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Low-Complexity Nonlinear Zero-Forcing Precoding
Under Per-Line Power Constraints for Improved

Downstream G.fast Active-User Peak-Rates
Wouter Lanneer, Student Member, IEEE, Paschalis Tsiaflakis, Member, IEEE,

Jochen Maes, Senior Member, IEEE, and Marc Moonen, Fellow, IEEE

Abstract—We consider nonlinear zero-forcing (ZF) precoding
design to improve the downstream G.fast peak-rates when only
a few users in the cable binder are active. In order to com-
pute the optimal nonlinear ZF precoder under per-line power
constraints (PLPCs), we present a novel low-complexity dual
decomposition algorithm, in which the key is the use of Lagrange
multiplier based virtual precoders to transform the PLPCs into
an easier virtual sum-power constraint (SPC), such that the
SPC-optimality of the QR decomposition-based precoder may be
exploited. We show a reduced computational complexity of this
algorithm over the state-of-the-art SVD-block-diagonalization-
based dual decomposition algorithm. We present simulations of a
10-line cable binder that demonstrate substantial peak-rate gains
over standard QR decomposition-based ZF precoding in DSL,
due to the increasingly stronger crosstalk channels in the G.fast
frequency range (up to 212 MHz). Furthermore, we show that
the proposed algorithm naturally extends to the scenario with
multiple lines terminating at the customer premise equipments.

Index Terms—DSL, G.fast, dynamic spectrum management,
nonlinear precoding, zero-forcing, per-line power constraints.

I. INTRODUCTION

THE next-generation digital subscriber lines (DSL) access
technology called G.fast [1] aims at providing giga-

bit downstream transmission speeds. Such fiber-like speeds
become achievable by transmitting over very short copper
lines (below 100 m) and in frequencies up to 212 MHz.
Unfortunately, the use of such high frequencies also leads to
increasingly stronger levels of crosstalk interference among the
lines within a cable binder, making dynamic spectrum mana-
gement (DSM) techniques for crosstalk precompensation (also
called precoding or downstream vectoring) very challenging.

Foremost among the challenges is that the traditional linear
zero-forcing (ZF) precoder [2] suffers from large precompen-
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Fig. 1. Supporting improved G.fast active-user peak-rate performance.

sation signals in the G.fast frequency range, which signifi-
cantly increase the per-line transmit power spectral densities
(PSDs). To enforce per-line power constraints, transmit PSD
optimization is necessary [3]. The linear ZF precoder may
be replaced by the minimum mean squared error (MMSE)
precoder which tolerates some residual crosstalk at the benefit
of an increased signal-to-noise-ratio (SNR) [4]. An alterna-
tive for improving the SNR is nonlinear precoding (NLP).
Throughout the paper, NLP is used to refer to multi-user dirty
paper coding-like precoding strategies based on sequential in-
terference pre-subtraction. One representative implementation,
well-known in the DSL community, is Tomlinson-Harashima
precoding (THP) [5].

On the other hand, these strong crosstalk channels also yield
an important opportunity to boost the peak-rates of active users
within the cable binder [6]. Whenever some of the users in
the binder are inactive, the line drivers of these idle users
may still be operated to transmit additional energy into the
cable binder (see Fig. 1). In point of fact, the strong crosstalk
channels will leak this additional energy into the lines of active
users, such that the received signal power or the SNR of the
active users increases. In other words, the strong crosstalk
channels also provide the cable binder with a so-called multi-
user spatial-multiplexing gain or a multi-user multiple-input-
multiple-output (MU-MIMO) capacity or array gain, which
may thus enable the support of improved active-user peak-rates
in G.fast. Naturally, this comes at the cost of increased transmit
powers and the inability to turn off some analog functionality
of the idle-user line drivers [7].

To exploit this spatial-multiplexing gain within a binder, we
study nonlinear ZF precoding (ZF-NLP) design to improve
the active-user peak-rates, as a low-complexity alternative for
nonlinear MMSE precoding [4]. In the DSL context ZF-NLP
design using a sum-power constraint (SPC) as well as per-
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line power constraints (PLPCs)1 [5], [8]–[15] has most been
relying on the QR decomposition (QRD)-based precoder. ZF-
NLP design then transforms into pure power allocation with
a water-filling solution. This approach can be indeed shown
to be optimal for ZF-NLP under a SPC [16]. However, G.fast
is subject to PLPCs, for which the QRD-based precoder is
not necessarily optimal anymore and may be outperformed
by other nonlinear ZF precoders. The optimal nonlinear ZF
precoder under PLPCs can be computed by the state-of-the-
art algorithm proposed in [17], which basically integrates
the SVD-block-diagonalization (SVD-BD)-based method [18],
[19] into a dual decomposition approach with an iterative
subgradient search.

In this paper, we develop an alternative dual decomposition
algorithm for optimal ZF-NLP design under PLPCs. Key in
this algorithm is the use of Lagrange multiplier based virtual
precoders to transform the PLPCs into an easier virtual SPC,
which allows to exploit the SPC-optimality of the QRD-
based precoder. We prove that this QRD-based method is
equivalent to the state-of-the-art SVD-BD [17] while boasting
a significantly lower computational complexity.

To keep the notations clean, most of the paper is limited to
the scenario where each user has a single line terminating at
its customer premise equipment, corresponding to a so-called
multiple-input-single-output broadcast channel (MISO-BC).
Nevertheless, we show that our proposed algorithm naturally
extends to the scenario where users have multiple lines termi-
nating at their customer premise equipment, corresponding to
a so-called MIMO-BC.

This paper is organized as follows. Section II models
downstream G.fast transmission. Section III introduces the ZF-
NLP design problem and Section IV re-views QRD-based
precoding both for PLPCs and for a SPC. Section V pre-
sents the state-of-the-art SVD-BD and novel QRD-based dual
decomposition algorithm for optimal ZF-NLP design under
PLPCs. Section VI discusses the computational complexity.
Section VII presents simulation results for a G.fast cable
binder. Section VIII discusses the generalization of multiple
lines terminating at the customer premise equipment. Finally,
Section IX concludes the paper.

