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Abstract. In this paper, we study properties of functions and sequences with a semi-heavy tail, that is, functions and
sequences of the form w(x) = e−βxf(x), β > 0, resp., wn = cnfn, 0 < c < 1, where the function f(x), resp., the
sequence (fn), is regularly varying. Among others, we give a representation theorem and study convolution properties.
The paper includes several examples and applications in probability theory.
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1 Introduction

Throughout the paper we use either discrete random variables (r.vs)X or continuous r.vsX that have a density.
In the discrete case, we assume that X has a probability mass function (p.m.f.) wn = P(X = n), n � 0.
In the continuous case, we assume that X has a distribution function (d.f.) F (x) and a probability density
function (p.d.f.) f(x). In any case the distribution function (d.f.) is given by F (x) = P(X � x), and the tail
distribution is given by F (x) = 1− F (x).

The d.f. is called heavy tailed if for all λ > 0, F (x) satisfies limx→∞ eλxF (x) = ∞. The d.f. has a long-
tailed distribution if F satisfies

lim
x→∞

F (x+ y)

F (x)
= 1 ∀y ∈ �.

The d.f. has a fat tail if F is of the form F (x) = h(x), where h(x) is regularly varying with index α < 0.
The r.v. X has a fat density if f(x) = h(x), where h is regularly varying. Recall that a positive measurable
function h is regularly varying with (real) index α if

lim
x→∞

h(xy)

h(x)
= yα, y > 0. (1.1)

Notation: h ∈ RV(α). For the basic properties of the class RV(α), we refer to Bingham et al. [4] or Geluk and
de Haan [10]. It can be proved that if h ∈ RV(α), then (1.1) holds locally uniformly in y > 0. Then it follows
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that h ∈ L, where L is the class of positive measurable functions h for which

lim
x→∞

h(x+ y)

h(x)
= 1 ∀y ∈ �. (1.2)

Note that h(x) ∈ L iff h(log x) ∈ RV(0). It can be proved that if h ∈ RV(α), then

∀β > 0, lim
x→∞xβ−αh(x) = ∞ and lim

x→∞x−β−αh(x) = 0. (1.3)

We say that a sequence (zn) is regularly varying with index α if zn > 0 for n large and if it satisfies
z[xy]/z[x] → yα, y > 0. Notation: (zn) ∈ RS(α). If (zn) ∈ RS(α), then it follows that (zn) is in the class LS
where LS is the class of sequences with zn > 0 for n large and zn+1/zn → 1. Notation: (zn) ∈ LS.

IfX has a fat tail, then F ∈ RV(−α) with α > 0, and then we have

∀δ > 0, lim
x→∞xα−δF (x) = 0 and lim

x→∞xα+δF (x) = ∞.

If the distribution of X is long-tailed, then we have F ∈ L or equivalently F (log x) ∈ RV(0). In this case,
it follows that, for all δ > 0, limx→∞ eδxF (x) = ∞. Throughout the paper, the asymptotic relations hold as
x → ∞ or n → ∞, unless stated otherwise.

In this paper, we study, in general, functions and sequences that have a semi-heavy tail. In the rest of this
section, we provide the key definitions used in the paper and give some examples of continuous and discrete
probability distributions with the semi-heavy property. Section 2 begins with the important representation
results used (Section 2.1) followed by asymptotic tail results for functions and sequences in Section 2.2. Sec-
tion 2.3 gives the main convolution results developed in the paper. Applications of the results in the paper
to subordinated random variables and queueing are given in Section 3, and concluding remarks are given in
Section 4.

1.1 Definition

A sequence (wn) is called a semi-heavy tailed sequence if wn > 0 for n large and if wn is of the form
wn = cnfn, 0 < c < 1, where (fn) ∈ RS(α) with index α ∈ �. Notation: (wn) ∈ SHS(c, α).

A function w(x) is called a semi-heavy tailed function if w(x) > 0 for x large and if w(x) is of the form
w(x) = e−βxf(x), β > 0, where f ∈ RV(α) with index α ∈ �. Notation: w ∈ SHF(β, α).

Using (1.3), it turns out that, for semi-heavy tailed sequences and functions, we have wn → 0, resp.,
w(x) → 0, and it is why we use the word “tail” in the definition. Note that in the definition we do not assume
that (wn) is a p.m.f. or that w(x) is a p.d.f. or a distribution function. From the definition and (1.2) it is also
clear that

lim
x→∞

w(x+ y)

w(x)
= e−βy ∀y ∈ �, (1.4)

and we have w(log x) ∈ RV(−β). The class of positive measurable functions that satisfy (1.4) are denoted by
L(β).

For sequences (wn) ∈ SHS(c, α), we have

lim
n→∞

wn+1

wn
= c. (1.5)

Sequences satisfying (1.5) are denoted by LS(c). Note that if w ∈ SHF(β, α), then we also have that

lim
x→∞ eδxw(x) =

{
0, δ < β,

∞, δ > β.

Lith. Math. J., 58(4):480–499, 2018.
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This means that the functions w(x) are “thinner” than any power law and “heavier” than any normal law.
Functions and sequence as defined before therefore are called semi-heavy functions and sequences.

It is useful to mention that semi-heavy tails appeared in modelling log increments of asset prices; see
Barndorff-Nielsen [3], Schoutens [18], or Albin and Sunden [1]. Some examples follow in the next subsection.

1.2 Examples

There are many examples from probability theory.

1.2.1 Continuous probability distributions

1. The generalized inverse Gaussian distribution has been introduced by Halphen (cf. Seshadri [19]) and was
reinvented and studied by Barndorff-Nielsen [3]; see also Borak et al. [5] and Prause [16]. Its density is of
the following form:

fG(x) = Cxλ−1 exp

(
−1

2

(
a

x
+ bx

))
, x > 0,

where a > 0 and b � 0 if λ < 0, a > 0 and b > 0 if λ = 0, and a � 0 and b > 0 if λ > 0. Clearly, we have
fG(x) ∼ Cxλ−1 exp(−bx/2) and fG ∈ SHF(b/2, λ− 1).

