
 

 

 
 

 
 

 

 

Citation/Reference Verdyck J., Blondia C., Moonen M. (2018) 

Network Utility Maximization for Adaptive Resource Allocation in 

DSL Systems 

Proc. of the 26th European Signal Processing Conference (EUSIPCO) 

Archived version Author manuscript: the content is identical to the content of the published 

paper, but without the final typesetting by the publisher 

 

Published version n/a 

Journal homepage http://www.eusipco2018.org/ 

Author contact Jeroen.verdyck@esat.kuleuven.be 

+ 32 (0)16 32 47 23 

Abstract  

IR n/a  

 

(article begins on next page) 



Network Utility Maximization for Adaptive
Resource Allocation in DSL Systems

Jeroen Verdyck
STADIUS Center for Dynamical Systems,

Signal Processing and Data Analytics

ESAT Department of Electrical Engineering

KU Leuven

Leuven, Belgium
jeroen.verdyck@esat.kuleuven.be

Chris Blondia
IDLab research group

Dept. Mathematics and

Computer Science

University of Antwerp-imec

Antwerp, Belgium
chris.blondia@uantwerpen.be

Marc Moonen
STADIUS Center for Dynamical Systems,

Signal Processing and Data Analytics

ESAT Department of Electrical Engineering

KU Leuven

Leuven, Belgium
marc.moonen@esat.kuleuven.be

Abstract—When signal coordination techniques can not elim-
inate all crosstalk in a digital subscriber line (DSL) system,
competition for data rate among different users is strong. In such
scenarios, employing a static resource allocation fails to capitalize
on the time dependent nature of the traffic carried by the DSL
network. An alternative approach is adaptive resource allocation,
consisting of dividing time into slots of short duration and using a
different resource allocation in each slot. A cross-layer scheduler
then decides on the resource allocation for each time slot by
solving a network utility maximization (NUM) problem. For
many DSL systems however, this NUM problem is non-convex
and solving it is NP-hard. This paper presents a fast algorithm for
finding a local solution to the NUM problem, which is referred
to as NUM-DSB. The algorithm is able to handle many DSL
deployment scenarios, and is applicable regardless of the utility
function’s properties.

Index Terms—DSL, Crosstalk, Cross layer design, Adaptive
resource allocation, Minorize-maximization

I. INTRODUCTION

Dynamic spectrum management (DSM) techniques, which
are used in digital subscriber line (DSL) systems to fight
crosstalk, are often divided into two categories: spectrum
coordination and vectoring. Spectrum coordination reduces
crosstalk by jointly managing the transmit power spectra of
all users, whereas vectoring encompasses jointly coordinating
multiple lines on a signal level. As vectoring techniques are
often able to fully eliminate the effects of crosstalk, they have
become the industry standard as of VDSL2 [1].

In many practical deployment scenarios however, the elim-
ination of all crosstalk through vectoring is inhibited, such
that one has to rely on spectrum coordination to tone down
the effects of the residual crosstalk. Examples include fiber to
the frontage deployments implementing multi-user full-duplex
signaling [2], [3], and deployments where multiple DSL access
multiplexers (DSLAMs) are active on a single cable binder
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[4]. Optimizing the performance in such a system corresponds
to solving a multi-objective optimization problem, yielding a
collection of Pareto optimal resource allocation configurations
from which one has to choose a single configuration for
transmission. Often, a conservative approach is followed where
the physical layer is configured statically over time using a
single Pareto optimal resource allocation.

An alternative to this static resource allocation is adaptive
resource allocation (ARA), which consists of dividing time
into slots of short duration, and changing the resource alloca-
tion from one time slot to the next. A cross-layer scheduler
then chooses one setting for each time slot in accordance with
upper layer requirements. To this end, the cross-layer scheduler
defines a utility function U , and solves the resulting network
utility maximization (NUM) problem, i.e.

maximize
x2X

U([r1(x), ..., rN (x)]T), (1)

where x is the physical layer resource allocation, and rn(x)
denotes the resulting data rate for user n. Algorithms finding
the global optimum of problem (1) are available in [5], [6]. It
has been shown that adaptive resource allocation can lead to
significantly improved throughput and delay performance [7],
[8], as well as to a reduced power consumption [9].

