
COMPACT TWO-SIDED KRYLOV METHODS FOR NONLINEAR
EIGENVALUE PROBLEMS

PIETER LIETAERT∗, KARL MEERBERGEN∗, AND FRANÇOISE TISSEUR†

Abstract. We describe a generalization of the compact rational Krylov (CORK) methods for polynomial and
rational eigenvalue problems that usually but not necessarily come from polynomial or rational approximations
of genuinely nonlinear eigenvalue problems. CORK is a family of one-sided methods that reformulates the poly-
nomial or rational eigenproblem as a generalized eigenvalue problem. By exploiting the Kronecker structure of
the associated pencil, it constructs a right Krylov subspace in compact form and thereby avoids the high mem-
ory and orthogonalization costs that are usually associated with linearizations of high degree matrix polynomials.
CORK approximates eigenvalues and their corresponding right eigenvectors but is not suitable in its current form
for the computation of left eigenvectors. Our generalization of the CORK method is based on a class of Kro-
necker structured pencils that include as special cases the CORK pencils, the transposes of CORK pencils, and
the symmetrically structured linearizations by Robol, Vandebril and Van Dooren, 2016. This class of structured
pencils facilitates the development of a general framework for the computation of both right and left-sided Krylov
subspaces in compact form, and hence allows the development of two-sided compact rational Krylov methods for
nonlinear eigenvalue problems. The latter are particularly efficient when the standard inner product is replaced by
a cheaper to compute quasi inner product. We show experimentally that convergence results similar to CORK can
be obtained for a certain quasi inner product.

Key words. nonlinear eigensolver, rational Krylov, nonlinear eigenvalue problem, two-sided Krylov method

AMS subject classifications. 65F15, 65F25, 15A18, 15A22, 41A20, 47J10

1. Introduction. We consider the computation of selected eigenvalues of the nonlinear eigen-
value problem and their associated right and left eigenvectors, which, for a given matrix-valued
function A : C → Cn×n consists of finding triplets (λ, x, y) with λ ∈ C and nonzero vectors
x, y ∈ Cn such that

A(λ)x = 0, y∗A(λ) = 0. (1.1)

Applications are sensitivity analysis of eigenvalues (see [?], [?] and references therein) and eigen-
value optimization [?], [?].

Krylov methods are commonly used for finding eigenvalues of a matrix. The Arnoldi method
[?] and the rational Krylov method [?] are one-sided methods, i.e., they build a Krylov space
with the matrix. Two-sided methods build two Krylov spaces: one for the matrix and one for its
transpose. Two-sided methods are less popular than one-sided methods because of the additional
cost for building the left Krylov basis and possible loss of accuracy due to a potentially unstable
biorthogonalization process. However, the computation of both right and left eigenvectors requires
both Krylov spaces. The prototype two-sided Krylov method is the Lanczos method [?], [?]. The
two-sided Arnoldi method builds two Arnoldi processes, one for the right Krylov space and one
for the left Krylov space and uses oblique projections of the matrix on these spaces [?], [?].

When the coefficients of A(λ) are polynomials in λ, A(λ) is called a matrix polynomial. The
eigenvalue problem is then called the polynomial eigenvalue problem. Its properties and solution
are pretty well understood. Most numerical methods for computing a selection of eigenvalues
strongly rely on the concept of linearization, that is, a linear pencil of larger size than A, that has
exactly the same eigenvalues as the matrix polynomial. This generalized eigenvalue problem is
then solved by an eigensolver for linear eigenvalue problems. Linearizations can also be used for
solving nonlinear eigenvalue problems which are not polynomial, by first approximating the non-
linear functions by polynomials or even rationals. The matrix-valued function from the nonlinear

∗Department of Computer Science, KU Leuven, University of Leuven, 3001 Heverlee, Belgium. Supported by
KU Leuven Research Council Grant OT/14/074 and BELSPO Grant IAP VII/19.
†School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK. Supported by a Royal

Society-Wolfson Research Merit Award.

1

eigenvalue problem can, in general, be written as

A(s) =
m∑
j=0

Cjfj(s), (1.2)

where Cj ∈ Cn×n are constant matrix factors and fj(s) are nonlinear scalar functions. In ap-
plications from physics and engineering such problems often have small m, e.g., three or four,
which makes the approximation by a matrix polynomial or rational matrix function a little less
complicated, since one just has to approximate the functions fj(s) by polynomials or rationals [?],
[?], [?].

In this paper, we focus on polynomial or rational approximation P (s) of the matrix-valued
functionA(s) in (??). We consider rational Krylov methods for linearizations of P (λ), which, in our
context, is a pencil of order nd, where d is the degree of the polynomial. The two orthogonal Arnoldi
method (TOAR) [?], the compact rational Krylov method (CORK) [?], and related methods
[?], [?], [?] all exploit the structure in the linearization so that the memory cost and the cost
of the Gram-Schmidt orthogonalization process are reduced by almost a factor d compared to
applying a standard Krylov method directly to the linearization. Linearizations with compact
representation of the Krylov vectors exist for many polynomial and rational bases. Most common
is the companion linearization for matrix polynomials in monomial basis [?], [?]. Linearizations
have been introduced and used for solving eigenvalue problems expressed in Newton and rational
Newton polynomials [?], [?], Chebyshev polynomials [?], Lagrange polynomials [?], [?], rational
monomials [?], [?], and the spectral discretization, which is also a rational approximation [?].

Two-sided methods already exist for the infinite Arnoldi method [?] and the delay Arnoldi
method [?]. In this paper, we present a more generic approach that can be used for matrix polyno-
mials or rational matrix-valued functions P (s) that are expressed in polynomial or rational bases
satisfying a linear relation. Both TOAR and CORK are designed for a compact representation of
the right Krylov vectors v of the form v = (I ⊗ Q)u, where Q has orthonormal columns and u
has much smaller dimension than v. For the left Krylov vectors, however, the compact structure
for the linearizations employed by CORK is, at first sight, completely lost. We show that the left
Krylov subspace for CORK, and the right and the left Krylov subspaces for the symmetrically
structured linearizations in [?] can also be represented in some compact form, but the latter is
more expensive to exploit than for the one-sided CORK method. We show that the cost can be
greatly reduced by employing special inner products in the Krylov methods. Due to the potential
breakdown or loss of numerical stability of the two-sided Lanczos method, we use instead the
two-sided Arnoldi method, i.e., we build two Krylov spaces, one for the matrix pencil of the lin-
earization and one for its transpose. The eigenvalues and right and left eigenvectors are obtained
from the two-sided projection of the pencil. Note that the cost for explicitly computing the oblique
projection of the pencil on the left and right Krylov spaces does not increase the computational
cost dramatically, at least for moderate size Krylov spaces.

The outline of the paper is as follows. In Section ??, we present the general framework of ma-
trix polynomials using two types of linearizations: the CORK linearization [?] and symmetrically
structured linearizations [?]. In Section ??, we introduce the compact form of the iteration vectors
and present the algorithm for building the Krylov spaces using this form. We also introduce an
alternative inner product to reduce the computational cost. Section 4 illustrates the methods by
numerical examples, where we compare accuracy and memory cost for various alternatives.

We use lowercase Roman and Greek letters for numbers (e.g. f, φ), uppercase Greek letters
and lowercase Roman letters to indicate vectors (e.g. Φ or v), capital letters for matrices (e.g. A),
boldface lower and upper case letters for block vectors and matrices (e.g. v,A) and blackboard
boldface letters for matrices containing different block structures (e.g. A). We denote by ej the
unit vector with zero entries everywhere except in position j, where it is one. We will often use
the n× (n− 1) matrix

Ǐn =
[

0
In−1

]
, (1.3)

2

which corresponds to the n×n identity matrix In with its first column removed. When partitioning
a vector v ∈ Cnd in d blocks of length n, v[i] indicates the ith block.