Notations: We use lowercase boldface letters to denote
vectors and uppercase boldface letters for matrices. We use
IA as the identity matrix of size A, (.)T as the transpose,
(.)H as Hermitian transpose, (.)∗ as the complex conjugate,
E {.} as expectation,[X]i, j as the i, j-th element of X, [x]ba
as min (b,max (x, a)), Tr {.} as trace, diag {x} as a diagonal
matrix with vector x on the main diagonal, diag {X} as a
diagonal matrix with {[X]ii, ∀i} on the main diagonal, | · |
as the absolute value, and ‖x‖p as the p-norm of x.

II. DOWNSTREAM G.FAST TRANSMISSION MODEL

A. Transmission Model

We consider downstream transmission in a G.fast cable
binder consisting of L lines connecting the access node to the
customer premise equipments. There are N(≤ L) users in the

1Akin to per-antenna power constraints in the wireless field.

binder that are active, while all L line drivers are available for
transmission. Assuming standard synchronous discrete-multi-
tone (DMT) modulation, transmission is modeled indepen-
dently on each tone (or frequency sub-carrier) k = [1, . . . ,K]
as

yk = Hkxk + zk . (1)

xk , [x1
k
, . . . , xL

k
] is the transmit vector on tone k, with xl

k
the

signal transmitted on line l and tone k. yk , [y1
k
, . . . , yN

k
] is

the receive vector on tone k, with yn
k

the signal received by
user n. zk , [z1

k
, . . . , zN

k
] is the vector of uncorrelated additive

noise signals on tone k, with σk , E{|zn
k
|2} denoting the noise

PSD. Hk , [hn,m
k
] denotes the N×L channel matrix on tone k.

The diagonal elements of Hk contain the direct channels whilst
the off-diagonal elements contain the crosstalk channels.

Although the direct channels of Hk typically are dominant
below 30 MHz (i.e. |hn,n

k
| � |hn,m

k
|,m , n), recent me-

asurements show that this is not valid anymore for higher
frequencies of G.fast where the direct channels may even
be weaker than the crosstalk channels [20]. This makes the
crosstalk channels very effective for transmitting additional
energy to the active users. We assume perfect knowledge
of the channel matrices. In practice the channel matrices
are estimated and tracked, which requires little additional
overhead due to the slow time variations in DSL channels
[1].

In G.fast per-line spectral mask constraints are included,
in order to not generate too much interference into other
technologies, and combined with per-line aggregated transmit
power (ATP) constraints [21]. These PLPCs are given as2

E{|xlk |2} ≤ Pmask
k , ∀k, l, (2)∑

k

E{|xlk |2} ≤ PATP, ∀l . (3)

The number of bits that can be loaded on tone k for user n
is widely modeled [22] by

bnk =
[
log2

(
1 +

SNRn
k

Γ

)]bmax

, (4)

where SNRn
k is the achieved SNR on tone k for user n (which

will be specificed in Section III) and Γ denotes the SNR
to capacity gap or SNR gap, including a noise margin and
a coding gain. The SNR gap achieving a BER of 10−7 for
uncoded QAM transmission is approximately equal to 9.75 dB
[22]. Adding to this a noise margin of 6 dB minus a coding
gain of 5.5 dB leads to an overall SNR gap Γ = 10.25 dB.
Typically a maximum bitloading (bit cap) bmax is imposed.
Finally, the total data rate of user n is Rn = fs

∑
k bn

k
, where

fs is the DMT symbol rate.

B. Nonlinear Precoding

NLP sequentially encodes the user data signals in order
to pre-subtract the crosstalk from previously encoded users
without transmit power penalties, which may be implemented

2Note that PATP , P
ATP/∆ f with P

ATP
the maximum ATP and ∆ f the

tone spacing.
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Fig. 2. Tomlinson-Harashima precoding structure on tone k.

in practice with THP [5]. THP (depicted in Fig. 2) applies
feedforward and feedback filtering to the user data vector
uk , [u1

k
, . . . , uN

k
], where the user data signals {un

k
} are

assumed to be uncorrelated and consist of unit power and zero
mean QAM symbols, i.e. E{ukuH

k
} = IN .

The N × N feedback precoding matrix I − Bk realizes
the sequential crosstalk “pre-subtraction”. The pre-subtracted
signals are prevented from increase in transmit power by ap-
plying a nonlinear modulo operation. The intermediate vector
úk , [ú1

k
, . . . , úN

k
] is computed sequentially from the first to

the last user3 as

ún
k = mod

[
un
k −

n−1∑
m=1
[Bk]n,múm

k

]
, ∀n. (5)

with Bk a lower triangular matrix defined as

[Bk]n,m =

[HkPk ]n,m

√
sm
k

[HkPk ]n,n
√
sn
k

if m ≤ n

0 else.
(6)

The transmit vector is then formed by gain scaling the
intermediate data vector úk and multiplication with the L × N
feedforward precoding matrix Pk ,

[
p1
k
, . . . , pN

k

]
xk = PkS1/2

k
úk . (7)

The diagonal matrix Sk , diag{sk} with sk , [s1
k
, . . . , sNK ]

models the per-user transmit PSDs on tone k. The transmit
PSD on line l and tone k is then defined as

E{|xlk |2} =
∑
m

��[Pk]l,m
��2 smk . (8)

At the receiver a second modulo operation is required to
make the first modulo operation transparent [5]

ûn
k = mod

[
yn
k

[HkPk]n,n
√

sn
k

]
' un

k +
∑
m>n

[HkPk]n,m
√

sm
k

[HkPk]n,n
√

sn
k

úm
k +

zn
k

[HkPk]n,n
√

sn
k

. (9)

Note that in practice the modulo operation at the transmitter
results in a precoding loss, since it causes the intermediate
signals {ún

k
} to be (approximately) uniformly distributed [23],

such that they have more energy than the QAM signals {un
k
}.

This loss is most pronounced for low SNR and is maximum
1.25 dB in G.fast [12]. Since it has a low impact on the
total data rates, this loss is not considered in our simulations.

3We assume without loss of generality the encoding order to be given by
the user index, which corresponds to w1 ≥ w2 ≥ · · · ≥ wN for user weights
as introduced in Section III. See [15] for optimizing the user encoding orders.

Furthermore, THP has been shown to be more sensitive to
channel estimations errors and other non-idealities than LP,
such that less sensitive alternative implementations of THP
may be necessary [24].

III. NONLINEAR ZF PRECODING DESIGN PROBLEM

The ZF condition implies crosstalk interference free trans-
mission for all users. As can be seen from (9), the ZF condition
only requires that for each user n the crosstalk interference
from users m > n is canceled by the forward precoder Pk ,
because the crosstalk interference created by users m < n
is already canceled by the THP structure. An equivalent
condition is then

HkPk =


1 0 · · · 0
∗ 1 · · · 0
...