2. A hyperbolic density has the form

fH(x) = C exp
(−α

√
δ2 + (x− μ)2 + β(x− μ)

)
,

where x ∈ �, α > β; cf. Eberlein and Keller [7], Prause [16], and Borak et al. [5]. Clearly, we have
fH(x) ∼ Ceμ(α−β)e−(α−β)x and fH ∈ SHF(α− β, 0).

3. The following density was introduced by Lindley [13]:

fL(x) =
θ2

1 + θ
(1 + x)e−θx, x > 0, θ > 0.

Clearly, fL(x) = e−θxf(x), where f(x) = θ2(1 + θ)−1(1 + x) ∈ RV(1). Let FL denote the d.f. corre-
sponding to fL. Nadarajah et al. [14] study d.fs of the form FN (x) = Fα

L (x), α > 0. It can be observed
that FN (x) ∼ αFL(x). Zakerzadeh and Dolati [21] considered densities of the form

fZ(x) = Cxα−1(a+ bx)e−θx, α, a, b, θ, x > 0.

This density generalizes the Lindley and the gamma density. Clearly, fZ ∈ SHF(θ, α).

1.2.2 Discrete probability distributions

1. We present an inverse Gaussian type of sequences as follows: wn = Cnαe−(a/n+bn), n � 1, a � 0, b > 0,
α ∈ �. Clearly, we have (wn) ∈ SHS(c, α) with c = e−b and fn ∼ Cnα ∈ RS(α).1

2. A hyperbolic type of sequences is given by wn = C exp(−α
√
a+ n2 + βn), n � 0, α > β. In this case,

we obtain that (wn) ∈ SHS(c, 0) with c = e−(α−β).
3. A discrete Lindley distribution can be defined as follows:

pn = Cnα−1(a+ bn)e−βn, α, a, b, β > 0, n � 1.

Here we have (pn) ∈ SHS(β, α).
1 For ease of use, but with a slight abuse of convention, by expressions of the form an ∼ bn ∈ RS(α) we mean that an ∼ bn and
(an) ∈ RS(α).
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4. Suppose that X1 has a geometric distribution, that is, P(X1 = n) = pqn−1, 0 < p < 1, q = 1− p, n � 1.
Clearly, we haveP(X1 = n) = qnfn, where fn = p/q. In general, suppose that Xk (k � 1) has a negative
binomial distribution:

P(Xk = n) =

(
n− 1

k − 1

)
pkqn−k, n � k.

It follows that P(Xk = n) = qnfn, where

fn ∼

n→∞
nk−1

(k − 1)!

pk

qk
∈ RS(k − 1).

5. The generalized logarithmic series distribution is defined by the sequence

pn =
Γ(βn)

n!Γ(βn− n+ 1)

θn(1− θ)βn−n

− log(1− θ)

with β � 1 and 0 < θ < β−1; see Hansen and Willekens [11]. For β = 1, we find back the usual
logarithmic p.d.f.

pn =
−1

ln(1− θ)

θn

n
, n � 1.

Clearly, we have pn = Cn−1cn, where c = θ and C = −1/ ln(1− θ).
When β > 1, we use Stirling’s formula Γ(z) ∼ (z/e)z

√
2π/z, and after some tedious calculations we

find that

pn ∼

n→∞
(β/(β − 1))1/2

βn
√
2πn(− log(1− θ))

(
βθ

(
β(1− θ)

β − 1

)β−1)n

.

Hence pn is of the form pn = cnfn, where

c = c(θ) = βθ

(
β(1− θ)

β − 1

)β−1

fn ∼

(β/(β − 1))1/2

n3/2β
√
2π(− log(1− θ))

∈ RS

(
−3

2

)
.

Note that as a function of θ ∈ (0, β−1), c(θ) is increasing, and c(θ) < c(β−1) = 1.

2 Properties

In this section, we study some basic properties of semi-heavy sequences and functions.

2.1 Representation theorem

From the theory of regular variation, we get the following representation theorem. An alternative representa-
tion theorem is stated by Albin and Sunden [1, Cor. 2.9].

Lith. Math. J., 58(4):480–499, 2018.
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Theorem 1 [Representation theorem].
(i) We have (wn) ∈ SHS(c, α) iff wn may be written as

wn = Cnc
nnα exp

(
n∑

i=a

δi
i

)
,

where Cn → C ∈ (0,∞) and δn → 0, and a � 0 is a constant.
(ii) We have w ∈ SHF(β, α) iff w(x) may be written as

w(x) = C(x)xα exp(−βx)L(x), (2.1)

where C(x) → C > 0, and L ∈ RV(0) satisfies xL′(x)/L(x) → 0.

Proof. (i) This is Theorem 1.9.7 in Bingham et al. [4].
(ii) From the definition it follows that w(x) = c(x)xα exp(−βx)l(x), where c(x) → c > 0, and l is slowly

varying. From Bingham et al. [4, Thm. 1.3.3] (see also [4, Thm. 1.8.2]) we can find a slowly varying function
L(x) such that L(x) ∼ l(x) and xL′(x)/L(x) → 0. It follows that w(x) = C(x)xα exp(−βx)L(x), where
C(x) = c(x)l(x)/L(x). 	


If C(x) = C or if Cn = C in the representation theorem, then we call the corresponding function (se-
quence) a normalized function (resp., sequence). For normalized functions and sequences, we have the fol-
lowing property.

Proposition 1.
(i) For normalized sequences, we have (wn) ∈ SHS(c, α) if and only if

n

(
wn

wn−1
− c

)
→ cα. (2.2)

Moreover, (2.2) implies that (wn−1 − wn) ∈ SHS(c, α).
(ii) For normalized functions, we have w ∈ SHF(β, α) if and only if

x

(
w′(x)
w(x)

+ β

)
→ α. (2.3)

Moreover, (2.3) implies that −w′(x) ∼ βw(x) ∈ SHF(β, α).

