
1

Parallelized Tensor Train Learning of Polynomial
Classifiers

Zhongming Chen∗, Kim Batselier†, Johan A.K. Suykens‡ and Ngai Wong†

Abstract—In pattern classification, polynomial classifiers are
well-studied methods as they are capable of generating complex
decision surfaces. Unfortunately, the use of multivariate polyno-
mials is limited to kernels as in support vector machines, because
polynomials quickly become impractical for high-dimensional
problems. In this paper, we effectively overcome the curse of
dimensionality by employing the tensor train format to represent
a polynomial classifier. Based on the structure of tensor trains,
two learning algorithms are proposed which involve solving
different optimization problems of low computational complexity.
Furthermore, we show how both regularization to prevent overfit-
ting and parallelization, which enables the use of large training
sets, are incorporated into these methods. Both the efficiency
and efficacy of our tensor-based polynomial classifier are then
demonstrated on the two popular datasets USPS and MNIST.

Index Terms—Supervised learning, tensor train, pattern clas-
sification, polynomial classifier.

I. INTRODUCTION

Pattern classification is the machine learning task of iden-
tifying to which category a new observation belongs, on the
basis of a training set of observations whose category mem-
bership is known. This machine learning task based on fully
known label information is called supervised learning, which
has been extensively studied and has wide applications in the
fields of bioinformatics [1], computer-aided diagnosis (CAD)
[2], machine vision [3], speech recognition [4], handwriting
recognition [5], spam detection and many others [6]. Usually,
different kinds of learning methods use different models to
generalize from training examples to novel test examples.

As pointed out in [7], [8], one of the important invariants
in these applications is the local structure: variables that are
spatially or temporally nearby are highly correlated. Local
correlations benefit extracting local features because configu-
rations of neighboring variables can be classified into a small
number of categories (e.g. edges, corners...). For instance, in
handwritten character recognition, correlations between image
pixels that are nearby tend to be more reliable than the
ones of distant pixels. Learning methods incorporating this
kind of prior knowledge often demonstrate state-of-the-art
performance in practical applications. One popular method
for handwritten character recognition is using convolutional
neural networks (CNNs) [9], [10] which are variations of
multilayer perceptrons designed to use minimal amounts of

∗Department of Mathematics, School of Science, Hangzhou Dianzi Uni-
versity, Hangzhou 310018, China. Email: czm183015@126.com.
†Department of Electrical and Electronic Engineering, The University of

Hong Kong. Email: {kimb, nwong}@eee.hku.hk.
‡KU Leuven, ESAT, STADIUS. B-3001 Leuven, Belgium. Email: jo-

han.suykens@esat.kuleuven.be.

preprocessing. In this model, each unit in a layer receives
inputs from a set of units located in a small neighborhood
in the previous layer, and these mappings share the same
weight vector and bias in a given convolutional layer. Another
important component of a CNN are the pooling layers, which
implement a nonlinear form of down-sampling. In this way,
the amount of parameters and computational load are reduced
in the network. Another popular method uses support vector
machines (SVMs) [11], [12]. The original finite-dimensional
feature space is mapped into a much higher-dimensional
space, where the inner product is easily computed through the
‘kernel trick’. By considering the Wolfe dual representation,
one can find the maximum-margin hyperplane to separate the
examples of different categories in that space. However, it is
worth mentioning that these models require a large amount of
memory and a long processing time to train the parameters. For
instance, if there are thousands of nodes in the convolutional
neural network, the weight matrices of fully-connected layers
are of the order of millions. The major limitation of basic
support vector machines is the high computational complexity
which is at least quadratic with the dataset size. One way to
deal with large datasets in the SVM-framework is by using
fixed-size least squares support vector machines (fixed-size
LS-SVM) [13]. The main idea used in fixed-size LS-SVM
is to approximate the kernel mapping in such a way that the
problem can be solved in the primal space.

To make storage and computation feasible, some researchers
try to do the task of pattern classification by using tensors [14],
[15], [16], [17], [18]. Different from these methods, we focus
on extending the classic polynomial classifiers due to the close
relationship between polynomials and tensors. That is, we
exploit the efficient representation of a multivariate polynomial
as a Tensor Train in order to avoid the curse of dimensionality,
allowing us to work directly in the feature space. In this paper,
we present the framework of tensor train learning. The main
contributions are listed as follows.

• We derive a compact description of a polynomial classi-
fier using the tensor train format, avoiding the curse of
dimensionality.

• Two efficient learning algorithms are proposed by exploit-
ing the tensor train structure.

• Both regularization and a parallel implementation are
incorporated into our methods, thus avoiding overfitting
and allowing the use of large training datasets.

This paper is organized as follows. In Section II, we give
a brief introduction to tensor basics, including the tensor train
decomposition, important tensor operations and properties.

ar
X

iv
:1

61
2.

06
50

5v
3

 [
cs

.L
G

]
 2

3
D

ec
 2

01
6

2

i1

i2

i3

1 5 9

2 6 10

3 7 11

4 8 12

13 17 21

14 18 22

15 19 23

16 20 24

Fig. 1. An example tensor in R4×3×2.

The framework of tensor train learning for pattern classifi-
cation is presented in Section III. Based on different loss
functions, two efficient learning algorithms are proposed in
Section IV, together with a discussion on regularization and
parallelization. In Section V, we test our algorithms on two
popular datasets: USPS and MNIST and compare their perfor-
mance with polynomial classifiers trained with least squares
support vector machines [13]. Finally, some conclusions and
further work are summarized in Section VI.

Throughout this paper, we use small letters x, y, . . . , for
scalars, small bold letters x,y, . . . , for vectors, capital letters
A,B, . . . , for matrices, and calligraphic letters A,B, . . . , for
tensors. The transpose of a matrix A or vector x is denoted
by A> and x>, respectively. The identity matrix of dimension
n is denoted by In.

II. PRELIMINARIES

A. Tensors and pure-power-n polynomials

A real dth order tensor is a multidimensional array A ∈
Rn1×n2×···×nd that generalizes the notions of vectors and
matrices to higher orders. Each of the entries Ai1i2···id is
determined by d indices. The numbers n1, n2, . . . , nd are
called the dimensions of the tensor. An example tensor with
dimensions 4, 3, 2 is shown in Fig. 1. We now give a brief
introduction to some required tensor operations and properties,
more information can be found in [19].