...
. . .

...
∗ ∗ · · · 1

︸              ︷︷              ︸
Lk

(10)

where Lk denotes an N × N arbitrary lower triangular ma-
trix with unit diagonal elements. When (10) is satisfied, the
transmission model (9) reduces to

ûk = uk + S−1/2
k

zk . (11)

Since (10) entails some degrees of freedom, the precoder
matrix Pk design is integrated into the ZF-NLP design pro-
blem, which is formulated as follows

maximize
{Pk }, {sk ∈Dk }

∑
k

∑
n

wnbnk

s.t.
∑
m

��[Pk]l,m
��2 smk ≤ Pmask

k , ∀k, l∑
k

∑
m

��[Pk]l,m
��2 smk ≤ PATP, ∀l

HkPk = Lk, ∀k . (12)

Here wn is the weight of user n and the bit loading for user
n on tone k with ZF precoding is

bnk = log2

(
1 + Γ−1σ−1

k snk
)
. (13)

The bit cap bmax is translated here into a PSD cap in (12)
where Dk , {sn

k
|0 ≤ sn

k
≤ smax

k
= Γσk

(
2bmax − 1

)
, ∀n}.

IV. QRD-BASED ZF-NLP

A. Per-Line Power Constraints

In the DSL context [5], [8]–[15], the nonlinear ZF precoder
matrix Pk is most often defined based on the QRD of the
conjugated channel matrix Hk as it was proposed in [5].
Adopting this QRD-based precoder simplifies the ZF-NLP
design in (12) which then transforms into a pure transmit PSD
optimization problem.

More specifically, this approach uses the following QRD

HH
k

qr
= QkRk, (14)

where Qk is an L×N unitary matrix and Rk is an N×N upper
triangular matrix. Then the feedforward precoding matrix is
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Algorithm 1: QRD-based ZF-NLP Under PLPCs

1 Initialize Pk = Qkdiag{RH
k
}−1 using (14), ∀k

2 Initialize Ωk = diag{θ1 + λ1
k
, . . . , θL + λL

k
}, ∀k

3 repeat
4 Update

{
θ1, . . . , θL

}
using subgradient method

5 for k = 1 · · ·K do
6 repeat
7 Update

{
λ1
k
, . . . , λL

k

}
using subgradient method

8 ∀n : sn
k
=

[
wn∑L

j=1(θ j+λ
j
k
)|[Pk ] j,n |2 − Γσk

] smax
k

0
9 until λl

k

���∑m

��[Pk]l,m
��2 sm

k
− Pmask

k

��� < ε ∀l
10 end
11 until θl

���∑k

∑
m

��[Pk]l,m
��2 sm

k
− PATP

��� < ε ∀l

set to Pk = Qkdiag(RH
k
)−1. Note that Pk satisfies the ZF

condition in (10). Now, the per-user transmit PSD optimization
is a convex problem with strictly feasible constraints meaning
that the KKT conditions are sufficient for optimality [25].
Examining these leads to a multi-level water-filling solution
for the per-user transmit PSDs

snk =
wn

©­«
L∑
j=1
(θ j + λ j

k
)
��[Pk]j,n

��2ª®¬
−1

− Γσk


smax
k

0

∀k, n, (15)

where {θl} and {λl
k
} are the non-negative Lagrange multipliers

corresponding to the per-line ATP and spectral mask con-
straints on tone k. The Lagrange multipliers should be chosen
such that the KKT complementary conditions are satisfied, i.e.,

θl

(∑
k

∑
m

��[Pk]l,m
��2 smk − PATP

)
= 0, ∀l (16)

λlk

(∑
m

��[Pk]l,m
��2 smk − Pmask

k

)
= 0, ∀k, l . (17)

Strategies for searching the optimal Lagrange multipliers are
elaborated in Section V. We will refer to this approach as
QRD-based ZF-NLP in this paper. A complete algorithmic
description is included in Alg. 1.

However, for ZF-NLP design under PLPCs the QRD-based
precoder matrix is not necessarily optimal. To see this, con-
sider the simple example of one active user (N = 1) and a
single-carrier channel (K = 1) given as h = [h1, · · · , hL] and
with a PLPC P. As can easily be verified, the optimal precoder
vector popt and scalar transmit power sopt exhibit the following
structure

popt =

[
e jφ1

‖h‖1 , . . . ,
e jφL

‖h‖1

]T
, with φl = ∠h∗l (18)

sopt = P‖h‖21, (19)

which satisfies the ZF condition in (10) since hpopt = 1.
Whereas the QRD-based precoder corresponds to a maximum

ratio transmission

pQRD =

[
h∗1
‖h‖22

, . . . ,
h∗L
‖h‖22

]T
(20)

sQRD = P‖h‖42
(
max
m
|hm |2

)−1
. (21)

Although popt is generally outside the row-space of h, its
corresponding transmit power will always be larger than
that of the QRD-based precoder, as the following inequality
demonstrates

sQRD

P
=
‖h‖22 ‖h‖22
max
m
|hm |2

≤
‖h‖1‖h‖1max

m
|hm |2

max
m
|hm |2

= ‖h‖21 =
sopt

P

(22)

where we used the fact that ‖h‖22 ≤ ‖h‖1‖h‖∞. With (13) sopt

will then lead to a higher bit loading than sQRD. This illustrates
that in addition to satisfying (10) the optimal precoder matrix
Pk should also result in maximum SNRs. Here the QRD-based
precoder generally results in only one active PLPC, whilst the
optimal solution has always L active PLPCs.

B. Sum-Power Constraint

As it will be relevant in Section V-B, we also review here
the active-user peak-rate maximization problem for ZF-NLP
under a single SPC PSPC = L × PATP

maximize
{Pk }, {sk ∈Dk }

∑
k

∑
n

wnbnk

s.t.
∑
k

∑
m

∑
l

��[Pk]l,m
��2 smk ≤ PSPC

HkPk = Lk, ∀k . (23)

Problem (23) is a relaxation and performance upper bound of
(12). Here the QRD-based precoder is optimal, in contrast to
the case with PLPCs, as stated in the next theorem and proved
as follows (similar to the proofs in [16] and [26]).

Theorem 1: The optimal precoder to (23) at tone k is Pk =

Qkdiag(RH
k
)−1 where HH

k

qr
= QkRk .