Proof. (i) For normalized sequences (wn) ∈ SHS(c, α) for large n, we have

wn

wn−1
− c = c

(
nα

(n− 1)α
exp

δn
n

− 1

)
.

Now we write
nα

(n − 1)α
exp

δn
n

− 1 =

(
nα

(n− 1)α
− 1

)
exp

δn
n

+

(
exp

δn
n

− 1

)
.

Using

nα

(n− 1)α
− 1 ∼ α

(
n

n− 1
− 1

)
=

α

n− 1
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and exp(δn/n) − 1 ∼ δn/n, we obtain (2.2). From wn−1 − wn ∼ (1 − c)wn−1 it also trivially follows that
(wn−1 − wn) ∈ SHS(c, α).

For the converse, we assume that (2.2) holds, and we define (fn) by fn=c−nwn. Using (2.2), it follows that

n

(
fn
fn−1

− 1

)
→ α,

and from here it follows that (fn) ∈ RS(α); see Bingham et al. [4, Thm. 1.9.8].
(ii) For a normalized function w ∈ SHF(β, α), (2.1) with C(x) = C shows that

w′(x) = α
w(x)

x
− βw(x) + w(x)

L′(x)
L(x)

,

and it follows that

x

(
w′(x)
w(x)

+ β

)
= α+

xL′(x)
L(x)

→ α.

This proves (2.3). From here we obtain that −w′(x) ∼ βw(x), so that −w′(x) ∈ SHF(β, α).
For the converse, (2.3) shows that x(w′(x)/w(x) + β) = α(x), where α(x) → α. It follows that

w′(x)/w(x) = α(x)/x − β, and by integrating we see that

logw(x) = C − βx+ α log x+

x∫
a

α(t)− α

t
dt.

Hence w ∈ SHF(β, α). 	

Remarks.

1. The examples w(x) = [x] and wn = [en] show that we need an extra condition to ensure that (2.3),
resp., (2.2) holds.

2. If w ∈ SHF(β, α), then the representation theorem shows that

logw(x) = logC(x)− βx+ α log x+

x∫
a

δ(u)

u
du.

Since (logC(x) +
∫ x
a u−1δ(u) du)/ log x → 0, we have

logw(x) = −βx+ α log x+ o(1) log x.

This opens a way to statistically estimate the important parameters α and β and to see if it makes sense to
model data by using a semi-heavy function.

2.2 The “tail” of a semi-heavy function or sequence

Inspired by Klüppelberg [12, p. 262], we prove the following Karamata-type result for the classes LS(c) and
L(β).
Proposition 2.

(i) Let c ∈ (0, 1) and tn =
∑∞

k=nwk < ∞. We have (wn) ∈ LS(c) if and only if (tn) ∈ LS(c), and both
statements imply that tn/wn → 1/(1 − c).

(ii) Let β > 0 and t(x) =
∫∞
x w(z) dz < ∞. If w ∈ L(β), then t ∈ L(β) and t(x) ∼ w(x)/β. Conversely,

if t ∈ L(β) and if w(x) is nonincreasing, then w ∈ L(β).

Lith. Math. J., 58(4):480–499, 2018.
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Proof. (i) First, assume that wn/wn−1 → c, 0 < c < 1. It follows that, for ε > 0 such that 0 < c + ε < 1,
we can find n(ε) such that

(c− ε)wn−1 � wn � (c+ ε)wn−1, n > n(ε).

For k = 0, 1, 2, . . . , we find that

(c− ε)kwn � wn+k � (c+ ε)kwn, n > n(ε).

Taking sums, we have

wn

1− c+ ε
� tn =

∞∑
i=n

wi �
wn

1− c− ε
.

By letting ε → 0 we conclude that tn/wn → 1/(1− c), and it follows that tn/tn−1 → c.
To prove the converse, note that cn−1 = tn−1− tn. Using tn/tn−1 → c, we obtain that cn−1/tn−1 → 1−c,

and hence the result.
(ii) Since w(x + y)/w(x) → exp(−βy) for all y, we have w(log x) ∈ RV(−β). Using x−1w(log x) ∈

RV(−1− β), Karamata’s theorem yields ∫∞
x z−1w(log z) dz

w(log x)
→ 1

β
.

It follows that t(log x) ∼ w(log x)/β. The result follows. To prove the converse, we take y > 0. We have

yw(x+ y) � t(x)− t(x+ y) =

x+y∫
x

w(t) dt � yw(x).

It follows that

1− e−βy � lim inf
yw(x)

t(x)

and

lim sup
yw(x+ y)

t(x+ y)
� eβy − 1.

We obtain that

1− e−βy

y
� lim

(
sup

inf

)
w(x)

t(x)
� eβy − 1

y
.

Since y > 0 was arbitrary, we conclude that w(x)/t(x) → β.2 The result follows. 	


Remarks.
1. To pass from t(·) to w(·), in Proposition 2(ii), we assumed the Tauberian condition that w is nonincreas-

ing. Bingham et al. [4, Chap. 4] discuss more general Tauberian conditions.
2. If w ∈ SHF(β, α), β > 0 and α < 0, then by Bingham et al. [4, Thm. 1.53] f(x) = eβxw(x) ∼ f0(x),

where f0(x) ↓ 0. We might assume that f0(x) is a tail distribution and study w0(x) = e−βxf0(x) for
tail distributions f0. This is what has been done by Klüppelberg [12] and Xu et al. [20].

