours suffer from inter- and

intra-observer variability. Additionally, since correspondence of the contours

is only enforced at endo- and epicardium, no constraints are available from the

data itself on how the transformation should act inside the myocardium. Hence,

we forced this transformation to be smooth by using a thin-plate spline model.610

Furthermore, the SD error for ECV map is a scaled sum of the native and en-

hanced T1 error and is therefore limited in capturing registration errors between

native and enhanced T1, for example, around the septum.

We compared our results with the results of El-Rewaidy et al. (2018) by using615

their dataset and manual contours (dataset 3) and found similarly improvement

of DSC (5% increase in their DSC and 11% in our DSCM on dataset 3) and

MBE (a decrease of 1mm and 1.5mm respectively), although the actual values

differ. This is probably due to a slightly different definition of both metrics.

A thorough comparison of performance of the data-driven method of Roujol620

et al. (2015), ARCTIC, is difficult, but we will highlight two differences. First,

whereas our method requires only an indication of a ROI around the heart,

which should be easy to automate in the future, ARCTIC requires a delin-

eation of LV in the reference image for both steps of their algorithm (global
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motion estimation and local non-rigid motion estimation). Second, we defined625

an automatic procedure to determine the reference image in de data-driven ini-

tialization. Roujol et al. (2015) in contrast heuristically defined the image with

the second longest TI (native images) or longest TI (enhanced images) to be

the reference. Although these are valid choices, they are chosen for the specific

acquisition sequences and thus not transferable to other acquisitions since the630

performance of registration algorithms is dependent on the choice of reference

image as demonstrated in Huizinga et al. (2016). Furthermore, ARCTIC treats

the registration of every T1-weighted image as a separate problem, instead of

our groupwise approach. This second comment also applies to the method of

Zhang et al. (2018), who chooses the image with the longest TI as reference. In635

contrast, Huizinga et al. (2016) did propose a groupwise approach that is based

on the assumption of a non-specified low signal model in the data. Because

this method directly minimizes a similarity metric over all images, it is more

computationally efficient than our two-step iterative approach of model-fitting

and registration. However, we showed that in case of large motion, initializa-640

tion is crucial before application of a model-based method. Contrary to Xue

et al. (2013) who uses phase information for motion correction and Menini et al.

(2015) who performs motion correction jointly with MR image reconstruction,

our algorithm is completely retrospective. An advantage of our framework is

also that if new acquisition schemes are developed that require a different model645

(e.g. Shao et al. (2015)), it is in principle possible to simply adapt the fitting

function.

Every attempt to increase the accuracy of the T1 and ECV technique will

impact clinical practice since a smaller range of normal and pathological T1 and650

ECV values will allow to better detect subtle changes not related to inaccuracies

of the technique (e.g. influence of breathing). If our motion correction algorithm

is able to decrease these ranges, this will allow to improve early detection of

certain disease, follow up of disease progression and monitoring of the impact of

therapies. In an experiment on a small group of healthy subjects (dataset 1), we655
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demonstrated that the range of septal T1 (std from 71 to 24ms) and ECV (std

from 9 to 2ms) decreased after motion correction. More research is necessary to

thoroughly evaluate the impact of motion correction on clinical outcome. Co-

registration of native and enhanced scans is generally more critical to obtain

accurate ECV values compared to the registration for T1 mapping with breath-660

held acquisitions, since patient motion is more likely to occur during the time

between the two scans (∼ 15min.) and since, for the breath-held acquisitions,

both scans are acquired in a different breath-hold. As a result, clinical use of

ECV maps lags the use of T1 maps and only few software tools for research

purpose exist (e.g. Altabella et al. (2017)). Instead, one ECV value for the665

septal region is usually calculated from one septal native and enhanced T1 value.

Motion correction allows to construct more reliable ECV maps and thereby

promotes the adoption of ECV maps in the clinic.

5. Conclusion

In this paper, we presented a robust model-based method for motion correc-670

tion to obtain artefact-free T1 and ECV maps. Validation on 3 datasets showed

a significant increase in DSCM , decrease in MBE and improved accuracy for

T1 and ECV mapping in cases with notable motion. Motion correction in T1

and ECV mapping is highly clinically relevant in cases with substantial motion

such as in respiratory-gated free-breathing data but also for ECV mapping in675

breath-held acquisitions.
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