The k-mode product B = A ×k U of a tensor A ∈
Rn1×n2×···×nd and a matrix U ∈ Rn′k×nk is defined by

Bi1···ik−1jik+1···id =

nk∑
ik=1

Ai1···ik−1ikik+1···idUjik , (1)

and B ∈ Rn1×···×nk−1×n′k×nk+1×···×nd . In particular, given a
dth order tensor A ∈ Rn×n×···×n and a vector x ∈ Rn, the
multidimensional contraction, denoted by Axd, is the scalar

Axd = A×1 x
> ×2 x

> ×3 · · · ×d x>, (2)

which is obtained as a homogeneous polynomial of x ∈ Rn
with degree d. The inner product of two same-sized tensors
A,B ∈ Rn1×n2×···×nd is the sum of the products of their
entries, i.e.,

〈A,B〉 =
n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

Ai1i2···idBi1i2···id . (3)

The Frobenius norm of a tensor A ∈ Rn1×n2×···×nd is given
by

‖A‖F =
√
〈A,A〉. (4)

The vectorization of a tensor A ∈ Rn1×n2×···×nd is de-
noted by vec(A) and maps the tensor element with indices
(i1, i2, . . . , id) to the vector element with index i where

i = i1 + (i2 − 1)n1 + · · ·+ (id − 1)

d−1∏
k=1

nk.

Given d vectors x(i) ∈ Rni , i = 1, 2, . . . , d, their outer product
is denoted by x(1) ◦ x(2) ◦ · · · ◦ x(d), which is a tensor in
Rn1×n2×···×nd such that its entry with indices (i1, i2, . . . , id)
is equal to the product of the corresponding vector elements,
namely, x(1)i1 x

(2)
i2
· · ·x(d)id . It follows immediately that

vec(x(1) ◦x(2) ◦ · · · ◦x(d)) = x(d)⊗x(d−1)⊗ · · ·⊗x(1), (5)

where the symbol “⊗” denotes the Kronecker product.
We now illustrate how to represent a polynomial by using

tensors. Denote by R[x] the polynomial ring in d variables
x = (x1, x2, . . . , xd)

> with coefficients in the field R.

Definition 1. Given a vector n = (n1, n2, . . . , nd) ∈ Nd, a
polynomial f ∈ R[x] with d variables is called pure-power-n
if the degree of f is at most ni with respect to each variable
xi, i = 1, 2, . . . , d.

The set of all pure-power-n polynomials with the degree
vector n = (n1, n2, . . . , nd) ∈ Nd is denoted by R[x]n. For
any f(x) ∈ R[x]n, there are a total of

∏d
k=1(nk + 1) distinct

monomials
d∏
k=1

xik−1k , 1 ≤ ik ≤ nk + 1, k = 1, 2, . . . , d.

For x = (x1, x2, . . . , xd)
> ∈ Rd, denote by {v(xk)}dk=1 the

Vandermonde vectors

v(xk) := (1, xk, . . . , x
nk

k)> ∈ Rnk+1. (6)

It follows that there is a one-to-one mapping between
pure-power-n polynomials and tensors. To be specific, for
any f(x) ∈ R[x]n, there exists a unique tensor A ∈
R(n1+1)×(n2+1)×···×(nd+1) such that

f(x) = A×1 v(x1)
> ×2 v(x2)

> ×3 · · · ×d v(xd)>. (7)

B. Tensor trains

It is well known that the number of tensor elements grows
exponentially with the order d. Even if the mode size (i.e.
the number of possible values of each index) of a tensor is
small, the storage cost for all elements is prohibitive for large
d. The tensor train decomposition [20] gives an efficient way
(in storage and computation) to overcome this so-called curse
of dimensionality.

The main idea of the tensor train (TT) decomposition is to
re-express a tensor A ∈ Rn1×n2×···×nd as

Ai1i2···id = G1(i1)G2(i2) · · · Gd(id), (8)

3

݊1

݊2
 1ݎ 3݊ 2݊ 1݊ 3݊

 2ݎ 1ݎ 2ݎ
= ࣛ

࣡1 ࣡2 ࣡3
Fig. 2. The TT-decomposition for a tensor in Rn1×n2×n3 .

where Gk(ik) is a rk−1 × rk matrix for each index ik, also
called the TT-core. To turn the matrix-by-matrix product (8)
into a scalar, boundary conditions r0 = rd = 1 have to
be introduced. The quantities {rk}dk=0 are called the TT-
ranks. Note that each core Gk is a third-order tensor with
dimensions rk−1, nk and rk. The TT-decomposition for a
tensor A ∈ Rn1×n2×n3 is illustrated in Fig. 2. Let n =
max{n1, n2, . . . , nd}. It turns out that if all TT-ranks are
bounded by r, the storage of the tensor train is O(dnr2), which
only grows linearly with the order d. It has been shown that
any tensor can be represented in tensor train format.

Proposition 1 (Theorem 2.1 of [21]). For any tensor A ∈
Rn1×n2×···×nd , there exists a TT-decomposition with TT-ranks

rk ≤ min(

k∏
i=1

ni,

d∏
i=k+1

ni), k = 1, 2, . . . , d− 1.

We also mention that the TT representation of a tensor is
not unique. For instance, let Q be an orthogonal matrix in
Rr1×r1 , namely, QQ> = Q>Q = Ir1 . Then the tensor A in
(8) also has the TT-decomposition

Ai1i2···id = G′1(i1)G′2(i2) · · · Gd(id), (9)

where

G′1(i1) = G1(i1)Q, G′2(i2) = Q>G2(i2).

Numerical stability of our learning algorithms is guaranteed
by keeping all the TT-cores left-orthogonal or right-orthogonal
[22], which is achieved through a sequence of QR decompo-
sitions as explained in Section IV.

Definition 2. The rk−1 × nk × rk core Gk is called left-
orthogonal if

nk∑
ik=1

Gk(ik)>Gk(ik) = Irk ,

and the rk−1 × nk × rk core Gk is called right-orthogonal if

nk∑
ik=1

Gk(ik)Gk(ik)> = Irk−1
.

