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ABSTRACT 

A 3D model for the prediction of the effective thermal 

conductivity of porous building blocks is introduced. 

Simulations are performed directly on the 

microstructure using voxel images and the finite 

element technique. Very good agreement with 

analytical solutions is achieved. The model is used to 

investigate the miscalculation effect of 2D 

simulations, clearly indicating the need for a 3D 

model. Furthermore, a method for incorporating 

radiative heat transfer at the microscale is 

implemented and applied on a synthetic sample, 

demonstrating the influence of thermal radiation on 

the effective thermal conductivity.  

INTRODUCTION 

Highly porous building blocks find frequent use in the 

construction of buildings because of their relatively 

high resistance to heat transfer. Typical examples 

include cellular concrete, cellular glass, and more 

recently also building blocks based on slag waste and 

other secondary materials. However, due to 

increasingly stringent energy regulations, there is an 

ever growing demand for even better insulating 

building blocks. 

The heat flow through such building materials is 

usually described at the macroscale with Fourier’s law 

using the effective thermal conductivity (ETC), while 

in fact it originates from the aggregation of 

conductive, radiative and convective heat transfer at 

the microscale. The relative contribution of each of 

these heat transfer mechanisms depends strongly on 

the microstructural parameters, i.e. porosity, pore size, 

matrix connectivity etc. (Carson et al. 2003). A correct 

understanding of the direct relation between these 

microstructural parameters and the total heat transport 

is therefore crucial in the development of improved 

building blocks. However, current models attempting 

to study their influence still exhibit large errors due to 

2D simplifications, neglect of thermal radiation or 

their very limited applicability for a restricted class of 

materials (Randrianalisoa & Baillis 2014). 

This paper presents a newly developed 3D FEM 

model for simulating the heat transport through a 

porous structure at the microscale. The first part 

explains the workflow of the model, followed by a 

verification study on an elementary pore structure. 

Subsequently, a method for incorporating radiative 

heat transfer at the microscale is studied and extended. 

Finally, in the remainder of the paper, the model is 

used to make a first study on the discrepancy between 

2D and 3D simulations of the same sample, and to 

study the share of thermal radiation on the ETC. 

SIMULATION MODEL 

The effective thermal conductivity of a porous 

material is obtained by simulating the heat transfer 

through a representative cubic sample at the 

microscale. The model is subdivided in three steps: (1) 

obtaining the geometrical representation of the 

microstructure, (2) creating a finite element mesh and 

(3) simulating the heat flow through the 

microstructure. All three steps are explained below. 

Each step is completely controlled via a set of Matlab 

routines, hence leading to an automated and easily  

parameterized workflow. A summarizing overview of 

the model workflow is shown in Figure 1. 

Geometry: 3D voxel image of the microstructure 

The model is based on a 3D voxel image – the 3D 

equivalent of a 2D pixel image – representation of the 

microstructure. The numeric value of each voxel 

indicates which material phase is located at that 

specific location. These voxel images can generally be 

acquired in two ways: via micro-CT scanning or via 

synthetic generation techniques. 

Using the micro-CT technique, the microstructure of a 

physical sample is obtained through x-ray imaging and 

computed tomography. Objects containing features 

down to several micrometers can be resolved, hence 

allowing to incorporate the true microstructural 

properties of the sample. A CT scan voxel image of a 

cellular concrete is shown in Figure 1a. 

Using synthetic generation methods, the 3D voxel 

image is constructed in a deterministic or stochastic 

manner. The technique hence allows for fast designing 

and testing of new microstructures and a more 

thorough study of specific microscale parameters. A 

classic method is the generation and insertion of 

sphereous pores in a solid material like described by 
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She et al. (2014). Besides, the discrete voxel image 

format also allows for the generation of non-

analytically describable pore structures, leading often 

to much more realistic microstructures. Recent 

examples can be found in Gaiselmann et al. (2014). 

For this paper, we have currently implemented a 

simple sphere generation algorithm based on the 

method of W. She. An example of a generated 

structure is shown in Figure 1b. 

