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Abstract—Constraint based methods, such as the Flux Balance
Analysis, are widely used to model cellular growth processes
without relying on knowledge of regulatory features. Regulation
is instead substituted by an optimization problem to maximize
a biological objective such as biomass accumulation. A recent
extension to these methods is called dynamic enzyme-cost Flux
Balance Analysis (deFBA). This fully dynamic modeling method
allows to predict optimal enzyme levels and reaction fluxes
under changing environmental conditions. However, this method
was designed for well defined deterministic settings in which
dynamics of the environment are exactly known. In this work, we
present a theoretical framework called the robust deFBA which
extends the deFBA to handle uncertainty in nutrient availability.
We achieve this by combining deFBA with multi-stage Model
Predictive Control which explicitly captures the evolution of
uncertainty by a scenario tree. The resulting method is capable
of predicting robust optimal gene expression levels for rapidly
changing environments. We apply these algorithms to a model of
the core metabolic process in bacteria under alternating oxygen
availability.

Index Terms—Computational methods; Metabolic systems; Ro-
bust control

I. INTRODUCTION

M ICROORGANISMS are constantly encountering vari-
ations in their environments, like changes in tempera-

ture, pH-value, or pressure. But most importantly the availabil-
ity of nutrients can change rapidly. Therefore, microbes have
developed complex regulatory mechanisms to control their
gene expression and adapt on the fly or prepare for changes
preemptively. While some regulation mechanisms, e.g. the lac
operon, are very well understood, for the majority we only
have a vague understanding. This led to the development of
constrained based models which, instead of including regula-
tory features in the model, formulate an optimization problem
to describe the effects of regulation. The most prominent
approach utilizing this concept is the Flux Balance Analysis
(FBA) [1], which selects the reaction fluxes in quasi steady-
state, such that a biomass producing flux is maximized.
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This approach has led to a number of different extensions
like the iterative FBA presented in [2] which allows to capture
changes in the environment. However, it lacks the interplay
between enzymes and associated reaction rates. This interplay
is considered in the Resource Balance Analysis (RBA) [3],
which optimizes the growth rate in a fixed environment
while including enzymatic flux constraints to limit uptake and
metabolic fluxes. The RBA allows to predict flux rates and the
enzyme distribution under a quasi-stationary assumption.

The next step in constrained based modeling, called the dy-
namic enzyme-cost FBA (deFBA) [4], can predict all reaction
rates and the enzyme levels dynamically over a time course.
It is especially useful to investigate adaptation during nutrient
changes, e.g. the switch from aerobic to anaerobic growth
conditions or the depletion of a nutrient source. However,
it is quite complex to generate deFBA models as they rely
on a largely increased number of parameters in comparison
to original FBA models. In [5] it is outlined how to gener-
ate deFBA models starting with a gene annotated metabolic
model. Furthermore, solving genome-scale deFBA models on
large time horizons is computationally costly. To compensate
this we developed the short-term deFBA (sdeFBA) [6], which
utilizes the idea of a receding prediction horizon to segment
the problem into smaller and easier to solve problems. We
deliver a basic introduction to sdeFBA in Section II.

Any of these methods rely on the assumption that cells
adapt such that their growth rate is maximized at any given
time or over a specified time under some nominal environ-
mental conditions. However, as experiments have shown, this
approach can not explain all metabolic regulation strategies,
such as leaky gene expression [7]. We suggest to model
nutrient availability as an uncertainty(see Section III) and use
a robust receding horizon optimization approach to cope with
the uncertainty. This allows to adapt the objective used in the
model to an overall fitness as suggested in [8]. We call the
method realizing this idea robust deFBA (rdeFBA) and present
it in Section IV.

Finally, we showcase the differences between classic
sdeFBA and the robust deFBA in a numerical example switch-
ing between aerobic and anaerobic growth in Section V.

II. SHORT-TERM DEFBA

Looking at the deFBA as an extension of the regular FBA,
the following description contains additionally reactions for
macromolecule production and some new constants, which
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need to be collected from external sources. For a detailed guide
on how to build deFBA models we refer to [9].

The short-term deFBA [6] is a discretized version of the
original deFBA utilizing a receding prediction horizon. As
already mentioned this can lead to a decrease in computation
time for large-scale systems on long time scales.

