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Abstract

Classical (independent) interval analysis considers a hyper-cubic input space

consisting of independent intervals. This stems from the inability of intervals

to model dependence and results in a serious over-conservatism when no physi-

cal guarantee of independence of these parameters exists. In a spatial context,

dependence of one model parameter over the model domain is usually mod-

elled using a series expansion over a set of basis functions that interpolate a

set of globally defined intervals to local (coupled) uncertainty. However, the

application of basis functions is not always appropriate to model dependence,

especially when such dependence does not have a spatial nature but is rather

scalar. This paper therefore presents a flexible approach for the modelling of

dependent intervals that is also applicable to multivariate problems. Specifi-

cally, it is proposed to construct the dependence structure in a similar approach

to copula pair constructions, yielding a limited set of 2-dimensional dependence

functions. Furthermore, the well-known Transformation Method is extended to

the case of dependent interval analysis. The applied case studies indicate the

flexibility and performance of the method.
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1. Introduction1

Interval analysis is becoming more popular for the analysis of numerical2

models in case the analyst only has incomplete or vague information concerning3

the true parameter values, as they prove to give a more objective estimate4

of the uncertainty compared to probabilistic methods when insufficient data5

are available[1, 2]. The interval approach bounds the uncertainty concerning6

a model quantity by a crisp lower and upper bound. Based on these bounds,7

the worst-case behaviour of the structure is inferred using interval computation8

techniques (see e.g., [1] for a recent treatment).9

Underlying these interval computations, a system of sets of partial differen-

tial equations (PDE) needs to be solved repeatedly. The approximative solu-

tion of these PDE’s is usually provided by means of a numerical model M(x),

parametrized by a parameter vector x(r) ∈ X ⊂ Rdi with X the set of physi-

cally admissible parameters and di ∈ N. For example, x(r) may contain inertial

moments, clamping stiffness values or constitutive material parameters as a

function of a spatial coordinate r ∈ Ω ⊂ RdΩ over the model domain Ω with

dimension dΩ ∈ N, dΩ ≤ 4. In case M(x) is constructed following a finite

element approach, Ω is discretised by means of a set of finite elements, yielding

dd structural degrees of freedom (DOF). The model M(x) provides a vector of

model responses y(r) ∈ Y ⊂ Rdo , with Y the set of admissible model responses

and do ∈ N, through a set of function operators mi, i = 1, . . . , do, which are

defined as:

M(x) : yi(r) = mi (x (r)) i = 1, . . . , do (1)

with mi : Rdi 7→ R Note that the dependence of y on r is only valid when nodal10

or elemental responses are considered. This is for example not the case when y11

consists of eigenfrequencies.12

One of the key challenges in the application of interval theoretical approaches

for modelling uncertainty in finite element models, is the inability of intervals to

account for dependence between multiple uncertain parameters. A large body

of literature is therefore dedicated to minimize the over-estimation of interval
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models due to this independence, following an element-by-element approach

[3] or following affine arithmetic [4]. However, in some cases also dependence

between multiple xi(r), i = 1, ..., di (inter-uncertainty) or x(ri), i = 1, ..., dΩ

(intra-uncertainty) has to be considered to allow for the realistic modelling of

the non-deterministic structure of the model parameters. In the context of

spatial dependence of a single parameter, recent work of the authors focussed

on modelling spatial dependence via interval fields [5]. Following the method

presented in [5], an interval field xI(r) : Ω× IRnb 7→ IR is modelled as a series

expansion, where local uncertainty is modelled using nb ∈ N globally defined

independent interval scalars αI ∈ IRnb and basis functions ψ(r) : Ω 7→ R:

xI(r) =

nb∑
i=1

ψ(r) · αI
i (2)

with IRnb the domain of real-valued interval vectors of dimension nb. This13

framework for the modelling of spatial uncertainty modelling was recently ap-14

plied in the context of inverse uncertainty quantification [6, 7] and the modelling15

of various dynamic phenomena [8, 9, 10], as well as additively manufactured16

plastic components [11]. Also alternative formulations for modelling spatial17

uncertainty in an interval context have been proposed by other authors [12, 13].18

However, while being valuable in the context of modelling spatial phenom-19

ena, when considering the dependence between multiple physical parameters20

of a numerical model, such a weighting approach might not be appropriate.21

For instance, considering parameters such as material strength and stiffness of22

a component that is produced using a casting approach, typically a positive23

dependence between such parameters would be expected. Conversely, when24

looking at the width and thickness of such a part, a negative dependence could25

be introduced due to gravitational effects. This very simple example illustrates26

the often highly complex nature of the combination of different dependence27

structures throughout a numerical model, especially when a higher-level depen-28

dence between strength/stiffness and width/thickness exists. Hence, a simple29

weighting of interval scalars using a single set of basis functions might in that30

case prove to be too inflexible to allow for the accurate and realistic modelling31
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of this dependence.32

An alternative approach in this context is based on the the set-theoretical33

work of Elishakoff and co-workers, who throughout recent years introduced sev-34

eral set-theoretical approaches to cope with dependence in a non-probabilistic35

way [14, 15, 16, 17]. Following the most basic approach, the dependence can be36

represented using a d-dimensional hyper-ellipsoid which should abide by some37

minimum volume property. Also extensions towards Lamé curves and other,38

nodal, convex sets were introduced in recent years [18, 19]. However, while pro-39

viding the analyst with an intuitive tool, the underlying assumption is still that40

all parameters are governed by a single underlying dependence structure. A so-41

lution hereto could be to only consider pair-wise dependence, but this neglects42

possible higher-order dependence structures between multiple model quantities.43

In the context of probabilistic modelling of uncertainty, techniques based on44

Copula [20] are being applied widely, for instance in the modelling of dependence45

in system reliability [21], naval engineering [22] or inverse Bayesian random field46

quantification [23]. Application of these methods extend also far beyond the47

engineering realm with for example wide application in financial mathematics48

[24] and machine learning [25]. These methods indeed provide a flexible tool49

to model complex dependencies in an intuitive and elegant way, but sampling50

from a copula in d > 2 proves to be a daunting task [21]. Furthermore, also here51

the argumentation holds that it is questionable to model all dependency using a52

single Copula family (i.e., dependence structure). As a possible solution hereto,53