Both methods provide a 3D voxel image, with a level 

of detail depending on the used resolution (the total 

amount of voxels). A higher resolution should hence 

be used for resolving smaller features, taking into 

account the increasing memory usage. Finally, the 

image can be imported into Matlab as a 3D binary 

matrix. This allows for an easy manipulation of the 

sample and the calculation of several microstructural 

properties like porosity, pore size distribution etc. 

Meshing procedure 

A finite element mesh is created from the 3D voxel 

image using the open source iso2mesh Matlab toolbox 

(Fang & Boas 2009). This provides an extensive set of 

routines for manipulating the sample and extracting a 

tetrahedral mesh based on the c++ CGAL library 

(Alliez et al. 2015). To cope with the complex pore 

scale geometry, the code makes use of the Delaunay 

triangulation technique, resulting in a fast generation 

of relatively qualitative elements. Furthermore, the 

technique inherently smooths jagged surfaces between 

the different material phases. We extended the 

meshing procedure with a point insertion algorithm, 

leading to a better approximation of the straigth edges 

of the cubic sample. The density of the mesh is 

controlled through the set maximum radii for the 

surface and tetrahedra circumscribing Delaunay ball. 

A quadratic shape function is used in all the elements.  

An example mesh is shown in Figure 1c. 

Simulation 

The finite element mesh is imported into the COMSOL 

simulation package to perform heat transfer 

simulations. The thermal conductivity of the gaseous 

and solid phase are applied to the respective regions. 

A method for including thermal radiation is elaborated 

further in the paper. Natural convection on the other 

hand can effectively be neglected for pores with a 

diameter smaller than 4 mm (Clyne et al. 2006) and is 

hence not implemented. 

A temperature difference of 10 K is applied between 

opposing boundaries while the other boundaries are 

set to adiabatic boundary conditions. The succesive 

over relaxation (SOR) solver with relative tolerance of 

10-4 is applied, showing good performance for solving 

the system of equations. An example temperature 

profile of a sample is shown in Figure 1d. 

After the stationary simulation, the ETC can finally be 

calculated by rewriting the Fourier heat law according 

to J. Chen et al. (2015) for cubic samples: 

𝜆𝑒𝑓𝑓 =
∫ 𝑞𝑥 ∗ 𝑑𝑉

𝑉𝑐𝑢𝑏𝑒

(𝑇ℎ𝑜𝑡 − 𝑇𝑐𝑜𝑙𝑑) ∗ (𝐿𝑠𝑎𝑚𝑝𝑙𝑒)
2 (1) 

𝜆𝑒𝑓𝑓  = the effective thermal conductivity of the sample 

[W/mK]; 𝑉𝑐𝑢𝑏𝑒 = the volume of the cubic sample [m³]; 

𝑞𝑥 = the heat flux in every element in the direction of 

the applied temperature gradient [W/m²]; 𝑇ℎ𝑜𝑡/𝑇𝑐𝑜𝑙𝑑 = 

the temperature applied at the hot, respectively cold 

side [K]; 𝐿𝑠𝑎𝑚𝑝𝑙𝑒  = the thickness of the cubic sample. 

VERIFICATION OF THE MODEL 

The model is verified using a synthetic sample having 

identical spherical pores arranged in a lattice of the 

face-centred cubic (fcc) type. This elementary packing 

of spheres consists of a repetitive cube having a pore 

centered on every corner and on every face, as shown 

in Figure 2b. 
 

 

Figure 2: A sample with fcc packing at 50 % porosity 

(a), the repetitive cube (b), and the unit cell (c). 

