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Abstract

The collision of magnetic reconnection jets is studied by means of a three-dimensional numerical simulation at the
kinetic scale, in the presence of a strong guide field. We show that turbulence develops due to the collision of jets,
producing several current sheets in reconnection outflows, aligned with the guide field direction. The turbulence is
mainly two-dimensional, with stronger gradients in the plane perpendicular to the guide field and low wave-like activity
in the parallel direction. First, we provide a numerical method to isolate the central turbulent region. Second, we analyze
the spatial second-order structure function and prove that turbulence is confined in this region. Finally, we compute local
magnetic and electric frequency spectra, finding a trend in the subion range that differs from typical cases for which the
Taylor hypothesis is valid, as well as wave activity in the range between ion and electron cyclotron frequencies. Our
results are relevant to understand observed collisions of reconnection jets in space plasmas.
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1. Introduction

Magnetic reconnection is a fundamental phenomenon in
astrophysical plasmas. It consists of the recombination of
magnetic field topology due to the violation of the frozen-in
law for magnetic field of ideal magnetohydrodinamics (MHD).
Due to this recombination, plasma is ejected in the form of jets
and magnetic energy is converted into kinetic energy. The
presence of magnetic reconnection has been ascertained in the
solar corona (Shibata 1998; Sui et al. 2004) and in the Earth’s
magnetosphere (Retinò et al. 2007; Burch et al. 2016), and it is
thought to be responsible for magnetic energy release and plasma
heating (Drake et al. 2006). Reconnection has also been identified
in the solar wind (Phan et al. 2006; Gosling 2007). A close link
exists between the presence of magnetic reconnection and the
phenomenology of plasma turbulence (Matthaeus & Velli 2011).
In plasmas, similarly to fluid dynamics, magnetic and velocity
fluctuation energy cascade from large to small scales, due to
nonlinear interactions, following the turbulent phenomenology.
This nonlinear cascade produces smaller and smaller scale
magnetic shears that can eventually undergo the process of
magnetic reconnection. Magnetic reconnection, indeed, can be
viewed as an active ingredient of plasma turbulence (Matthaeus
& Lamkin 1986; Servidio et al. 2009, 2011; Franci et al. 2017).

On the other hand, magnetic reconnection can act as a trigger of
plasma turbulence in the reconnection outflows (Matthaeus &
Lamkin 1986; Malara et al. 1991, 1992; Lapenta 2008; Huang &
Bhattacharjee 2010; Beresnyak 2016). Numerical simulations have
shown that reconnection outflows can comprise different types of
plasma instabilities at both fluid (Guo et al. 2014) and kinetic
scales (Vapirev et al. 2013; Huang et al. 2015). These instabilities,
along with the presence of shears, make reconnection outflows
turbulent rather than laminar. The latter is not just numerical
evidence, but has been recently confirmed by in situ spacecraft
observations (Eastwood et al. 2009; Osman et al. 2015). Contrary

to the “classical” view of reconnection energetics, where the
conversion of magnetic into kinetic energy happens only in the
main reconnection sites (Shay et al. 2007), reconnection outflows
are now also believed to be regions where the plasma is heated
and particles are accelerated (Daughton et al. 2011; Lapenta
et al. 2014, 2015). It has been shown, both in numerical
simulations (Leonardis et al. 2013; Pucci et al. 2017) and from the
most recent in situ observation (Fu et al. 2017), that, due to
turbulence, energy exchange between fields and particles in the
outflows is intermittent. This means that the greatest part of energy
transfer happens in low volume-filling, very intense current sheets.
Recently, numerical simulations (Olshevsky et al. 2016) and
observations (Fu et al. 2017) have shown that energy exchange is
more efficient in the presence of magnetic null points of spiral
topological type (O-point configurations) rather than the radial
nulls (X-points). This suggests than energy dissipation is more
efficient in a region surrounded by two, or multiple, X-lines. In the
classical two-dimensional MHD picture of magnetic reconnection,
an O-point is always present between the two X-points (for
topological reasons), i.e., in the middle of two counter-propagating
reconnection jets, if the X-lines are active.
The physics of the collision of reconnection jets has been

studied numerically with both fluid and kinetic models
(Karimabadi et al. 1999; Oka et al. 2008; Nakamura et al.
2010; Markidis et al. 2012), sometimes in the frame of the
tearing or plasmoid instability (Bhattacharjee et al. 2009; Landi
et al. 2015). Recently, the first observations of colliding
reconnection jets have been carried out in the presence of
both weak (Alexandrova et al. 2016) and strong (Øieroset
et al. 2016) guide fields. Observational results show that
collisions of jets cause wave activity and are responsible for
secondary reconnection events in the outflows, but a clear
theoretical picture of the collision of reconnection jets is still
lacking.
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Even though such observational results have been compared
with two-dimensional simulations of magnetic reconnection, it
is likely that a three-dimensional description would be closer to
the physical reality. In fact, the nature of magnetic reconnection
in three dimensions is intrinsically different from its two-
dimensional counterpart (Priest et al. 2003). Numerical
simulations have shown that 3D instabilities with out-of-plane
wave numbers develop during reconnection both in the case of
weak (Ricci et al. 2004b; Vapirev et al. 2013) and strong guide
fields (Daughton et al. 2011; Fermo et al. 2012). The presence
of these instabilities highly enriches the dynamics and the
properties of the generated turbulence. For this reason, it is
worth also studying the collision of reconnection jets in three
dimensions.