Proof: The general structure for any precoder satisfying
(10) is

Pk = H†
k
Lk + P⊥k Ak (24)

with H†
k
= HH

k

(
HkHH

k

)−1
denoting the pseudo-inverse of Hk ,

and P⊥
k
= IL−H†

k
Hk the orthogonal projection matrix onto the

null-space of Hk , and where Lk is a lower triangular matrix
with ones on the diagonal, and Ak is an arbitrary matrix. First,
observe that for any set of feasible transmit PSDs Sk � 0

‖PkS1/2
k
‖2F = Tr

{
PkSkPH

k

}
(25)

= Tr
{(

H†
k
Lk + P⊥k Ak

)
Sk

(
H†

k
Lk + P⊥k Ak

)H }
(26)

≥ Tr
{
H†

k
LkSk

(
H†

k
Lk

)H }
(27)

since P⊥
k

H†
k
= 0 and P⊥

k
AkSkAH

k
P⊥
k
� 0. This means that

setting Ak = 0 minimizes the expression in (26).
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In addition, using the QRD of HH
k

, H†
k

can be re-written as
Qk(RH

k
)−1 such that

Tr
{
H†

k
LkSk

(
H†

k
Lk

)H }
= Tr

{(
RH
k

)−1
LkSkLH

k (Rk)−1
}
. (28)

Now since
(
RH
k

)−1
is a lower triangular matrix,

(
RH
k

)−1
Lk

is also lower triangular and can be decomposed as(
RH
k

)−1
Lk =

(
I + Lk

)
Dk, (29)

with Dk = diag{RH
k }−1

Lk =
(
RH
k

)−1
Lk (Dk)−1 − I,

where Lk is a strictly lower triangular matrix with zeros on
the main diagonal. Putting this into (28) leads to

Tr
{(

I + Lk

)
DkSkDk

(
I + Lk

)H }
≥ Tr {DkSkDk} =

∑
n

snk /|rn,nk
|2, (30)

because Tr
{
LkDkSkDk

}
= 0 and LkDkSkDkLH

k � 0.

This means that choosing Lk = 0, or equivalently Lk =

RH
k

diag{RH
k
}−1, minimizes the Frobenius norm of PkS1/2

k
which indeed leads to the QRD-based precoder, by observing
that Pk = Qk(RH

k
)−1Lk = Qkdiag{RH

k
}−1.

Consequently, (23) is solved optimally using water-filling,
i.e.,

snk =

[
wn

(
θ

L∑
j=1

��[Pk]j,n
��2

︸         ︷︷         ︸
1/ |rn,n

k
|2

)−1

− Γσk

] smax
k

0

∀k, n. (31)

V. DUAL DECOMPOSITION FOR OPTIMAL ZF-NLP UNDER
PLPCS

The basic idea of dual decomposition is to solve pro-
blem (12) by maximizing its Lagrangian. The Lagrangian is
formed by augmenting the objective function with a weighted
sum of the PLPCs, which decouples these constraints across
the tones and users. This leads to the following Lagrangian
associated with problem (12)

L =
∑
k

[∑
n

wnbnk − Tr
{
ΩkPkSkPH

k

}
+

∑
l

λlkPmask
k

]
+

∑
l

θlPATP (32)

where Ωk = diag{θl + λl
k
} is a diagonal matrix containing

the non-negative Lagrange multipliers corresponding to the
per-line ATP (θ ,

[
θ1, . . . , θL

]
) and spectral mask (λk ,

[
λ1
k
, . . . , λL

k

]
) constraints on tone k. The corresponding La-

grange dual function is then the constrained maximization of
the Lagrangian for a given set of Lagrange multipliers

g({Ωk}) = maximize
{Pk }, {sk ∈Dk }

L({Ωk}, {Pk}, {sk})
s.t. HkPk = Lk, ∀k . (33)

The dual optimization problem is defined as

minimize
{Ωk }

g({Ωk}) s.t. θ � 0

λk � 0, ∀k . (34)

The duality gap is zero between problem (34) and problem
(12) due the concave objective function in {sk} and the convex
constraints over {Pk}, {sk}, and because Slater’s condition
holds4 [25].

Dual decomposition algorithms iteratively search for the
optimal Lagrange multipliers that minimize (34) and enforce
the KKT complementary conditions [see (16) and (17)]. In
every iteration the Lagrange dual function (33) needs to be
solved. A standard search strategy is the subgradient method
[27], [28], which updates the Lagrange multipliers as

θl =

[
θl + δt

(∑
k

∑
m

��[Pk]l,m
��2 smk − PATP

) /
PATP

]
0

(35)

λlk =

[
λlk + δ

t

(∑
m

��[Pk]l,m
��2 smk − Pmask

k

) /
Pmask
k

]
0

, (36)

where t is the iteration number, and δt is the scalar step size
at iteration t. Above subgradient update method is guaranteed
to converge to the optimal Lagrange multipliers as long as δt

is chosen sufficiently small [28]. A common choice for the
step size sequence δt is that it is square summable but not
summable, i.e., δt = β

t for some positive constant β (if the
norm of the subgradient is bounded). Other step size sequence
choices include nonsummable diminishing, i.e., δt = β√

t
, and

constant δt = β [27].
The main difficulty however is in solving the Lagrange dual

function (33) for a fixed set of Lagrange multipliers {Ωk}
every iteration. Each solution requires the computation of the
optimal precoder matrices and transmit PSDs as a function of
{Ωk}. Fortunately, maximizing the Lagrangian for a fixed set
of Lagrange multipliers can be decoupled across all tones5

g({Ωk }) =
∑
k

[
g̃k(Ωk) +

∑
l

λlkPmask
k

]
+

∑
l

θlPATP (37)

with

g̃k(Ωk) = maximize
{Pk }, {sk ∈Dk }

∑
n

wnbnk − Tr
{
ΩkPkSkPH

k

}
s.t. HkPk = Lk . (38)

4Slater’s condition for problem (12) can easily be verified. For instance, a
strictly feasible point is obtained by choosing Pk as the QRD-based precoder
of Section IV-A and the transmit PSDs as ck/(maxl ‖[Pk ]row l ‖22 + c0) with
ck = min

(
PATP/K, Pmask

k
, smax

k

)
and c0 > 0 for all tones k.