Copula pair constructions were introduced in the seminal papers of Bedford54

and Cooke [26, 27] and further elaborated on by Aas [28]. The core idea hereof55

is to decompose the multivariate, higher-order dependencies as a product of56

marginal distributions, a set of 2-dimensional unconditional Copula and a set57

of conditional Copula, allowing for the definition of a dependence structure for58

each combination of parameters. However, these methods rely heavily on the59

underlying statistical derivations and hence, it is unclear how these methods60

should be applied in an interval context without violating the interval paradigm61

where only crisp bounds on the uncertain quantities are considered.62
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This paper therefore explores the application of copula pair construction63

approaches for the modelling of dependence between uncertain parameters of a64

FE model that are modelled as intervals. Specifically, it is aimed at introducing65

a generic set-theoretical method that allows an analyst to define a high-order66

dependence structure as a product of 2-dimensional, possibly non-convex, ad-67

missible sets that bound the combination of parameter values within xI . Hereto,68

the bounded global optimisation problem that underlies typical interval com-69

putations is recast into a non-linear constrained global optimisation problem70

to accommodate these higher-order dependence structures. The paper is struc-71

tured as follows. In section 2, a concise introduction to copula in a probabilistic72

context is presented. Then, section 3 proposes a new set-theoretical method to73

propagate multivariate interval uncertainty with dependence between the inter-74

val valued parameters. Section 5 and 6 present two case studies to illustrate the75

application of these ideas to both an academic case study as well as a realistic76

finite element model. Conclusions are listed in section 7.77

2. Copula in a probabilistic context78

This section introduces Copula and Copula pair constructions in a concise79

way. It is not intended to provide the reader with a mathematically thorough80

introduction to Copula since this lies outside the scope of this paper, but rather81

to convey the general ideas that are needed in the development of the new82

interval method.83

2.1. Copula84

A Copula C is a function that constructs a joint cumulative distribution

function F1:di
(x1, x2, . . . xdi

), with x1, x2, . . . xdi
∈ [0, 1]di starting from its one-

dimensional marginal distribution functions Fi, i = 1, . . . , di. As such, the mod-

elling of the dependence is decoupled from the modelling of the non-determinism

in the model parameters via their marginals. The application of Copula on a

bivariate distribution is based on Sklar’s theorem [20]:

F1:di
= C1:di

(F1 (x1) , F2 (x2) , . . . , Fdi
(xdi

)) (3)
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∀x ∈ Rdi , with C1:di : [0, 1]di 7→ [0, 1] the copula function. In case all Fi, i =

1, . . . , di are continuous, F1:di
is unique. Note that a copula is always contained

between the Fréchet-Hoeffding bounds:

max

(
1− di +

d∑
i=1

xi, 0

)
≤ C1:di ≤ min(xi) (4)

which bound the dependence between the parameters and correspond to the85

probability mass lying on the principal diagonals of [0, 1]di .86

Two types of families are directly applicable to cases where di > 2: Gaussian

and Archimedean copula, and hence, attract a lot of scientific and industrial

interest. The Gaussian copula is defined as:

FG,1:di
= Φdi

(Φ−1(u1), . . . ,Φ−1(udi
)) (5)

with ui ∈ [0, 1] a coordinate in standard normal space, Φ−1(ui) :7→ the inverse87

univariate cumulative distribution function of ui and Φdi : 7→ the cumulative88

distribution function as N (0, R) and R ∈ Rdi×di a positive definite correlation89

matrix. As such, this corresponds to the well-known Nataf function. The defi-90

nition of Archimedean copula is similar as in eq. (5), with the main difference91

being that Φ−1(ui) and Φdi are replaced by a so-called generator function and92

its inverse [29]. The formulation of the generator function depends on the copula93

family (e.g., Frank, Gumbel, Plancket and so forth). However, it may not be94

physically accurate to use the same copula family (i.e., dependence structure)95

to model the dependence between all combinations of parameters since this de-96

pendence is in general not the same. Furthermore, sampling from a copula in97

d > 2 proves to be a daunting task [21].98

2.2. Pair Copula Construction99

To overcome the limitations of these regular copula, the di-dimensional den-100

sity f(x1, . . . , xdi
) of a random vector X = (X1, X2, . . . , Xn) is constructed101

using a product of d(d− 1)/2 bivariate (conditional) copula [26, 28].102
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As a first step, expressing eq. (3) for continuous, strictly monotonic marginal

density functions f1, . . . , fn via derivation w.r.t. x yields:

f(x1, . . . , xdi) = c1,...,di (f1 (x1) , . . . , fn (xn)) · f1(x1) · · · fdi(xdi) (6)

where c1,...,di is a uniquely defined di-dimensional copula density function. The

copula-pair construction is based on following factorisation of f(x1, . . . , xdi):

f(x1, . . . , xdi) =fdi(xdi) · f(xdi−1 | xdi) · f(xdi−2 | xdi−1, xdi) · · ·

f(x1 | x2, . . . , xdi
)

(7)

which is a product of conditional and unconditional marginals. Taking into

account eq. (6), each term in eq. (7) can be decomposed as:

f(x | v) = cxvj |v−j
(F (x | v−j) | F (vj | v−j)) · f (x | v−j) (8)

for a general vector v [28].103

Hence, the factorisation given in eq. (7) can be constructed as a product104

of d(d − 1)/2 bivariate (conditional) copula and their marginals [26, 28]. This105

enables the modelling of dependence between two xi with a much higher degree106

of flexibility, since different cij can be employed for all xi.107

For instance, when considering a three-dimensional random vector X =108

(X1, X2, X3) and applying eq. (8), the bivariate densities can be written as:109

f2|1(x2|x1) = c12 (f1 (x1) , f2 (x2)) (9)

f3|2(x3|x2) = c32 (f3 (x3) , f2 (x2)) (10)

f3|12(x3|x1, x2) = c13|2(f1|2(x1|x2), f3|2(x3|x2)) (11)

which yields:

f (x1, x2, x3) =f1 (x1) · f2 (x2) · f3 (x3) · c12 (f1 (x1) , f2 (x2)) ·

c23 (f2 (x2) , f3 (x3)) · c13|2
(
f1|2 (x1|x2) , f3|2 (x3|x2)