As the rate region of a DSL system is a convex set
[10], the solution to any NUM problem can be found by
solving a sequence of weighted sum rate (WSR) maximization
subproblems [5], as in Algorithm 1. Convergence of such
WSR based NUM algorithms however requires finding the
global optimum of each WSR maximization subproblem. As
finding the globally optimal solution to the WSR maximization
subproblem yielded by many DSM techniques, including the
techniques considered in this paper, is itself NP-hard [11],
directly applying Algorithm 1 to problem (1) results in an
exceedingly high computational complexity. This is especially
problematic in the context of ARA, where a large number of
NUM problems is to be solved.

This paper therefore proposes an new algorithm for the
NUM problem (1), which will be referred to as NUM-DSB.
The algorithm is highly generic - both in the sense of being



able to handle many deployment scenarios, and of being
applicable regardless of the utility function’s properties. NUM-
DSB is based on distributed spectrum balancing (DSB) [12]
for WSR maximization in systems that only employ spectrum
coordination.

Algorithm 1 Sequential WSR maximization for NUM
Initialize ! 2 IRN

+

for i = 0, 1, . . . do
Solve maximizex2X !

T
r(x)

Update !

II. DSB AS A MINORIZE-MAXIMIZATION ALGORITHM

DSB [12], [13] is a low-complexity algorithm for finding
a local solution of the WSR maximization problem in DSL
systems that do not employ any signal coordination. Initially,
DSB has been introduced as a fixed point algorithm aimed
at finding a solution to the KKT stationarity conditions [12].
In this section, a generalized version of DSB is described,
encompassing coupling constraints between users. In the
exposition, DSB is interpreted as a minorize-maximization
(MM) algorithm [14]. This interpretation is in line with recent
optimization literature [15]–[17], and more easily lends itself
to be extended to NUM problems.

DSB can be applied to optimization problems of the form

maximize
x

X

i2I

X

n2Ni

!i,nri,n(x) (2a)

subject to xi 2 Xi, 8i 2 I, (2b)

where I , {1, ..., I} is a set of group indices, and where
Ni , {1, . . . , Ni} denotes the set of users that are in group i.
The decision variable x consists of multiple coordinate blocks,
i.e. xT = [x1

T, ...,xI
T], where coordinate block xi corresponds

to the resource allocation variables of the users in group i.
Moreover, each rate function ri,n is assumed to be concave in
the coordinate block associated with its group xi, and convex
in all other coordinate blocks xj , where j 2 I \ i.

Many DSM techniques yield resource allocation problems
that fit problem (2). Examples include the power allocation
problem in DSL systems employing only spectrum coordina-
tion [12], the joint transmit power allocation and receive filter
design problem in upstream DSL systems [13], the power
allocation problem in multi-user full-duplex DSL systems
employing zero-forcing precoders and receive filters [2], and
the power allocation problem in downstream grouped vector-
ing (GV) scenarios with zero-forcing precoders [4]. This last
problem will be studied more extensively in Section IV.

In each iteration, DSB solves a set of surrogate problems,
one for each group i 2 I, which are much easier to solve than
the original WSR maximization problem (2). The surrogate
problem of group i is obtained from (2) by restricting the
maximization to xi, i.e. considering all variables xj with j 2

I \ i to be constant, and approximating the rate of the users
not in Ni with a first order Taylor expansion, i.e.

maximize
xi

X

j2I

X

n2Nj

!j,nr̃
(i)
j,n(xi; x̄) (3a)

subject to xi 2 Xi. (3b)