5The terms
∑

l λ
l
k

and
∑

l θ
lPATP are independent of {Pk, sk } and thus

need not to be taken into account in the per-tone maximizations (38).
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Algorithm 2: Dual Decomposition for Optimal ZF-NLP
Under PLPCs

1 Initialize Ωk = diag{θ1 + λ1
k
, . . . , θL + λL

k
}, ∀k

2 repeat
3 Update

{
θ1, . . . , θL

}
using subgradient method

4 for k = 1 · · ·K do
5 repeat
6 Update

{
λ1
k
, . . . , λL

k

}
using subgradient method

7 Update [Pk, sk] by solving g̃k(Ωk)
8 until λl

k

���∑m

��[Pk]l,m
��2 sm

k
− Pmask

k

��� < ε ∀l
9 end

10 until θl
���∑k

∑
m

��[Pk]l,m
��2 sm

k
− PATP

��� < ε ∀l

Consequently, we continue with the per-tone Lagrange dual
function (38) and drop the tone index for ease of representation
(tone indices are re-introduced in Section VIII). A complete
algorithmic description of dual decomposition for optimal ZF-
NLP under PLPCs is listed in Alg. 2.

To solve (38) (corresponding to line 7 of Alg. 2), we present
in the remainder of this section first the state-of-the-art SVD-
BD method [17]. Then, we propose a novel optimal method in
which the key is the use of Lagrange multiplier based virtual
precoders to transform the PLPCs into an easier virtual SPC.
This allows to exploit the SPC-optimality of the QRD-based
precoder. We show a reduced computational complexity over
the SVD-BD in Section VI.

A. SVD-BD-Based Method [17]

The state-of-the-art dual decomposition algorithm for op-
timal ZF-NLP under PLPCs proposed in [17] is based on
the SVD-block-diagonalization and will be referred here to as
SVD-BD. Its premise is that the ZF conditions in (10) dictate
that the precoder vector pn of user n, i.e., the n-th column of
P, should lie in the null-space spanned by

Gn ,


hH

1
h H

2
...
hH
n−1


, (39)

with hH
n the n-th row vector of H. Therefore, as a first step,

the following full SVDs are computed

Gn
SVD
= Un

[
Σn 0

] [
ṼH

n

VH
n

]
, ∀n ≥ 2. (40)

In (40), Ṽn is an L×n−1 unitary matrix containing the right-
singular vectors corresponding to the non-zero singular values
and is a row-space basis of Gn. On the other hand, Vn is
an L × L − n + 1 unitary matrix containing the right-singular
vectors corresponding to the zero singular values and is a null-
space basis of Gn, i.e., hH

mVn = 0 for m < n. The first user’s
V1 is set to the L × L identity matrix. To reduce complexity,
{Vn} may also be obtained by using a single QRD instead of
multiple SVD operations.

Algorithm 3: SVD-BD-Based Method [17] for Solving
Line 7 of Alg. 2

1 Initialize Vn
k

with (40), ∀k, n
2 for n = 1 · · · N do
3 Compute pn

k
with (44)

4 Compute gn
k

with (46)

5 sn
k
=

[
wn

(
1/gn

k

)−1
− Γσk

] smax
k

0
6 end

The optimal precoding matrix may now be expressed with
linear combinations of the null-space bases

P = [V1p̂1, . . . ,VN p̂N ] , (41)

with p̂n a vector of length L − n + 1. As a result, the
ZF condition in (38) weakens to a normalization constraint
[corresponding to the ones on the main diagonal in (10)] and
the Lagrange dual function is formulated as

g̃(Ω) =
maximize
{p̂n}, {s∈D}

∑
n

[
wn log2

(
1 +

sn
Γσ

)
− snTr{ΩVnp̂np̂H

n VH
n }

]
s.t. hH

n Vnp̂n = 1, ∀n. (42)

Then defining a new variable ṕn =
(
VH

n ΩVn

)1/2 p̂n for all
users n, (42) may be re-written as

g̃(Ω) =maximize
{ṕn }, {s∈D}

∑
n

[
wn log2

(
1 +

sn
Γσ

)
− snTr{ṕnṕH

n }
]

s.t. hH
n Vn

(
VH

n ΩVn

)−1/2
ṕn = 1, ∀n. (43)

Clearly, Lagrange dual function (43) has a trivial solution.
Having the minimal Frobenius norm among all vector in-
verses, the optimal ṕn for user n is the pseudo-inverse of
hH
n Vn

(
VH

n ΩVn

)−1/2. Then, the transmit PSDs are obtained
with the water-filling solution. This results in the following
closed-form solution for (38)

pSVD
n = Vn

(
VH

n ΩVn

)−1
VH

n hn/gn, ∀n (44)

sSVD
n =

[
wn (1/gn)−1 − Γσ] smax

0 , ∀n (45)

with gn enforcing the normalization constraint

gn = hH
n Vn

(
VH

n ΩVn

)−1
VH

n hn. (46)

An algorithmic description for the SVD-BD-based implemen-
tation of line 7 of Alg. 2 is listed in Alg. 3 (including also tone
indices for clarity). A practical implementation detail is that
the Lagrange multipliers [Ωk]l,l should be lower bounded by a
small positive number. Otherwise, when [Ωk]l,l = 0 for some
l, some of the matrices

{
VH

n ΩVn

}
for tone k may become

rank-deficient and then the algorithm breaks down6.

6Note that optimal ZF-NLP under PLPCs with inactive bit cap constraints
on tone k always results in final Lagrange multipliers that are strictly positive
for that tone (i.e. it results in {[Ωk ]l, l > 0, ∀l }) [16, Appendix C].
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We remark that the dimensions of the null-space bases {Vn}
grow large when L � N leading to matrix multiplications and
inverses in (44) and (46) with large matrices for every user
n > 1. Therefore a novel low-complexity method for solving
(38) is developed in the next sub-section.