2 The notation a � lim
(
sup
inf

)
f(x) � b means that a � lim inf f(x) and lim sup f(x) � b both hold.
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Corollary 1.
(i) If (wn) ∈ SHS(c, α), then (tn) ∈ SHS(c) and tn/wn → 1/(1 − c).
(ii) If w ∈ SHF(β, α), β > 0, then t ∈ SHF(β, α) and t(x) ∼ w(x)/β.

2.3 Convolutions

Now consider two sequences (un = cnfn) ∈ SHS(c, αu) and (vn = cngn) ∈ SHS(c, αv) and consider the
convolution (u ∗ v)n =

∑n
k=0 ukvn−k. Using the definition, we get that (u ∗ v)n = cn(f ∗ g)n. In the case of

functions, in a similar way, we have u ∗ v(x) = e−βxf ∗ g(x), where f ∗ g(x) = ∫ x
0 f(y)g(x− y) dy.

In the next subsections, we consider two cases. In the first case, we assume that (un = cnfn) ∈ SHS(c, αu)
and

∑∞
k=0 fk < ∞. For functions, we consider the case where u(x) = e−βxf(x) and

∫∞
0 f(x) dx < ∞. In

the second case, we assume that the sum or the integral is not finite.

2.3.1 Finite sums or finite integrals

We have the following result inspired by Chover et al. [6].

Proposition 3.
(i) Suppose that (un) ∈ SHS(c, αu) and (vn) ∈ SHS(c, αv). Let fn = c−nun and gn = c−nvn and assume

that F =
∑∞

n=0 fn < ∞ and G =
∑∞

n=0 gn < ∞. Then (u ∗ v)n = Fvn +Gun + o(un) + o(vn) and
(u∗2)n ∼ 2Fun.

(ii) Suppose that u ∈ SHF(β, α) and v ∈ SHF(β, β). Let f(x) = eβxu(x) and g(x) = eβxv(x) and
assume that F =

∫∞
0 f(t) dt < ∞ and G =

∫∞
0 g(t) dt < ∞. Then u ∗ v(x) = Fv(x) + Gu(x) +

o(u(x)) + o(v(x)) and u∗2(x) ∼ 2Fu(x).

Proof. For convenience, we prove (ii). We have u ∗ v(x) = e−βxf ∗ g(x) and

f ∗ g(x) =
x/2∫
0

f(t)g(x− t) dt+

x/2∫
0

g(t)f(x− t) dt = I + II.

Using the local uniform convergence, we obtain that limx→∞ I/g(x) = F and limx→∞ II/f(x) = G. It
follows that f ∗ g(x) = Fg(x) + Gf(x) + o(g(x)) + o(f(x)), and the first result follows. In the particular
case u = v, we find that u ∗ u(x) ∼ 2Fu(x).

(i) The proof is similar. 	


Remarks.

1. Under the conditions of Proposition 3(i), we have (u ∗ v)n = cn(f ∗ g)n and
∑∞

n=0(f ∗ g)n = F +G.
2. Under the conditions of Proposition 3(i), we have (u ∗ u)n ∼ 2Fun and hence also that ((u∗2)n) ∈

SHS(c, α) satisfies the summability condition of Proposition 3(i).

Recall that a sequence (fn) is in the class of subexponential sequences if fn>0, (fn)∈LS,
∑∞

k=0fk<∞,
and f∗2

n /fn → 2
∑∞

k=0 fk. Notation: (fn) ∈ SS. In a similar way, we say that a positive function f(x)
is in the class of subexponential functions if f(x) ∈ L ∩ L1([0,∞)) and if f∗2(x)/f(x) → 2

∫∞
0 f(t) dt.

Notation: f ∈ SF. It is well known that if (fn) ∈ RS(α), α � −1, and (in the case α = −1)
∑∞

k=0 fk < ∞,
then (fn) ∈ SS. A survey of applications of SS and SF in probability theory can be found in Bingham et
al. [4, Appendix 4] or [9]. In the discrete case, see also Embrechts and Omey [8].

In the next result, we consider k-fold convolutions.

Lith. Math. J., 58(4):480–499, 2018.
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Proposition 4.
(i) Suppose that (un) ∈ SHS(c, α). Let fn = c−nun and assume that F =

∑∞
n=0 fn < ∞. Then

((u∗k)n) ∈ SHS(c, α) and (u∗k)n ∼ kF k−1un. Moreover, for each ε > 0, we can find a constant
K > 0 such that (

u∗k
)
n
� KF k−1(1 + ε)kun, k � 1, n � 1.

(ii) Suppose that u ∈ SHF(β, α). Let f(x) = eβxu(x) and assume that F =
∫∞
0 f(t) dt < ∞. Then

u∗k ∈ SHF(β, α) and u∗k(x) ∼ kF k−1u(x). Moreover, for each ε > 0, we can find a constantK > 0
such that

u∗k(x) � KF k−1(1 + ε)ku(x), k � 1, x � 0.

Proof. (i) The proof of the first part follows from Proposition 3, and the inequality follows from the results
of Chover et al. [6]; see also Klüppelberg [12, Lemma 3.1].

(ii) Proof is similar. 	


Remarks.

1. When α < −1, the summability condition, resp., integral condition is automatically satisfied. Only in
the case α = −1, we need to assume this.

2. If w ∈ SHF(β, α), β > 0, then Corollary 1 shows that t ∈ SHF(β, α) and t(x) ∼ w(x)/β. It follows
from Proposition 4 that t∗2(x) ∼ 2t(x)

∫∞
0 f(s) ds.

2.3.2 Infinite sums or infinite integrals

Now we consider the case where wn = cnfn with (fn) ∈ RS(α), α � −1, such that
∑∞

k=0 fk = ∞. The
following result can easily be reformulated for functions.

Theorem 2. Assume that (un) ∈ SHS(c, α) and (vn) ∈ SHS(c, β) = cnfn and let fn = c−nun, gn = c−nvn.
Assume that (fn) ∈ RS(α), α � −1, (gn) ∈ RS(β), β � −1. If α = −1, resp., β = −1, then assume also
that

∑n
k=0 fk → ∞, resp.,

∑n
k=0 gk → ∞.