At the heart of sdeFBA models lies a metabolic reaction
network consisting of n biochemical species and m reactions
converting the species into one another. We classify the species
depending on their physical location and their biological
function as either
• external species Y ∈ Rny

≥0 outside of the cell (carbon
sources, oxygen, etc.),

• metabolic species X ∈ Rnx

≥0 which are intermediates and
intracellular products of the metabolism (amino acids,
ATP, etc.),

• macromolecules P ∈ Rnp

≥0 representing biomass compo-
nents (enzymes, cell walls, ribosome, etc.).

The macromolecules P represent the reproductive machinery
of the organism and can be further divided into a catalytic part,
enabling reactions via enzymes and taking care of reproduction
via the ribosome, and a non-catalytic part, like cell walls,
DNA, etc. To keep the notation simple we address both kinds
as P . We measure all species in their molar amounts. This
ensures that we end up with a linear optimization problem.

SdeFBA assumes that the network maximizes biomass ac-
cumulation over time. Thus, we assign each macromolecule
their molecular weight wi, with a unit of g/mol. The total
biomass B is computed by

B(t) = wTP (t), (1)

depending on the time t. The growth rate is given as

µ(t) =
1

B(t)

dB(t)

dt
. (2)

The reactions are introduced as independent variables and
their rates are determined via optimization. We distinguish
between the following reaction types:
• exchange reactions vY ∈ Rmy exchanging matter with

the outside,
• metabolic reactions vX ∈ Rmx transforming metabolites

into one another,
• biomass reactions vP ∈ Rmp producing macromolecules,

with m = my+mx+mp. We write shortly v = (vTY , v
T
X , v

T
P )T

and assign the unit mol/h.
As with all FBA methods, we assume the metabolism oper-

ates on a shorter time-scale than the environmental changes
and biomass production. Therefore, it is not necessary to
model the metabolic species X explicitly. We use instead a
quasi steady-state constraint on the rates in the form

SXv(t) = 0, ∀t ≥ 0, (3)

with the stoichiometric matrix SX ∈ RnX ,m (cf. [4]).
We collect the other species in the vector Z = (Y T , PT )T ∈

Rny+np and define their dynamics as

Ż(t) =

[
SY
SP

]
v(t), (4)

with the stoichiometric matrices SY ∈ Rny,m and SP ∈
Rnp,m.

The maximal achievable rates for the reactions are deter-
mined by the reaction-specific catalytic constants (or turnover
numbers) kcat,±j , j ∈ {1, . . . ,m} and the amount of the
catalyzing enzyme Pi. We differentiate between the forward
value kcat,+j and the backward value kcat,−j .

The reaction rate bound for an enzyme that catalyzes a
single reaction is given in the form

−kcat,−jPi ≤ vj ≤ kcat,+jPi. (5)

Some enzymes are capable of catalyzing multiple reactions,
which we describe by the sets

cat(Pi) = {vj | Pi catalyzes vj}. (6)

The corresponding constraint with respect to reversibility of
the reactions becomes∑

vj∈cat(Pi)

∣∣∣∣ vj(t)kcat,±j

∣∣∣∣ ≤ Pi(t), ∀t ≥ 0. (7)

We collect all enzymatic constraint in the enzyme capacity
constraint as

Hcv(t) ≤ HeP (t), ∀t ≥ 0, (8)

with the filter matrix He. For more detail on the construction
of these matrices see [4]. Equation (8) describes the central
sdeFBA constraint as it limits the reaction rates and as a
consequence the growth rate (2) as well.

In regular FBA, rates are constrained by biomass indepen-
dent relations

vmin ≤ v(t) ≤ vmax, ∀t ≥ 0, (9)

derived from measured reaction rates. Due to our formulation
in molar amounts all reactions can reach arbitrarily large rates
given enough enzyme is present (cf. (8)). Hence, we use (9)
to define only the reversibility of reactions with vmin, vmax ∈
{±∞, 0}m.

Any organism needs structural macromolecules to keep
working, e.g., the cell wall separating it from the outside. We
express this necessity by enforcing certain fractions ψs ∈ [0, 1)
of the total biomass B(t) to be made of structural components,
e.g., for a structural macromolecule Ps

ψsB(t) ≤ Ps(t), ∀t ≥ 0. (10)

The extension of (10) to the network level can be expressed
by collecting the individual constraints into the biomass com-
position matrix Hb with

HbP (t) ≤ 0, ∀t ≥ 0, (11)

where the rows of Hb are derived from (10). We call (11) the
biomass composition constraint.