In (3), x̄ is the current value of x, and r̃(i)j,n is defined as

r̃(i)j,n(xi; x̄) ,
⇢

rj,n([x̄T
1, ...,xi

T, ..., x̄T
I ]

T) if j = i
r̄j,n + (xi � x̄i)

Trxirj,n
��
x=x̄

if j 6= i
(4)

where r̄j,n , rj,n(x̄). After solving a set of surrogate
problems, either a single or all coordinate blocks of x̄ are
updated (these modes of operation are respectively referred to
as ‘Gauss-Seidel’ (GS) and ‘Jacobi’ updating), and a new set
of surrogate problems is constructed. The resulting sequence of
values for x̄ can converge to a stationary point of the original
optimization problem (2). Moreover, each iterate x̄ generated
by the algorithm is feasible, such that DSB complies with the
definition of a real-time DSM algorithm [18].

Due to its convexity in xi for j 6= i, r̃(i)j,n constitutes a lower
bound approximation on rj,n which is exact in x̄, i.e.

rj,n([x̄
T
1, ...,xi

T, ..., x̄T
I ]

T) � r̃(i)j,n(xi; x̄) (5a)

rj,n(x̄) = r̃(i)j,n(x̄i; x̄). (5b)

Similarly, the objective in (3a) is a lower bound on the
objective in (2a). When employing GS updating, DSB can
thus be interpreted as a block-wise (MM) algorithm which
is guaranteed to converge when as the objective of (3a) is
bounded from above. As the surrogate functions (4) also
satisfy [15, Assumption 2], it can additionally be proven that
DSB with GS updating indeed converges to a stationary point
of problem (2).

It is noted that in this section, DSL nomenclature has
been adopted by referring to the algorithm as ‘DSB’. The
general algorithmic structure is however known as ‘successive
convex approximation’ (SCA). SCA algorithms with proven
convergence that include DSB as a special case, are BSUM
[15], SJBR [16] and FLEXA [17].

III. NUM-DSB
This section shows how the DSB algorithm can be extended

such that it can be applied to NUM problems. The resulting
algorithm will be referred to as DSB for network utility
maximization (NUM-DSB), and can be applied to NUM
problems of the following form.

maximize
x

U (r(x)) (6a)

subject to xi 2 Xi, 8i 2 I (6b)

In (6), r(x) contains the rate vectors of all groups, i.e. r(x)T =
[r1(x)

T, ..., rI(x)
T]. In turn, ri contains the rate of all users in

group i, i.e. rI(x)
T = [ri,1(x), ..., ri,Ni(x)]. As before, each

rate function ri,n(x) is assumed to be concave in its associated
coordinate block xi, and convex in all other coordinate blocks
xj , where j 2 I \ i. It should be noted that the same DSM



techniques that yield WSR maximization problems fitting (2),
will also yield NUM problems that fit (6).

In each iteration, NUM-DSB solves a set of surrogate
problems, one for each group i 2 I. The surrogate problem of
group i is obtained from problem (1) by, again, restricting the
maximization to xi, and approximating the rate of all users
not in Ni with a first order Taylor expansion.

maximize
xi

U
⇣
r̃
(i)(xi; x̄)

⌘
(7a)

subject to xi 2 Xi (7b)

r̃(i)j,n(xi; x̄) � 0, 8j 2 I \ {i} (7c)

In (7), r̃(i)j,n is defined as in (4). As the utility function U might
be undefined for negative rates, the NUM-DSB surrogate
problem enforces positivity of U ’s arguments by including
a positivity constraint on the approximate rates (7c). After
solving (7), x̄ is updated and a new set of surrogate problems
is constructed. As before, each iterate x̄ that is generated by
NUM-DSB is feasible, such that NUM-DSB complies with
the definition of a real-time DSM algorithm [18].

Each NUM-DSB surrogate problem (7) is solved using
Algorithm 1. In turn, each iteration of Algorithm 1 requires
solving a problem that is, apart from positivity constraint (7c),
identical to the DSB surrogate problem (3). Assuming that
the DSB surrogate problem can be solved efficiently, it is
likely that each WSR maximization subproblem obtained by
applying Algorithm 1 to problem (7) can be as well.