In this work, we present a three-dimensional (3D) numerical
simulation to study the physics of the collision of reconnection
jets, in the presence of a strong guide field, at kinetic scales. We
show how the collision of jets gives rise to plasma turbulence
in a confined region of the outflows. We provide a numerical
method to detect the turbulent region and perform local
statistical analysis to characterize the turbulence that is
produced in such regions. We believe that these results can
be used for the interpretation of present and future observations
of collisions of jets at ion and subion scales. Moreover, we
provide a theoretical description of turbulence generated by
magnetic reconnection in a three-dimensional kinetic model.

2. Numerical Setup

We consider a plasma made of ions (protons) and electrons.
At the initial time, the plasma is at the Harris equilibrium
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where B0z is the guide field, δ is the thickness of the Harris sheet,
and n0b is the background density. The coordinates are chosen
such that the equilibrium sheared magnetic field is directed along
the x axis and varies along y, causing the initial current sheets to
be directed parallel to the z axis, which is also the guide field
direction. For both species, the initial distribution function is a
Maxwellian with homogeneous temperature. The system obeys
the Vlasov–Maxwell equations, which are numerically solved
using the semi-implicit particle-in-cell (PIC) code iPIC3D
(Brackbill & Forslund 1982; Markidis et al. 2010; Lapenta 2012).

The semi-implicit method gives the advantage of allowing
bigger grid size and time step compared with explicit scheme,
resulting in a much lower computational cost. The price to be paid
for that is that not all relevant spatial and temporal scales within
the plasma, such as the electron inertial length and the inverse of
the electron plasma frequency, are resolved. However, even
though electron scale dynamics is poorly resolved, kinetic effects
from both ions and electrons are retained. The semi-implicit
method has been compared with explicit methods in previous
numerical studies of magnetic reconnection, showing a positive
agreement (Ricci et al. 2004a). Moreover, iPic3D has recently
been used to study plasma turbulence in the context of magnetic
reconnection (Pucci et al. 2017) and of Taylor-Green vortex decay
(Olshevsky et al. 2018). These works have shown iPic3D
capability to well reproduce the properties of subion scale
turbulence as predicted by theoretical models and observed in
space plasmas.

The numerical domain is a Cartesian box with size [40, 30,
10] di, where di is the ion inertial length. We use [512, 384, 128]
cells, each one initially populated with 125 particles of each
species. A reduced ion/electron mass ratio mi/me=256 is used,
which fixes the spatial resolution to Δx=1.25de, where de is the
electron inertial length. The initial ion/electron temperature ratio is
Ti/Te=5, and thermal velocities uth,i=0.0063c and uth,e=
0.045c, where c is the speed of light. The thickness of the initial
current sheet is δ=0.5di and the background density is
nb0/n0=1/10. The value of the guide field is set to
B0z/B0x=2. The Alfvén to light speed ratio is ca/c=0.0217
and the electron plasma to cyclotron frequency ratio is
ωpe/Ωce=2.88. We use an open boundary condition in the y
direction and we impose periodicity along x and z. The equilibrium
is perturbed by a Gaussian fluctuation of the z component of the
vector potential, located at (x=0, y=7.5), which initializes the
magnetic reconnection process (Lapenta et al. 2010). The system
evolution is followed in time up to 29τi, where τi is the ion gyro-
period, using a time step of dt≈τe/10, where τe is the electron
gyro-period. Due to open boundary conditions and numerical
dissipation associated with the semi-implicit method, the total
energy in the system is not conserved. However, these two effects
are small and in the final state of the simulation the total energy
differs from the initial energy by 3%.

3. Dynamical Evolution

Because of the strong guide field, we expect that current sheets
will be preferentially aligned along the z direction. In Figure 1, we
represent a time evolution of the reconnecting current layer. The
quantity plotted in panels (a–e) is á ñJz z, the out-of-plane total
current density as a function of x and y and averaged along z. The
initial Harris sheet is a narrow layer, directed along z, as reported
in panel (a), and it has been perturbed at the boundary x=0.
Because of periodicity, two reconnection sites form at opposite
sides of the domain in the x direction. Panel (f) shows the
evolution of the mean square ion, electron, and total current á ñJ2 .
At the beginning, the current is mainly carried by ions, due to the
Harris equilibrium, but as the evolution proceeds electron current
becomes dominant. The total current reaches a peak value at

W-84.06 ci
1 and rapidly decreases to a smaller value. Then, the

value of á ñJ2 remains almost constant, slightly decreasing up to
the end of the simulation.
The X-lines produce two reconnection jets that approach one

against the other in the middle of the simulation domain (panel (b)).
Notice that the two outflows carry oppositely directed current
sheets even before the actual collision. This is due to the pile up of
regions with oppositely directed By which are generated and
squeezed one against the other by the pressure of the two counter-
propagating jets. When the two outflows collide, the maximum of
á ñJ2 is reached (panel (c)). At that instant, the two outflows can still
be distinguished even though they look like they are caught in each
other. The two counter-propagating outflows also carry with them
oppositely directed magnetic fields, which makes the system
unstable to secondary reconnection. The large-scale current sheets
present in panel (c), whose dimensions are of the order of∼5–10di,
are fragmented in smaller ones by multiple reconnection events.
The effect is visible in panel (d), where a multitude of current
sheets at different scales appears in the collision region. This
suggests the beginning of a turbulent cascade, that through
nonlinear interactions forms smaller current sheets. At later times,
the turbulence that develops in the center of the domain
continuously generates and disrupts current sheets and the
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associated magnetic islands. It is worth noting that the area where
the current sheets are located decreases in time (panel (e)). This is
reasonable considering that the system is not driven externally, but
is just relaxing after the collision of jets.