As stated before, the structure of a tensor train also benefits
the computation of the general multidimensional contraction:

f = A×1 (v
(1))> ×2 (v

(2))> ×3 · · · ×d (v(d))>, (10)

where A ∈ Rn1×n2×···×nd and v(i) = (v
(i)
1 , v

(i)
2 , . . . , v

(i)
ni)
> ∈

Rni , i = 1, 2, . . . , d. If a tensor A is given in the tensor train
format (8), then we have

f =

d∏
k=1

nk∑
ik=1

v
(k)
ik
Gk(ik). (11)

It follows that the computation of multidimensional contrac-
tion reduces to the computation of d matrices and evaluating
matrix-by-vector products. The total computational complexity
is O(dnr2), which is also linear in d. The described procedure
for fast tensor train contraction is summarized in Algorithm 1.
For more basic operations implemented in the tensor train
format, such as tensor addition and computing the Frobenius
norm, the reader is referred to [20].

Algorithm 1 Fast Tensor Train Contraction [20]

Input: Vectors v(k) ∈ Rnk , k = 1, 2, . . . , d and a tensor A
in the TT-format with cores Gk

Output: The multidimensional contraction f in (10)
1: for k = 1 : d do
2: V (k) =

∑nk

ik=1 v
(k)
ik
Gk(ik) %Computed in parallel

3: end for
4: v := V (1)

5: for k = 2 : d do
6: v := vV (k)

7: end for
8: return f = v

III. TENSOR TRAIN LEARNING

It is easy for us to recognize a face, understand spoken
words, read handwritten characters and identify the gender of
a person. Machines, however, make decisions based on the
data measured by a lot of sensors. In this section, we present
the framework of tensor train learning. Like most pattern
recognition systems [23], our tensor train learning method
consists in dividing the system into three main modules, shown
in Fig. 3.

The first module is called feature extraction, which is of
paramount importance in any pattern classification problem.
The goal of this module is to build features via transformations
of the input (measurements) samples. The basic reasoning be-
hind transform-based features is that an appropriately chosen
transformation can exploit and remove information redundan-
cies, which usually exist in the set of samples obtained by the
measuring devices. The set of features exhibit high informa-
tion packaging properties compared with the original input
samples. This means that most of the classification-related
information is compressed into a relatively small number of
features, leading to a reduction of the necessary feature space
dimension. Feature extraction benefits to training the classifier
in terms of memory and computation, and also alleviates
the problem of over-fitting since we get rid of redundant
information. To deal with the task of feature extraction, some
linear or nonlinear transformation techniques are widely used
in the literature. For example, the Karhunen-Loève transform,
related to principal component analysis (PCA), is one popular

4

method for feature generation and dimensionality reduction. A
nonlinear kernel version of the classical PCA is called kernel
principal component analysis, which is an extension of PCA
using the techniques of kernel methods. The discrete Fourier
transform (DFT) can be another good choice due to the fact
that for many practical applications, most of the energy lies
in the low-frequency components. Compared with PCA, the
basis vectors in the DFT are fixed and problem dependent,
which leads to a low computational complexity.

The second module, the TT classifier, is the core of tensor
train learning. The purpose of this module is to mark a new
observation based on its features generated by the previous
module. As we discuss later, the task of pattern classification
can be divided into a sequence of binary classifications. For
each particular binary classification, the TT classifier assigns
to each new observation a score that indicates which class it
belongs to. In order to construct a good classifier, we exploit
the fact that we know the labels for each sample of a given
dataset. The TT classifier is trained optimally with respect to
an optimality criterion. In some ways, the TT classifier can
be regarded as a kind of generalized linear classifier, it does
a linear classification in a higher dimensional space generated
by the items of a given pure-power polynomial. The local
information is encoded by the products of features. In contrast
to kernel-based SVM classifiers that work in the dual space,
the TT classifier is able to work in the high dimensional
space by exploiting the tensor train format. Similar with
the backpropagation algorithm for multilayer perceptrons, the
structure of tensor trains allows for updating the cores in
an alternating way. In the next section, we will describe the
training of two TT classifiers through the optimization of two
different loss functions.

The last module in Fig. 3 is called the decision module
and decides which category a new observation belongs to.
For binary classification, decisions are made according to the
sign of the score assigned by the TT classifier, namely, the
decision depends on the value of corresponding discriminant
function. In an m-class problem, there are several strategies to
decompose it into a sequence of binary classification problems.
A straightforward extension is the one-against-all, where m
binary classification problems are involved. We seek to design
discriminant functions {gi(x)}mi=1 so that gi(x) > gj(x),
∀j 6= i if x belongs to the ith class. Classification is then
achieved according to the rule:

assign x to the ith class if i = argmaxk gk(x).

An alternative technique is the one-against-one, where we
need to consider m(m − 1)/2 pairs of classes. The decision
is made on the basis of a majority vote. It means that each
classifier casts one vote and the final class is the one with
the most votes. When the number m is too large, one can
also apply the technique of binary coding. It turns out that
only dlog2me classifiers are used, where d·e is the ceiling
operation. In this case, each class is represented by a unique
binary code word of length dlog2me. The decision is then
made on the basis of minimal Hamming distance.

Feature

Extraction

Module

TT Classifier

Module

Decision

Module

Raw

Input

Category

Fig. 3. Framework of tensor train learning.

IV. LEARNING ALGORITHMS

As stated before, TT classifiers are designed for binary
classification. Given a set of N training examples of the form
{(x(j), y(j))}Nj=1 such that x(j) ∈ Rd is the feature vector
of the jth example and y(j) ∈ {−1, 1} is the corresponding
label, depending on the class ownership of x(j). Let n =
(n1, n2, . . . , nd)

> ∈ Nd be the degree vector. Each feature is
then mapped to a higher dimensional space generated by all
corresponding pure-power-n monomials through the mapping
T : Rd → R(n1+1)×(n2+1)×···×(nd+1)

T (x)i1i2···id =

d∏
k=1

xik−1k . (12)

Here, we define 00 = 1 for simplicity of notation. For x =
(x1, x2, . . . , xd)

> ∈ Rd, let {v(xk)}dk=1 be the Vandermonde
vectors defined in (6). Clearly, we have

T (x) = v(x1) ◦ v(x2) ◦ · · · ◦ v(xd). (13)

The introduction of this high-dimensional pure-power poly-
nomial space benefits the learning task from the following
aspects:
• all the interactions between features are well described

by the monomials of pure-power polynomials;
• the dimension of the tensor space grows exponentially

with d, namely,
∏d
k=1(nk + 1), which increases the

probability of separating all training examples linearly
into two-class groupings;

• the one-to-one mapping between pure-power polynomials
and tensors enables the use of tensor trains to lift the curse
of dimensionality.