Furthermore, we can enforce specific reaction rates

va(t) ≥ φaB(t), ∀t ≥ 0 (12)

with the maintenance coefficient φa ∈ R≥0 to model mainte-
nance reactions scaling with biomass. These are typically ATP
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sinks, which are not modeled individually. The matrix form is
called maintenance constraint

Hfv(t) ≥ HaP (t), (13)

with the rows of Ha corresponding to φawT (cf. (12)) and a
suitable filter matrix Hf .

Short-term deFBA is based on an optimization over a reced-
ing time horizon. This prediction horizon tp ∈ R>0 describes
how far in the future the optimizer plans ahead using a step
size h ∈ R>0 for time discretization ∆t(h) = {tk = kh | k ∈
N}. The horizon tp can be very influential on the simulation
results. A systematic way to ensure specific properties can be
found in [6]. We discretize all species and flux trajectories
on ∆t leading to the approximation Zk ≈ Z(t = kh) and
vk ≈ v(t = kh).

We choose the accumulation of biomass (1) as the objective
to ensure both fast and high growth while avoiding certain
types of non-uniqueness in the flux solutions (cf. [4]). Sum-
marizing a single problem at time t = tg = gh on the receding
horizon is constructed as

max
(vk)k∈K

∑
k∈K

Bk (14a)

with given Zg = Z(t = tg) (14b)
subject to: Zk+1 = Zk + hSvk (14c)

SXvk = 0 (14d)
HaZk+1 −Hfvk ≤ 0 (14e)
HbZk+1 ≤ 0 (14f)
Hcvk −HeZk ≤ 0 (14g)
Zk ≥ 0 (14h)
vmin ≤ vk ≤ vmax, ∀k ∈ K, (14i)

with the index set

K = {k ∈ {g + ih} | i = 0, 1, . . . , p− 1; hp = tp}. (15)

For easier reading we substituted the dynamics (4) with a
simple forward Euler scheme. In real applications, we strongly
advise to use a higher order collocation schemes, e.g., Radau
collocation. For given initial values Y0, P0, we solve the
problem (14) iteratively starting at time zero and connecting
the iterations via (14b). The discrete solution trajectories Z∗,
v∗ are generated by appending the calculated values Zg+1, vg
for the time slice [tg, tg+1] after each iteration.

Each problem of the form (14) is a linear program (LP),
for which efficient, specialized solvers exist. With respect
to the computational and numerical details of solving such
problems, we refer the reader to [4], and [5] for a genome scale
example. We provide an implementation of the sdeFBA model
class in form of the Python-deFBA package [10], which
imports/exports models using libSBML [11] and the resource
allocation modeling annotations (RAM) [12]. This package
also contains methods to simulate regular deFBA models and
the robust deFBA as presented in Section IV.

III. CONSTRUCTING UNCERTAIN ENVIRONMENTS

Fluctuations in the availability of nutrients are encountered
by all microorganisms; either due to simple depletion of

resources or by unpredictable external effects. We call a
cell population environmentally robust, if it does not adapt
perfectly to each set of conditions but instead uses some
resources to be prepared for a nutritional shift [13]. Our goal
is to approximate this robust behavior and the decision process
behind it with the sdeFBA. The first step is to find a suitable
description for uncertain availability of nutrients.

Solving large-scale sdeFBA problems can be quite de-
manding in itself. Thus, the formulation of the uncertain
environment should be as simple as possible. The foremost
relevant basis for any decision made by the cell is whether
the nutrient is available or might become available in the near
future. So we decided to limit any uncertainty d regarding the
environment to binary values d ∈ {0, 1}; each corresponding
to either possible presence or absence of the nutrient.

To model the decision process inside the cell, we have to
distinguish two settings. (i) A nutrient Na is currently available
and might run out. (ii) A nutrient Nu is currently unavailable
but might become available again.