2. Matrix polynomials, rational functions and their linearizations. Assume the
matrix-valued function in (??) is approximated by a matrix polynomial or rational matrix function
of the form

P (s) = P0ξ0(s) + P1ξ1(s) + · · ·+ Pdξd(s), (2.1)

where Pj ∈ Cn×n are constant coefficient matrices and ξj(s) are rational functions or polynomials.
This approximation can, for example, be obtained using one of the techniques described in [?,
Section 6]. We concentrate on basis functions ξj(s) that satisfy a linear recurrence relation. These
include:

(a) shifted and scaled monomials ξj(s) = (s− σ)j/
∏j
i=0 βi, which satisfy the linear relation

ξ0(s) = 1
β0
, ξj(s) = s− σ

βj
ξj−1(s), j ≥ 1, (2.2)

for some nonzero scaling factors βj and shift σ;
(b) orthogonal polynomials, which satisfy a three-term recurrence

ξ−1(s) = 0, ξ0(s) = 1, sξj(s) = αjξj+1(s) + βjξj(s) + γjξj−1(s), j ≥ 0, (2.3)

(note that both the shifted and scaled monomials (??), and the Chebyshev polynomials

T0(s) = 1, T1(s) = s, Tj+1(s) = 2sTj(s)− Tj−1(s), j ≥ 1,

are special cases of (??));
(c) rational Newton basis functions, which are defined by the recursion

ξ0(s) = 1
β0
, ξj(s) = s− σj

βj(1− s/ζj)
ξj−1(s), j ≥ 1, (2.4)

for some scaling factors β0, . . . , βj , interpolation nodes σ1, . . . , σj and poles ζ1, . . . , ζj (note
that scaled Newton polynomials, which are defined by the linear relation

ξ0(s) = 1
β0
, ξj(s) = s− σj

βj
ξj−1(s), j ≥ 1,

are a special case of (??) corresponding to choosing poles at infinity);
(d) scaled Lagrange polynomials with distinct nodes σ0, . . . , σd and scaling factors β0, . . . , βd,

ξj(s) = 1
βj

d∏
i=0
i 6=j

(s− σi), 0 ≤ j ≤ d, (2.5)

which satisfy the linear relation

βj(s− σj)ξj(s) = βj−1(s− σj−1)ξj−1(s), j > 0.

The linear recurrence relation between the basis functions can be rewritten in matrix form as

Md Ξd(s) = sNd Ξd(s), (2.6)

where

Ξd(s) = [ξ0(s), ξ1(s), . . . , ξd(s)]T (2.7)

and Md, Nd ∈ Cd×(d+1). The structure of Md and Nd is provided in Table ?? for the standard
bases (??)–(??). When (??) holds with Md − sNd of full row rank, then Md − sNd is said to be a

3

Table 2.1
Linear dual bases Md − sNd for the standard polynomial bases Ξd(s) = [ξ0(s), ξ1(s), . . . , ξd(s)]T in (??)–(??).

Basis Ξd(s) Linear basis matrices

Shifted and
scaled monomials

Md =


σ β1

σ β2
. . .

. . .
σ βd

 , Nd =


1 0

1 0
. . .

. . .
1 0



Orthogonal poly-
nomials

Md =


β0 α0
γ1 β1 α1

. . .
. . .

. . .
γd βd αd

 , Nd =


1 0

1 0
. . .

. . .
1 0



Rational Newton
polynomials

Md =


σ1 β1

σ2 β2
. . .

. . .
σd βd

 , Nd =


1 β1/ζ1

1 β2/ζ2
. . .

. . .
1 βd/ζd



Scaled Lagrange
polynomials

Md =


−β0σ0 β1σ1

−β1σ1 β2σ2
. . .

. . .
−βd−1σd−1 βdσd

 , Nd =


−β0 β1

−β1 β2
. . .

. . .
−βd−1 βd



full row-rank linear dual basis to Ξd(s) [?], [?, Definition 12]. Note that in the special case d = 0,
we consider the corresponding dual linear basis to be empty.

Using the linear relation between ξd(s) and ξd−1(s), the matrix polynomial or rational matrix
function P (s) in (??) is rewritten in the form

g(s)P (s) =
d−1∑
j=0

(Aj − sBj)ξj(s), (2.8)

for some function g(s) and matrices Aj , Bj that depend on the coefficient matrices Pj of P (s) in
(??)—see for example [?], [?, Table 6.6]. Note that g(s) = 1 for polynomial bases but g(s) =
(1− s/ζd) for the rational Newton basis.

Define

A− sB =
[
A0 − sB0 A1 − sB1 · · · Ad−1 − sBd−1

]
∈ Cn×nd, (2.9)

and rewrite (??) as

g(s)P (s) = (A− sB)(Ξd−1(s)⊗ In). (2.10)

The pencil

A− sB =
[

A− sB
(Md−1 − sNd−1)⊗ In

]
∈ Cnd×nd (2.11)

is referred to as the CORK pencil [?]. It is a linearization of P (s) when the latter is a matrix
polynomial. The CORK pencil satisfies two one-sided factorizations as the next lemma shows.

Lemma 2.1. Let Ξd−1(s) = [ξ0(s), . . . , ξd−1(s)]T be a family of basis functions satisfying the
linear relation Md−1Ξd−1(s) = sNd−1Ξd−1(s). For every s ∈ C such that the d − 1 last columns
of Md−1 − sNd−1 are linearly independent and ξ0(s) 6= 0, the pencil A− sB in (??) and g(s)P (s)
in (??) satisfy the

4

(i) right-sided factorization

(A− sB)G(s) = e1 ⊗ g(s)P (s), (2.12)

where G(s) = Ξd−1(s)⊗ In and e1 is the first column of the d× d identity matrix, and the
(ii) left-sided factorization

H(s)(A− sB) = eT1 ⊗ g(s)P (s), (2.13)

where H(s) = ξ0(s)
[
In RTξ (s)

]
with RTξ (s) = −(A−sB)(Ǐd(Md−1Ǐd−sNd−1Ǐd)−1⊗In)

and Ǐd as in (??).
Proof. Statement (i) follows from (Md−1 − sNd−1)Ξd−1(s) = 0 and (??). See also [?].
For statement (ii), we start by rewriting (Md−1 − sNd−1)Ξd−1 = 0 as

ξ0(s)(Md−1 − sNd−1)e1 = −(Md−1 − sNd−1)ǏdǏTd Ξd−1(s). (2.14)

Since s is such that (Md−1 − sNd−1)Ǐd is nonsingular and ξ0(s) 6= 0, we can write (??) as

(Md−1Ǐd − sNd−1Ǐd)−1(Md−1 − sNd−1)e1 = −ǏTd Ξd−1(s)/ξ0(s).

Hence, (Md−1Ǐd − sNd−1Ǐd)−1(Md−1 − sNd−1) =
[
−ǏTd Ξd−1(s)/ξ0(s) Id−1

]
, so that

ξ0(s)
(
Id − Ǐd(Md−1Ǐd − sNd−1Ǐd)−1(Md−1 − sNd−1)

)
= eT1 ⊗ Ξd−1(s). (2.15)

Now, the left-hand side of (??) can be rewritten as

ξ0(s)(A− sB)− ξ0(s)(A− sB)(Ǐd(Md−1Ǐd − sNd−1Ǐd)−1(Md−1 − sNd−1)⊗ In). (2.16)

From (??), after Kronecker product with In, we have that (??) equals

(A− sB)(eT1 ⊗ Ξd−1(s)⊗ In),

which, by (??), equals eT1 ⊗ g(s)P (s).
The next result describes the structure of the eigenvectors of A−sB. It is a direct consequence

of [?, Thm. 3.1] applied to the one-sided factorizations (??)–(??).
Theorem 2.2. Let P (s) be the n × n matrix polynomial or rational matrix-valued function

in (??), let A− sB be the nd× nd pencil in (??), and let λ ∈ C.
(i) If (??) holds at λ with Ξd−1(λ) 6= 0 then Ξd−1(λ) ⊗ x is a right eigenvector of A − sB

with eigenvalue λ if and only if x is a right eigenvector of P (s) with eigenvalue λ.