With these preparations, our goal is to find a decision
hyperplane to separate these two-class examples in the tensor
space, also called the generic feature space. In other words,
like the inductive learning described in [14], we try to find a
tensor A ∈ R(n1+1)×(n2+1)×···×(nd+1) such that

y(j)〈T (x(j)),A〉 > 0, j = 1, 2, . . . , N.

Note that the bias is absorbed in the first element of A. It can
also be interpreted to find a pure-power-n polynomial g(x)
such that

g(x(j)) > 0, ∀y(j) = 1,

and
g(x(j)) < 0, ∀y(j) = −1.

Here we consider that the tensor A is expressed as a tensor
train with cores {Gk}dk=1. The main idea of the TT learning
algorithms is to update the cores in an alternating way by
optimizing an appropriate loss function. Prior to updating the
TT-cores, the TT-ranks are fixed and a particular initial guess
of {Gk}dk=1 is made. The TT-ranks can be interpreted as tuning

5

parameters, higher values will result in a better fit at the risk
of overfitting. It is straightforward to extend our algorithms by
means of the Density Matrix Renormalization Group (DMRG)
method [24] such that the TT-ranks are updated adaptively.
Each core is updated in the order

G1 → G2 → · · · → Gd → Gd−1 → · · · → G1 → · · ·

until convergence is reached. Convergence is guaranteed under
certain conditions as described in [25], [26]. It turns out that
updating one TT-core is equivalent with minimizing a loss
function in a small number of variables, which can be done
in a very efficient manner. The following theorem shows how
the inner product 〈T (x),A〉 in the generic feature space is a
linear function in any of the TT-cores Gk.

Theorem 1. Given a vector n = (n1, n2, . . . , nd)
> ∈ Nd,

let T be the mapping defined by (12), and let A be a TT
with cores Gk ∈ Rrk−1×(nk+1)×rk , k = 1, 2, . . . , d. For any
x ∈ Rd and k = 1, . . . , d, we have that

〈T (x),A〉 =
(
qk(x)

> ⊗ v(xk)
> ⊗ pk(x)

)
vec(Gk), (14)

where

p1(x) = 1, pk(x) =

k−1∏
i=1

(
Gi ×2 v(xi)

>) ∈ R1×rk−1 ,

and

qk(x) =

d∏
i=k+1

(
Gi ×2 v(xi)

>) ∈ Rrk×1, qd(x) = 1.

Proof. By definition, we have

〈T (x),A〉 = A×1 v(x1)
> ×2 · · · ×d v(xd)>

=
(
G1 ×2 v(x1)

>) · · · (Gd ×2 v(xd)
>)

= Gk ×1 pk(x)×2 v(xk)
> ×3 qk(x)

>

=
(
qk(x)

> ⊗ v(xk)
> ⊗ pk(x)

)
vec(Gk)

for any k = 1, 2, . . . , d. This completes the proof.

Example 1. In this example we illustrate the advantageous
representation of a pure-power polynomial f as a TT. Suppose
we have a polynomial f with d = 10 and all degrees ni =
9 (i = 1, . . . , 10). All coefficients of f(x) can then be stored
into a 10-way tensor 10 × 10 × · · · × 10 tensor A such that
the evaluation of f in a particular x is given by (7). The TT-
representation of f consists of 10 TT-cores G1, . . . ,G10, with
a storage complexity of O(100r2), where r is the maximal TT-
rank. This demonstrates the potential of the TT-representation
in avoiding the curse of dimensionality when the TT-ranks are
small.

Example 2. Next, we illustrate the expressions for
T (x),A,v(xk),qk(x),pk(x) for the following quadratic
polynomial in two variables f(x) = 1 + 3x1 − x2 − x21 +
7x1x2 + 9x22. Since d = 2 and n1 = n2 = 2, both T and A
are the following 3× 3 matrices

T (x) =

 1 x2 x22
x1 x1x2 x1x

2
2

x21 x21x2 x21x
2
2

 , A =

 1 −1 9
3 7 0
−1 0 0

 .

The TT-representation of A consists of a 1× 3× 3 tensor G1
and a 3 × 3 × 1 tensor G2. Suppose now that k = 2 and
we want to compute the evaluation of the polynomial f in a
particular x, which is 〈T (x),A〉. From Theorem 1 we then
have that

〈T (x),A〉 =
(
q2(x)

> ⊗ v(x2)
> ⊗ p2(x)

)
vec(G2),

with

q2(x) = 1 ∈ R,

v(x2) =
(
1 x2 x22

)> ∈ R3,

p2(x) = G1 ×2 v(x1)
> ∈ R1×3,

v(x1) =
(
1 x1 x21

)> ∈ R3.

In what follows, we first present two learning algorithms
based on different loss functions. These algorithms will learn
the tensor A directly in the TT-representation from a given
dataset. Some techniques, like regularization and parallel im-
plementation, will be described in the last two subsections.

A. TT Learning by Least Squares

Least squares estimation is the simplest and thus most
common estimation method. In the generic feature space, we
attempt to design a linear classier so that its desired output
is exactly the label 1 or −1. However, we have to live with
errors, that is, the true output will not always be equal to the
desired one. The least squares estimator of the linear classifier
is then found from minimizing the following mean square error
function

J(A) = 1

N

N∑
j=1

(
〈T (x(j)),A〉 − y(j)

)2
. (15)

We now show how updating a TT-core Gk is equivalent with
solving a relatively small linear system. First, we define the
N × rk−1(nk + 1)rk matrix

Ck =


qk(x

(1))> ⊗ v(x
(1)
k)> ⊗ pk(x

(1))

qk(x
(2))> ⊗ v(x

(2)
k)> ⊗ pk(x

(2))
...

qk(x
(N))> ⊗ v(x

(N)
k)> ⊗ pk(x

(N))

 (16)

for any k = 1, 2, . . . , d. The matrix Ck is hence obtained
from the concatenation of the row vectors qk(x)>⊗v(xk)>⊗
pk(x) from (14) for N samples x(1), . . . ,x(N). It follows from
Theorem 1 that

J(A) = 1

N
‖Ck vec(Gk)− y‖2 (17)

where
y = (y(1), y(2), . . . , y(N))> ∈ RN . (18)

We have thus shown that updating the core Gk is equivalent
with solving a least square optimization problem in rk−1(nk+
1)rk variables. Minimizing (17) with respect to Gk for any
k = 1, . . . , d results in solving the linear system

(C>k Ck) vec(Gk) = C>k y, (19)

with a complexity of at most O((rk−1(nk + 1)rk)
3).