Let us first consider case (i). To model the possible depletion
of Na we add a new constraint to (14)

davin,a(t− tg) ≤ climit(t− tg), ∀t ≥ tg (16)

with vin,a being the only uptake flux for Na and the current
time tg . The direction of vin,a is chosen such that positive
(negative) rates correspond to uptake (secretion). This con-
straint is only active for da = 1 and can simulate the depletion
of Na by forcing vin,a to zero. But setting climit simply
to zero can quickly lead to an infeasible problem, e.g., if
enzymes necessary for the uptake of an alternative nutrient
can not be produced without Na. This is especially true if
maintenance reactions are constantly consuming energy. To
avoid this problem we give the cell some time to adapt to the
upcoming change in the environment by choosing climit as

climit(t) =

{
(1− t

tb
)vin,max, t ≤ tb

0, tb ≤ t,
(17)

with the preparation time tb ∈ R≥0 and the current maximal
uptake rate vin,max. The preparation time determines how fast
the cell needs to adapt to changes in the environment. We
suggest using half the prediction horizon as preparation time
to put enough stress on the network. As we want to use (16) on
a receding time horizon we have to choose a suitable value for
vin,max in each iteration. On the one hand we want to enable
the cell to improve their uptake rate for Na for a short time
span as this be might beneficial for reacting to the upcoming
shift. On the other hand we assume that shifts can happen
abruptly and want to put enough stress on the cell to prepare
as soon as possible. We suggest choosing the value depending
on the calculated uptake rates vin,g−1 from the previous time
step tg−1

vin,max = vin,g−1e
µmaxh, (18)

with the maximal growth rate µmax determined by an RBA.
This allows for exponential increase in the uptake rate, but
still puts enough nutritional stress on the cell. In summary,
we model either the original problem for da = 0 or enforce
an adaption process to another nutrient with da = 1.
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In the same fashion we handle case (ii), in which a nutrient
source might become available (again). This case is much
simpler as we do not need to worry about the need to prepare
for the switch as sticking to the available resources is still
viable. Hence, we use a simplified version of constraint (16)

(1− du)vin,u(t− tg) ≤ 0, ∀t ≥ tg. (19)

The value du = 0 represents again the nominal situation: Nu
is depleted and no uptake can take place. To allow uptake
for du = 1 can be realized by increasing the amount of Nu
artificially. But it is difficult to predict the achievable uptake
rates vin,u and setting Nu too low could influence the decision
process as it may not be viable to invest for the cell. Hence,
we decouple the decision process to metabolize Nu from its
present amount by not balancing it. Assuming vin,u is limited
by an enzymatic constraint (8), we can realize this by either
setting the amount of Nu to infinity or by deleting the entries
of the stoichiometric matrix S with respect to Nu. This means
vin,u is only constrained by the amount of transporter enzymes
present for du = 1.

This formulation of the uncertain environment allows to
easily construct sdeFBA models by fixing values for d. But
the solutions of these models are still only valid for the chosen
d. To generate robust solutions, we will need to consider all
possible value combinations at the same time.

IV. ROBUST DEFBA

A suitable way to generate robust predictions for this kind
of uncertain environments is multi-stage Model Predictive
Control (mMPC) [14], [15]. MMPC is a scenario-based opti-
mization technique, in which the scenarios are generated from
sampled parameter values. In our case, we sample the values
for d.

Assuming our model contains nd uncertain nutrients, we can
distinguish 2nd realizations dj ∈ {0, 1}nd , j ∈ 0, . . . , 2nd − 1.
From here on, we will use the upper index to distinguish
between scenarios and keep the lower index for time steps.
We write shortly

J = {0, . . . , 2nd − 1}. (20)

To uniquely identify a scenario we use a binary mapping of
the values to their resp. vector dj , e.g., nd = 3

j = 6 ∼ binary 110→ d6 = [1, 1, 0]. (21)

This way d0 always corresponds to the scenario in which the
current environmental condition does not change.

The idea for handling these scenarios all at once is sketched
in Figure 1. Each branch (or scenario) of this tree corresponds
to a value of dj , in this case for three uncertain environments.
This tree is in fact a simplified representation of a more
complex structure branching at every node, representing a
sequence of different dj values over time. We stick to the
simple tree as it keeps the computational complexity low and
still produces robust results (cf. [14]). To optimize over all
scenarios at once, we couple them by two means.
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Fig. 1. Representation of the scenario tree with uncertain vector dj ∈ {0, 1}3.
Rates vg(d) must be viable in all scenarios.