B. QRD-Based Method

By transforming the Lagrange dual function (38) into an
equivalent version with a virtual SPC, the SPC-optimality
of the QRD-based precoder can be exploited, as will be
demonstrated. In particular, the transformation adopts a virtual
precoding matrix based on the Lagrange multipliers resca-
ling the channel matrix, similar to [4], [29]. The equivalent
transmission model on tone k is then given by (tone indices
dropped)

y = HΩ−1/2︸   ︷︷   ︸
H̃

P̃S1/2ú + z, (47)

where P̃ , Ω1/2P. Now, the transformed Lagrange dual
function (38) may be written as

g̃(Ω) = maximize
P̃, {s∈D}

∑
n

wn log2

(
1 +

sn
Γσ

)
− Tr

{
P̃SP̃H

}
s.t. H̃P̃ = L. (48)

This transformation hides the Lagrange multipliers in H̃ and P̃
such that the transformed Lagrange dual function (48) appears
to correspond to ZF precoding under a virtual SPC with its
virtual Langrange multiplier equal to one. As a result, for a
fixed Ω, the optimal precoder P̃ is according to Theorem 1
again P̃ = Q̃diag(R̃H )−1 using the QRD of the scaled channel,
i.e., H̃H qr

= Q̃R̃. Hence, the optimal P precoder is

PQRD = Ω−1/2Q̃diag(R̃H )−1. (49)

Furthermore, the Lagrange dual function (48) reduces to a
per-user transmit PSD optimization with the following water-
filling solution

sQRD
n =

[
wn

(
1/|r̃n,n |2

)−1
− Γσ

] smax

0
∀n. (50)

The complete algorithmic description of the QRD-based im-
plementation of line 7 of Alg. 2 is listed in Alg. 4. Also here
the [Ω]l,l = 0 should be lower bounded by a small positive
number to prevent rank-deficiency in H̃ and a break down of
the algorithm every subgradient iteration.

Clearly, by re-working its closed-form formula (49)

PQRD = Ω−1HH (R̃)−1diag(R̃H )−1, (51)

we observe that the optimal nonlinear ZF precoder matrix is
generally outside the row-space of H. Another observation is
that the optimal nonlinear ZF precoder generally consists of
non-orthogonal columns. Only when Ω = ωIL (corresponding
to a SPC) the precoder P is in the row-space of H and
consists of orthogonal columns, such that it reduces to the
standard QRD-based precoder of Section IV-A. The fact that
these additional degrees of freedom are not being used by the

Algorithm 4: QRD-Based Method for Solving Line 7 of
Alg. 2

1 H̃k = HkΩ
−1/2
k

2 H̃H
k

qr
= Q̃kR̃k

3 P̃k = Q̃kdiag(R̃H
k
)−1

4 Pk = Ω
−1/2
k

P̃k

5 for n = 1 · · · N do

6 sn
k
=

[
wn

(
1/

��r̃n,n
k

��2)−1
− Γσk

] smax
k

0
7 end

standard QRD-based precoder results in suboptimality for the
PLPC case.

Since the QRD-based precoder strucure PQRD(SQRD)1/2 can
be shown to be the unique solution to Lagrange dual function
(48) [and thus also to (38)] for any Ω � 0 using Theorem 1, it
should be equivalent to the SVD-BD-based solution structure.
The next theorem states that this is indeed the case.

Theorem 2: The solutions to the Lagrange dual function (38)
for any given Ω � 0 obtained by the SVD-BD (by Alg. 3) and
the QRD-based method (by Alg. 4) are identical at each tone.

Proof: For the first encoded user n = 1, the proof is trivial
since the null-space basis V1 = IL , which leads to

pSVD
1 = Ω−1h1

(
hH

1 Ω
−1h1

)−1
= Ω−1/2q̃1/r̃∗1,1 = pQRD

1 . (52)

For users n > 1, we first incorporate a virtual precoding
matrix based on the Lagrange multipliers into the null-space
bases {Vn} that rescales the channel vectors, similar as in
the QRD-based method. We define h̃H

n = hH
n Ω

−1/2, Ṽn =

Ω1/2Vn, and p̃SVD
n = gnΩ

1/2pSVD
n for user n. Hence, p̃SVD

n can
be formulated as

p̃SVD
n = Ṽn

(
ṼH

n Ṽn

)−1
ṼH

n︸                 ︷︷                 ︸
orth. projector

h̃n. (53)

Important here is that (53) may be interpreted as the orthogonal
projection of h̃n onto the null-space of G̃n , [h̃H

1 , . . . , h̃H
n−1]T ,

due to the fact that Ṽn is a non-orthogonal null-space basis of
G̃n.

At the same time, when considering the QRD of H̃H as
a Gram-Schmidt procedure, q̃n can be seen as the orthogo-
nal projection of h̃n onto the complement of [q̃1, . . . , q̃n−1]
with r̃n,n providing the corresponding projection length. Since
[q̃1, . . . , q̃n−1] is an orthonormal basis for [h̃1, . . . , h̃n−1], its
orthogonal complement is in fact the null-space of G̃n, i.e.,
h̃H
m q̃n = 0, ∀m < n. Then by uniqueness of orthogonal

projection onto the same sub-space, we conclude that p̃SVD
n =

q̃nr̃n,n. Consequently, it can be verified that

gn = h̃H
n p̃SVD

n = h̃H
n q̃nr̃n,n = |r̃n,n |2.

This shows that pSVD
n = pn

QRD and hence sSVD
n = snQRD for

all users n.
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Fig. 3. The QRD-based method (Alg. 4) has a significantly lower computational complexity per iteration than the SVD-BD-based method [17] (Alg. 3),
illustrated here for N = L (a) and N < L (b).

VI. COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity
reduction of the QRD-based dual decomposition algorithm
over the state-of-the-art SVD-BD [17] for optimal ZF-NLP
under PLPCs. As both dual decomposition algorithms require
the same number of subgradient iterations, we first focus on
the complexity per iteration of Alg. 3 and Alg. 4.

Computational complexity is often approximated by the
number of floating point operations (flops). A real addition,
and multiplication or division are counted as one flop [30].
A complex addition and multiplication add up to two and
six flops, respectively. A real square root is approximated as
one flop. We use the following flop counts for specific matrix
operations, with X denoting an m × n complex valued matrix
(m ≥ n):

• Multiplication of XHX requires nm(n+1)/2 complex mul-
tiplications and nm(n+1)/2−n(n+1)/2 complex additions;
hence, the flop count is approximated by 4nm(n + 1).

• Solving a real linear system Ax = b using Gaussian
elimination with A an n × n matrix and x and b an n-
vector takes 2n3/3 flops [30]. Treating every operation as
a complex multiplication, solving a complex linear system
takes 6 × 2n3/3 flops.

• Computing the QRD of X using a complex Householder
factorization algorithm takes 8n2(m − n/3) flops [30].