Figure 1: Different steps in the workflow of the model 



Postprint: Van De Walle W, Janssen H. 2016. Thermal conductivity prediction model for porous building blocks, 

Bauphysik, 38(6):340-347.  doi: 10.1002/bapi.201610037 

 

Although the heat flow through such a repetitive cube 

is – due to the perfect symmetry – representative for 

larger arrangements, a larger sample is generated to 

demonstrate the possibilities of the model for working 

with larger datasets. A cubic sample consisting of 

5x5x5 of these representative cubes is generated, 

following the recommendations of Chen et al. (2015) 

on the size of a representative volume for heat transfer 

in random microstructures. Samples at 5 different 

porosities between 10 % and 90 % and with a side 

length of 1 mm are obtained by varying the diameter 

of the pores. A sample of 50 % porosity is shown in 

Figure 2a. A resolution of 400³ voxels is used for 

constructing the 3D binary image of the 

microstructure together with a maximum Delaunay 

radius of 1/50 mm for the meshing procedure. The 

thermal conductivity of the matrix and the air-filled 

pores are set to respectively 1 W/mK and 0.025 

W/mK, the temperature difference across the sample 

to 10 K.  

The resulting effective thermal conductivities of the 

samples are calculated using Eq. 1, and are shown in 

Figure 3 as a function of porosity. They are compared 

with solutions of an analytical approximation derived 

by McKenzie et al. (1978) for the effective 

conductivity of fcc sphere packings up to their 

maximum porosity of 74 %. The analytical 

approximation still neglects however higher order 

terms, resulting in deviations from the correct solution 

at high porosities. Therefore, this analytical reference 

solution is complemented with numerical simulations 

performed directly in COMSOL. A representative unit 

cell of the fcc structure shown in Figure 2b is 

modelled, using the program’s own geometry and 

mesh creation functions. These results are also shown 

in Figure 3, together with the relative error 𝜂 between 

the model and this numerical reference solution. 

The pore-scale model agrees very well with both of 

the reference solutions until a porosity of about 60 %, 

showing relative errors of less than 2 %. As expected, 

above 60 % porosity the analytical approximation gets  
 

less accurate showing larger discrepancies with the 

numerical reference model. The pore-scale model still 

performs very good though when compared with the  

numerical reference model, resulting in relative errors 

of less than 5 % for porosities up to 90 %. 

Influence of resolution and mesh size 

The accuracy of the simulations depends strongly on a 

correct approximation of the porous structure by the 

3D image and the extracted finite element mesh. This 

is affected by the model through the resolution and 

maximum mesh element size. To investigate the 

influence of both parameters, 9 unit cells with 

different porosities of the face centred cubic pore 

structure are simulated using the voxel-image-based 

model. Each sample is modelled using 3 different 

resolutions (25³, 50³ and 100³) and 3 different 

maximum mesh sizes (𝐿𝑠𝑎𝑚𝑝𝑙𝑒/10, 𝐿𝑠𝑎𝑚𝑝𝑙𝑒/25 and 

𝐿𝑠𝑎𝑚𝑝𝑙𝑒/50). The results are compared with the 

numerical reference model of the unit cell modelled in 

COMSOL. The relative errors are shown in Figure 4 

as a function of porosity, resolution and mesh size. 

As expected, a finer resolution and smaller mesh size 

generally lead to more accurate results. Resolution 
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seems to be the most important parameter, with a 

resolution of 503 or higher leading to relative errors 

lower than 5 % for every studied porosity and mesh 

size. Furthermore, it appears that high porosity 

samples require a finer resolution. This phenomenon 

could be attributed to the matrix walls becoming 

thinner at higher porosities, which means they get 

represented by a relatively smaller amount of voxels 

leading to a poor conformity between the mesh and the 

geometry. These findings should be considered when 

applying the model in future studies. 

INCORPORATION OF RADIATIVE 

HEAT TRANSFER 

Radiative heat transfer between the pore walls can 

play an important role in the total heat flow through 

the material,  particularly in materials with high poro-

sity, at elevated temperatures, or with a low thermal 

conductivity gas in the pores (i.e. vacuum insulation). 