(i) If α > −1 and β > −1, then

(u ∗ v)n
cnnfngn

→ B(α+ 1, β + 1),

where B(·, ·) denotes the beta-function. If α = −1 and β > −1, then

(u ∗ v)n
cngn

∑n
k=0 fk

→ 1.

(ii) If α > −1 and β = −1, then

(u ∗ v)n
cnfn

∑n
k=0 gk

→ 1.

(iii) If α = β = −1, then

(u ∗ v)n
cn(gn

∑n
k=0 fk + fn

∑n
k=0 gk)

→ 1.



Semi-heavy tails 489

Proof. We fix ε, 0 < ε < 1/2, and write

1

cn
(u ∗ v)n =

( [nε]−1∑
k=0

+

n−[nε]∑
k=[nε]

+

n∑
k=n−[nε]+1

)
fkgn−k =: I + II + III.

First, we consider II. Note that
∫
k�x<k+1 f[x]gn−[x] dx = fkgn−k. Taking sums, we find that

II =

∫
[nε]�x<n−[nε]+1

f[x]gn−[x] dx.

Replacing x by nt, we have

II = n

1−[nε]/n+1/n∫
[nε]/n

f[nt]gn−[nt] dt.

Using the local uniform convergence, we obtain that

lim
n→∞

II

nfngn
=

1−ε∫
ε

tα(1− t)β dt. (2.4)

Note that (2.4) holds for α � −1 an β � −1.
Next, we consider I and III. We have

I

gn
=

[nε]−1∑
k=0

fk
gn−k

gn
;

III

fn
=

[nε]−1∑
k=0

gk
fn−k

fn
.

We consider several cases.
a) First, consider the case where α > −1 and β > −1. We have

I

gn
� sup

0�k�[nε]−1

gn−k

gn

[nε]−1∑
j=0

fj. (2.5)

If α > −1, then Karamata’s theorem [4, Thm. 1.5.8] for sequences gives that

[nε]−1∑
j=0

fj ∼
1

1 + α
[nε]f[nε] ∼

ε1+α

1 + α
nfn.

On the other hand, we have

sup
0�k�[nε]−1

gn−k

gn
� sup

0�k�n/2

gn−k

gn
,

which is bounded as n → ∞. We conclude that

lim sup
I

nfngn
� B

ε1+α

1 + α
, (2.6)
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where the constantB does not depend on ε. In a similar way, if β > −1, then we find that

lim sup
III

nfngn
� B′ ε1+β

1 + β
(2.7)

for some constant B′ that does not depend on ε.
Now, combining (2.4), (2.6), and (2.7), we obtain that

1−ε∫
ε

tα(1− t)β dt � lim
n→∞

(
sup

inf

)
I + II + III

nfngn
�

1−ε∫
ε

tα(1− t)β dt+B
ε1+α

1 + α
+B′ ε1+β

1 + β
.

Now let ε → 0 to obtain the first result.
b) Now consider the case α = −1, β > −1. In the case of α = −1, Karamata’s theorem [4, Prop. 1.5.9a]

shows that we have (
∑n

k=0 fk) ∈ RS(0) and nfn = o(1)
∑n

k=0 fk. In view of (2.4) and (2.7), it follows that

lim
n→∞

II

gn
∑n

k=0 fk
= lim

n→∞
III

gn
∑n

k=0 fk
= 0. (2.8)

Now we reconsider I, and to this end, we have to study gn−k/gn for 0 � k � [nε]−1. Using the local uniform
convergence theorem [4, Thm. 1.5.2] again, we have

sup
0�k�[nε]−1

gn−k

gn
= sup

1−ε�t�1

g[nt]

gn
→ sup

1−ε�t�1
tβ

and similarly

inf
0�k�[nε]−1

gn−k

gn
→ inf

1−ε�t�1
tβ.

This implies that there is an integer n0 = n0(g, ε) so that, for all n � n0,

(1− ε)min
(
1, (1− ε)β

)
� gn−k

gn
� (1 + ε)max

(
1, (1− ε)β

)
,

uniformly in k = 0, 1, . . . , [nε]. In the place of (2.5), we find that

(1− ε)min
(
1, (1 − ε)β

) [nε]−1∑
k=0

fk � I

gn
� (1 + ε)max

(
1, (1 − ε)β

) [nε]−1∑
k=0

fk, n � n0.

Since (
∑n

k=0 fk) ∈ RS(0), it follows that

(1− ε)min
(
1, (1 − ε)β

)
� lim

(
sup

inf

)
I

gn
∑n

k=0 fk
� (1 + ε)max

(
1, (1 − ε)β

)
.

Combining this with (2.8), we conclude that

(1− ε)min
(
1, (1 − ε)β

)
� lim

(
sup

inf

)
I + II + III

gn
∑n

k=0 fk
� (1 + ε)max

(
1, (1 − ε)β

)
.
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Now let ε → 0 to find that

lim
I + II + III

gn
∑n

k=0 fk
= 1.

c) The case of β = −1 and α > −1 can be treated in a similar way.
d) Now consider the case where α = β = −1. Using a similar approach as before, now we get that

lim
n→∞

II

gn
∑n

k=0 fk + fn
∑n

k=0 gk
= 0

and

lim
n→∞

I + III

gn
∑n

k=0 fk + fn
∑n

k=0 gk
= 1.

This proves the theorem. 	


Remark. If α � −1 and β � −1, then (u ∗ v)n is again of the form (u ∗ v)n = Ccnhn, and (hn) ∈
RS(1 + α+ β).

In the particular case where un = vn, we get the following corollary. We also formulate it for functions.

Corollary 2.
(i) Assume that un = cnfn, where 0 < c < 1 and (fn) ∈ RS(α).