Combining the lower bounding property of (5a)-(5b) with
the assumption that U is monotonically increasing in all
its components, NUM-DSB with GS updating can still be
interpreted as a block-wise MM algorithm. Moreover, as
the objective of (6a) is bounded from above, NUM-DSB is
guaranteed to converge regardless of the utility function’s
properties. No such convergence guarantees can be given
when Jacobi updating is employed. However, NUM-DSB with
Jacobi updating has been seen to converge in all numerical
experiments that have been executed.

IV. APPLICATION: DOWNSTREAM GROUPED VECTORING

This section considers a downstream grouped vectoring
scenario. Each index i 2 I now corresponds to a single
vectoring group that contains users Ni. After introducing
the system model for such DSL systems, the exposition will
focus on showing that the WSR problems yielded by applying
Algorithm 1 to problem (7) can be solved efficiently.

DSL systems employ discrete multi-tone (DMT) modulation
to split the available spectrum into a set of K tones, which
is denoted as K = {1, ...,K}. It is assumed that there is no
so-called inter-carrier interference and hence transmission can
be modeled on each tone k independently as

2

64
yk,1

...
yk,I

3

75 =

2

64
Hk,11 · · · Hk,1I

...
. . .

...
Hk,I1 · · · Hk,II

3

75

2

64
x̂k,1

...
x̂k,I

3

75+

2

64
zk,1

...
zk,I

3

75 , (8)

where x̂k,i is an Ni ⇥ 1 vector containing the signals trans-
mitted by the i-th vectoring group on tone k. Similarly,

yk,i and zk,i respectively contain the received signals and
additive Gaussian noise of the i-th vectoring group on tone
k. Moreover, Hk,ij is an Ni ⇥ Nj channel matrix with
[Hk,ij ]nm = hk,ij,nm the transfer function between transmit-
ter m of group j and receiver n of group i, evaluated on tone
k.

Signal coordination among users in the same group is pos-
sible at the transmitter side. Transmitted signals are generated
as

x̂k,i = Tk,ixk,i (9)

in group i, where Tk,i is the precoding matrix of group i
on tone k, and where xk,i

T = [xk,i,1, ..., xk,i,Ni ] contains
the transmitted symbols of all users n in group i on tone k.
Furthermore, the symbol power of user n in group i on tone
k is defined as sk,i,n = �f IE[|xk,i,n|2], with �f the tone
spacing. The aggregate transmit power (ATP) on the n-th line
of group i is then calculated as

Pi,n =
X

k2K
[Tk,i diag (sk,i)Tk,i

H]nn, (10)

with sk,i
T = [sk,i,1, ..., sk,i,Ni ]. In G.fast, the ATP of each line

is limited to Ptot = 4dBm.
It is assumed that each vectoring group i 2 I uses a zero-

forcing precoder, i.e.

Tk,i = Hk,ii
�1. (11)

In order to simplify notation, the effective channel matrix
Ĥk,ji = Hk,jiTk,i is introduced. The resulting SINR of user
n in group i on tone k is then

�k,i,n =
sk,i,n

�k,i,n +
P

j2I\{i}
PNj

m=1 |ĥk,ij,nm|2sk,j,m
, (12)

with �k,i,n = �f IE[|zk,i,n|] the received noise power of
user n in group i on tone k. When the number of inter-
ferers

P
j2I\{i} Nj is large, then the interference-plus-noise

received by the users of group i is well approximated by a
Gaussian distribution. Under this assumption, bitloading of
user n in group i on tone k is accurately modeled by

bk,i,n = log2(1 + ��1�k,i,n), (13)

where � denotes the SNR gap to capacity. The rate of user n
in group i is then

ri,n = fs
X

k2K
bk,i,n, (14)

with fs the DMT symbol rate.
The above DSL system fits problem (6), regardless of the

considered utility function. The different groups in (6) are
given by the vectoring groups in I, and where the feasible
sets are defined as

Xi = {si 2 IRKNi
+ | Pi,n  Ptot, 8n 2 Ni}, (15)

with si = [s1,i,1, ..., sK,i,1, s1,i,2, ..., sK,i,Ni ]
T. It is now shown

that the WSR subproblem, obtained by applying Algorithm 1



to the NUM problem in (7), can be solved efficiently for the
considered DSL system.