However, due to it’s modelling complexity and 4th  

order terms, it is often neglected to simplify simu-

lations, leading to underestimations of the real ETC as 

pointed out by Wang & Pan (2008). Simple cor-

rections for the neglect of thermal radiation are then 

often made by adding a macroscale effective radiative 

conductivity to the effective thermal conductivity: 

𝜆𝑒𝑓𝑓 = 𝜆𝑐𝑜𝑛𝑑,𝑚𝑎𝑐𝑟𝑜 + 𝜆𝑟𝑎𝑑,𝑚𝑎𝑐𝑟𝑜 (2) 

The value for 𝜆𝑟𝑎𝑑,𝑚𝑎𝑐𝑟𝑜  is usually obtained via either 

a formula based on averaged microscopic properties 

or via an experimental test defining a mean extinction 

coefficient. However, both methods are often not very 

accurate and the experimental parameters are 

cumbersome to obtain. Furthermore, the mutual 

influence of conductive and radiative heat transfer at 

the microscale is not taken into account. 

To overcome the aforementioned limitations, the 

model developed in this study includes radiation 

directly at the pore scale. Classic thermal radiation 

modelling methods using view factors or Monte Carlo 

beams would however require unreasonable amounts 

of both CPU time and RAM memory due to the large 

total pore surface area. Therefore, a method 

introduced by Loeb (1954) is adopted and expanded. 

Based on the analogy with radiative heat transfer 

between parallel plates, he described the radiative heat 

transfer in a pore as a conductive process by defining 

an equivalent radiative thermal conductivity 𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒 

at the pore scale as a function of the pores 

characteristics: 

𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒 = 4 ∗ 𝜖 ∗ 𝜎 ∗ 𝑑𝑚𝑎𝑥 ∗ 𝛾 ∗ 𝑇3 (3) 

𝜖 = the radiative emissivity of the matrix walls; 𝜎 = 

the stefan-boltzmann constant; T = the mean 

temperature of the pore in Kelvin; dmax = the maximum 

distance inside the pore; 𝛾 = a geometrical factor. 

Loeb analytically determined the geometrical factor 𝛾 

to be 2/3 for spherical pores and 𝜋/4 for cylindrical 

pores perpendicular to the heat flow. This 𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒 

can subsequently be added to the thermal conductivity 

of the gas inside the respective pore (i. e. 0.025 W/mK 

for air). Hence, radiation is incorporated locally at the 

microscale, while maintaining a feasible simulation 

model. This method was further investigated by 

Bakker et al. (1995), numerically determining the 

geometrical factor for a range of oblate ellipsoid 

shaped pores. His results showed values for 𝛾 varying 

from 0.45 to 0.66, hereby demonstrating the large 

dependence of the geometrical factor on the pore 

geometry. However, until now a clear relation 

between the pore’s geometrical parameters and the 

geometrical factor 𝛾 is still lacking, hence impeding 

the correct incorporation of radiative heat transfer at 

the microscale. 

Therefore, this paper extends the studies of Loeb and 

Bakker with a large range of elliptic and ellipsoidal 

pores, considering the fact that most pores inside 

porous building materials can effectively be 

approximated using ellipsoids. An analytical formula 

relating the geometrical factor to the pore’s geometry 

is proposed. 

2D calculation of radiation in pores 

As a stepping stone for more complex 3D simulations, 

we start with 2D simulations of radiative heat transfer 

in elliptic pores. The equivalent geometrical factor 𝛾 

is calculated performing a set of simulations on a 

square containing just one such elliptic pore. Different 

ellipses are studied by varying the 3 different 

geometrical parameters (the long diameter ‘a’, the 

ratio of the diameters ‘b/a’ and the angle ‘𝛼’ with the 

horizontal) shown in Figure 5.  
 

 

Figure 5: View on the elliptic pore parameters 
 

The opposing sides of the squares are assigned with a 

temperature diffence of 1 K, while the matrix and air 

thermal conductivity are set to 1 W/mK and 0.025 

W/mK. Simulations are performed at 7 different mean 

temperatures. In this first study, only an emissivity of 

0.9 is considered, although Fitzgerald & Strieder 

(1997) have shown that the pore scale radiative 

conductivity does not behave completely linear with 

emissivity for all pore shapes. This will be adressed in 

future studies, together with the influence of the 

matrix’s thermal conductivity. Caution should 

therefore be applied when extending the results to low 

emissivities. The parameters and studied values are 

listed in Table 1. All mutual combinations are studied, 

hence covering a very broad range of possible elliptic 

pore shapes. 