) (12)

with cij|k the bivariate copula linking Fi and Fj conditional on xk. For higher

di, a similar construction can be made. As can be noted, a large number of

constructions can be contrived when di is large. Most commonly, therefore a set
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of nested trees is used to visualise and enumerate these constructions via graph

theory. Such set of nested trees is also referred to as a ”vine copula”. Following

a D-vine decomposition, the copula can be constructed as:

f1,...,di
(x1, x2, . . . , xdi

) =

di∏
k=1

f(xk)

di−1∏
j=1

di−j∏
i=1

ci,i+j|i+1,...,i+j+1

(F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1))

(13)

Alternatively, the di-dimensional copula can also be represented following a

C-vine decomposition:

f1,...,di(x1, x2, . . . , xdi) =

di∏
k=1

f(xk)

di−1∏
j=1

di−j∏
i=1

Dj,j+i|1,...,j−1

(F (xj |xj=1, . . . , xj+1), F (xj+i|x1, . . . , xj−1))

(14)

An extensive literature exists discussing many aspects of Copulas, Copula110

pair constructions and different types of vine copula. The interested reader is111

referred to [28] or the book of Mai and Scherer [29].112

3. A copula based approach for interval finite element computations113

3.1. Interval finite element method114

The goal of an interval FE calculation is to find the bounds on the uncertainty

in the model responses of eq. (1), given an interval description of the uncertainty

in xI ∈ X I ⊂ IRdi . For multiple parameters, the interval vector xI is defined

as the Cartesian product of the intervals xIi :

xI = xI1 × . . .× xIdi
(15)

and as such spans a hypercubic set by definition [1]. The interval FE method

can as such be expressed as finding the solution set ỹ:

ỹ =
{
y|y =M(x);x ∈ xI

}
(16)

Generally, ỹ spans a non-convex manifold in Rdo , as the output responses

yi are (possibly non-linearly) coupled through the PDE of the FE model un-

der consideration. Therefore, instead of calculating the real uncertain solution
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set spanned by ỹ, the uncertainty at the output of the FE model generally is

approximated using an interval vector yI , which is usually calculated following

a bounded optimisation problem, where the bounds y
i

and yi on each output

quantity yi of the solution interval vector yI are determined by searching the

domain, defined by xI [1]:

y
i

= min
x∈xI

mi(x) i = 1, ..., do

yi = max
x∈xI

mi(x) i = 1, ..., do

(17)

where yIi = [y
i
; yi] is the result interval scalar for the ith component of the115

solution interval vector of the model. This optimization problem has been shown116

to be solved with both local and global optimization algorithms [1]. Solution117

of equation (17) returns the smallest hyper-cubic approximation yI of ỹ. Also118

methods that try to estimate ỹ by its smallest convex set, [30], or based on119

affine arithmetic, have been proposed in recent years [31]. Also convex hulls120

have been applied in this context [6, 7, 32].121

3.2. Bivariate dependence between intervals122

In a bivariate context, the concept of dependence can be illustrated using123

figure 1. This figure shows two arbitrary parameters x1 and x2. The correspond-124

ing uncertainty is scaled for both parameters to the interval [0,1] for illustrative125

purposes, which is a straightforward operation on the data. In case no depen-126

dence between these parameters is taken into account, the space of admissible127

parameter combinations corresponds to the unit square [0, 1]2, which is also il-128

lustrated using the striped line. However, in case dependence is present between129

these two parameters, this can be modelled in an interval context by defining130

a set D12 that limits the range of admissible parameter combinations. This set131

is denoted the admissible set, and as such, the analysis becomes more generally132

set-theoretical (as intervals are a very specific type of convex sets). The degree133

of dependence can then be computed as the relative area of D12 with respect to134

[0, 1]2 [33].135
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x1

x2

D12

x1

x2

a b

x1

cD12 D12

x2

Figure 1: Illustration of dependence between two arbitrary parameters x1 and x2, modelled

as a convex region D12.

The definition of D12 can be based on expert knowledge, first principle fun-136

damentals, joint measurements of the uncertain parameters, etc. and D12 can137

take any shape within [0, 1]2, as long as it is physically relevant. For example,138

in an interval context, an admissible set that resembles the well-known diagonal139

band copula [34] can be applied as it requires only one additional parameter140

to be defined next to the interval uncertainty. In the specific case of figure 1,141

in figure 1 a) a dependence is assumed that slightly decreases as x1 and x2142

increase, figure 1 b) illustrates a negative ellipse-shaped dependence, as is for143

instance commonly applied in convex analysis [17]. Finally figure 1 c) illustrates144

a large dependence in the centre of [0, 1]2 and small dependence around the ex-145

treme values of the interval. Evidently, this illustration of admissible sets is not146

exhaustive.147

In the context of propagating this set-theoretical uncertainty, the optimiza-

tion problem that is introduced in eq. (17) becomes a constrained optimization

problem:

y
i

= min
x∈xI

mi(x) i = 1, ..., do

s.t. x ∈ D12

(18)

In case D12 is a convex nodal set (i..e, a set that is defined by half-spaces),148

this reduces to a linearly inequality constrained optimization problem. In other149

cases, such as for instance an ellipsoidal admissible set, this becomes a non-linear150

constraint. If the underlying numerical model is sufficiently smooth, Newton-151
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type optimizers can be applied to solve this problem as they are highly efficient152

[35]. In other cases, when the model is for instance highly non-linear or bi-153

furcated, semi-heuristic optimization algorithms such as Genetic optimizers or154