(a) If α > −1, then

(u∗2)n
ncnf2

n

=
(u∗2)n
unnfn

→ B(1 + α, 1 + α).

(b) If α = −1 and
∑n

i=0 fi → ∞, then

(u∗2)n
cnf(n)

∑n
i=0 fi

=
(u∗2)n

un
∑n

i=0 fi
→ 2.

(ii) Assume that w(x) = e−βxf(x), β > 0, and f ∈ RV(α).
(a) If α > −1, then

w∗2(x)
xe−βxf2(x)

=
w∗2(x)

w(x)xf(x)
→ B(1 + α, 1 + α).

(b) If α = −1 and
∫ x
0 f(t) dt → ∞, then

w∗2(x)
e−βxf(x)

∫ x
0 f(t) dt

=
w∗2(x)

w(x)
∫ x
0 f(t) dt

→ 2.

For higher-order convolutions, we have the following result. A similar result holds for functions.

Theorem 3. Assume that un = cnfn, where 0 < c < 1 and (fn) ∈ RS(α). For all k � 2, we have:

(i) If α > −1, then

(u∗k)n
cnnk−1fk

n

→
k∏

i=2

B
(
1 + α, (i− 1)(1 + α)

)
.

Lith. Math. J., 58(4):480–499, 2018.



492 E. Omey, S. Van Gulck, and R. Vesilo

(ii) If α = −1 and
∑∞

i=0 fi = ∞, then

(u∗k)n
cnfn(

∑n
i=0 fi)

k−1
→ k!.

Proof. (i) We use induction. The result holds for k = 2, and we have (u∗2)n = cnf2(n), where f2(n) ∼

nf2
nB(1 + α, 1 + α) ∈ RS(1 + 2α). Using the theorem (with un and (u∗2)n), we obtain that

(u∗3)n
cnnfnf2(n)

→ B(1 + α, 2 + 2α),

and the result follows for k = 3. Now the result easily follows by induction.
(ii) For α = −1 and k = 2, we have proved that (u∗2)n = cnf2(n), where f2(n) = 2fnh1(n) and

h1(n) =
∑n

k=0 fk. Note that (f2(n)) ∈ RS(−1). Using the theorem (with un and (u∗2)n), we obtain that
(u∗3)n = cnf3(n), where

f3(n) = f2(n)h1(n) + fn

n∑
k=0

f2(k).

Note that f3(n) = 2fn(h2(n) + g(n)), where g(n) =
∑n

k=0 fk
∑k

i=0 fi and h2(n) = (
∑n

k=0 fk)
2. We have

g(n + 1)− g(n) = fn+1

n+1∑
i=0

fi ∼ fn

n∑
k=0

fk,

h2(n+ 1)− h2(n) = fn+1

(
n+1∑
k=0

fk +

n∑
k=0

fk

)
∼ 2fn

n∑
k=0

fk,

and we obtain that h2(n + 1) − h2(n) ∼ 2(g(n + 1) − g(n)) as n → ∞. For n � n◦ and 0 < ε < 1, we get
that

(1− ε)2
(
g(n+ 1)− g(n)

)
� h2(n+ 1)− h2(n) � (1 + ε)2

(
g(n + 1)− g(n)

)
, n � n◦.

Taking sums
∑K

n=m, for fixedm, we get

(1− ε)2
(
g(K + 1)− g(m)

)
� h2(K + 1)− h2(m) � (1 + ε)2

(
g(K + 1)− g(m)

)
, K � m � n◦.

Since h(K), g(K) → ∞ asK → ∞, we obtain that

2(1 − ε) � lim

(
sup

inf

)
h2(K + 1)

g(K + 1)
� 2(1 + ε).

Since ε > 0 was arbitrary, we conclude that h2(n) ∼ 2g(n). It follows that f3(n) ∼ 3!f(n)h2(n) ∈ RS(−1).
Now assume that (u∗r)n ∼ cnfr(n) where fr(n) ∼ r!f(n)hr−1(n) ∈ RS(−1) with hr−1(n) =

(
∑n

i=0 f(i))
r−1. Using the theorem with un and (u∗r)n, we obtain that (u∗(r+1))n ∼ cnfr+1(n), where

fr+1(n) = r!fnhr−1(n)

n∑
k=1

fk + r!fn

n∑
k=0

fkhr−1(k)
)
= r!fn

(
hr(n) + g(n)

))
.
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where gr(n) =
∑n

k=0 fkhr−1(k). Clearly, we have hr(n + 1) − hr(n) ∼ fnrhr−1(n). For gr(n), we have
gr(n + 1) − gr(n) ∼ fnhr−1(n). As before, we find that hr(n) ∼ rgr(n), and we conclude that fr+1(n) ∼
(r + 1)!fnhr(n). This proves the result. 	

Remark. From the result it follows that:

(i) for α > −1,

(u∗k)n
un

∼ nk−1fk−1
n

k∏
i=2

B
(
1 + α, (i− 1)(1 + α)

) ∈ RS
(
(k − 1)(1 + α)

)
.

(ii) for α = −1,

u∗kn
un

∼ k!

(
n∑

i=0

fi

)k−1

∈ RS(0).

It may be interesting to study general sequences that satisfy ((u∗2)n/un) ∈ RS(θ) or ((u∗k)n/un) ∈
RS((k − 1)θ).

2.3.3 Examples

Our results can be applied for the logistic model where un = 1/(1 + en). Here we have un = fne
−n, where

fn → 1. Theorem 3 (with α = 0) shows that

(u∗k)n
e−nnk−1

→
k∏

i=2

B(1, i− 1).

Using B(x, y) = Γ(x)Γ(y)/Γ(x + y), we have B(1, i− 1) = Γ(i− 1)/Γ(i) = 1/(i − 1), and we find that

(u∗k)n
e−nnk−1

→ 1

(k − 1)!
.