Postprint: Van De Walle W, Janssen H. 2016. Thermal conductivity prediction model for porous building blocks, 

Bauphysik, 38(6):340-347.  doi: 10.1002/bapi.201610037 

 

Table 1: 

Studied parameters for 2D elliptic pores. 
 

PARAM. VALUES 

a [mm] 0.1 – 0.25 – 0.5 – 0.75 – 1 – 1.5 – 2 

b/a [-] 0.33 – 0.5 – 0.75 – 1  

𝛼 [°] 0 – 18 – 36 – 54 – 72 – 90   

𝑇𝑚𝑒𝑎𝑛 [K] 263 – 273 – 283 – 293 – 303 – 313 – 323 
 

The heat flow through the square is simulated 

including radiative heat transfer inside the elliptical 

pore using the view factor method in COMSOL. The 

effective thermal conductivity 𝜆𝑒𝑓𝑓,𝑤𝑖𝑡ℎ 𝑑𝑖𝑟𝑒𝑐𝑡 𝑟𝑎𝑑 of 

the square is obtained via the Fourier formula. 

Subsequently, the same simulation is performed with-

out including radiative heat transfer, resulting in a 

𝜆𝑒𝑓𝑓,𝑛𝑜 𝑟𝑎𝑑. Finally, a search algorithm determines the 

equivalent 𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙  that should be added to 

the thermal conductivity of the air inside the pore so 

the relative error defined in Eq. 4 is smaller than 0.1%: 

 𝜆𝑒𝑓𝑓,𝑤𝑖𝑡ℎ 𝑑𝑖𝑟𝑒𝑐𝑡 𝑟𝑎𝑑 − 𝜆𝑒𝑓𝑓,𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑑

𝜆𝑒𝑓𝑓,𝑤𝑖𝑡ℎ 𝑑𝑖𝑟𝑒𝑐𝑡 𝑟𝑎𝑑 − 𝜆𝑒𝑓𝑓,𝑛𝑜 𝑟𝑎𝑑

 (4) 

The determined values for 𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙  show to 

be perfectly related to the temperature according to the 

T³ term in Loeb’s formula. For every pore the resulting 

geometrical factor 𝛾 can then be calculated as: 

𝛾𝑝𝑜𝑟𝑒 =
𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

4 ∗ 𝜖 ∗ 𝜎 ∗ 𝑇3 ∗ 𝑑𝑚𝑎𝑥

 (5) 

As expected, it was found that 𝛾 depends strongly on 

the geometrical parameters ‘a’, ‘b/a’ and ‘𝛼’. To avoid 

calculating these 3 parameters for every pore in future 

studies, a new, more easy to calculate factor is 

introduced combining the effect of all 3 geometrical 

parameters: 

𝑆𝑓,𝑖  =
𝑀𝐻𝑝𝑜𝑟𝑒

𝑀𝐷𝑝𝑜𝑟𝑒

 (6) 

𝑆𝑓,𝑖 = the slenderness factor in direction ‘i’ of the cube 

[-]; i = the direction of the heat flow; 𝑀𝐻𝑝𝑜𝑟𝑒  = the 

mean heigth of the pore, calculated perpendicular to 

the direction ‘i’ [m]; 𝑀𝐷𝑝𝑜𝑟𝑒  = the mean distance of 

the pore, calculated parallel to the direction ‘i’ [m]. 

A low slenderness value means that the pore is 

elongated in the direction of the heat flow while a high 

value means the pore is elongated in a direction 

perpendicular to the heat flow. A circular pore has by 

definition a slenderness of 1. Important to notice is 

that the slenderness of a pore depends on the direction 

of the heat flow. Furthermore, we propose to replace 

the maximum distance ‘dmax’ used in Loeb’s formula 

(Eq. 3) with the mean distance 𝑀𝐷𝑝𝑜𝑟𝑒 , for more 

consistency in the formula. This is also adapted in the 

calculation of 𝛾 for every pore. The relation between 

𝛾 and the slenderness factor is shown in Figure 6. 