Firstly, the optimization utilizes a shared objective function

J =
∑
j∈J

ojw

g+p∑
k=g

Bjk(t) dt, (22)

with objective weights ojw ∈ R≥0 and total biomass Bj for
each scenario. Usually, the weights ojw are all set to one, but
they can be used to implement additional information on the
likelihood of certain scenarios. When used in this context, one
can directly translate probability to the weights by using the
constraint ∑

j∈J
ojw = 1. (23)

The second connection between the scenarios is called the
nonanticipativity constraint [16]. As suggested by Figure 1 it
enforces that the first set of rates vg must be feasible in all
scenarios

vjg = vig = vg, ∀i, j ∈ J . (24)

This is done for two reasons. On the modeling side, constraint
(24) expresses the fact, that the cell must decide what strategy
to implement for the time being. On the technical side, we
still want to calculate a robust solution on the receding time
horizon and need a unique set of rates vg for the solution v∗k,
see Section II.

Adding the known constraints from the sdeFBA and new
ones from the uncertain environments, we end up with the
robust deFBA at time tg = gh as

max
(vjk),j∈J , k∈K

∑
j∈J

∑
k∈K

Bjk (25a)

with given Zjg = Z(t = tg) (25b)

subject to: Zjk+1 = Zjk + hSvjk (25c)

SXv
j
k = 0 (25d)

HaZ
j
k+1 −Hfv

j
k ≤ 0 (25e)

HbZ
j
k+1 ≤ 0 (25f)
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TABLE I
EXCHANGE AND METABOLIC REACTIONS, CATALYTIC CONSTANTS kcat .

Reaction Enzyme kcat/min−1

Exchange reactions

Carbon → A TC 3000
Fext → F TF 3000
H → HExt TH 3000
O2ext → O2 S 1000
D ↔ DExt S 1000
E ↔ EExt S 1000

Metabolic reactions

A + ATP → B EB 1800
B → C + 2 ATP + 2 NADH EC 1800
C ↔ 2ATP + 3D ED 1800
C + 4NADH ↔ 3E EE 1800
B → F EF 1800
C → G EG 1800
G + ATP + 2NADH ↔ H EH 1800
G → 0.8C + 2NADH EN 1800
O2 + NADH → ATP ET 1800

Hcv
j
k −HeZ

j
k ≤ 0 (25g)

Hj
dv
j
k ≤ C

j
limit,k (25h)

Zjk ≥ 0 (25i)

vjg = vig = vg, ∀i, j ∈ J (25j)

vmin ≤ vjk ≤ vmax,∀(k, j) ∈ (K × J ), (25k)

with (25h) being the combined matrix form of (16), (19) and
K as defined in (15).

As direct consequence of (24) and (25c) we obtain a unique
state vector at time g + 1 for all scenarios

Zjg+1 = Zig+1 = Zg+1, ∀i, j ∈ J (26)

and can construct a unique solution Z∗. Therefore, we can use
the robust deFBA as purely predictive method without relying
on external state updates.

Furthermore, the nonanticipativity constraint is sufficient
to ensure the solutions v∗, Z∗ are robust against changes
in the environment; meaning optimal and feasible under the
considered changes in the environment. We know vg must
obey all constraints in all scenarios (cf. (24)). Because the
actual nutrient situation d0 is always included as a scenario,
in all cases of an absent nutrient the intake is forced to zero. If
we have chosen vin,max (17) large enough, no artificial growth
limitations are implemented by the robust optimization.

V. EXAMPLE

To showcase the effects of using robust deFBA in com-
parison to the short-term version we apply them both to
an academic example described in Table I and Table II. It
represents the core carbon network as found in all cells. We
took this model from [4], which describes the problem in more
detail.

The most relevant model features are the active transport
of a carbon source via the enzyme TC and the subsequent
aerobic or anaerobic glycolysis. The production of transporters
T, enzymes E, and structural component S are all handled by

TABLE II
BIOMASS PRODUCING REACTIONS CATALYZED BY RIBOSOME R.

Biomass reactions b/g kcat/min−1 P0/mol

400H+1600 ATP → TC 4 2.5 6.3039E-3
400H+1600 ATP → TF 4 2.5 0.0
400H+1600ATP→ TH 4 2.5 0.0
500H+2000ATP→ EB 5 2 10.5065E-3
500H+2000ATP→ EC 5 2 10.0354E-3
1000H+4000ATP→ ED 10 1 2.8901E-3
1000H+4000ATP→ EE 10 1 3.6913E-3
2000H+8000ATP→ EF 20 0.5 4.7100E-4
500H+2000ATP→ EG 5 2 2.6528E-3
4000H+16000ATP→ EH 40 0.25 2.6528E-3
500H+2000ATP→ EN 5 2 0.0
500H+2000ATP→ ET 5 2 0.0
4500H+1500C+21000ATP→ R 60 0.2 5.4538E-3
250H+250C+250F+1500ATP→ S 7.5 3 46.6976E-3

the ribosome R. Production of S is enforced via the biomass
composition constraint (11), such that at least 35% of the
total biomass are of type S at any time. The system secretes
fermentation products D and E, which can also be consumed
as nutrients in aerobic conditions. We use the biomass vector
b as given by Table II.