(ii) If (??) holds at λ with H(λ) of full rank then
[

y

Rξ(λ)y

]
is a left eigenvector of A− sB

with eigenvalue λ if and only if y is a left eigenvector of P (s) with eigenvalue λ.
The conditions (Md−1 − sNd−1)Ǐd being nonsingular and ξ0(s) 6= 0 are not too strict since we
can permute the order of the entries in the basis Ξd−1 if needed. Note that for degree graded
polynomial bases, ξ0(s) is a constant and therefore nonzero.

Example 1. The degree d matrix polynomial expressed in the monomial basis as

P (s) = P0 + sP1 + s2P2 + . . .+ sdPd, (2.17)

can be rewritten in the form (??) with g(s) = 1, Ai = Pi, Bi = 0 for i = 0, . . . , d − 2 and
Ad−1 = Pd−1, Bd−1 = −Pd. Then the pencil A− sB in (??) has the form

A =


P0 P1 · · · Pd−1
0 In

.
0 In

 , B =


0 · · · 0 −Pd
In 0

.
In 0

 , (2.18)

5

which is close to the first companion form [?], [?].
From Theorem ??, the right and left eigenvectors of A− sB, with eigenvalue λ, have the form

x =


x
λx
λ2x

...
λd−1x

 , y =


y

−(
∑d
i=1 λ

i−1Pi)∗y
−(
∑d
i=2 λ

i−2Pi)∗y
...

−(Pd−1 + λPd)∗y

 .

The blocks of the right eigenvector are just scalar multiples of the right eigenvector x of P (s)
whereas the structure of the left eigenvector is more complicated.

As we are interested in computing both right and left eigenvectors of P (s), we also consider
a class of symmetrically structured pencils associated with P (s) whose right and left eigenvectors
have a similar Kronecker product form. Assuming for simplicity that d is odd we rewrite P (s) in
(??) as

g(s)P (s) =
d−1

2∑
j=0

(Aj − sBj)φj(s)ψj(s), (2.19)

for some function g(s) and matrices Aj , Bj that depend on the coefficient matrices Pj of P (s) in
(??) (note that these differ in general from g(s) and Aj , Bj in (??) but for the presentation of our
general framework, it is convenient to not introduce new notation here). The φj(s), j = 1, . . . , dφ
and the ψj(s), j = 0, . . . , dψ with dφ = dψ = d−1

2 are two families of basis functions, each of them
satisfying a linear relation such that if

Φdφ(s) = [φ0(s), . . . , φdφ(s)]T , Ψdψ (s) = [ψ0(s), . . . , ψdψ (s)]T (2.20)

then

(Mdφ − sNdφ)Φdφ(s) = 0, (Mdψ − sNdψ)Ψdψ (s) = 0, (2.21)

with Mdφ , Ndφ ∈ Cdφ×(dφ+1) and Mdψ , Ndψ ∈ Cdψ×(dψ+1). Now define the n(dψ +1)×n(dφ+1) =
n
(
d+1

2
)
× n

(
d+1

2
)

pencil

A− sB =


A0 − sB0

A1 − sB1
. . .

A d−1
2
− sB d−1

2

 (2.22)

and rewrite (??) as

g(s)P (s) = (Ψdψ (s)⊗ In)T (A− sB)(Φdφ(s)⊗ In). (2.23)

When P (s) is a matrix polynomial, both Mdφ − sNdφ and Mdψ − sNdψ are of full row-rank with
dφ = dψ, and the elements in the polynomial basis Φdφ(s) (respectively, Ψdψ (s)) have no common
divisor, Robol et al [?, Thm. 15] show that

A− sB =
[

A− sB (Mdψ − sNdψ)T ⊗ In
(Mdφ − sNdφ)⊗ In 0

]
∈ Cnd×nd (2.24)

is a linearization of P (s). The pencil is symmetrically structured if both Mdφ − sNdφ and Mdψ −
sNdψ have the same structure. This is, for example, the case if we use two polynomial bases Φdφ(s)
and Ψdψ (s) of the same type. Furthermore, if both bases are identical, i.e., Φdφ(s) = Ψdψ (s) and
A− sB is symmetric, then A− sB is symmetric.

The rational matrix function or matrix polynomial P (s) can be rewritten in the form (??) in
several ways. We describe below a possibility for the standard basis functions (??)–(??).

6

(a) If P in (??) is expressed in shifted and scaled monomial basis, then, for the φj and ψj
in (??), we can choose the shifted and scaled monomials

φ0(s) = 1
β0
, φj(s) = (s− σ)

β2j
φj−1(s), j = 0, . . . (d− 1)/2, (2.25)

ψ0(s) = 1
β1
, ψj(s) = (s− σ)

β2j+1
ψj−1(s), j = 0, . . . , (d− 1)/2 (2.26)

so that

Aj = β2j+1P2j − σP2j+1, Bj = −P2j+1, j = 0, . . . , (d− 1)/2

and g(s) = 1.
(b) For Chebyshev polynomials of the first or second kind, see [?].
(c) If the ξ(s) are the scaled rational Newton basis functions in (??) then for (1 − s

ξ1
)P (s)

(i.e., g(s) = 1− s/ξ1), we can choose

φ0(s) = 1
β0
, φj(s) = s− σ2j−1

β2j(1− s/ζ2j)
φj−1, j = 1, . . . , (d− 1)/2, (2.27)

ψ0(s) = 1
β1
, ψj(s) = s− σ2j

β2j+1(1− s/ζ2j+1)ψj−1, j = 1, . . . , (d− 1)/2, (2.28)

so that

Aj = β2j+1P2j − σ2j+1P2j+1, Bj = β2j+1

ξ2j+1
P2j − P2j+1, j = 0, . . . , (d− 1)/2.

(e) If P in (??) is expressed in the scaled Lagrange basis ξj(s), j = 0, . . . , d with ξj as in (??),
then as suggested in [?], we can choose the scaled Lagrange basis functions

φj(s) = 1
β2j

(d−1)/2∏
i=0
i 6=j

(s− σ2i), ψj(s) = 1
β2j+1

(d−1)/2∏
i=0
i 6=j

(s− σ2i+1), j = 0, . . . , (d− 1)/2

so that

Aj = −σ2j+1β2j+1P2j−σ2jβ2jP2j+1, Bj = −β2j+1P2j−β2jP2j+1, j = 0, . . . , (d−1)/2.

Note that the expression for P (s) in (??) is a particular case of (??) with dψ = 0, Ψdψ = [1],
dφ = d − 1 and A − sB as in (??). The next result extends Lemma ?? to the more general
expression for P (s) in (??) and its associated pencil A− sB in (??).

Lemma 2.3. Let Φdφ(s) and Ψdψ (s) be the two families of basis functions in (??) satisfying
the linear relations (??).

(i) Let s ∈ C be such that ψ0(s) 6= 0 and the last dψ columns of Mdψ − sNdψ are linearly
independent. Then P (s) in (??) and the matrix pencil A−sB in (??) satisfy the right-sided
factorization

(A− sB)G(s) = e1 ⊗ g(s)P (s), (2.29)

where

G(s) = ψ0(s)
[
In(dφ+1)
Rψ(s)

]
(Φdφ(s)⊗ In)

with Rψ(s) = −
((

(Mdψ − sNdψ)Ǐdψ+1
)−T

ǏTdψ+1 ⊗ In
)
(A− sB) ∈ Cndψ×n(dφ+1).

7

(ii) Let s ∈ C be such that φ0(s) 6= 0 and the last dφ columns of Mdφ − sNdφ are linearly
independent. Then P (s) in (??) and the matrix pencil A−sB in (??) satisfy the left-sided
factorization

H(s)(A− sB) = eT1 ⊗ g(s)P (s), (2.30)

where

H(s) = φ0(s)(Ψdψ (s)T ⊗ In)
[
In(dψ+1) RTφ (s)

]
with RTφ (s) = −(A− sB)(Ǐdφ+1

(
(Mdφ − sNdφ)Ǐdφ+1

)−1 ⊗ In) ∈ Cn(dψ+1)×ndφ .