We have just presented a 2D evolution of the system, relying on
the fact that the presence of a strong magnetic field favors the
formation of perpendicular gradients (Oughton et al. 1994, 2015).
To verify this assumption, in Figure 2, we present a comparison of
á ñJz z with Jz at a fixed z, namely z=5.0di. The plot is taken in the
turbulent phase at = W-t 92.19 ci

1 (panel (d) in Figure 1), right after
the collision of jets. á ñJz z and á ñ =( )J z 5.0z in the xy plane are
plotted in the first and second columns, respectively. The latter
looks like the blurry version of the former. This can be interpreted
as follows. The current sheets are elongated in the z direction and,
for this reason, they are not ruled out by the average. At the same
time, a small level of fluctuations with wavevectors in the
z direction are present, which make the picture of the 2D cut
blurry. Those fluctuations are ruled out when averaging along z. In
the third column, a 1D cut of the two quantities is plotted as a
function of x. We can see that several current sheets are
encountered moving in the x direction. The strongest ones are
found in the central region. There is no big difference between
the two variables, confirming that the fluctuations in the z direction
are small compared to the average current intensity. In the second
and third rows we show two zooms of the two quantities taken in
the central part of the simulation. We observe that the two
quantities also look similar at smaller scales. Moreover, we can
notice that the size of the smallest current sheets are of a fraction
(1/5 or less) of the ion inertial length di, corresponding to ∼3de,
where de is the electron inertial length.

This preliminary analysis has shown that a turbulent behavior
is observed after the collision of the two jets. The comparison
between á ñJz z and =( )J z 5.0z suggests that strong fluctuations are
produced perpendicularly to the guide field, and small amplitude
fluctuations are present along the guide field. In order to make the

last statement more quantitative, we have analyzed the second-
order structure function of the magnetic field. This is defined
as ò= + -( ) ∣ ( ) ( )∣r B x r B xS d xB V

2 1 2 3 , where B is the total
magnetic field, r is a displacement in the physical space, and V is
the total volume of the simulation box. Similar to the power
spectral density, this quantity represents the average of the
magnetic fluctuation energy between two points of the domain
separated by a lag r. Since we are interested in evaluating the
energy of the fluctuations varying in the direction parallel and
perpendicular to z, i.e., the guide field direction, we have
computed the so-called reduced structure function defined as

ò= + -( ) ∣ ( ) ( )∣B x e B xS ℓ ℓ d xB i V i i
2 1 2 3 , with i=x, y, z. These

quantities, plotted in Figure 3, represent the domain average of
the magnetic energy fluctuations with wavevector in the i
direction at a scale ℓ. For statistical reasons, we consider
maximum lags =ℓ L 2i j

max , where Lj is the box size in the j
direction. The minimum lag is set to = D =ℓ x d1.25j j e

min .
The results confirm what was suggested by the visual analysis of
the current. The blue curve, representing ( )S ℓB z

2 , is always below
the red and green curves, representing ( )S ℓB x

2 and ( )S ℓB y
2 ,

respectively. The magnetic fluctuation energy is larger for
wavevectors perpendicular to the guide field and smaller for
parallel ones at all scales. Moreover, the fluctuations in the
direction of the initial shear, i.e., along y, are slightly stronger
than the fluctuations in the x direction. In order to check if this
difference is due to the presence of the background Harris field,
we subtract its contribution to the total magnetic field, defining
the new following variable: = - á ñ( )b B B eyx x z x, - eB z z0 . The
variable b can be seen as the magnetic fluctuation field. ( )S ℓb y

2 is
plotted in Figure 3 as a green dashed line. The fluctuation energy
in the y direction is stronger than that in the x direction even when
the contribution of the Harris field is not taken into account. Both
are at least one order of magnitude stronger than the fluctuations
in the z direction. We can also notice that at large scales the
structure function tends to saturate only in the z direction. The

Figure 1. (a)–(e) Jz averaged along z at different times. (f) Mean square ion (blue), electron (red), and total (black) current as a function of time. Dashed lines in panel
(f) indicate plotting times of panels (a)–(e). The current density is normalized to wm c ei pi

2 , where mi is the ion (proton) mass, e is the proton charge, wpi is the ion
plasma frequency, and c is the speed of light, in CGS units. This normalization for the current density applies to all the figures where the current density is shown.
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saturation is reached at the scale of the correlation length. Since
large-scale shears are present in both the x and y directions, the
corresponding structure function does not saturate for lags as
large as half the box size in each direction. Consistently, when
the contribution of the Harris field is subtracted from the total
field, the structure function in the y direction saturates at around
5di. This size is comparable to the size of the turbulent region
depicted in Figure 1 (panel (d)) and Figure 2.