In the case where wn = (n+ 1)αe−βn, n � 0, we have wn = cnfn where c = e−β and (fn = (n+ 1)α) ∈
RS(α). For the k-fold convolution, we obtain the following results:

(i) If α > −1, then

(w∗k)n
e−βnnαk+k−1

→
k∏

i=2

B
(
1 + α, (i− 1)(1 + α)

)
.

(ii) If α = −1, then
∑n

i=0 f(i) ∼ log(n) and

n(w∗k)n
cn(log(n))k−1

→ k!.

Now suppose that X is a r.v. with d.f. F (x) = P(X � x), tail F (x) = 1 − F (x), and density f . Define
F ×G(x) =

∫ x
0 F (x− y) dG(x), so that F×k = F×(k−1) × F and F×k = 1− F×k. We have the following

result.

Proposition 5. Suppose that f ∈ SHF(β, α) and let g(x) = eβxf(x). Assume that g ∈ RV(α).

(i) If α > −1, then F×2(x) ∼ F (x)xg(x)B(1 + α, 1 + α).
(ii) If α = −1, then F×2(x) ∼ 2F (x)

∫ x
0 g(t) dt.
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Proof. (i) Assume that f(x) = e−βxg(x) ∈ L(β). Using Proposition 2, we haveF (x) ∼ f(x)/β. Corollary 2
gives that f∗2(x) ∼ xf(x)g(x)B(1+α, 1+α) ∈ SHF(β, 2α+1). Taking integrals and using Proposition 2,
it follows that

F×2(x) ∼ f(x)xg(x)
B(1 + α, 1 + α)

β
∼ F (x)xg(x)B(1 + α, 1 + α).

(ii) Again we haveF (x) ∼ f(x)/β. NowCorollary 2 gives that f∗2(x) ∼ 2f(x)
∫ x
0 g(t) dt ∈ SHF(β,−1).

Taking integrals and using Proposition 2, it follows that

F×2(x) ∼
2f(x)

∫ x
0 g(t) dt

β
∼ 2F (x)

x∫
0

g(t) dt. 	


In the case of k > 2 and α > −1, Corollary 2 gives that f∗k(x) ∼ xk−1f(x)gk−1(x)C(α, k) ∈ L(β).
Taking integrals and using Proposition 2, we obtain that

F×k(x) ∼
1

β
C(α, k)xk−1f(x)gk−1(x) ∼ C(α, k)F (x)xk−1gk−1(x).

In the case of α = −1, we obtain that

F×k(x) ∼ k!F (x)

( x∫
0

g(t) dt

)k−1

.

Remark. In the usual subexponential case we have that F×2(x) ∼ 2F (x). Our results show that it makes sense
to study tails for which F×2(x)/F (x) → ∞. Our conditions give a result of this type together with the rate at
which F×2(x)/F (x) tends to infinity. See Schmidli [17] for a different approach.

2.3.4 An upper bound without regular variation

In the next result we do not use regular variation to obtain an upper bound for (u∗k)n when un = cnfn,
0 < c < 1.

Lemma 1.
(i) Let hn =

∑n
i=0 f

2
i and un = cnfn. For all k � 2, we have (u∗k)n � cnn(k−2)/2h

k/2
n .

(ii) Let h(x) =
∫ x
0 f2(t) dt andw(x) = e−βxf(x). For all k � 2, we havew∗k(x) � e−βxx(k−2)/2hk/2(x).

Proof. (i) First, consider k = 2. Using the Cauchy–Schwarz inequality, we have

(u ∗ u)n = cn
n∑

j=0

fjfn−j � cn

√√√√ n∑
j=0

(
f2

)
j
×

n∑
j=0

(
f2

)
j
= cnhn.

This is the inequality for k = 2. Assuming that the formula holds for k = 2, 3, . . . ,m, we consider (u∗(m+1))n =
(u∗m ∗ u)n, and we find

(u∗(m+1))n =

n∑
j=0

cjfj
(
u∗m

)
n−j

� cn
n∑

j=0

(n− j)(m−2)/2fjh
m/2
n−j .
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Now the Cauchy–Schwarz inequality leads to

(
u∗(m+1)

)
n
� cn

√√√√hn

n∑
j=0

j(m−2)hmj .

Since hj is nondecreasing and since j � n, we find that

(
u∗(m+1)

)
n
� cn

√
hnnn(m−2)hmn ,

and we find that (u∗(m+1))n � cnn(m−1)/2h
(m+1)/2
n . This proves the result.

(ii) The proof of (ii) is similar. 	

Remarks.

1. If (fn) ∈ RS(α) with 2α > −1, then hn ∼ nf2
n/(2α + 1), and we find that

(u∗2)n
cnnf2

n

� hn
nf2

n

= O(1),
(u∗k)n

cnnk−1fk
n

� n(k−2)/2h
k/2
n

nk−1fk
n

= O(1).

2. If f ∈ RV(α) with 2α > −1, then we have h(x) ∼ xf2(x)/(1 + 2α),

x(k−2)/2
(
h(x)

)k/2
∼ (1 + 2α)−k/2xk−1fk(x),

and w∗k(x) = O(1)w(x)(xf(x))k−1.

3 Applications

3.1 Subordination

Let N denote a r.v. with P(N = k) = pk, k � 1, and let X denote a r.v. with density w(x). Suppose that
N and X are independent. If X,X1,X2, . . . are i.i.d., then for each n � 1, the sum Sn =

∑n
i=1 Xi has the

density w∗n(x). The random sum SN has the density g(x) =
∑∞

n=1 pnw
∗n(x). Inspired by Schmidli [17], we

prove the following result.

Theorem 4. Suppose that (pn) ∈ SS and w ∈ SHF(β, α). Let h(x) = eβxw(x) ∈ RV(α) and assume that
α > −1. Then the subordinated density g satisfies g ∗ g(x)/g(x) → 2.