It can be seen that a very close relation exists between 

the factor 𝛾𝑝𝑜𝑟𝑒 and the slenderness factor. The results 

furthermore confirm the intuitive idea that a vertically 

elongated ellips, with a high slenderness factor, has a 

larger 𝛾 and hence higher radiative heat transfer. The 

fitted relation between both is used to adapt Loeb’s 

formula to: 

𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 = 

4 ∗ 𝜖 ∗ 𝜎 ∗ 𝑇3 ∗ 𝑀𝐷𝑝𝑜𝑟𝑒 ∗ 

0.231 + 2.547 ∗ 𝑆𝑓,𝑖

1 + 2.456 ∗ 𝑆𝑓,𝑖 + 0.0235 ∗ 𝑆𝑓,𝑖
2  

(7) 

Figure 7 compares for all the pores the analytical and 

numerical calculation of 𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒, showing good 

agreement.  

3D calculation of radiation in pores 

The same methodology as described for 2D pores is 

applied for the 3D case. A cube containing one 

ellipsoidal pore is simulated modelling radiative heat 

transfer directly using view factors and subsequently 

determining the equivalent radiative thermal 

conductivity of the pore. The parameters in 2D are 

extended with the length c of the short axis in the 3rd 

dimension, and 2 other angles to allow the pore to have 

any form and orientation. Only one temperature of 293 

K is studied since the 2D calculations confirmed 

already the adoption of T³ in Loeb’s formula. For the 

emissivity, again only a value of 0.9 is used, keeping 

in mind the remarks made under the 2D calculations. 
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Figure 7: Comparison of numerical and analytical 

calculation of 𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒 (for 2D and 3D pores) 
Figure 6: Relation between 𝛾𝑝𝑜𝑟𝑒  and the slenderness 

factor (for 2D and for 3D pores) 
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The combination of all the parameters and their 

studied values are listed in Table 2. 

Table 2: 

Studied parameters for 3D ellipsoidal pores. 
 

PARAM. VALUES 

a [mm] 0.5 – 1 – 1.5 – 2 

b/a [-] 0.33 – 0.5 – 0.75 – 1  

c/a [-] 0.33 – 0.5 – 0.75 – 1 

𝛼1 [°] 0 – 30 – 60 – 90   

𝛼2 [°] 0 – 30 – 60 – 90   

𝛼3 [°] 0 – 30 – 60 – 90   
 

The slenderness factor is now extended to the 3rd 

dimension by incorporating the mean width 𝑀𝑊𝑝𝑜𝑟𝑒 

of the pore: 

𝑆𝑓,𝑖  =
𝑀𝐻𝑝𝑜𝑟𝑒 ∗ 𝑀𝑊𝑝𝑜𝑟𝑒

(𝑀𝐷𝑝𝑜𝑟𝑒)
2  (8) 

The geometrical factor 𝛾 can again be calculated using 

Eq. 5 where again the distance of the pore is replaced 

with the mean distance. A good relation between the 

slenderness factor and 𝛾 appears also for 3D pores, as 

shown in Figure 6. 

The Loeb formula can be expanded in an analogous 

manner as the 2D case: 

𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 = 

4 ∗ 𝜖 ∗ 𝜎 ∗ 𝑇3 ∗ 𝑀𝐷𝑝𝑜𝑟𝑒 ∗ 

0.223 + 3.125 ∗ 𝑆𝑓,𝑖

1 + 3.649 ∗ 𝑆𝑓,𝑖 − 0.03989 ∗ 𝑆𝑓,𝑖
2  

(9) 

Figure 7 compares for all the pores the analytical and 

numerical calculation of 𝜆𝑟𝑎𝑑,𝑝𝑜𝑟𝑒. Good agreement is 

again obtained demonstrating the validity of the 

analytical approximation. 