The analysis of SB
2 contributes to the result that turbulence

develops in the box after the collision of jets. This turbulence is
mainly two-dimensional, with fluctuation energy concentrated in
wavevectors perpendicular to the reconnection guide field. A
second smaller anisotropy is found for the in-plane fluctuations,
where more energy is present in the direction of the initial magnetic
shear. The analyses performed so far are global, in the sense that the
full computational domain was used as a single sample. However,
the turbulent region seems to be confined in a smaller central region
surrounding the location where the outflows have collided. In the
next section, we provide a method to isolate that turbulent region
and study its properties separately from the rest of the domain.

4. Isolating the Turbulent Region: Method
and Local Analysis

In this section, we provide a method for isolating the
turbulent region and we describe the turbulence analysis
performed on the region itself comparing it with the rest of the
simulation box.

4.1. The Method

In the previous section, we showed that turbulence develops
in the simulated reconnection event, due to the collision of jets,
and seems to be localized in the surrounding of the collision
site. We have also shown that such turbulence is quasi two-
dimensional and develops in the plane perpendicular to the
guide field. We build our method bearing on this last feature
and considering the system as being two-dimensional, thus
neglecting the dependence on the z component. In 2D MHD,
the in-plane components of the magnetic field is a function only
of the out-of-plane component of the vector potential A. From

=  ´B A, one finds that = ¶
¶

Bx
A

y
z , and = -¶

¶
By

A

x
z , where

xy is the 2D plane and Az is the z component of A. From the last
two relations it is easy to show that  =( · )B A 0z . The last
expression means that Az is constantly moving along an in-
plane field line or, equivalently, that in-plane magnetic field
lines are isocontours of Az. It is also easy to show that

-  ´ = ( ) ( )B A . 1z z
2

This equation will be used later.
Operationally, the two-dimensional ingredient is obtained by

averaging the magnetic field B in space, over the z direction.
The z-average of the 2D magnetic field is similarly related to
the z-average of the full 3D vector potential, that is, the 2D
potential = á ñˆ · AA zz z. This averaging operation has the effect
of eliminating the fluctuations in the z direction, which are,

Figure 2. Telescopic view of Jz at = W-t 92.19 ci
1. (a) Average out-of-plane current density á ñJz z and two zooms (b)–(c). (d) Out-of-plane current density Jz at =z d5.0 i

and two zooms (e)–(f). (g) Current density profile as a function of x, at =y d15.0 i, for á ñJz z (solid line) and for =( )J z 5.0z (dashed line) and two zooms (h)–(i). The
black frames in panels (a)–(b) and (d)–(e) bound the zoomed regions shown in panels (b)–(c) and (e)–(f), respectively. The solid or dashed black lines in panels from
(a) to (f) identify the locations along which the profiles in panels (g)–(h)–(i) are plotted.
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however, much smaller than those in x and y, as shown
previously. The map of the 2D potential Az is plotted in panel
(b) of Figure 4, along with its isocontours, which are the in-
plane magnetic field lines. In order to compute Az, we solved
Equation (1) using a Fourier method in an expanded (periodic)
domain, then plotted the result in the original domain. The
magnetic island produced by reconnection in the center of the
box is clearly visible. Moreover, we notice that Az has a
minimum in the middle of the island and a saddle point at the
location of the main X-line. This is consistent with what is
found in incompressible MHD simulations of 2D magnetic
reconnection (Matthaeus 1982). It is also consistent with
Equation (1), as we explain in the following. The presence of
a minimum implies that  >A 0z

2 , and consequently
 ´ <( )B 0z . From Maxwell equations, we know that

 ´ = + p¶
¶

B JE
c t c

1 4 . At large scales and slow frequencies,
the displacement current term can be neglected and the curl of
B becomes proportional to J. Considering that the current in the
initial current sheet is negative for construction, the minimum
of Az in the middle of the island is justified. In panel (a) of
Figure 4, we plot a 2D map of á ñJz z at time = W-t 92.19 ci

1 and
two isocontours of Az, i.e., Az=−0.098 and Az=−0.138.
The former represents the value of Az at the X-point and at the
separatrices, the latter represents a manually selected value of
Az associated with a magnetic field line enclosing most of the
more turbulent central region and very little of the more
quiescent (low current density) region surrounding it. These
two isocontours identify three different regions, plotted in
panel (c): Region 1 (R1), out of the separatrices; Region 2 (R2),

between the separatrices and the turbulent region; Region 3
(R3), the central turbulent region.
Since we want to reproduce such a distinction for each instant of

time we have implemented the following numerical procedure.
First, at a given time t, we compute the in-plane magnetic field
average along z and the corresponding 2D vector potential.
Second, we find Az

X , namely the value of Az at the X-point, and
Az

min, namely the minimum of Az located in the center of the
domain. We call *Az the suitable value of Az associated with the
magnetic field line that encases the turbulent region. Since this
value has to lay between Az

min and Az
X , we can write it in the

following form:

* = + - < <( ) ( )A A a A A a, with 0 1. 2z z z
X

z
min min

Third, we find the suitable value of a as that associated to a contour
that encases all the strongest current sheets in the turbulent region.
We found a=1/6 to be suitable for time = W-t 92.19 ci

1. Then,
we repeat the procedure for each time step, keeping the selected
value of a unchanged. The procedure is applied from the time
when the mean square current is maximum, i.e., = W-t 84.06 ci

1, up
to the end of the simulation. Before that time it has no meaning
separating the domain into regions, since turbulence has not
developed yet. Choosing a fixed value for a does not mean in
principle that *Az does not change in time, since both Az

min and Az
X

can change. It rather means that we are choosing a value of the
vector potential whose relative distance from the minimum and the
value at the separatrices is constant. Interestingly, this choice gives
a correct result for all time steps (see the animation associated with
Figure 4). This can be explained considering that, from Maxwell’s
equations, = -¶

¶
cEA

t z
z , meaning that the value of Az changes due

to the reconnection electric field. After the initial phase when jets
are ejected, the value of this field becomes smaller causing the
vector potential to be nearly constant in time on the separatrices.
This method allows us to identify different regions in the
simulation domain in 2D. Since small fluctuations are present in
the z direction, we can extend the 2D region along z and perform
the statistical analysis on the 3D extension of each region.