6

B. TT Learning by Logistic Regression

Since our goal is to find a hyperplane to separate two-class
training examples in the generic feature space, we may not
care about the particular value of the output. Indeed, only
the sign of the output makes sense. This gives us the idea to
decrease the number of sign differences as much as possible
when updating the TT-cores, that is to minimize the number
of misclassified examples. However, this model is discrete so
that a difficult combinatorial optimization problem is involved.
Instead, we try to find a suboptimal solution in the sense of
minimizing a continuous cost function that penalizes misclas-
sified examples. Here, we consider the logistic regression cost
function. First let us consider the standard sigmoid function

σ(z) =
1

1 + e−z
, z ∈ R,

where the output always takes values between 0 and 1. An
important property is that its derivative can be expressed by
the function itself, i.e.,

σ′(z) = σ(z)(1− σ(z)). (20)

The logistic function for the jth example x(j) is given by

hA(x
(j)) := σ

(
〈T (x(j)),A〉

)
. (21)

We can also interpret the logistic function as the probability
that the example x(j) belongs to the class denoted by the
label 1. The predicted label ỹ(j) for x(j) is then obtained
according to the rule{

hA(x
(j)) ≥ 0.5⇔ 〈T (x(j)),A〉 ≥ 0→ ỹ(j) = 1,

hA(x
(j)) < 0.5⇔ 〈T (x(j)),A〉 < 0→ ỹ(j) = −1.

For a particular example x(j), we define the cost function as

Cost(x(j),A) =

 − log
(
hA(x

(j))
)

if y(j) = 1,

− log
(
1− hA(x(j))

)
if y(j) = −1.

The goal now is to find a tensor A such that hA(x(j)) is near
1 if y(j) = 1 or near 0 if y(j) = −1. As a result, the logistic
regression cost function for the whole training dataset is given
by

J(A) = 1

N

N∑
j=1

Cost(x(j),A)

=
−1
N

N∑
j=1

[
1 + y(j)

2
log
(
hA(x

(j))
)
+

1− y(j)

2
log
(
1− hA(x(j))

)]
.

(22)

It is important to note that the logistic regression cost function
(22) is convex though the sigmoid function is not. This
guarantees that we can find the globally optimal solution
instead of getting stuck in a local optimum.

From equation (21) and Theorem 1 one can see that the
function J(A) can also be regarded as a function of the core
Gk since

〈T (x(j)),A〉 = Ck(j, :) vec(Gk)

where Ck(j, :) denote the jth row vector of Ck defined in (16).
It follows that updating the core Gk is equivalent with solving
a convex optimization problem in rk−1(nk + 1)rk variables.
Let

hA =
(
hA(x

(1)), hA(x
(2)), . . . , hA(x

(N))
)>
∈ RN (23)

and DA be the diagonal matrix in RN×N with the jth
diagonal element given by hA(x(j))

(
1− hA(x(j))

)
. By using

the property (20) one can derive the gradient and Hessian with
respect to Gk as

∇GkJ(A) =
1

N
C>k

(
hA −

y + 1

2

)
(24)

and

∇2
GkJ(A) =

1

N
C>k DACk, (25)

respectively, where y is defined in (18) and 1 denotes the
all-ones vector in RN . Though we do not have a closed-
form solution to update the core Gk, the gradient and Hessian
allows us to find the solution by efficient iterative methods,
e.g. Newton’s method whose convergence is at least quadratic
in a neighbourhood of the solution. The quasi-Newton method,
like the BFGS algorithm, is another good choice if the inverse
of the Hessian is difficult to compute.

C. Regularization

The cost functions (15) and (22) of the two TT learning
algorithms do not have any regularization term, which may
result in overfitting and hence bad generalization properties of
the obtained TT classifier. Next, we discuss how the addition
of a regularization term to (15) and (22) results in a small
modification of the small optimization problem that needs to
be solved when updating the TT-cores Gk.

Consider the regularized optimization problem

J̃(A) = J(A) + γR(A), (26)

where J(A) is given by (15) or (22), γ is a parameter that
balances the loss function and the regularization term. Here
we use the Tikhonov regularization, namely,

R(A) = 1

2
〈A,A〉. (27)

Thanks to the TT structure, the gradient of R(A) with respect
to the TT-core Gk can be equivalently rewritten as a linear
transformation of vec(Gk). In other words, there is a matrix
Dk ∈ Rrk−1(nk+1)rk×rk−1(nk+1)rk determined by the cores
{Gj}j 6=k such that ∇GkR(A) = Dkvec(Gk). See Appendix A
for more details. It follows that

∇Gk J̃(A) = ∇GkJ(A) + γDkvec(Gk)

and
∇2
Gk J̃(A) = ∇

2
GkJ(A) + γDk.

These small modifications lead to small changes when updat-
ing the core Gk. For instance, the first-order condition of (26)

7

for the least squares model results in solving the modified
linear system(

C>k Ck +
N

2
γDk

)
vec(Gk) = C>k y, (28)

when compared with the original linear system (19).

D. Orthogonalization and Parallelization

The matrix Ck from (16) needs to be reconstructed for
each TT-core Gk during the execution of the two TT learning
algorithms. Fortunately, this can be done efficiently by ex-
ploiting the tensor train structure. In particular, after updating
the core Gk in the left-to-right sweep, the new row vectors
{pk+1(x

(j))}Nj=1 to construct the next matrix Ck+1 can be
easily computed from

pk+1(x
(j)) = Gk ×1 pk(x

(j))×2 v(x
(j)
k)>.

Similarly, in the right-to-left sweep, the new column vectors
{qk−1(x(j))}Nj=1 to construct the next matrix Ck−1 can be
easily computed from

qk−1(x
(j)) = Gk ×2 v(x

(j)
k)> ×3 qk(x

(j))>.

To make the learning algorithms numerically stable, the
techniques of orthogonalization are also applied. The main
idea is to make sure that before updating the core Gk, the cores
G1, . . . ,Gk−1 are left-orthogonal and the cores Gk+1, . . . ,Gd
are right-orthogonal by a sequence of QR decompositions. In
this way, the condition number of the constructed matrix Ck
is upper bounded so that the subproblem is well-posed. After
updating the core Gk, we do an extra QR decomposition to
orthogonalize it, and absorb the upper triangular matrix into
the next core (depending on the direction of updating). More
details on the orthogonalization step can be found in [25].