Particle Swarm algorithms have to be applied, which are in general less efficient.155

Application of both types of optimizers has been documented in the context of156

the propagation of interval algorithms [1, 36].157

In case more than 3 parameters are considered, the definition of D might158

prove to be very cumbersome or even impossible, since this requires the def-159

inition of a di > 3 dimensional convex set, which is intuitively speaking an160

impossible task. Therefore, a decomposition of the admissible set, based on the161

concept of copula pair construction is introduced in the next section.162

3.3. Admissible set decomposition163

In order to allow for a more flexible modelling of the joint-dependence struc-164

ture of the interval uncertainty, captured by its admissible set, a similar pair165

construction as shown in eq. (7) and (12) is presented. Intuitively and loosely166

speaking, it can be argued that an admissible set D is some kind of piece-wise167

continuous copula, however without inferring any likelihood of certain param-168

eter values within D. The premise of this section is therefore that D can be169

similarly decomposed in the product of bivariate (conditional) Dij and their170

marginal intervals.171

However, the definitions of D and C-vine copula, as presented respectively172

in eq. (13) and (14) cannot be translated directly to an interval context. A173

direct and naive translation would involve changing the random variables by174

intervals and the copula densities by bivariate admissible sets. This however is175

not advisable since intervals cannot track dependence throughout computations,176

and hence, this would inflate the interval bounds dramatically (see e.g., [1]177

for a discussion on this phenomenon). Instead, it is proposed to recast the178

decomposition into a product of inequality constraints bounding the search space179

of the optimization problem introduced in (17) from xI to D.180

Specifically, it is proposed to formulate the D-vine decomposition of the
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admissible set D1,...,di(x
I
1, x

I
2, . . . , x

I
di

) as:

D1,...,di
(xI1, x

I
2, . . . , x

I
di

) =

di⊗
k=1

xIk

di−1⋂
j=1

di−j⋂
i=1

Di,i+j|i+1,...,i+j+1 (19)

where the operator
⊗

is used to denote the Cartesian product of the inter-181

vals, and hence, the first part of the equation just describes the di dimensional182

hyper-cube of independent intervals. The dependence is included by computing183

intersections of this hyper-cubic space with (conditional) bivariate admissible184

sets that are defined in analogy with the conditional bivariate copula densities185

in a probabilistic (vine-copula) approach. The D-vine decomposition is advan-186

tageous when the dependence structure of the admissible set is governed mostly187

by certain sets of piecewise-dependent parameter combinations. In that case,188

those can be modelled explicitly, whereas the higher order interactions between189

those parameters are separated.190

Similarly, a C-vine decomposition is expressed as:

D1,...,di(x
I
1, x

I
2, . . . , x

I
di

) =

di⊗
k=1

xIk

di−1⋂
j=1

di−j⋂
i=1

Dj,j+i|1,...,j−1 (20)

which is advantageous when the dependence of one parameter with all other191

parameters is rather easy to quantify [37]. In that case, the lower-order de-192

pendence structure of the admissible set can be build completely around this193

central parameter.194

As such, the admissible domain inside xI can be fully described by a set of195

bivariate Dij . Since the definition of a two-dimensional admissible set is much196

more intuitive from an analysts point of view, this is easier as compared to defin-197

ing the full di-dimensional D. Furthermore, since the higher-order, conditional198

Dij|k can be made a function of xk, this allows for the highly flexible modelling199

of complex dependence structures in an interval context.200

For a three-dimensional interval vector xI = [xI1, x
I
2, x

I
3], the D-vine repre-

sentation reduces to:

D(xI1, x
I
2, x

I
3) = xI1 × xI2 × xI3 ∩ D12 ∩ D23 ∩ D13|2 (21)
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with Dij the bivariate dependence between xi and xj . This concept is also201

illustrated in figure 2. This figure shows the unit cube [0, 1]3, together with202

D12, D23 and D13|2. As can be noted, the set D13|2 is not necessarily constant203

over x2, allowing for the definition of highly complicated dependence structures204

with a very limited set of parameters.

x1

x2

x3

D12

D23

D13|2

D13|2

Figure 2: Decomposition of the d = 3-dimensional dependence using the proposed admissible

set decomposition via a D-vine structure.

205

Similarly, for a three-dimensional interval vector xI = [xI1, x
I
2, x

I
3], the C-vine

representation reduces to:

D(xI1, x
I
2, x

I
3) = xI1 × xI2 × xI3 ∩ D12 ∩ D13 ∩ D23|1 (22)

with Dij the bivariate dependence between xi and xj . Note that for a three-206

dimensional case, both D- and C-vine structures give the same decomposition.207

Both representations allow to decouple any information that an analyst has on208

the dependence between combinations of interval-valued parameters from the209

actual magnitude of the uncertainty, and hence, are also in an interval context210

13



a very powerful tool.211

Note that, while employing a similar decomposition structure as in a prob-212

abilistic context, the underlying meaning is fundamentally different. Instead of213

decomposing a multivariate density function, into its marginals and a set of bi-214

variate copula, this method presents a way to limit the hypercube xI1 × . . .× xId215

of admissible values by a set of two-dimensional sets. While similar, still no216

inference of the likelihood of certain values within this set is made or aimed at.217

As such, the interval paradigm is not violated following this approach. Further-218

more, the presented method can be regarded as a generalization of the work on219

dependence between non-probabilistic quantities presented in e.g., [5] or [14].220

For instance, when all bi-variate admissible sets are considered ellipsoidal, one221

would end up with a high-dimensional ellipsoid.222

The presented method is especially of practical interest in case an analyst223

has quantified information about bivariate dependence between two quantities224

in the model. For instance, consider the case of additively manufactured com-225

ponents. In those parts, underlying physical process parameters jointly affect226

mechanical quantities such as strength and stiffness, but also dimensional quan-227

tities such as the part thickness (see e.g., [38]). Instead of trying to quantify228

and model the full dependence structure of all these uncertain quantities at229

once, the analyst can focus on quantifying a limited set of bivariate dependence230

structures, and constructing the full-dimensional dependence from these. As231

a second example of application, when an analyst is currently faced with say,232

20 uncertain model quantities, ranging from bolt connection stiffness values to233

localized masses and support stiffness values (as is the case in e.g., the DLR234