4.2. The Analysis

We have identified the turbulent region looking at the out-of-
plane component of the total current, thus associating turbulence
with the current activity. In Figure 5, we show the mean square
current in the three regions R1, R2, and R3, as a function of
time (panel (a)). The full box average is plotted as a reference. The
mean square current in R3 is much higher than in R1 and R2. Its
trend in time looks very similar to the trend of the full box average,
shown in panel (f) of Figure 1. Panel (b) shows the filling factor
F of each region as a function of time, computed as the ratio
between the volume of each region and the volume of the whole
box. R3 is the smallest region and occupies around 6% of the total
volume. The size of the region does not change significantly in
time. This analysis shows that the most intense current sheets are
within region R3, which is a small portion of the total domain.
However, region R3 is large enough to perform a statistical
analysis of fluctuations contained therein.
Since the chosen regions are not rectangular, and their

boundaries are not periodic, a Fourier-based spectral analysis is
not a suitable approach. For this reason, as done for the full box
analysis, we compute the second-order structure functions of

Figure 3. Second-order structure function of the magnetic field SB
2 at =t

W-92.19 ci
1 for lags in the x (red), y (green solid), and z (blue) directions. The

green dashed line represents the second-order structure function of the
magnetic field fluctuations S2b along y for which the background Harris field has
been subtracted from the actual field.
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the magnetic field in the three regions for lags in the x, y, or
z directions. In Figure 6, we report the result at time
= W-t 92.19 ci

1. We notice first that the energy for parallel
increment lags (panel (c)) is smaller than for perpendicular lags
(panels (a) and (b)), in each region (panel (c)). Moreover,
different regions have similar parallel fluctuations energy at all
scales. Panels (a) and (b) show the second-order structure
function of the in-plane magnetic fluctuations. Due to the
difference in shape and size of the regions, the curves do not
span the same range of lags. The maximum possible lag is in
fact defined as half of the sample size. The red curve,
associated to region R3, terminates at smaller lags because it is
obtained in the smallest region R3. Moreover, the maximum ℓx

for R3 is bigger than the maximum ℓy, since the shape of the
region is elongated in the x direction. At large scales, a
saturation in the value of the second-order structure function is
observed just for R3. The lag at which the saturation is
observed gives an estimate of the correlation length of around
5di along x and 3di along y, which is comparable to the sizes of
the region. Such saturation is not observed for R1 and R2, due
to the presence of the large-scale magnetic shear whose
dimension is comparable to the sizes of those regions. At scales

smaller than the correlation length, the red curve (R3) is always
higher than green (R2) and blue (R1), > >S S SB B B,R3

2
,R2

2
,R1

2 .
The average energy of magnetic fluctuations varying in the

plane perpendicular to the guide field is larger in R3, implying
that the nonlinear cascade has acted more efficiently in that
region. Therefore, this proves that R3 is the actual region where
turbulence develops.
In order to confirm that the turbulent cascade proceeds up to the

end of the simulation, we have computed SB
2 in each region for

different times. At each time we take the value of SB
2 for =ℓ dj i for

j=x, y, z. The result is plotted in Figure 7. In the perpendicular
directions the average of the magnetic fluctuation energy at scale di
is larger in R3, meaning that more energy is cascading to subion
scales in R3 compared to the rest of the domain. The energy in the
y direction is larger, on average, due to the presence of the Harris
field. In the z direction, the values in R3 eventually become larger
as the simulation proceeds. At earlier times, the large energy in R2
is due to the formation of an electron instability that develops on
the separatrices (Daughton et al. 2011; Fermo et al. 2012). This
instability remains confined in R2 and saturates for times larger
than ~ W-t 100 ci

1.

Figure 5. (a) Mean square current á ñJ 2 as a function of time and (b) filling factor F computed as the ratio between the volume of a region and the volume of the full
box, for R1 (red), R2 (green), R3 (blue), and full box (black).

Figure 4. (a) Out-of-plane current averaged along á ñz Jz z and isocontours of the out-of-plane component of the vector potential Az, (b) Az and its isocontours, (c) three
regions: R1 (blue), R2 (green), R3 (red), as described in Section 4.1. The animation begins at t=81.34 W-

ci
1 and runs to t = 187.09 W-

ci
1. The video duration is 20 s.