Another computational challenge is the potentially large
size N of the training dataset. Luckily, the dimension of the
optimization problem when updating Gk in the TT learning
algorithms is rk−1(nk + 1)rk, which is much smaller and
independent from N . We only need to compute the products
C>k Ck, C>k y, C>k hA and C>k DACk in (19), (24) and (25).
These computations are easily done in parallel. To be specific,
given a proper partition {Nl}Ll=1 satisfying

∑L
l=1Nl = N , we

divide the large matrix Ck into several blocks, namely,

Ck =


C

(1)
k

C
(2)
k
...

C
(L)
k

 ∈ RN×rk−1(nk+1)rk ,

where C
(l)
k ∈ RNl×rk−1(nk+1)rk , l = 1, 2, . . . , L. Then, for

example, the product C>k DACk can be computed by

C>k DACk =

L∑
l=1

(C
(l)
k)>D

(l)
A C

(l)
k ,

where D
(l)
A denotes the corresponding diagonal block. Each

term in the summation on the right-hand side of the above

equation can be computed in parallel. The other matrix prod-
ucts can also be computed in a similar way.

We summarize our learning algorithms in Algorithm 2. Note
that based on the decision strategy, an m-class problem is
decomposed into a sequence of two-class problems whose TT
classifiers can be trained in parallel.

Algorithm 2 Tensor Train Learning Algorithm

Input: Training dataset of pairs {(x(j), y(j))}Nj=1, TT-ranks
{rk}d−1k=1, degree vector n = (n1, n2, . . . , nd)

> ∈ Nd and
regularization parameter γ

Output: Tensor A in TT format with cores {Gk}dk=1

1: Initialize right orthogonal cores {Gk}dk=1 of prescribed
ranks

2: while termination condition is not satisfied do
3: for k = 1, 2, . . . , d− 1 do
4: G∗k ← find the minimal solution of the regularized

optimization problem (26) with respect to Gk
5: Uk ← reshape(G∗k , rk−1(nk + 1), rk)
6: [Q,R]← compute QR decomposition of Uk
7: Gk ← reshape(Q, rk−1, nk + 1, rk)
8: Vk+1 ← R ∗ reshape(Gk+1, rk, nk+1 + 1, rk+1)
9: Gk+1 ← reshape(Vk+1, rk, nk+1 + 1, rk+1)

10: end for
11: Perform the right-to-left sweep
12: end while

We end this section with the following remarks:
• Other loss functions can also be used in the framework of

tensor train learning provided that there exists an efficient
way to solve the corresponding subproblems.

• The Density Matrix Renormalization Group (DMRG)
method [24] can also be used to update the cores. This
involves updating two cores at a time so that the TT-ranks
are adaptively determined by means of a singular value
decomposition (SVD). This may give better performance
at the cost of a higher computational complexity. It also
removes the need to fix the TT-ranks a priori.

• The local linear convergence of Algorithm 2 has been
established in [25], [26] under certain conditions. In
particular, if the TT-ranks are correctly estimated for
convex optimization problems, then the obtained solution
is guaranteed to be the global optimum. When choosing
the TT-ranks, one should keep the upper bounds of the
TT-ranks from Proposition 1 in mind.

V. EXPERIMENTS

In this section, we test our TT learning algorithms on two
popular digit recognition datasets: USPS and MNIST. All the
algorithms were implemented in Matlab Version R2016a. The
numerical experiments were done on a desktop PC with an
Intel i5 quad-core processor running at 3.3GHz and 16GB of
RAM.

Features of the handwritten digits are extracted through
PCA by choosing a varying number of d principal components,
resulting in a smaller feature space when compared to the
dimension of the input samples. The TT classifiers are trained

8

with these principal components. We adopt the one-against-
all decision strategy, where ten TT classifiers are trained to
separate each digit from all the others. In the implementation
of Algorithm 2, we normalize each initial core such that its
Frobenius norm is equal to one. The degree vector is given
by n1 = · · · = nd = n. The TT-ranks are upper bounded by
rmax. The values of d, n, rmax were chosen to minimize the
test error rate and to ensure that each of the subproblems to
update the TT-cores Gk could be solved in a reasonable time.
The dimension of each subproblem is at most (n+1) r2max. For
example, in the USPS case, we first fixed the values of n and
rmax. Test error rates were then found to be the smallest when
d is located in the interval [20, 30]. We then fixed the value
of d and incremented n and rmax to see whether this resulted
in a better test error rate. We use the optimality criterion

|J̃(A+)− J̃(A)|
|J̃(A)|

≤ 10−2,

whereA+ is the updated tensor from tensorA after one sweep.
And the maximum number of sweeps is 4, namely, 4(d−1) it-
erations through the entire training data are performed for each
session. To simplify notations, we use “TTLS” and “TTLR” to
denote the TT learning algorithms based on minimizing loss
functions (15) and (22), respectively. For these two models, the
regularization parameter γ is determined by the technique of
10-fold cross-validation. In other words, we randomly assign
the training data to ten sets of equal size. The parameter γ is
chosen so that the mean over all test errors is minimal.

The US Postal Service (USPS) database1 contains 9298
handwritten digits, including 7291 for training and 2007 for
testing. Each digit is a 16 × 16 image, represented as a 256-
dimensional vector with entries between −1 and 1. It is known
that the USPS test set is rather difficult and the human error
rate is 2.5%. The numerical results are reported in Table I.

The Modified NIST (MNIST) database2 of handwritten
digits has a training set of 60,000 examples, and a test set of
10,000 examples. It is a subset of a larger set available from
NIST. The digits have been size-normalized and centered in a
28×28 image. Here, we use a reduced version by removing the
4 pixel padding around the digits, which results in a 20× 20
image represented as a 400-dimensional vector with entries
between 0 and 1. The numerical results are reported in Table II.

The monotonic decrease is always seen when training the
ten TT classifiers. Fig. 4 shows the convergence of both TT
learning algorithms on the USPS data for the case d = 20, n =
1, rmax = 8 when training the classifier for the character “6”.
In addition, we also trained a polynomial classifier using least
squares support vector machines (LSSVM [13]) on these two
databases. The classifiers, using a polynomial kernel, were
trained in Matlab with the LS-SVMlab toolbox. Using the
basic SVM scheme, a training error rate of 0 and a test
error rate of 8.37% were obtained for the USPS dataset after
more than three and a half hours of computation. The MNIST
dataset resulted in consistent out-of-memory errors, which is

1The USPS database is downloaded from
http://statweb.stanford.edu/∼tibs/ElemStatLearn/data.html

2The MNIST database is downloaded from
http://yann.lecun.com/exdb/mnist/

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

Iterations

L
o
s
s
 f
u
n
c
ti
o
n

0 20 40 60
0

0.02

0.04

0.06

0.08

Iterations

T
ra

in
 e

rr
o
r

ra
te

TTLS

TTLR

TTLS

TTLR

Fig. 4. The convergence of TT learning algorithms.

to be expected as the basic SVM scheme is not intended for
large data sets.