Proof. The proof that the last ndφ rows of (??) and the last ndψ columns of (??) are zero
follows from (??). The proof that the first n(dψ + 1) rows of (??) and the first n(dφ + 1) columns
of (??) are equal to e1 ⊗ g(s)P (s) and eT1 ⊗ g(s)P (s), respectively, is similar to the proof of
statement (ii) of Lemma ??.

The next result follows from [?, Thm. 3.1] and the two one-side factorizations in Lemma ??.

Theorem 2.4. Let P (λ) be the n × n matrix polynomial or rational matrix-valued function
in (??), A− sB be the nd× nd pencil in (??) and let λ ∈ C.

(i) If (??) holds at λ with G(λ) of full rank, then
•
[Φdφ (λ)⊗x
Rψ(λ)(Φdφ (λ)⊗x)

]
is a right eigenvector of A− sB with eigenvalue λ if and only if x

is a right eigenvector of P (s) with eigenvalue λ.
• if w ∈ Cnd is a left eigenvector of A− sB with eigenvalue λ then (eT1 ⊗ In)w is a left

eigenvector of P (s) with eigenvalue λ provided that it is nonzero.
(ii) If (??) holds at λ with H(λ) of full rank, then

• If z ∈ Cnd is a right eigenvector of A − sB with eigenvalue λ then (eT1 ⊗ In)z is a
right eigenvector of P with eigenvalue λ provided that it is nonzero.

•
[Ψdψ (λ)⊗y

Rφ(λ)(Ψdψ (λ)⊗y)

]
is a left eigenvector of A− sB with eigenvalue λ if and only if y is

a left eigenvector of P with eigenvalue λ.

Note that we can again use permutation matrices in order to relax the conditions on (Mdφ −
sNdφ)Ǐdφ+1, (Mdψ − sNdψ)Ǐdψ+1 being nonsingular, and on φ0(s) and ψ0(s) being nonzero.

Example 2. For matrix polynomials of odd degree expressed in the monomial basis (??), we
select φj(s) = sj, ψj(s) = sj for j = 0, . . . , d−1

2 , so that g(s) = 1, Aj = P2j , Bj = −P2j+1 for
j = 0, . . . , d−1

2 . The nd× nd pencil (??) is, in this case, a permuted Fiedler linearization [?]:

A =



P0 0

P2 In
. . .

. 0
Pd−1 In

0 In
.

0 In


, B =



−P1 In

−P3 0
. . .

. In
−Pd 0

In 0
.

In 0


.

It follows from Theorem ?? that the left and right eigenvectors of A− sB with eigenvalue λ have
8

the form

x =



x
λx
...

λ
d−1

2 x

−(
∑d
i=2 λ

i−1Pi)x
−(
∑d
i=4 λ

i−2Pi)x
...

−(λ d−1
2 (Pd−1 + λPd))x


, y =



y

λ̄y
...

λ̄
d−1

2 y

−(
∑d
i=2 λ

i−1Pi)∗y
−(
∑d
i=4 λ

i−2Pi)∗y
...

−(λ d−1
2 (Pd−1 + λPd))∗y


,

where x and y are right and left eigenvectors for P with eigenvalue λ.
In what follows, we consider our matrix valued function P (s) to be in the form (??) with

corresponding pencil (??), which includes the three special cases:
L1: the CORK pencil for which

• dψ = 0, Ψdψ (s) = [1], dφ = d− 1 and Φdφ(s) = Ξd−1(s), with Ξd−1(s) as in (??),
• A− sB has the form (??) and (Mdψ − sNdψ)T ⊗ In is the empty matrix;

L2: the transpose of the CORK pencil, i.e., L2 = LT1 for which
• dψ = d− 1, Ψdψ (s) = Ξd−1(s), dφ = 0 and Φdφ(s) = [1],
• A−sB is the transpose of (??) and where Ai, Bi, i = 0, . . . , d−1 are also transposed,

and (Mdφ − sNdφ)⊗ In is the empty matrix;
LS: the symmetrically structured pencil (??) for which

• dψ = dφ = (d− 1)/2, and Ψdψ (s) and Φdψ (s) are as in (??),
• A− sB has the form (??).

3. Compact Krylov methods. The (one-sided) rational Krylov method for the nd × nd
pencil A − sB, outlined in Algorithm ??, builds an orthonormal basis Vk+1 = [v1, . . . ,vk+1] ∈
Cnd×(k+1) for the (right) Krylov space

span {Vk+1} = span
{
v1, (A− σ1B)−1Bv1, . . . , (A− σkB)−1Bv1

}
, (3.1)

for k distinct shifts σ1, . . . , σk [?]. If all the shifts are equal, the method is equivalent to the
shift-and-invert Arnoldi method, which builds the Krylov space

span
{
v1, (A− σ1B)−1Bv1, . . . , ((A− σ1B)−1B)kv1

}
.

Algorithm 1 Rational Krylov algorithm
Input: A,B ∈ Cnd×nd, a nonzero starting vector v1 ∈ Cnd, and k shifts (σj)kj=1.

1: Normalize v1 such that ‖v1‖2 = 1.
2: for j = 1, . . . , k do
3: Compute w = (A− σjB)−1Bvj .
4: Orthogonalize: ṽj+1 = w−

∑j
i=1 hijvi, where hij = v∗iw for i = 1, . . . , j.

5: Set hj+1,j = ‖ṽj+1‖2, normalize ṽj+1: vj+1 = ṽj+1/hj+1,j .
6: end for

Returns Vk+1 = [v1, . . . ,vk+1] ∈ Cnd×(k+1) and Hk = (hij) ∈ C(k+1)×k.

The matrix Vk+1 satisfies the rational Krylov recurrence relation

AVk+1Hk = B Vk+1Kk, (3.2)

where Hk, Kk ∈ C(k+1)×k are upper Hessenberg matrices with Hk = (hij) and Kk = Ik +
Hk diag(σ1, . . . , σk). The Ritz pairs (λi,xi) of A − sB can then be obtained from the eigenpairs

9

(λi, si) of the generalized eigenvalue problem

Kksi = λiHksi, si 6= 0, (3.3)

where Hk, Kk are the k × k upper parts of Hk and Kk by setting xi = Vk+1Hksi.
An orthonormal basis Zk+1 = [z1, . . . , zk+1] for the left Krylov space associated with the

pencil A− sB is obtained by applying Algorithm ?? to AT and BT . A two-sided rational Krylov
method is obtained by applying Algorithm ?? to both A − sB and AT − sBT . We then use the
computed orthonormal bases Vk+1 and Zk+1 to project A− sB onto a smaller pencil

A− sB = ZTk+1(A− sB)Vk+1 (3.4)

of size (k + 1)× (k + 1). The right and left Ritz vectors x and y of A− sB are spanned by Vk+1
and Zk+1, respectively, i.e., x = Vx̂ and y = Zŷ, where x̂ and ŷ are right and left eigenvectors
of A − sB, respectively. The triplet (λ,x,y) forms a desired approximate eigenvalue-eigenvector
triplet for A− sB.

The size nd of the iteration vectors in Algorithm ?? is large, which can lead to a heavy memory
burden and an expensive orthogonalization process. Also, solving the large scale system in Step 3
of Algorithm ??, without exploiting its structure, is prohibitively expensive in memory for large
n. To alleviate these, we use the Kronecker structure of the pencil A− sB to express the iteration
vectors in a compact format that considerably reduces the memory cost, and the cost of the Gram-
Schmidt orthogonalization process. We describe this compact format in Section ?? and explain
how to compute the iteration vectors efficiently, which includes the efficient solution of the linear
system in Step 3 of Algorithm ??. Section ?? explains how to make use of the compact form of the
vectors to compute the inner products needed for the Gram-Schmidt orthogonalization process.
We present the compact rational Krylov algorithm in Section ??. Section ?? explains how to
efficiently compute the reduced eigenvalue problem (??). Section ?? presents further reductions
on the memory consumption and computational cost. We close the section with a comment on
implicit filtering in Section ??, which we need for improving the numerical stability of the two-sided
method.