AIRMOD structure [2]), (s)he either can opt to consider all parameters inde-235

pendent and work hyper-cubic via the classical interval paradigm or assume a236

similar dependence structure among all parameters, and employ classical con-237

vex set approaches. Following this approach, the analyst can make e.g., directed238

measurements of certain parameters of interest and fit a certain convex structure239

to those (in analogy to the work presented in [18, 19]), use expert knowledge to240

model other dependencies as ellipses, and so on. Hence, a more flexible approach241
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for the modelling of dependence is provided by considering this decomposition242

of D in bivariate admissible sets.243

4. Propagation of the admissible set244

This section presents two approaches to propagate the admissible set through245

a numerical model. The first approach converts the well-known global optimiza-246

tion approach into a constraint global optimization approach that is able to247

account for the dependence between the model responses. The second approach248

extends the Transformation Method, as presented by Hanss in [30] towards the249

propagation of (set-theoretical) dependent intervals.250

4.1. Global optimization251

In the context of propagating this uncertainty through the numerical model,252

this decomposition serves as a constraint for the global optimization that un-253

derlies the interval finite element model. Specifically, to infer the bounds on y,254

following set of constrained optimization problems is solved:255

y
i

= minx∈xI mi(x) s.t. x ∈ D(xI) (23)

yi = maxx∈xI mi(x) s.t. x ∈ D(xI) (24)

for i = 1, . . . , do, which can be solved by most Newton-type or semi-heuristic op-256

timization algorithms. Moreover, since the convex hulls are only 2-dimensional,257

the corresponding computational overhead for evaluating these equality con-258

straints is very limited [6].259

4.2. The enriched transformation method260

Alternatively, when monotonic modelsM are considered, als a semi-analytic261

approach can be applied. Instead of handling the problem as a black-box, the262

intersections of the bivariate admissible sets with the hyper-cubic interval space263

are computed and the nodes of the resulting polytopes are propagated through264

the FE model. The necessary steps to perform these computations are described265

in the following section.266
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As a first step, the hyper-cubic input uncertainty xI = xI1 × xI2 × xIdi
is

represented as a set of linear inequalities:

xI ≡ Ahcx− bhc ≥ 0 (25)

with Ahc ∈ Rhx×di , x ∈ Rdi and bhc ∈ Rhx . Herein, hx is the number of267

linear inequalities that are necessary to bound the admissible set. According to268

Minkowski-Weyl’s theorem both representations are equivalent.269

Then, similarly to eq. (25), each bivariate admissible set from eq. (19) or eq.

(20) is represented as a set of 2-dimensional linear inequalities:

DI(i) ≡ AI(i)x− bI(i) ≥ 0 i = 1, ..., di(di − 1)/2 (26)

with A ∈ Rhx×2, x ∈ R2 and bi ∈ Rhx . I(i) is an index set containing the270

indices of the di(di − 1)/2 conditional and unconditional bivariate admissible271

sets. Each of these sets describes the dependence in a two-dimensional inter-272

section of the full admissible set D. As such, D can be obtained by asserting273

that admissible parameter values should satisfy the linear inequalities in each274

of these intersections.275

In a first step, only the unconditional bivariate admissible sets are considered.

Since not each DI(i) contains information on the same xi, i = 1, . . . , di, these

projections have to be assembled as follows:

Du ≡ Aux− bu ≥ 0 (27)
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with Au =

ahc(1, x1) ahc(1, x2) · · · ahc(1, xdi−1) ahc(1, xdi)

ahc(2, x1) ahc(2, x2) · · · ahc(2, xdi−1) ahc(2, xdi)
...

...
...

...
...

ahc(hs, x1) ahc(hs, x2) · · · ahc(hs, xdi−1) ahc(hs, xdi)

aI(1)(1, x1) aI(1)(1, x2) · · · 0 0

aI(1)(2, x1) aI(1)(2, x2) · · · 0 0
...

...
...

...
...

aI(1)(h12, x1) aI(1)(h12, x2) · · · 0 0
...

...
...

...
...

...

0 0 · · · aI(di−1)(hI(di−1), xdi−1) aI(di−1)(hI(di−1), xdi
)


(28)

and bu:

bfull =



bhc(1)

bhc(2)
...

bhc(di)

bI(1)(1)

bI(1)(2)
...

bI(1)(di)
...

bI(di−1)(di)



(29)

In case only unconditional admissible sets are defined, the space of all ad-

missible x ∈ D is fully determined. This is for instance the case when only

pair-wise dependence structures need to be constructed. The final step is then

to propagate all vertices of D throughM. The realization set ỹ is then obtained

as:

ỹ = {y|y =M(x);x ∈ D} (30)

where the bounds of the set are constructed using linear interpolation between276
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the propagated nodes.277

When also conditional admissible sets are included in the analysis, further

intersections of Du have to be computed sequentially. For instance, to com-

pute the conditional admissible set D13|2, the parameter space is first uniformly

discretized over x2 into n bins:

x2 = {x1
2, x

2
2, . . . , x

n
2} (31)

with:

x2
2 − x1

2 =
x2 − x2

n
(32)

providing slices of Du for each xe2. Then, each of this slices is intersected with the278

the corresponding conditional admissible set. Those slices are finally recombined279

to reconstruct the admissible set D including the conditional admissible sets.280

It should be noted that the computational cost of the method can scale badly281

for large scale problems and complicated dependence structures. The applica-282

tion of the transformation method for independent intervals already requires 2di
283

deterministic function evaluations. In case dependence is included in the anal-284

ysis, only more vertices of the admissible set need to be propagated through285

M and hence, those calculations can become expensive. A priori estimation of286

the increase in computational cost is highly non-trivial. Indeed, the computa-287

tional cost is directly related to the number of vertices in D, which in its turn is288

dependent on the number of bivariate admissible sets that are included in the289

analysis, as well as the level of their mutual dependence.290

Application of surrogate modeling techniques such as Kriging [39, 40] or291

Artificial Neural Networks [2, 41] have, among many other techniques (see e.g.,292