For the robust analysis we are investigating the difference
between aerobic and anaerobic growth. Hence, we build two
different models corresponding to the presence of O2ext in
the medium as described in the previous section. In aerobic
growth phases the oxygen is not explicitly modeled and can be
consumed in arbitrary amounts. Furthermore, we assume that
Carbon is always and limitlessly available. This corresponds
to substituting Carbon with the empty set in the first exchange
reaction.

The experimental setup is structured as following: The
initial biomass composition for rdeFBA and sdeFBA are deter-
mined via an RBA with deFBA constraints for an anaerobic
environment only containing Carbon with B(0) = 1g. The
exact values are given in Table II. We simulate both cultures
for half an hour in an aerobic setting using a step size of 2min
and a prediction horizon of 34min. In the robust simulation we
chose the preparation time as 16min. Afterwards, we restart
the simulation without oxygen using the final values for the
environment Y (30min) and macromolecules P (30min) as
initial values. We repeat this switch until we get stable periodic
biomass compositions over a set of switches.

The results depicted in Figure 2 were created with the
Python-deFBA package developed in house [10] and are
included as a numerical example. The times in which oxygen
is available are shown with a blue background. First, we can
observe a periodic behavior after the first hour. This means the
biomass composition pattern for 60 min to 120 min in plots
(C) and (D) repeats itself afterwards.

While the non-robust solution grows faster in the first 30
min the robust solution overtakes after the first switch and
increases its advantage over time (A). This can be explained
by plot (C) showing the amount of enzyme EE with respect
to the total biomass. EE is necessary for anaerobic growth.
While the robust solution already starts investing again in
it after 10min, the short-term solution ignores it. After the
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Fig. 2. Comparison of simulation results of the carbon core network. (A)
shows the total amount of biomass, (B) the excretion product Eext, (C) and
(D) show the percentage share for EE, resp. ET of the total biomass.

switch to aerobic conditions the short-term solution invest as
much resources as possible into EE. We know this adaptation
phase as lag-phase [17]. The inverse of this is depicted in plot
(D), which shows enzyme ET needed for aerobic growth. The
robust solution stops investing after only 6min. This leads to
the most important difference between the solutions.

The robust solution does not reabsorb the excretion product
Eext to boost its growth rate (B). The short-term solution on
the other hand reabsorbs the waste fully. A high investment
into ET is needed to handle to excess of NADH when using
E as carbon source, see the peak in plot (D) at 12 min
and 72 min. With a fifty percent chance of no return on
this investment, it is simply not reasonable in the robust
optimization.

The next interesting result is the absence of any preparation
for the possible return of oxygen availability in the robust
solution during anaerobic growth phases. However, robust
adaptation to aerobic growth via production of ET is done
in a single time step from 60 min to 62 min as shown in
(D). At the moment, it is unclear whether this is an inherent
property of the way we construct the scenarios or whether it
is specific to this example.

VI. CONCLUSION

In this work we have presented the robust deFBA by
combining the short-term deFBA with multi-stage MPC and
introduced a simple way to formulate uncertainty in nutrient
availability. The resulting method enables us to predict the
behavior of a cell strain adapted to sudden changes in their
environment. We envision that these results will help to further
the understanding of metabolic regulation by comparison with
regular deterministic models and experimental results.

The only observed downside of the robust deFBA is the high
computational cost. Small scale models, like the carbon core
example, can be evaluated with the rdeFBA on a typical office
computer using our Python package [10] in mere seconds
per iteration. But larger models, and especially genome-scaled
ones, can be very challenging as every uncertainty doubles the
problem size. Our experience so far shows a limit of roughly
750 metabolic reactions and 500 biomass reactions for the
sdeFBA, see [5], and a suitable reduction of these numbers for
the rdeFBA. Hence, we are currently investigating alternative
problem formulation to further reduce the computational cost
and make the rdeFBA viable for genome-scale models.
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