Since in each iteration of the Lagrange multiplier Ω search,
the precoder matrix P computation dominates the computatio-
nal complexity in both algorithms, we compare the flop count
needed for this operation.

1) SVD-BD-Based Method (Alg. 3) [17]: For the n-th user
(n ≥ 2), following computations are significant7:

7Also, the null-space bases {Vn } must be calculated. However this only
needs to be done once at initialization, and can be re-used for all subgradient
iterations. Hence this has a minimal impact on complexity.

• The square root of the real diagonal matrix Ω and
multiplication with Vn takes L + 2L(L − n + 1) flops.

• Computing VH
n ΩVn involves a matrix multiplication ta-

king 4L(L − n + 1)(L − n + 2) flops.
• ṕn = (VH

n ΩVn)−1VH
n hH

n is computed by solving a linear
system of equations taking 6 × 2(L − n + 1)3/3 flops.

• Computing Vnṕn takes an additional 8L(L − n+ 1) flops.
Thus the total flop count per iteration for the SVD-BD is

ψSVD ≈
N∑
n=2

{
4L(L − n + 1)2 + 6 × 2(L − n + 1)3/3

+ 10L(L − n + 1)
}
+ L.

2) QRD-Based Method (Alg. 4): The flop count per ite-
ration of the QRD-based dual decomposition algorithm cor-
responds to computing to a single QRD of H̃H , the inverse
of the real diagonal matrix Ω and diag(R̃H ), the square root
of Ω−1, and three complex matrix by real diagonal matrix
multiplications, i.e.,

ψQRD ≈ 8N2(L − N/3) + 6LN + 2L + N .

Leveraging on the SPC-optimal QRD solution thus clearly
results in a significant computational complexity reduction
per iteration, which is illustrated in Fig. 3a for increasing L
with N = L. If N � L, the complexity reduction increases
dramatically (see Fig. 3b), since for this case the dimensions
of the null-space bases Vn get increasingly larger.

Next, we present simulation results on the convergence
behavior of various step size sequences by the subgradient
method in Alg. 2. Since we observed in our G.fast simulations
(see Section VII for details) that the ATP constraints are
always inactive due to the per-tone spectral mask and bit cap
constraints, θ is set to zero. Fig. 4 then illustrates the search
for λk at tone k = 2000, with L = 10 and N = 10, and
using {λl

k
= 108} as the Lagrange multiplier starting point.

As can be seen in the figure, adequate tuning of β leads to
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Fig. 4. Comparison between various step size sequences for the subgradient
method by Alg. 2 for a (L = 10) G.fast cable binder with N = L at tone
k = 2000. Constant(β) refers to the update rule δt = β, Square Summable(β)
refers to the update rule δt =

β
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δt =
β√
t

. Here
√∑

l |Pmask
k
−∑

m[Pk ]l,msm
k
) |2/Pmask

k
versus the iteration

number is shown.

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

Algorithm Computational complexity

QRD-based ZF-NLP (Alg. 1) O(KN2L + I1KN )
QRD-based dual decomposition (Alg. 4) O(I1KN2L)

BC-DSB-NLP with Jacobi update [4] O(I1I2KNL2)

acceptable solution accuracies after a reasonable number of
iterations (20-100). We remark that for higher frequency tones
(>175 MHz) with high direct channel attenuation or few active
users (N � L) sometimes slightly smaller initial step sizes are
needed for proper convergence.

Finally, the computational complexity of the QRD-based
dual decomposition algorithm is also compared with standard
QRD-based ZF-NLP (Alg. 1 in Section IV-A) and MMSE-
NLP (by means of the BC-DSB-NLP algorithm [4]). The
comparison is summarized in Table I and also accounts for
the number of tones K . Here I1 denotes the number of
subgradient iterations needed for convergence. Standard QRD-
based ZF-NLP only needs to compute the QRDs of the
complex conjugated channel matrices once at initialization,
and can be re-used for all subgradient iterations. The BC-
DSB-NLP algorithm with Jacobi updates has a complexity of
O(I2KN L2) per subgradient iteration, where I2 is the number
of inner iterations and is relatively small compared to I1 [4].

VII. G.FAST CABLE BINDER SIMULATION

In this section, we simulate a cable binder consisting out of
10 lines of 80 m for the downstream G.fast 212 MHz profile.
The channel matrices have been obtained by measurements.
We remark that the observed crosstalk levels in this particular
cable binder are rather high compared to other G.fast measure-
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Fig. 5. The average user peak-rate is plotted versus the number of active
users N in a L = 10 G.fast cable binder.

ments. Considering the latest recommended G.fast parameters
[1], the ATP constraints are set to 8 dBm while the per-
tone PSD spectral masks are obtained from [21] ranging from
−65 dBm/Hz to −79 dBm/Hz. The capacity gap Γ is set to
10.25 dB and the tone spacing ∆ f is 51.75 kHz. The noise
PSD is assumed to be −140 dBm/Hz. The symbol rate is 48
kHz and the bitcap is 14. We consider unweighted sum-rate
optimization with {wn = 1|∀n}.

For this cable binder, we evaluate various NLP schemes
when varying the number of active users N and considering
all

(L
N

)
combinations (see Fig. 5). Included schemes are

optimal ZF-NLP (corresponding to the QRD and SVD-BD-
based implementation of Alg. 2 in Section V), standard QRD-
based ZF-NLP (Alg. 1 in Section IV-A), and MMSE-NLP (by
means of the BC-DSB-NLP algorithm [4] where we set the
weights of inactive users to zero). All three precoding schemes
always use all available lines for transmission regardless the
number of active users.

Clearly, the results show that the peak-rate performance may
be substantially boosted over standard QRD-based ZF-NLP. In
particular when only a few users in the binder are active, with
up to 175 Mbps improvement for one active user. Remarkably,
when all users are active (i.e. N = L) the gain of optimal
ZF-NLP over QRD-based ZF-NLP is negligible. Furthermore,
MMSE-NLP yields only very small gains over optimal ZF-
NLP.

These optimal ZF precoding gains are explained by the
additional degrees of freedom in the ZF-NLP design problem
under PLPCs that are left unexploited by the standard QRD-
based precoder. Naturally, the largest precoding gains occur
for the case with N � L leading to large channel matrix null-
spaces to be used. Additionally, the columns of the optimal
nonlinear ZF precoder are non-orthogonal, unlike the columns
of the standard QRD-based precoder. This is the very reason
why even for a square channel (i.e. N = L), when all channel
matrix null-spaces are empty, there remains a ZF precoding
gain, although very small.
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Fig. 7. The per-line transmit powers in the cable binder with N = 1 active
user for optimal ZF-NLP (top) and QRD-based ZF-NLP (bottom).