(An animation of this figure is available.)
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To complete our analysis, we study the Eulerian frequency
spectra of the electric and magnetic field in R3. The fields have
been sampled during the simulation at a cadence of 3Δt by means
of probes (“virtual satellites”) placed at predefined locations inside
the simulation box. For the analysis we present here, we have
used satellites from a region of dimensions ´ ´1.25 1.25

d10.0 i
3 located in the middle of R3. The selected region contains

3×3×24=216 equally spaced satellites. We analyze the data
in the time frame W < < W- -t92.18 187.09ci ci

1 1, extending from
the initial development of the turbulence to the end of the
simulation. Similar to what happens for in situ spacecraft
observations, magnetic field data are not periodic. Moreover, the
situation we are considering here is not stationary, since turbulence

in R3 is decaying in time. In order to avoid spurious effects
coming from signal detrending or windowing, we use the
technique proposed by Bieber et al. (1993) to compute the
frequency power spectra. This method has been used, e.g., for
the analysis of the recent in situ solar wind observations (Bale
et al. 2005). The method follows these steps. First, the series of the
increments are computed from the actual field. If B(t) is the
magnetic field as a function of time, its increments are defined
as D = + D -( ) ( ) ( )B B Bt t t t . Second, the autocorrelation
function of the increments is computed as t =D ( )( )Rii

ò tD D +( ) ( )B Bt t dt
V i i
1 . Third, from the autocorrelation func-

tion, the power spectrum from the increments D ( )( )P fii is computed

Figure 6. Second-order structure functions of the magnetic field SB
2 at = W-t 92.19 ci

1 for lags ℓ along x (a), y (b), and z (c). SB
2 is computed in R1 (blue), R2 (green), and

R3 (red), and in the full box (black).

Figure 7. Second-order structure functions of the magnetic field SB
2 at li=di as a function of time for i equal to x (a), y (b), and z (c). SB

2 is computed in R1 (blue),
R2 (green), and R3 (red), and in the full box (black).
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via Fourier transform. Finally, the spectrum of the actual field
Pii( f ) is recovered by filtering the spectrum of the increments:

p
=

D

D

( )
( )

( )

( )
P f

P f

t4 sin
.ii

ii
2

This procedure suppresses the contribution of the low
frequencies unresolved in the chosen sample. Computing
power spectral density from the autocorrelation function can
yield to nonphysical results such as negative power spectrum
values (Blackman & Tukey 1958); therefore, we limit our
analysis to lags smaller than τmax=T/10, where T is the
duration of the total sample. With this upper limit, we have
enough statistics to estimate the spectrum for all frequencies
selected.

Figure 8, reports the power spectra of magnetic (panel (a))
and electric (panel (b)) field as a function of frequency. The
spectra are computed for each probe separately and then
averaged. In Figure 8, both spectra of the three components and
total field are plotted. Characteristic frequencies are marked by
vertical lines. Reference lines are shown corresponding to
spectral indices of −3 and −1. The computed spectra span
frequency ranges that extend from a fraction of the ion
cyclotron frequency to beyond the electron cyclotron fre-
quency. The electron plasma frequency is poorly resolved.
Note that the range of plotted frequencies does not reach the
Nyquist frequency because the fields are saved each 3Δt.
Magnetic and electric frequency spectra from fluid to electron
scales in plasma turbulence have recently been studied by
means of in situ spacecraft observations in the magnetosheath
by Matteini et al. (2017). It has been shown that the magnetic
and electric spectra have approximately similar behavior in the
fluid-MHD like regime, while they show different trends in the
kinetic range. In particular, the magnetic field spectrum
steepens at ion scales, passing from a spectral index between
−5/3 and −3/2 in the MHD fluid range to a roughly −3

spectral index at ion and subion scales. The electric field has an
opposite trend, passing from a spectral index −3/2 in the fluid
range to roughly −1 in the kinetic range. The familiar
theoretical explanation for this phenomenon (e.g., Matthaeus
et al. 2008) depends on dominance in the kinetic range of
nonideal terms in the generalized Ohm’s law. When the
turbulence k-vectors are mainly perpendicular to the guide
field, this heuristic explanation predicts d dµE k B2 2 2 for an
electromagnetic fluctuation at a given wavevector k in the
subion range.
The above reasoning explains the relationship of observed

frequency and wavenumber spectra in cases in which the two
are proportional and related by the Taylor hypothesis,
appropriate for high speed super-Alfvénic flows. This explains
the agreement of frequency spectra coming from single
spacecraft observations (Bale et al. 2005; Eastwood
et al. 2009; Matteini et al. 2017), with wavenumber spectra
obtained from numerical simulations (Franci et al. 2017; Pucci
et al. 2017).
The results we report here seem to be, at first sight, in

contrast to the above scenario, in that the subion scale magnetic
and electric spectra in our analysis do not follow a specific
power law and strongly differ from a ∝f−3 and a ∝f−1 trend,
respectively. The main reason for this apparent discrepancy
relies on the fact that Taylor hypothesis is not valid in the
system considered here, as we presently demonstrate.
The Taylor hypothesis consists of assuming that time

variations at a single observational point are only due to the
rapid sweeping of spatial structure past that point. This requires
that the large-scale bulk flow of the plasma greatly exceeds all
characteristic dynamical speeds that might distort those
structures. This includes both wave propagation and turbulent
velocity (Perri et al. 2017). When Taylor hypothesis is not
verified, there is not a simple connection between the frequency
and wavenumber spectra, although there remains the possibility
of a statistical similarity between the Eulerian frequency

Figure 8. Power spectrum of magnetic (a) and electric (b) fluctuations for x (blue), y (green), and z (red) components, and for the total field (light blue). The black
dashed lines represent a power law of the type ∝f−3 in panel (a) and of the type∝f−1 in panel (b). In both panels vertical lines on the x axis represent ion cyclotron
frequency fci, lower-hybrid frequency flh, ion plasma frequency fpi, electron cyclotron frequency fce, electron plasma frequency fpe, and the Nyquist frequency 1/2Δt,
computed and averaged in the region where the probes are located.
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spectra and the wavenumber spectra (Chen & Kraichnan 1989;
Matthaeus & Bieber 1999) when the dominant effect is random
large-scale sweeping.