VI. CONCLUSION

This paper presents the framework of tensor train learning
for pattern classification. Two efficient learning algorithms are
proposed based on different loss functions. The numerical
experiments show that each TT classifier is trained in up to
several minutes with competitive test errors. We also mention
that these results can be improved by adding virtual examples
[8]. Future improvements are the implementation of on-line
learning algorithms, together with the extension of the binary
TT classifier to the multi-class case.

APPENDIX A

Given the degree vector n = (n1, n2, . . . , nd) ∈ Nd, let A ∈
R(n1+1)×(n2+1)×···×(nd+1) be the tensor in TT format with
cores Gk ∈ Rrk−1×(nk+1)×rk , k = 1, 2, . . . , d. To investigate
the gradient of R(A) in (27) with respect to the TT-core Gk,
we give a small variation ε to the ith element of vec(Gk),
resulting in a new tensor Aε given by

Aε = A+ εI(k)i ,

where 1 ≤ i ≤ rk−1(nk + 1)rk and I(k)i is the tensor which
has the same TT-cores with A except that the vectorization of
the core Gk is replaced by the unit vector in Rrk−1(nk+1)rk

with the ith element equal to 1 and 0 otherwise. Then we have

[∇GkR(A)]i = lim
ε→0

R(Aε)−R(A)
ε

= 〈A, I(k)i 〉. (29)

On the other hand, by the definition of vectorization, the
ith element of vec(Gk) ∈ Rrk−1(nk+1)rk is mapped from
the tensor element of Gk ∈ Rrk−1×(nk+1)×rk with indices
(αk−1, jk, αk) satisfying

i = αk−1 + (jk − 1)rk−1 + (αk − 1)rk−1(nk + 1),

where 1 ≤ αk−1 ≤ rk−1, 1 ≤ jk ≤ nk + 1 and 1 ≤ αk ≤ rk.
Denote by E(αk−1,αk) the matrix in Rrk−1×rk such that the
element with index (αk−1, αk) equal to 1 and 0 otherwise. By
simple computation, one can obtain that

〈A, I(k)i 〉 =
∑

i1,i2,...id

Ai1i2···id(Iki)i1i2···id

= ak

(
E(αk−1,αk) ⊗ Gk(jk)

)
bk, (30)

http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://yann.lecun.com/exdb/mnist/

9

TABLE I
NUMERICAL RESULTS FOR DATASET USPS

TTLS TTLR
d n rmax Train error Test error Time(s) Train error Test error Time(s)

10 1 8 7.37% 12.6% 0.30×10 4.79% 10.9% 1.30×10
15 1 8 2.02% 7.72% 0.60×10 0.73% 7.37% 2.69×10
20 1 8 0.77% 6.63% 0.96×10 0.01% 7.57% 4.15×10
25 1 8 0.34% 6.58% 1.19×10 0.01% 6.43% 5.52×10
30 1 8 0.19% 7.08% 1.55×10 0 6.93% 6.83×10
35 1 8 0.09% 7.47% 1.82×10 0 7.22% 8.34×10
40 1 8 0.16% 7.62% 2.13×10 0 8.12% 9.80×10
20 2 8 0.34% 6.58% 1.75×10 0 6.78% 7.08×10
25 2 8 0.08% 6.58% 2.22×10 0.01% 6.43% 9.33×10
30 2 8 0.14% 7.37% 2.71×10 0.01% 6.78% 11.3×10
20 3 8 0.43% 5.83% 2.63×10 0.01% 6.68% 9.84×10
25 3 8 0.25% 7.03% 3.37×10 0.01% 6.63% 12.8×10
30 3 8 0.08% 7.32% 4.12×10 0.01% 7.22% 15.9×10
20 1 10 0.38% 6.48% 1.55×10 0 7.62% 14.7×10
25 1 10 0.12% 6.58% 2.04×10 0 6.13% 20.3×10
30 1 10 0.05% 6.98% 2.59×10 0 6.58% 25.7×10
20 4 8 0.48% 6.23% 3.32×10 0.08% 7.08% 12.6×10
20 3 9 0.40% 6.43% 3.25×10 0 6.33% 19.6×10

TABLE II
NUMERICAL RESULTS FOR DATASET MNIST

TTLS TTLR
d n rmax Train error Test error Time(s) Train error Test error Time(s)

10 1 8 16.8% 16.1% 2.45×10 8.98% 9.57% 5.75×10
15 1 8 6.99% 6.81% 5.24×10 3.77% 4.60% 11.0×10
20 1 8 4.49% 4.79% 6.98×10 2.27% 3.45% 16.6×10
25 1 8 3.44% 3.71% 9.60×10 1.83% 2.89% 21.8×10
30 1 8 2.90% 3.34% 11.5×10 1.47% 2.57% 27.6×10
35 1 8 2.54% 3.53% 15.5×10 1.21% 2.79% 32.6×10
40 1 8 2.32% 3.40% 16.2×10 1.14% 2.73% 37.5×10
20 2 8 4.42% 4.16% 11.9×10 1.66% 2.84% 27.6×10
25 2 8 3.59% 3.66% 15.5×10 1.29% 2.69% 36.7×10
30 2 8 2.96% 3.38% 19.1×10 0.97% 2.67% 44.1×10
35 2 8 2.72% 3.20% 22.3×10 0.84% 2.61% 52.3×10
40 2 8 2.60% 3.26% 25.9×10 0.67% 2.80% 60.7×10
20 3 8 4.72% 4.66% 17.2×10 1.71% 2.84% 39.4×10
25 3 8 3.72% 3.63% 22.4×10 1.28% 2.69% 51.3×10
30 3 8 3.26% 3.49% 27.9×10 0.97% 2.54% 62.7×10
35 3 8 2.79% 3.29% 32.1×10 0.77% 2.69% 74.8×10
40 3 8 2.59% 3.05% 37.9×10 0.65% 2.56% 85.9×10
25 1 10 3.09% 3.45% 13.8×10 0.96% 2.53% 46.0×10
30 1 10 2.37% 3.08% 17.2×10 0.66% 2.72% 57.9×10
35 1 10 2.00% 3.11% 20.8×10 0.54% 2.98% 70.5×10
40 1 10 1.82% 3.16% 24.4×10 0.39% 2.88% 82.6×10
40 2 10 2.30% 3.09% 40.5×10 0.15% 2.63% 135.2×10
40 3 10 2.34% 2.99% 57.6×10 0.17% 2.73% 189.5×10
40 4 10 2.32% 3.19% 78.0×10 0.23% 2.87% 250.3×10

where

ak =

k−1∏
l=1

nl+1∑
il=1

[
Gl(il)⊗ Gl(il)