3.1. Compact form of the iteration vectors. We show that the iteration vectors w
and vj in Algorithm ?? can be written in a compact form involving Kronecker products. Consider
the pencil A− sB in (??), associated with the expression for P (s) in (??), and the solution w to
the linear system

(A− sB)w = Bv, (3.5)

for some shift s, such that A− sB is nonsingular. Consider also vectors v and w of length nd that
we partition as follows:

v =
[

v[φ]

v[ψ]

]
, w =

[
w[φ]

w[ψ]

]
, (3.6)

with v[φ],w[φ] ∈ Cn(dφ+1) and v[ψ],w[ψ] ∈ Cndψ . The vector v[φ] is itself partitioned into dφ + 1
vectors v[0], . . . , v[dφ] of length n, and v[ψ] consists of the dψ vectors v[dφ+1], . . . , v[dφ+dψ] of length
n.

Assume that the conditions of Lemma ?? with respect to Mdψ − sNdψ , Mdφ − sNdφ and φ0(s)
are satisfied. By Theorem ??, if s is not an eigenvalue of A − sB, then it is not an eigenvalue
of P (s) so that P (s) is nonsingular. We can transform the linear system (??) to an equivalent
system by multiplying it on the left with H(s)

ǏTdψ+1 ⊗ In 0
0 Idφ ⊗ In

 ,
10

where H(s) is as in Lemma ??(ii) and is assumed to be of full row rank. By using Lemma ??(ii)
to replace H(s)(A− sB) with eT1 ⊗ g(s)P (s), we obtain the linear system eT1 ⊗ g(s)P (s) 0

(ǏTdψ+1 ⊗ In)(A− sB) ǏTdψ+1(Mdψ − sNdψ)T ⊗ In
(Mdφ − sNdφ)⊗ In 0

[w[φ]

w[ψ]

]
=

 H(s)
ǏTdψ+1 ⊗ In 0

0 Idφ ⊗ In

[B NT
dψ
⊗ In

Ndφ ⊗ In 0

] [
v[φ]

v[ψ]

]
. (3.7)

The solution w to (??) can be obtained as follows:

w[0] = g(s)−1P (s)−1H(s)Bv, (3.8)
(ǏTdφ+1 ⊗ In)w[φ] =

(
Eφ(s)Ndφ ⊗ In

)
v[φ] − Eφ(s)(Mdφ − sNdφ)e1 ⊗ w[0], (3.9)

w[ψ] =
(
Fψ(s)T ⊗ In

)
Bv[φ] +

(
(NdψFψ(s))T ⊗ In

)
v[ψ]

−
(
Fψ(s)T ⊗ In

)
(A− sB)w[φ], (3.10)

where

Eφ(s) =
(
(Mdφ − sNdφ)Ǐdφ+1

)−1
, Fψ(s) = Ǐdψ+1

(
(Mdψ − sNdψ)Ǐdψ+1

)−1
. (3.11)

In what follows, we will repeatedly use the fact that if a = (X ⊗ In)b for some a,b ∈ Cdn
and X ∈ Cd×d, then the jth block a[j] of length n of a is a linear combination of the d blocks
b[1], b[2], . . . , b[d] of b. We will need the following result.

Lemma 3.1. Let rk = rank Ṽk, where

Ṽk =
[
v

[0]
1 , . . . , v

[dφ]
1 , v

[0]
2 , . . . , v

[dφ]
2 , . . . , v

[0]
k , . . . , v

[dφ]
k

]
∈ Cn×(dφ+1)k, (3.12)

with v[`]
j denoting the (`+1)st block of length n of the jth column of the matrix Vk in Algorithm ??.

Then,
(i) r1 ≤ min(dφ + 1, n),
(ii) rk = rk−1 or rk = rk−1 + 1 for k > 1.
Proof. Statement (i) is obvious. Let us prove (ii). Let the columns of Qk ∈ Cn×rk form an

orthonormal basis for the column range of Ṽk. Since vk for k > 1 is a linear combination of wk−1

and v1, . . . ,vk−1 (see step 4 of Algorithm ??), the blocks v[i]
k , i = 0, . . . , dφ, of v[φ]

k lie in the
column range of

[
Qk−1, w

[0]
k−1, . . . , w

[dφ]
k−1
]
. But, by (??), with w[φ] ≡ w[φ]

k−1 and v[φ] ≡ v[φ]
k−1, we

see that w[j]
k−1, 1 ≤ j ≤ dφ is a linear combination of v[0]

k−1, v
[1]
k−1, . . . , v

[dφ]
k−1, and w

[0]
k−1, so that

range(Qk) = range
(
[Qk−1, w

[0]
k−1, . . . , w

[dφ]
k−1]

)
= range

(
[Qk−1, w

[0]
k−1]

)
,

i.e., rk can be at most rk−1 + 1, which proves the lemma.
We introduce the auxiliary matrix

Lk = [A0, A1, . . . , AdAB−1, B0, B1, . . . , BdAB−1](I2dAB ⊗Qk) ∈ Cn×2dABrk , (3.13)

where Qk ∈ Cn×rk is the matrix with orthonormal columns defined in the proof of Lemma ?? and
dAB is the number of nonzero n× n blocks in the pencil A− sB, used to define A− sB.

Theorem 3.2 (Compact form of iteration vector vk). Let vk ∈ Cnd, k > 1 be the iteration
vector computed at step k− 1 of the rational Krylov algorithm applied to the pair (A,B) associated
with P (s) in (??). Assume that s = σk is such that A − sB is nonsingular and the conditions of
Lemma ?? with respect to Mdψ − sNdψ , Mdφ − sNdφ and φ0(s) are satisfied. Then,

v[φ]
k = (Idφ+1 ⊗Qk)u[φ]

k for some u[φ]
k ∈ Crk(dφ+1), (3.14)

11

where rk = rank Ṽk with Ṽk as in (??) and the columns of Qk ∈ Cn×rk form an orthonormal basis
for range(Ṽk). Moreover, with Lk as in (??), if dψ 6= 0 and the lower part of the initial vector
v[ψ]

1 is chosen to be of the form v[ψ]
1 = (Idψ ⊗ L1)u[ψ]

1 for some u[ψ]
1 ∈ C2r1dABdψ then

v[ψ]
k = (Idψ ⊗ Lk)u[ψ]

k for some u[ψ]
k ∈ C2rkdABdψ . (3.15)

Proof. The compact form for v[φ]
k follows from Lemma ?? and its proof. For v[ψ]

k , we proceed
by induction on k. The compact form clearly holds for k = 1. Assume it holds for k − 1, i.e.,
v[ψ]
k−1 = (Idψ ⊗ Lk−1)u[ψ]

k−1 for some u[ψ]
k−1 ∈ C2rk−1dABdψ . From Algorithm ??, v[ψ]

k = αw[ψ]
k−1 −

α
∑k−1
i=1 hijv

[ψ]
i with α such that ‖vk‖2 = 1. Now, from (??)–(??) and the induction hypothesis,

for the two first terms in the expression for w[ψ]
k−1 in (??), it is easy to see that(

Fψ(s)T ⊗ In
)
Bv[φ]

k−1 +
(
(NdψFψ(s))T ⊗ In

)
v[ψ]
k−1 = (Idψ ⊗ Lk−1)a

for some a ∈ C2rk−1dABdψ . It follows from (??)–(??) and (??) that

w[φ]
k−1 = (Idφ+1 ⊗Qk)t[φ]

k for some t[φ]
k ∈ Crk(dφ+1) (3.16)

so that
(
Fψ(s)T ⊗ In

)
(A− sB)w[φ]

k−1 = (Idψ ⊗ Lk)b for some b ∈ C2rkdABdψ . Hence,

w[ψ]
k = (Idψ ⊗ Lk)t[ψ]

k for some t[ψ]
k ∈ C2rkdABdψ (3.17)

and v[ψ]
k = αw[ψ]

k−1 −α
∑k−1
i=1 hijv

[ψ]
i = (Idψ ⊗Lk)u[ψ]

k for some u[ψ] ∈ C2rkdABdψ , which concludes
the proof.