[1] for a recent overview), already proven their merit in the context of interval293

computations.294
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5. Case study 1: analytical function295

As a first example, dependent interval uncertainty is propagated through a

simple analytical equation having three parameters xi, i = 1, . . . , 3:

y = x1 · x2 − 2 · x3 (33)

with xI1 = [1, 4], xI2 = [2, 6], xI3 = [3, 5].296

This function is constructed such that the extreme values for y do not cor-297

respond with either x or x. The dependence between these parameters assumes298

following structure:299

D12 = H (|x2 + x1 − 1| − θ1) (34)

D23 = H (|x1 − x2| − θ2) (35)

D13|2 = H (|x3 (x2)− x1 (x2)| − θ3(x2)) (36)

with H the Heaviside function, θi a measure for the dependence and || denoting300

the absolute value. For the construction of the admissible set D the problem is301

first scaled to the unit cube [0, 1]3. The tested values for the dependency are302

listed in table 1. The •̂ operator indicates the interval that yields the extreme303

values for y.304

The admissible set D, as illustrated in eq. (19), is constructed based on305

eqns. (34) - (36). The enriched transformation method is applied to discretise306

D into a set of vertices, which then are used to propagate the dependent inter-307

vals. To construct the admissible sets that are conditional on x2, the domain308

x2 is discretised in 100 elements. The computation of the intersections and con-309

version of the convex hulls into half-spaces, the Matlab FEX package Analyse310

N-dimensional Polyhedra in terms of Vertices or (In)Equalities was used.311

As can be noted, the results without dependence between the interval param-312

eters are highly over-conservative with respect to the case when the dependence313

is taken into account following the proposed set-theoretical approach. The de-314

gree of conservatism decreases when the parameters in θ are increased, as this315

increases the dependence between the intervals by reducing the size of D. Fur-316

thermore, it can be noted that the necessary number of function evaluations317
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increases with the number of bivariate admissible sets that are taken into ac-318

count. Especially inclusion of conditional admissible sets leads to a significant319

increase in number of function evaluations, which is due to the discretisation of320

the conditional axis. Post-processing of the assembled admissible set, e.g., by321

performing regression on the bounding half-spaces, could solve this issue. This322

is however outside the scope of this paper.323

Table 1: Results of the propagation of the interval uncertainty and admissible set in eq. (33)

θ = [θ1, θ2, θ3] x̂ x̂ yI # eval.

[0, 0, 0] [1, 2, 5] [4, 6, 3] [−8, 18] 8

[0.25, 0, 0] [1, 3, 5] [4, 5, 3] [−6, 14] 12

[0, 0.25, 0] [1, 3, 5] [4, 6, 3.5] [−7, 17] 12

[0.25, 0.25, 0] [1, 3, 5] [4, 5, 3] [−7, 14] 14

[0.25, 0.25, 0.25] [1, 3, 4.5] [4, 5, 3.5] [−6, 13] 700

[0.5, 0, 0] [1, 4, 5] [4, 4, 3] [−6, 10] 12

[0, 0.5, 0] [1, 4, 5] [4, 6, 4] [−6, 16] 12

[0.5, 0.5, 0] [1, 4, 5] [4, 4, 3] [−6, 10] 12

[0, 0, 0.5] [1, 2, 4] [4, 6, 4] [−6, 16] 700

[0.5, 0.5, 0.5] [1, 4, 4] [3.75, 4.33, 4.08] [−4, 8.08] 700

[0.75, 0, 0] [1, 5, 5] [4, 3, 3] [−5, 6] 12

[0, 0.75, 0] [1, 2, 3.5] [464.5] [−5, 15] 700

[0.75, 0.75, 0] [1, 5, 5] [4, 3, 3] [−5, 6] 14

[0.75, 0.75, 0.75] [1, 5, 4.25] [3.625, 3.5, 4] [−3.5, 4.687] 700

As was explained in section 3, the higher order dependence terms can be324

made a function of the conditional parameter. Table 2 illustrates some compu-325

tations that were made using a hypothetical dependence of D13|2. As can be326

noted, a highly flexible modelling of the admissible set is possible.327

This dependence structure corresponding to the last case listed in table 2 is328

illustrated in figure 3. Since the parameter describing the dependence in D13|2329

varies according to a trigonometric description, this set is not convex. This330
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Table 2: Results of the propagation of the interval uncertainty and admissible set in eq. (33)

with θ13(x2) = (1−exp x2
max(x2)

)/(1−exp x2
max(x2)

and θ23(ω) = sin(4∗ω−pi/2), ω = 0, . . . , 4∗pi

θ = [θ1, θ2, θ3] x̂ x̂ yI

[0, 0, x2] [1, 2, 5] [4, 6, 5] [−8, 14]

[0.5, 0.5, x2] [1, 4, 4] [4, 4, 4] [−4, 8]

[0, 0, θ1
3(x2)] [1, 2, 5] [4, 6, 4.9] [−8, 14.2]

[0.5, 0.5, θ1
3(x2)] [1, 4, 4.279] [4, 4, 3.721] [−4.558, 8.558]

[0.75, 0.5, θ2
3(ω)] [1, 5.5, 5] [3.62, 3.5, 3] [−4.5, 6.68]

visualization is obtained by propagating a Sobol Sequence containing 1 · 1006
331

samples through the analytical function, discarding the values that do not com-332

ply with the admissible set, and computing the alpha-shape representation of333

the resulting data. This figure illustrates that also non-convex D are obtainable334

following the proposed approach. Note that such explicit computation is only335

needed for visualization purposes, as the necessary computations of the indica-336

tor functions are made for each step of an iteration of the optimization solvers.337