]
∈ R1×r2k−1 (31)

and

bk =

d∏
l=k+1

nl+1∑
il=1

[
Gl(il)⊗ Gl(il)

]
∈ Rr

2
k×1. (32)

Let a(1)k ,a
(2)
k , . . . ,a

(rk−1)
k ∈ R1×rk−1 be the row vectors such

10

that
ak = (a

(1)
k ,a

(2)
k , . . . ,a

(rk−1)
k) ∈ R1×r2k−1 ,

and let b
(1)
k ,b

(2)
k , . . . ,b

(rk)
k ∈ Rrk×1 be the column vectors

such that

bk =


b
(1)
k

b
(2)
k
...

b
(rk)
k

 ∈ Rr
2
k×1,

Combining (29) and (30) together, we have

[∇GkR(A)]i = a
(αk−1)
k Gk(jk)b(αk)

k

=
(
(b

(αk)
k)> ⊗ (e(jk))> ⊗ a

(αk−1)
k

)
vec(Gk),

where e(j) ∈ Rnk+1 denotes the unit vector with the jth
element equal to 1 and 0 otherwise. If we define the rk−1(nk+
1)rk × rk−1(nk + 1)rk matrix

Dk =


(b

(1)
k)> ⊗ (e(1))> ⊗ a

(1)
k

(b
(1)
k)> ⊗ (e(1))> ⊗ a

(2)
k

...
(b

(rk)
k)> ⊗ (e(nk+1))> ⊗ a

(rk−1)
k

 , (33)

it follows immediately that ∇GkR(A) = Dkvec(Gk).

ACKNOWLEDGMENT

Johan Suykens acknowledges support of ERC AdG A-
DATADRIVE-B (290923), KUL: CoE PFV/10/002 (OPTEC);
FWO: G.0377.12, G.088114N, G0A4917N; IUAP P7/19
DYSCO.

REFERENCES

[1] H.-B. Shen and K.-C. Chou, “Ensemble classifier for protein fold pattern
recognition,” Bioinformatics, vol. 22, no. 14, pp. 1717–1722, 2006.

[2] H.-D. Cheng, X. Cai, X. Chen, L. Hu, and X. Lou, “Computer-aided
detection and classification of microcalcifications in mammograms: a
survey,” Pattern recognition, vol. 36, no. 12, pp. 2967–2991, 2003.

[3] B. Roberto, Template matching techniques in computer vision: theory
and practice. Wiley, Hoboken, 2009.

[4] B.-H. Juang, W. Hou, and C.-H. Lee, “Minimum classification error
rate methods for speech recognition,” IEEE Transactions on Speech and
Audio processing, vol. 5, no. 3, pp. 257–265, 1997.

[5] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple
classifiers and their applications to handwriting recognition,” IEEE
transactions on systems, man, and cybernetics, vol. 22, no. 3, pp. 418–
435, 1992.

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[8] D. Decoste and B. Schölkopf, “Training invariant support vector ma-
chines,” Machine learning, vol. 46, no. 1-3, pp. 161–190, 2002.

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[11] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[12] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin,
“Training and testing low-degree polynomial data mappings via linear
SVM,” Journal of Machine Learning Research, vol. 11, no. Apr, pp.
1471–1490, 2010.

[13] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor,
and J. Vandewalle, Least Squares Support Vector Machines. World
Scientific, Singapore, 2002.

[14] M. Signoretto, Q. T. Dinh, L. De Lathauwer, and J. A. K. Suykens,
“Learning with tensors: a framework based on convex optimization and
spectral regularization,” Machine Learning, vol. 94, no. 3, pp. 303–351,
2014.

[15] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[16] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensoriz-
ing neural networks,” in Advances in Neural Information Processing
Systems, 2015, pp. 442–450.

[17] A. Novikov, M. Trofimov, and I. Oseledets, “Tensor train polynomial
models via Riemannian optimization,” arXiv preprint arXiv:1605.03795,
2016.

[18] E. M. Stoudenmire and D. J. Schwab, “Supervised learning with
quantum-inspired tensor networks,” arXiv preprint arXiv:1605.05775,
2016.

[19] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[20] I. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[21] I. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for multidi-
mensional arrays,” Linear Algebra and its Applications, vol. 432, no. 1,
pp. 70–88, 2010.

[22] D. Savostyanov and I. Oseledets, “Fast adaptive interpolation of multi-
dimensional arrays in tensor train format,” in 2011 7th International
Workshop on Multidimensional (nD) Systems (nDs). IEEE, 2011, pp.
1–8.

[23] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Fourth Edi-
tion, 4th ed. Academic Press, 2008.

[24] S. R. White, “Density matrix formulation for quantum renormalization
groups,” Physical Review Letters, vol. 69, no. 19, p. 2863, 1992.

[25] S. Holtz, T. Rohwedder, and R. Schneider, “The alternating linear
scheme for tensor optimization in the tensor train format,” SIAM Journal
on Scientific Computing, vol. 34, no. 2, pp. A683–A713, 2012.

[26] T. Rohwedder and A. Uschmajew, “On local convergence of alternating
schemes for optimization of convex problems in the tensor train format,”
SIAM Journal on Numerical Analysis, vol. 51, no. 2, pp. 1134–1162,
2013.

	I Introduction
	II Preliminaries
	II-A Tensors and pure-power-n polynomials
	II-B Tensor trains

	III Tensor Train Learning
	IV Learning Algorithms
	IV-A TT Learning by Least Squares
	IV-B TT Learning by Logistic Regression
	IV-C Regularization
	IV-D Orthogonalization and Parallelization

	V Experiments
	VI Conclusion
	Appendix A
	References