The Taylor hypothesis is not valid in the system we are
considering here. In order to assess this hypothesis, the bulk
velocity of the plasma, computed in the region where the
virtual satellites are located, must be compared with character-
istic wave speeds and with turbulent velocity fluctuations. In
Figure 9, we report the comparison between the bulk velocity
V, the Alfvén velocity VA, and the ion sound speed Vs. The
bulk velocity V is defined as the plasma center of mass
velocity, the Aflvén velocity as pr=V B 4A , where ρ is the

ion density, and the ion sound speed as =
g

r

å
VS

P

3
j jj

, where

j=(x, y, z), P is the ion pressure tensor, and γ is the adiabatic
index, which we have chosen equal to 5/3 for simplicity. These
characteristic macroscopic speeds are compared in Figure 9,
which shows the x, y, and z components of V and VA, and the
ion sound speed (considered isotropic). The bulk speed is in
every case smaller or comparable with the other two
characteristic speeds. In particular, the ion sound speed is the
larger speed in the directions perpendicular to the guide field,
while the Alfvén speed is, as expected, the largest speed in the
parallel direction.
Next the bulk speed is compared with measures of the turbulent

fluctuation velocities in Figure 10. In particular, we compute the
longitudinal increments = + -( ) ˆ · [ ( ) ( )]r ℓ ℓ V r ℓ V ru , , where
r is a position in space, and ℓ is the direction along which the

Figure 9. Characteristic speeds in the probes region. Vs, Va, and V are the average ion sound speed, the average Alfvén velocity, and the average bulk velocity,
respectively. The three panels show the x (left), y (middle), and z (right) components of the velocities and the ion sound speed.

Figure 10. Comparison of bulk speed with turbulent velocity at scale di. The three panels show the x (left), y (middle), and z (right) components of the velocities. The
bulk speed components are plotted in black, while red dashed curves represent the turbulent velocity computed considering lags directed along x, y, and z, respectively.
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velocity increments are computed. The root mean square velocity
increments are computed in terms of components along the three
Cartesian directions as = á ñ( ) ( ) · ( )u r ℓ u r ℓu ℓ , ,i i irms . Here áñ
indicates the average in the region where the probes are located,
and ℓi with i=x, y, z indicates the direction along which the
velocity increments are computed. We considered a lag size equal
to di for each direction. In this way, we examine, in particular,
whether the Taylor hypothesis is valid for the kinetic features seen
in the frequency spectra in Figure 8. Figure 10 shows a comparison
of the bulk velocity with these measures of fluctuations. Each
panel contains the ith component of the bulk velocity and the
corresponding ( )u ℓirms . First, we notice that ( )u ℓzrms is smaller than

( )u ℓxrms , and ( )u ℓyrms , in accordance with anisotropic, quasi-2D
turbulence developed in the plane perpendicular to the guide field.
Second, we notice that Vz the bulk speed along the guide field
direction is larger than all urms. This large speed could in principle
be responsible for a similarity between the kz spectrum and the
frequency spectrum. However, as shown in the previous section,
turbulence is mainly 2D due to the presence of the strong guide
field, and very little energy is contained in the kzmodes. Moreover,
the largest characteristic speed in the z direction is the Alfvén speed
(see panel (c) in Figure 9), which allows for the presence of fast
parallel propagating waves of Alfvènic nature that can invalidate
the Taylor hypothesis.

Based on this analysis of characteristic speeds, we can conclude
that the Taylor hypothesis is not verified in the location where the
Eulerian spectra are computed. Therefore, a similarity between
frequency and wavenumber spectra is not expected. The magnetic
and electric frequency spectra presented in Figure 8 are therefore
to be considered as independent of the spatial (wavenumber)
structure. Then the observed features are essentially temporal, and
the observed features indicate the presence of wave activity at
different temporal scales, which we now briefly describe.

First, we notice a flattening of the magnetic spectrum between
the ion and electron cyclotron frequency, around f=10−1,
relative to the ∝f−3 trend at lower frequencies. This feature is
consistent with the presence of whistler waves and is also found in
in situ observations (Matteini et al. 2017). To confirm this
hypothesis, we applied a pass band filter at a frequency fce/5 to
the magnetic field (not shown here) finding a phase shift between
Bx and By consistent with parallel propagating whistler.

Second, a significant peak at the electron cyclotron frequency is
observed in both electric and magnetic field spectra. The peak is
found for all three components of the fields probably indicating
the presence of both electromagnetic and electrostatic modes. To
verify that this peak is not due to a numerical artifact, we ran a
new simulation (not shown) with a halved time step and saving
the fields data at each computational cycle. No relevant change in
the results was observed, either in the peak intensity or in its
position in frequency. Therefore, we conclude that the peak is
associated with physical electron cyclotron modes.