Point of fact, these additional degrees of freedom enable
optimal ZF-NLP to utilize the full transmit power on all lines,
in contrast to QRD-based ZF-NLP. We illustrate this in Fig. 6
where the number of active spectral mask PLPCs8 versus the
number of active users N is shown. Interestingly, when only
one user is active, QRD-based ZF-NLP transmits only on one
out of ten lines at full spectral mask power. This is explained
by the QRD-based precoder being now a single column with
its entries having in general different magnitudes, see the
‘simple example’ in Section IV-B, and is illustrated in Fig. 7.

VIII. GENERALIZATION TO BONDED TRANSMISSION

Until now we have considered only a single line terminating
at the customer premise equipment of each user. Here we
consider An ≥ 1 lines terminating at the customer premise
equipment of user n, which is referred to as bonded transmis-
sion in DSL [31] and corresponds to a so-called MIMO-BC

8We observed in our simulations for this particular G.fast cable binder that
the 8 dBm ATP constraints are always inactive due to the per-tone spectral
mask and bit cap constraints. Furthermore, in Fig. 6, we disregarded all low
frequencies where the spectral mask PLPCs are inactive due to the maximum
bit cap constraint.

scenario. The received signal for user n on tone k is now a
vector

ûn
k = Gn

kHn
k

(
Pn
k

(
Sn
k

)1/2 un
k +

∑
m>n

Pm
k

(
Sm
k

)1/2 um
k

)
+Gn

kznk,

(54)

where the An×L matrix Hn
k

represents the channel gains from
L transmitters to An receivers for user n at tone k. Pn

k
is the

L × An precoder matrix, Gn
k

is the An × An receiver matrix,
Sn
k

is the An× An diagonal gain scaling matrix which contains
the transmit PSDs, and un

k
and zn

k
are the An data and noise

signal vector respectively for user n and tone k.
Similar to (10), the ZF condition for the MIMO-BC scenario

with NLP on tone k is defined as

GkHkPk =


IA1 0 · · · 0
∗ IA2 · · · 0
...

...
. . .

...
∗ ∗ · · · IAN

︸                        ︷︷                        ︸
Lk

(55)

where Gk = blockdiag{G1
k
, · · · ,GN

k
} and Lk is an arbitrary∑

n An ×
∑

n An lower triangular block matrix with identity
matrices on the main diagonal.

These identity constraints are without loss of optimality
since we consider linear separation of the per-line data streams
and independent decoding at each terminated line. Moreover,
two-sided intra-user signal coordination boasts a degree of
freedom that allows to rotate the precoder and receiver ma-
trices of all users n on tone k such that the intra-user data
streams are decorrelated.

As a result, the Lagrange dual function of the ZF-NLP
design problem for given Lagrange multipliers {Ωk} can be
formulated similar to (38) for the MIMO-BC scenario as (and
dropping the tone index again)

g̃(Ω) = maximize
G,P,s∈D

∑
n,i

log2

(
1 +

sin
Γσ

)
− Tr {ΩPSP}

s.t. GHP = L, (56)

with sin the ith diagonal element of Sn.
To solve (56), we now exploit the SPC-optimality of the

MIMO-BC version of the QRD-based precoder proposed in
[32]. First, the QRD of the scaled channel H̃ = HΩ−1/2 is
computed, i.e., H̃H qr

= Q̃R̃. Then, the optimal precoder matrix
P̃ =

[
P̃1, . . . , P̃N

]
has the following structure

P̃ = Q̃W =
[
Q̃1, . . . , Q̃N

]
W, (57)

where W = blockdiag{W1, · · · ,WN }, and Wn is computed
using the following SVD

H̃nQ̃n =
[
R̃H

]
n

SVD
= ŨnΣ̃nṼH

n , (58)

with
[
R̃H

]
n

denoting the An × An nth submatrix on the main
diagonal of R̃H . This leads to choosing Wn = ṼnΣ̃

−1
n and

Gn = ŨH
n which satisfies (55). The transmit PSDs are then
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Fig. 8. The average user peak-rate is plotted vs. the number of active users
N with bonded transmission {An = 2, ∀n} in a L = 10 G.fast cable binder.

obtained by the water-filling solution over the singular values
{σ̃i

n} with σ̃i
n the ith diagonal element of Σ̃n

sin =
[
wn

(
1/[σ̃i

n

]2
)−1
− Γσ

] smax

0
∀n, i. (59)

The proposed approach for ZF precoding under PLPCs
in the MIMO-BC scenario leads to a significant complexity
reduction over the state-of-the-art SVD-BD [17], as already
is demonstrated for An = 1 for all users n in Section VI.
Furthermore, equivalence between both approaches may be
shown by extending the proof in Section V-B which is omitted
here for brevity.

We simulated the same G.fast cable binder of Section VII
for bonded transmission by re-using it as an N = 5 user
scenario with An = 2 lines per user. Fig. 8 includes the
average user peak-rates versus the number of active users of
the optimal ZF-NLP, the QRD-based ZF-NLP, and MMSE-
NLP [4] algorithm for the MIMO-BC and BC (the latter
which only considers tranmitter signal coordination). Likewise
for bonded transmission, a substantial optimal ZF precoding
gain is observed. However, as can be expected from [4], the
performance gain of bonded transmission (in the sense of the
additional receiver signal coordination) is quite small for NLP,
and decreases for a decreasing number of active users. Notice
that larger gains for the MIMO-BC in G.fast are expected
when linear precoding is employed [4].

IX. CONCLUSION

We have developed a novel optimal low-complexity dual
decomposition algorithm for the ZF-NLP design problem un-
der PLPCs to maximize the active-user peak-rates. Key in this
algorithm is the transformation of the Lagrange dual function
with PLPCs into an easier virtual SPC, such that the SPC-
optimality of the QRD-based precoder may be exploited. We
have demonstrated that a significant computational complexity
reduction is achieved over the state-of-the-art SVD-BD [17].
Simulations of a G.fast cable binder have revealed substantial

peak-rate gains when transmitting on all lines over QRD-
based ZF-NLP. Furthermore, we have shown that the proposed
algorithm naturally extends to the MIMO-BC scenario.
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