For the compact forms (??)–(??) to hold, v[ψ]
1 must lie in the column range of L1. Recall

that, by Lemma ??, the size of Qk increases by at most one at each iteration and that of Lk by
at most 2dAB so that Lk can end up having a large number of columns. We explain in Section ??
how to reduce the number of columns of Lk, which can be as little as mrk, where m is the number
of matrices defining the nonlinear eigenvalue problem via the matrix-valued function in (??) and
is usually small. Now, with an appropriate choice of the starting vector v1, r1 = rank(Q1) = 1
and Qk has at most rank rk = k. So we encourage the reader to think of Qk as being n× k and
Lk to be n times a small multiple of k.

We drop the subscript k in what follows and write

v =
[
v[φ]

v[ψ]

]
=
[
(Idφ+1 ⊗Q)u[φ]

(Idψ ⊗ L)u[ψ]

]
, w =

[
w[φ]

w[ψ]

]
=
[
(Idφ+1 ⊗Q)t[φ]

(Idψ ⊗ L)t[ψ]

]
, (3.18)

for some u[φ], t[φ] ∈ Cr(dφ+1) and some u[ψ], t[ψ] ∈ C2rdABdψ , and where r is the rank of Q. We
still have to present a practical way to compute the short vectors t[φ] and t[ψ], and then u[φ], u[ψ]

defining the next iteration vector v. Note that, since L is not a full rank matrix, u[ψ] and t[ψ] are
not unique.

To compute t, it is convenient to introduce AL,BL ∈ C2rdAB(dψ+1)×r(dφ+1) such that

A(Idφ+1 ⊗Q) = (Idψ+1 ⊗ L)AL B(Idφ+1 ⊗Q) = (Idψ+1 ⊗ L)BL. (3.19)

The matrices AL and BL are in general of much smaller dimension than A and B. Note that for
A,B in (??) for which dAB = d = dφ + 1, we have that

AL = [e1, e2, . . . , edAB]⊗ Ir, BL = [edAB+1, edAB+2, . . . , e2dAB]⊗ Ir,

and for A,B in (??) for which dAB = dφ + 1 = dψ + 1, we have

AL =


e1

e2
. . .

edψ+1

⊗ Ir, BL =


edψ+2

edψ+3
. . .

e2dψ+2

⊗ Ir,
12

where ej is the jth column of the 2dAB × 2dAB identity matrix.
If w is the solution to the linear system (A− sB)w = Bv at iteration k of Algorithm ?? then

the Q in the compact form for w in (??) corresponds to Qk+1, which has not been formed at this
point. It is then necessary to compute w[0] as the solution to the linear system in (??) first and
update Q accordingly (recall that range(Qk+1) = range([Qk, w[0]])). But the Q in the compact
form for v is Qk, which is known at this stage. So we can take advantage of the compact form of
v to reduce the cost of the computation of w[0], starting with the right-hand side H(s)Bv, which
we rewrite as

b := H(s)Bv = LHL(s)BLu, (3.20)

where

HL(s) = φ0(s)(Ψdψ (s)T ⊗ I2rdAB)
[
I2rdAB(dψ+1) (AL − sBL)(Fφ(s)⊗ Ir)

]
(3.21)

with Fφ(s) as in (??) (and φ in place of ψ), and

BL =
[

BL NT
dψ
⊗ I2rdAB

Ndφ ⊗ Ir 0

]
. (3.22)

This follows from (??) and the fact that

(Ndφ ⊗ In)(Idφ+1⊗Q) = (Idφ ⊗Q)(Ndφ ⊗ Ir), (NT
dψ
⊗ In)(Idψ ⊗L) = (Idψ+1⊗L)(NT

dψ
⊗ I2rdAB).

Now, replacing v[φ] and v[ψ] in (??)–(??) by their compact form in (??), using (??) and Q∗Q = Ir,
a straightforward computation shows that

t[0] = Q∗w[0]

(ǏTdφ+1 ⊗ Ir)t[φ], = (Eφ(s)Ndφ ⊗ Ir)u[φ] − Eφ(s)(Mdφ − sNdφ)e1 ⊗ t[0], (3.23)

t[ψ] =
(
Fψ(s)T ⊗ I2rdAB

)(
BL(u[φ] + st[φ])−ALt[φ])+

(
NdψFψ(s)T ⊗ I2rdAB

)
u[ψ].

As mentioned before, the expression for t[ψ] is not unique but t[ψ] defines w[ψ] uniquely.
In what follows we provide simpler expressions for HL(s) in (??) and t in (??) that are also

easier to compute. We introduce the matrix AL that has the structure of BL in (??) but with
AL,M

T
dψ

and Mdφ in place of BL, N
T
dψ

and Ndφ , respectively. We will also need

ǏL =
[
ǏTdψ+1 ⊗ I2rdAB

Idφ ⊗ Ir

]
and ǏR =

[
Ǐdφ+1 ⊗ Ir

Idψ ⊗ I2rdAB

]
.

Using an approach similar to the one we used in the proof of Lemma ??, we can show that if we
let

PL(s) = (Ψdψ (s)⊗ I2rdAB)T (AL − sBL)(Φdφ(s)⊗ Ir)

then the r
(
2dAB(dψ + 1) +dφ

)
× r
(
2dABdψ + (dφ+ 1)

)
pencil AL− sBL and the 2rdAB× r rational

matrix function PL(s) are related by the one-sided factorization

HL(s)(AL − sBL) = eT1 ⊗ PL (3.24)

with HL(s) as in (??). Now if we combine the first 2rdAB columns of equation (??) to equation
(??) with its first r columns removed we obtain that HL(s) is a solution to the linear system

HL(s)
[[
I2rdAB

0

]
(AL − sBL)ǏR

]
= φ0ψ0

[
I2rdAB 0

]
. (3.25)

The matrix on the right-hand side of HL(s) is block upper triangular with nonsingular diagonal
blocks. This follows from the fact that ǏTdψ+1(Mdψ − sNdψ)T and (Mdφ − sNdφ)Ǐdφ+1 have full

13

rank. Hence HL(s) is uniquely determined by (??). It is not difficult to check that t in (??) is
a solution to the

(
2rdABdψ + r(dφ + 1)

)
×
(
2rdABdψ + r(dφ + 1)

)
block lower triangular linear

system [
eT1 ⊗ Ir

ǏL(AL − sBL)

] [
t[φ]

t[ψ]

]
=
[
Q∗w[0]

ǏLBLu

]
. (3.26)

That the matrix of this linear system is nonsingular follows from the same arguments we used to
prove nonsingularity of the system (??). Hence t is uniquely determined by (??). This presents
an alternative to the explicit expression for t in (??). Note that solving (??), using a sparse direct
linear solver, e.g., is, in general, not cheaper than (??), but it is less challenging than working out
(??).

3.2. Orthogonalization. We now describe how to implement the inner product of v and w
in (??) needed in the Gram-Schmidt orthogonalization in Step 4 of Algorithm ??. Since Q has
orthonormal columns,

v∗w = (u[φ])∗t[φ] +
(
[A0Q, . . . , BdAB−1Q]u[ψ])∗([A0Q, . . . , BdAB−1Q]t[ψ]),

where the second term in the summation disappears when dψ = 0 (e.g., for the CORK pencil L1
in (??)) but has a non negligible cost to compute when dψ 6= 0. In the latter case we propose to
replace the Euclidean inner product v∗w with a quasi inner product that is cheaper to evaluate.
We consider both

〈v,w〉φ = (u[φ])∗t[φ] and 〈v,w〉φ,ψ =
[
u[φ]

u[ψ]

]∗ [t[φ]

t[ψ]

]
. (3.27)

These are both quasi inner products since 〈v,v〉φ = 0 does not imply v = 0 and when L is not
of full column rank, there exists u[ψ] 6= 0 such that v = 0 but 〈v,v〉φ,ψ 6= 0. The latter situation
should not lead to unlucky breakdown. We compare numerically the two quasi inner products
in (??) in Section ??.