Since this case study is only three-dimensional, no explicit difference between D338

and C-vine pair constructions is included in the study, as both are in this case339

analogous.340

6. Case study 2: composite blade341

6.1. Case introduction342

The second case study concerns a finite element model of a long and slender343

blade. The structure has a total length of 30m and the width is 1m at the widest344

part. This blade is produced using a multilayer laminar composite material, with345

deterministic ply material properties E1 = 231 GPa, E2 = 77 GPa, ν12 = 0.31346

and G12 = G23 = G13 = 42.7 GPa. Different lay-ups are placed in the structure,347

where close to the attachment of the blade (left-most), the lay-up is thicker as348

compared to at the end-point (right-most). The blade consists of a composite349

outside shell (top, leading edge, bottom, trailing edge), as well as two vertical350
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Figure 3: Illustration of the dependence structure of θ23(ω) used to model the dependence

between 3 intervals. Comment: A Matlab live figure will be provided with the final version of

the paper.

stiffening ribs in the centre. A total of 15 different composite lay-ups are present351

in the blade, which are summarized in table 3.352

The dynamic behaviour of the structure is modelled using a Finite Element353

model containing 621 nodes, 606 bilinear shell elements, 573 rigid connections,354

10 concentrated masses and 132 rod elements. The left end of the composite355

blade is fixed rigidly. The finite element model of this structure is shown in356

figure 4.357

The model is solved for its 10 first eigenmodes and corresponding resonance358

frequencies. Table 4 lists the result of the deterministic simulation. The effect359

of mode-crossover and -veering is accounted for by tracking the mode shapes360

via the modal assurance criterion.361

The uncertainty the analyst has concerning the true values of the primary362

and secondary Young’s modulus (E1 and E2), as well as the ply thickness in363

the red, yellow and blue areas indicated in figure 4 (t1, t2 and t3), is modelled364
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Table 3: Composite lay-up structure of the blade. Left means at y = 0 in figure 4 and the

leading edge is depicted at the back side of figure 4.

Location Lay-up (symmetrical) thickness

per layer (mm)

Top and bottom left +− 450 1.5 mm

leading edge left +− 450 1.5 mm

front-middle edge left +−+−+−+450 1.5 mm

back-middle vertical left +−+−+−+450 1.5 mm

trailing edge left +−+−+−+450 1.5 mm

Top and bottom middle +− 450 1.5 mm

leading edge middle +− 450 1.5 mm

front-middle edge middle +−+−+−+450 1.5 mm

back-middle vertical middle +−+−+−+450 1.5 mm

trailing edge middle +−+−+−+450 1.5 mm

Top and bottom right +− 450 1.5 mm

leading edge right +− 450 1.5 mm

front-middle edge right +−+−+−+450 1.5 mm

back-middle vertical right +−+−+−+450 1.5 mm

trailing edge right +−+−+−+450 1.5 mm

Figure 4: Finite element model of the composite blade

23



Table 4: Deterministic eigenmodes and -frequencies of the composite blade

Mode number description f

1 1st vertical bending 0.79 Hz

2 1st horizontal bending 2.07 Hz

3 2nd vertical bending 3.11 Hz

4 3th vertical bending 7.72 Hz

5 2nd horizontal bending 8.67 Hz

6 4th vertical bending 14.45 Hz

7 3th horizontal bending 21.68 Hz

8 5th vertical bending 23.84 Hz

9 1st torsion 26.76 Hz

10 6th vertical bending 35.01 Hz

as intervals. Specifically, these intervals are defined as E1 = [190, 200] GPa,365

E2 = [70, 77] GPa, t1 = [0.012, 0.015] mm, t2 = [0.015, 0.017] mm and t3 =366

[0.011, 0.018].367

6.2. Artificial Neural Network meta-modelling368

A single forward computation of the model takes about 20 seconds of wall-

clock time on a high laptop equipped with 32 Gb or RAM and an Intel Core

i7-7700HQ CPU @ 2.8 GHz. In case independent intervals are propagated, 32

deterministic model evaluations are needed. However, as is clear from table 1,

this number can increase quickly when dependence is included in the analysis.

Furthermore, since a comparison of the Extended Transformation Method with

a Genetic Algorithm is performed, computational expenses can become high

when such a global optimization is performed with the full FE model. There-

fore, to limit the computational expense, a 4-layer sigmoid-symmetric Artificial

Neural Network (ANN) with (5:10:1)-configuration is trained for each eigenfre-

quency and compiled to C++ for computational efficiency. The lay-out of the

network is iteratively chosen where a maximum performance with a minimum
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of hidden nodes is aimed at. Hereto, a training dataset containing 1750 samples

is generated using Latin Hypercube Sampling between the interval bounds of

the model uncertainty. Furthermore, a validation data set of 750 specimens

was used to verify the accuracy of the trained ANN. To prevent over-training,

Bayesian regulation back-propagation was used [42], which expresses the ANN

model performance P as:

P =
ξ

d

d∑
i=1

(ytraining,i − yANN,i)
2 +

χ

d

d∑
i=1

w2
i (37)

with ξ and χ the regularisation parameters and ytraining,i and yANN,i respec-369

tively the responses that are captured in the training data set, and the predicted370

responses of the ANN. When ξ >> χ, the network will drive the mean squared371

error to a lower value. Conversely, when χ >> ξ, the network weights and372

biasses will be smaller as compared to a non-regularised performance function,373

forcing the network response to be smoother. Hence, the former case tends374

towards a perfect representation of the training data, albeit with the risk of375

performing bad on new data, whereas the latter aims at a better generalisa-376

tion performance of the ANN. Specifically, this training is performed following377

a Bayesian approach, where the weights w and biasses b are modelled as ran-378

dom variables, and identified following a Bayesian approach that minimises P .379