Implementation in Matlab 

The adapted Loeb formula is used to assign an 

equivalent radiative thermal conductivity to every 

pore in the sample based on the pore’s slenderness 

factor. A number of Matlab scripts have been 

implemented with the purpose of calculating this 

slenderness factor for every pore. 

The first step consists of splitting the pore space into 

separated pore clusters. Indeed, in high porosity 

materials often a large part of the pores are 

interconnected with smaller connection zones. 

However, when the opening width of the connection 

between two pore clusters is relatively small, thermal 

radiation travelling from one cluster to the other can 

effectively be neglected. Hence the 2 pore clusters 

should be separated and a different slenderness factor 

for both clusters should be calculated. The splitting of 

the pores is executed according to the watershed-based 

procedure described in Morpho+ (Brabant et al. 2011), 

by calculating the distance transform of the binary 

image matrix. This procedure will split all the pores at 

their narrowest point, resulting in a set of completely 

disconnected pores. However, when pore clusters 

were originally connected via a relatively large 

opening width, their splitting is not desirable since 

thermal radiation travelling between 2 pore clusters 

will have an important impact in this case. Therefore, 

the rejoining procedure described in Morpho+ is also 

implemented. This procedure first calculates the radii 

of the maximum inscribed balls of 2 originally 

connected pores. Subsequently, the largest of both 

radii is compared to the radius of the maximum 

inscribed circle in the connection zone between both 

pores. If the ratio of these radii is larger than a set 

value (the rejoin factor 𝑅𝑓), the pores are rejoined: 

𝑟𝑖𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑐𝑖𝑟𝑐𝑙𝑒 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

max(𝑟𝑖𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑏𝑎𝑙𝑙𝑠 𝑜𝑓 𝑝𝑜𝑟𝑒𝑠)
> 𝑅𝑓 (10) 

If the rejoin factor is set to 0, all separated pores will 

be rejoined, if set to 1 all pores will stay separated. The 

binary image matrix is hence transformed to an image 

matrix consisting of several pore clusters, each arising 

from a number of pores that pass the rejoining test. For 

every pore cluster the slenderness factor is calculated 

using Eq. 8, which is finally used to calculate the 

equivalent radiative thermal conductivity in every 

pore cluster. Since these conductivities can simply be 

added to the thermal conductivity of the gas in the 

pores, the whole simulation procedure remains the 

same as described in the first section. 

PRELIMINARY INVESTIGATIONS 

USING THE MODEL 

The model is used to investigate the impact of both the 

difference between 2D and 3D simulations and the 

influence of thermal radiation on the total heat 

transfer. A synthetic sample is generated, having a 

porosity of 81.73 %, a side length of 1 cm and a pore 

size distribution as shown in Figure 8 (left). The 

resolution is set to 600³, the mesh size parameter to 

Lsample/50. The sample is shown in Figure 8 (right). 
 

       

Figure 8: The pore size distribution (left) and a 

render of the investigated sample (right) 
 

The effective thermal conductivity excluding thermal 

radiation is calculated with the model, resulting in a 

value of 0.064 W/mK. 

2D versus 3D calculations 

For simplification, a lot of calculation models use a 2D 

approach with an image acquired via generating 
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algorithms or scanning electron microscopy as input. 

This is however a strong simplification of the real 

microstructure and the pathways of the heat flow 

through the material. This is demonstrated on the 

generated 3D sample: five equidistant 2D slices are 

cut through the sample, starting and finishing with the 

bottom and upper slice. The middle slice is shown in 

Figure 9. 
 

      

Figure 9: Location of the slice (left) and 2D view of 

the slice (right) 
 

The effective thermal conductivity of every slice is 

calculated using the model, excluding thermal 

radiation. The resulting ETC of the respective slices 

are shown in Figure 10. 
 

 

Figure 10: 2D versus 3D calculation. 
 

A first conclusion is that the 2D calculated values 

differ a lot from each other, due to the different 

porosity and microstructure of each slice. Further-

more, most of the values are lower than the 3D value, 

and so is also the average of the 2D values. This is due 

to the fact that in 3D the heat flow can pass the 2D 

obstructions in the 3rd dimension. Hence, 2D 

calculations will result in a strong underestimation of 

the true effective thermal conductivity.  