First, Lagrange dual decomposition is applied to decouple
the WSR problem over users and tones. The Lagrangian Li is
obtained by dualizing the ATP and rate positivity constraints,
i.e.

Li =
X

j2I

X

n2Nj

!j,nr̃
(i)
j,n(si; s̄)+

X

j2I\{i}

X

n2Nj

�r
j,nr̃

(i)
j,n(si; s̄)

+
X

n2Ni

�p
i,nPtot �

X

n2Ni

X

k2K
tk,i,n

H⇤p
tk,i,nsk,i,n, (16)

with tk,i,n the n-th column of Tk,i, and where �
p and �

r

respectively contain the Lagrange multipliers associated with
the ATP and rate positivity constraints. The resulting Lagrange
dual function is then given by

gi(�
p,�r) = sup

si2IR
K⇥Ni
+

{Li}. (17)

As the considered WSR subproblem is convex, the duality
gap with problem (17) is zero. The maximization in (17) is
separable per user and per tone, and has a unique maximizer
that is given by (18) at the top of the next page.

It can be proven that the dual function as defined in (17)
is continuously differentiable on its domain, with its partial
derivatives given by

@g(�p,�r)

@�p
i,n

= Ptot1�
X

k2K
[Tk,i diag(s

?
k,i)Tk,i

H]n,n, (19)

@g(�p,�r)

@�r
j,n

= r̃(i)j,n(s
?
i ; s̄). (20)

As the dual function is differentiable, one can employ gradient
descent methods to solve the Lagrange dual problem, which
is given by

minimize
�p�0,�r�0

gi(�
p,�r). (21)

Differentiability of gi can be established using results from
[19]. First, define function Fi,n and its convex conjugate F ⇤

i,n

as in [19, Chapter 11], i.e.

Fi,n(si,n) =

⇢
�r̃(i)i,n([0

T, ..., si,nT, ...,0T]T; s̄) if si,n ⌫ 0
+1 if si,n 6⌫ 0

F ⇤
i,n(y) , sup

si,n

{yT
si,n � Fi,n(si,n)}, (22)

where si,n ⌫ 0 denotes the element wise inequality, and where
0 is an all-zeros vector. Function F ⇤

i,n is bounded from above if
and only if all elements in y are strictly negative, such that its
domain is given by dom F ⇤

i,n = {y 2 IRNi⇥K | yk,n < 0}.
Moreover, for each y 2 dom F ⇤

i,n, the solution set of the
optimization problem defining F ⇤

i,n is a singleton. Continuous
differentiability of F ⇤

i,n then immediately follows from [19,
Theorem 11.8] and [19, Corollary 9.19]. As it is possible to
equivalently define the dual function from (17) as

gi(�
p,�r) =

X

n2Ni

F ⇤
i,n(yn) + y0, (23)

where each yn, n 2 {0} [Ni is some affine vector function
of the Lagrange multipliers �p and �

r, it follows that the dual
function itself is continuously differentiable.

As the weights in the WSR problem are determined by the
NUM algorithm that is chosen to update ! in Algorithm 1,
they may often be very different from one another. These
large differences result in the curvature of the dual problem
being strongly anisotropic, in the sense that the dual function’s
Hessian has a fairly high condition number. When applying a
gradient descent method, this often leads to slow convergence
in practice. It is therefore advised to solve problem (21) with
a variable metric method such as L-BFGS-B [20].