The regularisation parameters ξ and χ are related to the variances of the ran-380

dom weights and biases, and are also found by performing Bayesian estimation381

[43, 44]. These computations are performed using the Neural Network toolbox382

in Matlab. The performance of the ANN on both the training and validation383

data set is shown 5 for each eigenfrequency. As may be noted, a highly per-384

forming set of meta-models is obtained, and hence, they can be used to make385

viable predictions about the model behaviour at strongly reduced cost.386

6.3. D-vine decomposition387

A first illustration of the admissible set decomposition follows the D-vine

approach. This corresponds to the case where the analyst has direct knowledge

about dependence between EI
1 , E

I
2 on the one hand and tI1, t

I
2 and tI3 on the other
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Figure 5: Performance of the ANN on the training and validation data set

hand. Specifically, the D-vine decomposition of the admissible set of parameters

D(EI
1 , E

I
2 , t

I
1, t

I
2, t

I
3) can be written explicitly as:

D(EI
1 , E

I
2 , t

I
1, t

I
2, t

I
3) =EI

1 × EI
2 × tI1 × tI2 × tI3∩

D12 ∩ D23 ∩ D34 ∩ D45∩

D13|2 ∩ D24|3 ∩ D35|4∩

D14|23 ∩ D25|34∩

D15|234

(38)

When only pairwise dependence between EI
1 , E

I
2 on the one hand and tI1, t

I
2388
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is considered, the different terms in eq. (38) are given in this case study by:389

D12 = H(|E2 + E1 − 1| − θ1) (39)

D23 = EI
2 × tI1 (40)

D34 = H(|t1 − t2| − θ2) (41)

D45 = H(|t2 − t3| − θ3) (42)

D13|2 = EI
1|E2
× tI1|E2

(43)

D24|3 = EI
2|t1 × t

I
2|t1 (44)

D35|4 = tIt1|t2 × t
I
t3|t2 (45)

D14|23 = EI
1|E2t1

× tI2|E2t1
(46)

D25|34 = EI
2|t1t2 × t

I
3|t1t2 (47)

D15|234 = EI
1|E2t1t2

× tI3|E2t1t2
(48)

with θi a measure for the dependence between the interval parameters [9]. In390

this case study, θ = [0.5; 0.9; 0.7]. These values are chosen purely for illustrative391

purposes. The corresponding admissible sets correspond to the case where E1392

and E2 have a negative dependence and t1, t2 and t3 have a positive depen-393

dence. Physically, the former could be explained by unmodelled uncertainty394

on the fibre-matrix mixture ratio in the composite material, yielding a nega-395

tive dependence between these two Young’s moduli. The positive dependence396

between the thickness values on the other hand can for instance originate from397

some systematic but unknown offset in the lay-up process. As can be noted, the398

higher order terms are not included, as they are all represented by a Cartesian399

product. Note than any kind of dependence structure can be applied for the bi-400

variate admissible sets. The result of propagating D is compared to propagating401

a 5-dimensional hyper-cubic input set.402

The cross-sections of this 5-dimensional convex dependence region are shown403

in figure 6. The blue area is the domain covered by the independent intervals,404

whereas the orange area corresponds to the admissible set that is defined. AS405

can be noted, the method allows for the independent modelling of the depen-406
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dence between the Young’s moduli and the thickness values by selecting the407

appropriate decomposition structure and corresponding values.408

Figure 6: 2-dimensional intersections of the 5-dimensional admissible set D. Red: hyper-cubic

space covered by the independent intervals. Blue: intersections of the admissible set.

Based on this decomposed set, the optimisation problem that is introduced409

in eq. (24) is solved for the 10 first resonance frequencies of the composite blade.410

This is specifically obtained by means of a Genetic Algorithm that starts from an411

initial uniform distribution between the interval bounds consisting of 50 samples.412

An elite count of 3 was used, together with a forward migration factor of 0.2, a413

Gaussian mutation function and a cross-over fraction of 0.8. The algorithm is414

deemed to be converged when the improvement of the objective function over 50415

subsequent generations is smaller than 1 · 106. Such optimization is performed416

for each bound of each resonance frequency. Hence, 20 optimization procedures417

should be performed. On average, one call to the Genetic Algorithm solver418

requires O(104) deterministic function evaluations for this specific FE model.419

Making use of the ANN meta-models and parallel processing, this is well within420
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feasible computational cost.421

The result of this optimization procedure is illustrated in figure 7. This422

figure shows two-dimensional cross-sections of the 10-dimensional result mani-423

fold, obtained by propagating 50000 Sobol samples from the dependent input424

parameters. As can be noted, when more dependence is included in the analy-425

sis, the solution manifold becomes smaller and smaller. Furthermore, also the426

dependence between the resonance frequencies is impacted.427

The result of the optimization runs is illustrated in this figure as green428

crosses. As is clear, the bounded optimization problem yields the exact (hyper-429

cubic) bounds on the eigenfrequency.430

Figure 7: 2-dimensional intersections of the 10-dimensional eigenfrequency space. Red: result

of propagating the independent intervals. Blue: result of propagating the dependent intervals

via the admissible set D with the Extended Transformation Method. Green dots: result of

propagating the dependent intervals via the admissible set D via Global Optimization.

29



The decomposition of D according to a C-vine decomposition is straightfor-431

ward and can be performed in full analogy to the presented case studies.432

7. Conclusions433

This paper presents a flexible approach for the modelling of dependent in-434

tervals for multivariate input spaces. Specifically, it is proposed to construct435

the dependence structure in a similar approach to copula pair constructions,436

yielding a limited set of 2-dimensional dependence functions. Also, the well-437

known transformation method is extended to account for dependence between438

multiple intervals. A first case study, where the developed method is applied to439

an analytical function is included to illustrate the main ideas. Application of440

the enriched transformation method indicates that by introducing dependence441

between the model parameters, the width of the output interval is decreased442

significantly. The second case study applies the methodology to a realistic finite443

element model of a long, slender composite blade. Two different dependence444

structures are propagated and it is shown that the method is well capable of445

limiting the set of admissible parameter combinations, yielding tighter output446

sets. However, the computational cost of propagating the dependent intervals,447

both via global optimization as the enriched transformation method scales badly448

with the dimension of the input space, but also with the nature of the depen-449

dence. Application of surrogate modelling was used to alleviate this problem.450
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