Proof. We have g ∗ g(x) = ∑∞
n=1(p ∗ p)nw∗n(x). By assumption, (pn) ∈ SS. For ε ∈ (0, 1), we can findK

such that

2(1− ε)pn � (p ∗ p)n � 2(1 + ε)pn, n � K.

Now we have

g ∗ g(x) =
K∑

n=1

(p ∗ p)nw∗n(x) +
∞∑

n=K+1

(p ∗ p)nw∗n(x) = A+B.

For the second term B, we have

2(1− ε)

∞∑
n=K+1

pnw
∗n(x) � B � 2(1 + ε)

∞∑
n=K+1

pnw
∗n(x),
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and it follows that

2(1− ε)
(
g(x) − C

)
� B � 2(1 + ε)

(
g(x) − C

)
,

where C =
∑K

n=1 pnw
∗n(x). Now we consider A + C =

∑K
n=1((p ∗ p)n + pn)w

∗n(x). Since pn � 1 and
(p∗p)n � 1, we haveA+C � 2

∑K
n=1w

∗n(x). By assumption,w ∈ SHF(β, α) and α > −1. Using Theorem
3 for n = 1, 2, . . . ,K, we have that

w∗n(x) ∼ C(α, n)w(x)
(
xh(x)

)n−1
, x → ∞.

Hence we can find constantsM,x◦ such that

A+C � Mw(x)
(
xh(x)

)K−1
, x � x◦.

It follows that

A+ C

g(x)
� Mw(x)(xh(x))K−1∑∞

n=K+1 pnw
∗n(x)

= M
1∑∞

n=K+1 pnw
∗n(x)/w(x)(xh(x))K−1

.

Now for each fixed n � K + 1, as x → ∞, we have

w∗n(x)
w(x)(xh(x))K−1

∼ const
(xh(x))n−1

(xh(x))K−1
= const

(
xh(x)

)n−K → ∞.

Using Fatou’s lemma, we conclude that lim sup(A+ C)/g(x) = 0. This proves the result. 	


3.2 Applications in queueing

Example 1. Consider a GI/M/1 queue where the interarrival times have d.f. A(x) with mean μA and the
service times exponentially distributed with mean 1/μ. The traffic intensity is given by ρ = (μμA)

−1. Let the
Laplace transform of A be denoted by Â(s), and let p denote the root of p = Â(μ − μp). In the case where A
has a density a(x), Prabhu [15, Thm. 16 (I.1.13)] showed that the idle period density of the GI/M/1 queue is
given by

h(x) = μeμ(1−p)x

∞∫
x

e−μ(1−p)ya(y) dy, x � 0.

Now suppose that a(x) = e−βxf(x) ∈ SHF(β, α). In this case we have

e−μ(1−p)ya(y) = e−(μ(1−p)+β)yf(y) ∈ SHF(μ(1− p) + β, α).

Now we can use Proposition 2 or Corollary 1 to obtain that

∞∫
x

e−μ(1−p)ya(y) dy ∼

e−(μ(1−p)+β)xf(x)

μ(1− p) + β
,

and it follows that

h(x) ∼ μ
e−βxf(x)

μ(1− p) + β
=

μ

μ(1− p) + β
a(x).
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Example 2. Consider aM/G/1 queue where the service times have d.f.B(x)with mean μB and the interarrival
times exponentially distributed with mean 1/λ. The traffic intensity is given by ρ = λμB . The distribution of
the stationary waiting time is given by (cf. Asmussen [2])

G(x) = (1− ρ)

∞∑
n=0

ρnB∗n
0 (x),

where B0(x) is the equilibrium distribution given by

B0(x) =
1

μB

x∫
0

B(t) dt.

The equilibrium density is given by b0(x) = B(t)/μ0. The tail of G is given by

G(x) = (1− ρ)

∞∑
n=1

ρnB∗n
0 (x).

Now assume that b0(x) = e−βxf(x) where f ∈ RV(α) and α < −1. Also, assume that ρ
∫∞
0 f(t) dt < 1.

Using Proposition 2, we have B0(x) ∼ b0(x)/β = B(x)/(βμB). From Proposition 4 we also have that

b∗k0 (x)

b0(x)
� K(1 + ε)k

( ∞∫
0

f(t) dt

)k−1

∀k � 1

and that

b∗k0 (x)

b0(x)
→ k

( ∞∫
0

f(t) dt

)k−1

∀k � 1.

Taking integrals here, it follows that

1−B∗k
0 (x)

1−B0(x)
� K(1 + ε)k

( ∞∫
0

f(t) dt

)k−1

and

1−B∗k
0 (x)

1−B0(x)
→ k

( ∞∫
0

f(t) dt

)k−1

.

Using dominated convergence, we obtain that

1−G(x)

1−B0(x)
→ (1− ρ)

∞∑
k=1

kρk

( ∞∫
0

f(t) dt

)k−1

=
(1− ρ)ρ

∫∞
0 f(t) dt

(1− ρ
∫∞
0 f(t) dt)2

or equivalently that

1−G(x)

1−B(x)
→ (1− ρ)ρ

∫∞
0 f(t) dt

βμB(1− ρ
∫∞
0 f(t) dt)2

.
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4 Concluding remarks

1. It may be interesting to study sequences (un) such thath (u∗2)n/un → ∞.
2. We plan to study more general sequences (and functions) of the form un = e−a(n)fn where (fn) ∈ RS(α)

and a(n) → ∞.
3. In the future we plan to study also the bivariate case. In the case of functions, for example, we assume

that w(x, y) = e−αx−βyf(x, y), x, y, α, β > 0, where f is a bivariate (regularly varying) function. As in
Lemma 1, we can prove that, for general functions f , we havew∗k(x, y) � e−αx−βy(xy)(k−2)/2(h(x, y))k/2,
x, y � 0, where h(x, y) =

∫ x
0

∫ y
0 f2(u, v) dudv.
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