It is worth noting how the aforementioned presence of wave
modes at different timescales is not in contrast with a picture of
fully developed turbulence. Previous MHD studies have proven
that Eulerian frequency spectra can present intensity peaks at
fixed frequencies associated with wave modes even when no
signature of such modes is present in the wavenumber spectra
(Dmitruk et al. 2004; Dmitruk & Matthaeus 2009). A result
similar to the one presented here was found recently in two-
dimensional hybrid simulations of kinetic plasma turbulence,
where several peaks at frequency larger than the ion cyclotron

frequencies have been found in the Eulerian spectra of the
magnetic field (Parashar et al. 2010). Here we show such a
behavior in a turbulent environment that is self-consistently
generated by magnetic reconnection. A detailed description of
the modes that contribute to shape the frequency spectra along
with the effects due to the lack of validity of Taylor hypothesis
goes beyond the scope of this work and will be considered for
future studies.

5. Discussion and Conclusion

We presented a full kinetic 3D simulation of reconnection in
the presence of a strong guide field with reduced mass ratio.
The simulation considered periodic boundary conditions in the
direction of the outflow allowing counter-propagating recon-
nection jets to collide. We showed that the collision of
reconnection jets coming from two neighboring X-lines drives
turbulence in the magnetic island within them.
Turbulence produced is neither homogeneous nor stationary.

In the central region, where reconnection jets collide,
turbulence is mainly two-dimensional and manifests in the
continuous disruption and formation of new current sheets
mainly directed along the guide field, whose thicknesses range
between the electron and ion inertial lengths. This phenomen-
ology is due to the presence of the strong out-of-plane guide
field, given that the contribution of the initial Harris field is
small in that region. On the separatrices, an electron instability
typically observed in 3D simulations of magnetic reconnection
with strong guide field develops with wavenumber directed out
of plane (Daughton et al. 2011; Fermo et al. 2012). This
instability remains confined on the separatrices and saturates
during the evolution before that the turbulent energy in the
central region is completely dissipated. This results in having
and overall 2D turbulence for later times. How this picture
changes with different values of the background field is an
interesting issue and it is left for future works. We believe that
the effect of the instability would be decreased and that
turbulence in the central region would become more isotropic if
the value of the guide field is reduced.
For times longer than ~ W-100 ci

1, dynamical activity in the
out-of-plane electric current density remains well confined in a
small region of the simulation box that occupies a small
percentage (6%) of the total volume. Because the system
remains fairly close to two-dimensionality we were able to
exploit a representation that is strictly applicable in the 2D case
and, possibly, will not be applicable in a strongly three-
dimensional case. Using an identification method based on the
magnetic vector potential, we numerically separated the
turbulent region from the rest of the computational domain.
Analysis of spatial second-order structure functions show

that the selected central region is where turbulence actually
develops allowing an efficient cascade of magnetic energy to
subion scales. This cascade remains active for the duration of
our simulation. Since there is no forcing except for the initial
one due to the collision of jets, the current activity slightly
reduces in time, remaining confined in the same region.
Power spectrum analysis of electric and magnetic fluctua-

tions in the turbulent region reveal interesting properties that,
at first sight, stand in contrast to a number of previous
observations and numerical simulations. However, the assump-
tion of Taylor hypothesis made in previous works do not apply
to this case, which explains the apparent discrepancy. Under
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these conditions, the Eulerian frequency spectra computed in
our analysis are quite independent of the spectra computed in
the Taylor hypothesis scenario, which are interpreted as
wavenumber spectra. There is no simple relationship between
spatial structure and temporal structure in the present case.
Interestingly, the analysis of Eulerian frequency spectra in the
turbulent region reveals the presence of wave activity at
different frequencies: parallel propagating whistler between the
ion and electron cyclotron frequency, and electromagnetic and
electrostatic modes at the electron cyclotron frequencies. The
presence of whistlers in the region compressed by counter
streaming reconnection jets was recently found in situ
observation in the case of the small guide field (Alexandrova
et al. 2016). Electrostatic and electromagnetic wave activity at
the electron cyclotron frequency has also been detected in
previous observations of magnetic reconnection in the vicinity
of the reconnection sites (Tang et al. 2013; Viberg et al. 2013;
Khotyaintsev et al. 2016). Here, we observed electron
cyclotron wave activity in the turbulent region formed by the
collision of reconnection jets.

In a recent paper, Øieroset et al. (2016) have shown the first
observation of the collision of reconnection jets in the presence
of a strong guide field. The dynamical picture presented in that
work imagined an event of secondary reconnection activated by
the counter-propagating jets both carrying magnetic field lines
with opposite polarities. Our simulation shows that the physical
situation can be less laminar than predicted and that turbulence
develops after the collision of jets producing several current
sheets, secondary reconnection events, and wave modes up to
the electron cyclotron frequency. Our results stand in analogy
to the recent result by Fu et al. (2017) who find turbulent
reconnection in a region surrounding a secondary O-point. Like
that case, our interpretation of the present result is that energy
release can occur near such secondary structure in a turbulent
reconnection environment. However, a more detailed analysis
of energy exchange proxies, such as ¢·J E , where ¢E is the
electric field in the electron reference frame, is needed in order
to confirm such interpretation. This kind of analysis is left for
future work. The present results are likely to be relevant for the
interpretation of future observations of collisions of reconnec-
tion jets, which may have distinctive signatures in space and
astrophysical plasmas.
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