3.3. The overall algorithm. The compact rational Krylov algorithm is presented in Algo-
rithm ??. Similarly to Algorithm ??, Algorithm ?? applied to the transposes of A and B returns
a basis Z in compact format for the left Krylov subspace. Note that, with regards to numerical
stability, we use reorthogonalization for both the orthogonalization with Euclidean inner product
in Step 6 and for the orthogonalization with the alternative inner products in Steps 13 and 14 [?].

Algorithm ?? requires the storage of Q, and u1, . . . ,uk+1. Recall that L is not stored. Assume
that the starting vector takes the form (??), defined in Section ??, which implies r1 = 1. Storing
k iteration vectors in the compact format requires O(nk + k2(dφ + 1 + 2dABdψ)) floating point
numbers, compared to O(nk(dφ + dψ + 1)) for the full unstructured vector format. Note that the
compact format is only beneficial for sufficiently large scale problems. The orthogonalization cost
when the 〈·, ·〉φ inner product is used, is O(nk2) + O((dφ + 1)k2) floating point operations as for
one-sided CORK. For the 〈·, ·〉φ,ψ inner product, the cost is O(nk2) + O((dφ + 1 + 2dABdψ)k2)
floating point operations.

3.4. Computation of the projection. Let V be the basis in compact form returned by
Algorithm ?? applied to A− sB and let Z be the basis in compact form returned by Algorithm ??
when applied to AT − sBT ,

V =
[
Idφ+1 ⊗QV

Idψ ⊗ LV

] [
U[φ]
V

U[ψ]
V

]
, Z =

[
Idψ+1 ⊗QZ

Idφ ⊗ LZ

][
U[ψ]
Z

U[φ]
Z

]
.

14

Algorithm 2 Compact Rational Krylov algorithm
Input: Coefficients of P (s), choice of pencil A − sB in (??), a starting vector represented by u1,
Q1 with Q∗1Q1 = I and L1 as in (??), a set of k shifts σ1, . . . , σk, and a (quasi) inner product 〈·, ·〉
such as 〈·, ·〉φ or 〈·, ·〉φ,ψ in (??).

1: Normalize v1 =
[

(Idφ+1 ⊗Q1)u[φ]
1

(Idψ ⊗ L1)u[ψ]
1

]
such that 〈v1,v1〉 = 1.

2: for j = 1, . . . , k do
3: Form the right-hand side b = LjHLj (σj)BLjuj with HL computed using (??),(??) or

(??),(??).
4: Solve P (σj)w[0] = b.
5: if w[0] does not lie in the column range of Qj then
6: Use Gram-Schmidt to orthogonalize w[0] w.r.t. the columns of Qj .
7: Expand Qj : Qj+1 := [Qj , w[0]] so that Q∗j+1Qj+1 = I.
8: Expand Lj with Aiw[0] and Biw[0] to form Lj+1. (Note that this is not done explicitly,

but corresponds to an expansion of AL and BL with additional rows and columns.)
9: Pad ui with zeros so v[φ]

i = (Idφ+1⊗Qj+1)u[φ]
i and v[ψ]

i = (Idψ⊗Lj+1)u[ψ]
i , i = 0, . . . , j.

10: else
11: Qj+1 = Qj .
12: end if
13: Compute t in (??) or as the solution of (??).
14: Compute hij = 〈vi,w〉, i = 1, . . . , j,

15: Orthogonalize:
[
ũ[φ]

ũ[ψ]

]
=
[
t[φ]

t[ψ]

]
−

[
u[φ]

1 , . . . ,u[φ]
j

u[ψ]
1 . . . ,u[ψ]

j

]
h1:j,j .

16: Compute hj+1,j =
√
〈ṽj+1, ṽj+1〉, where ṽj+1 =

[
(Idφ+1 ⊗Qj+1)ũ[φ]

(Idψ ⊗ Lj+1)ũ[ψ]

]
.

17: Normalize:
[
u[φ]
j+1

u[ψ]
j+1

]
= 1

hj+1,j

[
ũ[φ]

ũ[ψ]

]
.

18: end for
Returns Vk+1 in compact form as {u1, . . . ,uk+1}, Qk+1, and Hk = (hij) ∈ C(k+1)×k.

Here, note that the bases Ψ and Φ are swapped for Z, since Z is formed using AT and BT . Then,
we have[

Idψ+1 ⊗QZ
Idφ ⊗ LZ

]∗
(A− sB)

[
Idφ+1 ⊗QV

Idψ ⊗ LV

]
=
[
Idψ+1 ⊗Q∗ZLV

Idφ ⊗ L∗ZQV

]
(AL − BL)

and, therefore

Z∗(A− sB)V =
[

(Idψ+1 ⊗ L∗VQZ)U[ψ]
Z

(Idφ ⊗Q∗V LZ)U[φ]
Z

]∗
(AL − sBL)

[
U[φ]
V

U[ψ]
V

]
.

An efficient way to evaluate Q∗ZLV and L∗ZQV is to first compute Âi = Q∗ZAiQV and B̂i =
Q∗ZBiQV .

3.5. Reduction of the size of L. The size of L and, consequently, u[ψ], can be large, in
particular, when dAB is large. We show via examples that the number of nonzero columns of L is
usually much smaller than 2rdAB and explain how to reduce the size of L and as a consequence,
the length of u[ψ].

15

Example 3. Consider the matrix polynomial in the monomial basis from Example ??. The
relation between the coefficient matrices Pi, i = 0, . . . , d and the CORK coefficient matrices Ai, Bi
i = 0, . . . , d− 1 is given by

[A0, . . . , Ad−1, B0, . . . , Bd−1] = [P0, . . . , Pd](T ⊗ In) with T =
[
Îd+1 −ed+1e

T
d

]
∈ R(d+1)×2d,

where Îd+1 is the (d+ 1)× (d+ 1) identity matrix with its last column removed. For d = 3, e.g.,
we have

T =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 −1

 ∈ R4×6.

For any polynomial of degree d, a minimal formulation consists of at most d+ 1 different matrices
Ai, Bi, so that T has at most d+ 1 rows. Then

L = [A0, . . . , Ad−1, B0, . . . , Bd−1](I2d ⊗Q) = [P0, . . . , Pd](T ⊗ In)(I2d ⊗Q)
= [P0, . . . , Pd](Id+1 ⊗Q)(T ⊗ Ir) = LG(T ⊗ Ir),

where LG = [P0, . . . , Pd](Id+1 ⊗ Q) ∈ Cn×r(d+1) with d + 1 < 2dAB. The iteration vectors then
take the form

w =
[
(Idφ+1 ⊗Q)u[φ]

(Idψ ⊗ LG)u[ψ]

]
,

where u[ψ] ∈ Cr(d+1)dψ , which can be much shorter in length than u[ψ] in (??). When we use LG
instead of L, we also need to replace AL and BL by AL,G and BL,G respectively, such that

A(Idφ+1 ⊗Q) = (Idψ+1 ⊗ LG)AL,G, B(Idψ+1 ⊗Q) = (Idψ+1 ⊗ LG)BL,G,

where

AL,G = (Idψ+1 ⊗ T ⊗ Ir)AL, BL,G = (Idψ+1 ⊗ T ⊗ Ir)BL.

The situation improves even more when the matrix coefficients of P (s) are linear combinations
of less than d + 1 matrices. This is the case when g(s)P (s) is the result of the polynomial or
rational approximation of a nonlinear problem of the form (??) with m � d. The following
example illustrates this.

Example 4. Consider the matrix polynomial with m = 3 written as:

P (s) = C0 + (s+ 2s2 + 3s3)C1 + s4C2.

The relation between the coefficient matrices Ci of P and the CORK coefficient matrices in (??)
is described by [A0, A1, A2, A3, B0, B1, B2, B3] = [C0, C1, C2](T ⊗ In), where

T =

1 0 0 0 0 0 0 0
0 1 2 3 0 0 0 0
0 0 0 0 0 0 0 −1

∈ R3×8.