Influence of radiation 

The effect of radiative heat transfer on the ETC of the 

synthetic sample of Figure 8 is investigated. This is 

done through the method described before, 

incorporating radiation at the pore level. A rejoin 

factor of 0.5 is applied, leading to a subdivision of the 

pores in 13 pore clusters. For each cluster, the 

geometrical factor 𝛾 is calculated using the cluster’s 

slenderness factor previously defined. 

To reduce computation time, the mean sample 

temperature is used in the adapted Loeb formula 

instead of the local temperature. With the temperature 

difference across the sample being set to 10 K, this 

should induce only a very small error. The simulation 

is performed at 3 different mean temperatures: 273 K, 

293 K and 313 K. The results are summarized in Table 

3, together with the ETC of the sample excluding 

thermal radiation. The relative difference with this 

value is also shown. 
 

Table 3: 

ETC at several temperatures, with and without 

radiation 
 

TMEAN [K] ETC [W/MK] REL. DIFFERENCE 

No radiation 0.064 N.A. 

273 0.0713  10.24 % 

293 0.0730   12.33 % 

313 0.0749 14.55 % 
 

It is clear that thermal radiation has a non-negligible 

influence. Even at a mean temperature of 273 K, the 

ETC is found to be 10 % higher than the one 

neglecting thermal radiation. As expected, this 

increases with increasing temperature. It is 

furthermore expected that the influence will be even 

larger at higher porosities. 

The model results are compared with two analytical 

macroscale calculations of the thermal radiation. The 

first is based on the calculation of the mean extinction 

coefficient following an empirical formula from Hsu 

& Howell (Howell 2000) for open-celled reticulated 

ceramic foams: 

𝜆𝑟𝑎𝑑,𝑚𝑎𝑐𝑟𝑜  =
16 ∗ 𝜎 ∗ 𝑇3

3 ∗ 𝜅
 (11) 

𝜅 =
3

𝑑𝑝𝑜𝑟𝑒,𝑚𝑒𝑎𝑛

∗ (1 − 𝜙) (12) 

The other method is a simplified calculation for closed 

cell materials derived by Batty et al. (1984): 

𝜆𝑟𝑎𝑑,𝑚𝑎𝑐𝑟𝑜  =
4 ∗ 𝜎 ∗ 𝑇3 ∗ 𝑑𝑝𝑜𝑟𝑒,𝑚𝑒𝑎𝑛

2
𝜖

− 1
 (13) 

The values for 𝜆𝑟𝑎𝑑,𝑚𝑎𝑐𝑟𝑜 are summed with the 

thermal conductivity of the sample calculated without 

thermal radiation (0.064 W/mK). The results of the 

two analytical macroscale approximations are shown 

in Figure 11 as a function of mean temperature, 

alongside the results obtained with the model. 

As expected, the model results lie in between both 

approximations, since the synthetic sample is neither 

completely closed- or open-celled. The much higher 

values for the Hsu & Howell model can be attributed 

to the fact that their formula is derived for very open 

porous ceramic foams. Though further verification 

studies are still needed, this is already a strong first 

indication of the possibilities of this microscale 

approach. 
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Figure 11: ETC at several temperatures, with and 

without radiation 

CONCLUSION 

This paper introduced a model framework for 

performing 3D heat simulations on microstructures of 

porous samples. Good agreement was found for an 

elementary type of pore structure for porosities 

between 10 % and 90 %. The method of Loeb for 

incorporating thermal radiation at the microscale has 

been implemented and extended on the basis of a 

broad set of pore scale radiative heat transfer 

simulations. A slenderness factor has been introduced, 

allowing for an accurate calculation of Loeb’s 

geometrical factor. This makes it possible for 

including radiative heat transfer at the pore scale, 

based on local structural characteristics instead of 

Loeb’s non-intuitive factor 𝛾. The model is 

subsequently used to show the discrepancy between 

2D and 3D simulations, and to show the importance of 

including thermal radiation. 
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