V. SIMULATION RESULTS

In this section, simulation results are provided that illustrate
the convergence behavior of NUM-DSB. Two versions of
NUM-DSB are evaluated: one employing Jacobi updating,
which for the original DSB often leads to faster convergence
and solutions that achieve a higher WSR value, and one
that employs GS updating, which enjoys stronger convergence
guarantees.

The DSL systems under consideration contain 2, 3, or
4 vectoring groups. The DSLAM of each vectoring group
connects to a maximum of 10 users, where the distance to
the DSLAM ranges from 110m for user 1 up to 200m for
user 10, increasing with 10m for each consecutive user. The
DSL systems with Ni  10 contain, for each DSLAM, the first
Ni users of their 10-user systems. The utility function of the
minimal delay violation (MDV) scheduler [8] is considered,
which is of the form U(r) =

P
i2I

P
n2Ni

�ai,n/ri,n and
represents an prediction of the number of delay violations as
a function of the assigned rates. Note that ai,n is a constant that
is determined by the cross-layer scheduler. Parameter settings
for the DSL system are summarized in TABLE I.

The number of iterations required by NUM-DSB to con-
verge is given in TABLE II, and the utility function value
after convergence is displayed in Fig. 1. The algorithm is
terminated when the relative decrease of the utility function
between two iterations drops below 10�6. From TABLE II, it
is seen that the required number of iterations often decreases
when more groups or users are added to the system. This
can be explained by the increased interference in the system,
rendering frequency division multiple access solutions optimal.
In these cases, NUM-DSB on many tones switches off all but
one vectoring group early on, and does not reactivate these in
subsequent iterations, leading to fast convergence.

Overall, it is seen that GS updating leads to faster con-
vergence than Jacobi updating. Moreover, Fig. 1 illustrates
that GS updating also outperforms Jacobi updating in the
sense that it achieves equal or higher utility function values.
Contrary to the original DSB, it is no longer true that Jacobi
updating mostly outperforms GS updating. In general, NUM-
DSB requires only few iterations to obtain a local solution.

VI. CONCLUSION

In this paper, a fast algorithm has been presented for finding
a local solution to the NUM problem, which is referred to



s?k,i,n =

2

4 fs!i,n/ log(2)

tk,i,n⇤ptk,i,n � fs
P

j2I\{i}
P

m2Nj
(!j,m + �r

j,m)@bk,j,m

@sk,i,n

��
x=x̄

� �

✓
�k,i,n +

X

j2I\{i}

X

m2Nj

|ĥk,ij,nm|2s̄k,j,m
◆3

5
+

(18)

TABLE I
G.FAST PARAMETER SETTINGS

Parameter Value Parameter Value

Pn,tot 4 dBm K 2047
fs 48 kHz �f 51.75 kHz
� 10 dB an 108 8n 2 N

TABLE II
NUMBER OF ITERATIONS OF NUM-DSB BEFORE CONVERGENCE

Gauss-Seidel Jacobi
Ni I = 2 I = 3 I = 4 I = 2 I = 3 I = 4

1 53 5 8 59 8 7
2 49 22 38 52 6 14
3 19 29 29 53 18 17
4 17 36 29 52 19 20
5 19 24 9 55 20 21
6 23 9 10 53 21 15
7 22 39 7 60 20 15
8 23 36 8 62 7 16
9 31 47 9 91 8 23

10 49 46 10 70 9 22

as NUM-DSB, and which consists of iteratively solving sets
of surrogate problems. The algorithm has been shown to be
applicable in many DSL deployment scenarios, and regardless
of the utility function’s properties. In the context of grouped
vectoring deployment scenarios, NUM-DSB leads to surrogate
problems that are straightforward to solve. Moreover, using
empirical evidence it has been shown that NUM-DSB needs
only few iterations to find a satisfactory solution.
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Fig. 1. Utility function value after convergence of NUM-DSB.
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