In Example ??, the size of L is reduced from n × 2rdAB to n × rm and u[ψ] is reduced from
size 2rdABdψ to rmdψ. In a similar way, the gun problem described in (??) is defined by the four
coefficient matrices K, M , W1 and W2. If approximated by a rational function of degree 21, as in
Section ??, the resulting coefficient matrices Ai and Bi are just linear combinations of K, M , W1
and W2. Using the technique described above, we can reduce the size of u[ψ] from 42rdψ to 4rdψ.

16

3.6. Implicit filter and numerical stability. Instabilities in the Lanczos method can
sometimes be cured by an implicit filter [?]. Implicit filtering is also used for one-sided Krylov
methods for reducing the chance of spurious eigenvalues [?], [?]. We recall the idea for the one-
sided rational Krylov method and then explain how it is applied to the two-sided method. The
idea of implicit filtering for the rational Krylov method is due to [?].

The following theorem shows the case for constant shifts σ1 = · · · = σk. For the general, but,
more complicated case of different shifts, we refer to [?].

Theorem 3.3. Let Vk+1, Hk, Kk satisfy (??). Define the ‘skinny’ QR factorization Hk =
Y kRk where Y k ∈ C(k+1)×k has orthonormal columns and Rk ∈ Ck×k is upper triangular. Define

V(F)
k = Vk+1Y k ∈ Rn×k, H

(F)
k−1 = Rk(ǏTk+1Y k Ǐk) ∈ Rk×(k−1), K

(F)
k−1 = H

(F)
k−1 + σkIk. (3.28)

Then, we have that both H(F)
k−1 and K(F)

k−1 are upper Hessenberg matrices and

AV(F)
k H

(F)
k−1 = BV(F)

k K
(F)
k−1

is a Rational Krylov recurrence relation, of order k − 1. Moreover,

Range(V(F)
k) = Range((A− σkB)−1BVk).

The filtered basis V(F)
k spans the Krylov space obtained by multiplying the old Krylov space

Vk with (A − σ1B)−1B. This operation removes the small eigenvalues from the Krylov space.
Their Ritz values are usually not good approximations of eigenvalues and may lead to spurious
eigenvalues. Therefore, their removal by the filter may improve the numerical behaviour of the
Krylov method.

In the context of TS-CORK, the new iteration vectors take the form

V(F)
k =

[
(Idφ+1 ⊗Q)U[φ]Y k
(Idψ ⊗ L)U[ψ]Y k

]
,

where Q has rank r ≤ dφ + k + 1. Since they also satisfy a recurrence relation of order k − 1, we
know that there are Q(F), L(F), (U[φ])(F) and (U[ψ])(F) such that

V(F)
k =

[
(Idφ+1 ⊗Q(F))(U[φ])(F)

(Idψ ⊗ L(F))(U[ψ])(F)

]
.

with rank of Q(F) bounded from above by dφ + k. It may thus happen that Q(F) has smaller rank
than Q. As a result, L(F) may also have lower rank than L since it is intimately connected to
Q(F). Algorithm ?? shows the different steps.

For the two-sided method, we apply the algorithm on both right and left subspaces. This
produces new V and Z.

4. Numerical examples. In this section, we illustrate the use of the right and left Krylov
spaces generated by Algorithm ?? for computing eigenvalue and eigenvector approximations. We
compare the following methods:
CORK: the compact rational Krylov method applied to L1 as described in [?]. This also cor-

responds to Algorithm ?? applied to L1 with the standard (Euclidean) inner product
denoted by 〈·, ·〉f , which does not require additional products with Ai and Bi, since t[ψ]

is empty. The Ritz values are obtained from (??).
T-CORK: Algorithm ?? applied to L2 = LT1 . The Ritz values are again obtained from (??).

The iteration vectors cannot be fully orthogonalized without additional products with Ai,
Bi. We compare the convergence behaviour of Ritz values when using the inner products
〈·, ·〉φ, 〈·, ·〉φ,ψ and also the standard (expensive) inner product 〈·, ·〉f . Note that 〈·, ·〉φ
only uses the first block, v[0]

j , of iteration vector vj .
17

Algorithm 3 Implicit filter for TS-CORK
Input: Hk, Kk, and Vk+1 in compact form, i.e., Q and U[φ],U[ψ].

1: Compute the QR factorization of Hk: Hk = Y kRk
2: Update H(F)

k−1 and K
(F)
k−1 following (??).

3: Form (U[φ])(F) = U[φ]Y k and (U[ψ])(F) = U[ψ]Y k.
4: Reshape these matrices as follows: U = [(u[0]

1)(F), . . . , (u[0]
k)(F), . . . , (u[dψ+dφ]

1)(F), . . . , (u[dψ+dφ]
k)(F)].

5: Compute the singular values decomposition of U = VΣW∗ and truncate the small singular
values and associated right and left singular vectors.

6: Form Q(F) = QV.
7: Replace (U[φ])(F) by V∗(U[φ])(F) and (U[ψ])(F) by V∗(U[ψ])(F).
8: If the rank of Q(F) is lower than the rank of Q, drop associated rows and columns of AL and
BL.

Return: H(F)
k−1, K(F)

k−1 and V(F)
k in compact form, i.e., Q(F) and (U[φ])(F), (U[ψ])(F).

RS-CORK: Algorithm ?? applied to LS . The Ritz values are obtained from (??). Both inner
products 〈·, ·〉φ and 〈·, ·〉φ,ψ, are compared. In contrast to T-CORK, 〈·, ·〉φ uses the upper
half of the iteration vectors.

LS-CORK: The same as RS-CORK, but Algorithm ?? is applied to AT and BT of LS = A− sB.
P-CORK: This is the two-sided rational Krylov method, explained in the beginning of Section ??,

where L1 is projected on the left and right Krylov spaces constructed by CORK and T-
CORK, respectively. This method produces Ritz triplets, i.e., Ritz values and associated
right and left Ritz vectors, computed from the projected pencil (??).

TS-CORK: This is the two-sided rational Krylov method applied to LS , where the right and left
Krylov spaces are computed with RS-CORK and LS-CORK, respectively. This method
produces Ritz triplets, i.e., Ritz values and associated right and left Ritz vectors, computed
from the projected pencil (??).

As starting vector we use a vector in the low rank format

v1 =
[
f ⊗ v1
0ndψ

]
, (4.1)

where f ∈ Cdφ+1, v1 ∈ Cn \ {0}, both with two-norm 1, so that Q = [v1] ∈ Cn×1 and u[φ] = f and
u[ψ] = 0. In our experiments, we chose f = e1.

In the numerical examples, convergence will be measured by the backward errors on the right
and left eigenpair estimates, defined as the scaled residual norms

Rx = ‖A(λ)x‖2
‖A(λ)‖1‖x‖2

, Ry = ‖y∗A(λ)‖2
‖A(λ)‖1‖y‖2

, (4.2)

where x and y correspond to the first n-sized block of the Ritz vectors of the linear pencil.

4.1. Gun problem. Consider the model of a radio-frequency gun cavity available from the
NLEVP collection [?], known as the gun problem. This problem has the following matrix:

A(λ) = (K − λM + i
√

(λ− σ2
1)W1 + i

√
(λ− σ2

2)W2). (4.3)

See [?] for the details. The problem is of size n = 9956, and σ1 = 0, σ2 = 108.8774. Since the
coefficient matrices are symmetric, we can use Z = V, i.e., a two-sided method is strictly speaking
not needed to solve this problem. We use this example to compare the reliability of the CORK,
T-CORK and RS-CORK methods for computing eigenvalues and right eigenvectors using (??).

We determine eigenpairs of the nonlinear eigenvalue problem, whose eigenvalues are nearest to
2502. As in [?] and [?], the eigenvalue problem is approximated by a rational eigenvalue problem
expressed in a rational Newton basis of degree 21 and five shifts are used, one at 2502 and the
other four around this point in the complex plane.

18

