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Abstract— In this work, a novel plate system that can
detect weight and location of individual bites during meals is
presented. The system consists of a base station with sensors
and a detachable off-the-shelf polymer plate with three com-
partments. By combining data from multiple weight sensors,
the weight of individual bites can be accurately measured and
localized on the plate to determine the compartment from which
they were taken. With prior knowledge of the weight of the
food in each compartment at the start of the meal, the system
can estimate the nutritional value of the consumed food. In a
test conducted in a controlled home environment, the system
was able to measure the weight of consumed food in each
compartment with a maximum relative error of 1.4%. The
goal of the system is to replace traditional monitoring tools
and to automatically monitor the amount of consumption.

I. INTRODUCTION

Accurately measuring food intake is a requirement in
several health care environments, such as the treatment of
eating disorders, obesity and monitoring of food intake for
elderly people in both a hospital and home environment.
Traditional methods typically consist of pen-and-paper tools
such as questionnaires and food diaries [1]. These are often
incomplete due to their time consuming nature and incorrect
due to human error or deliberate misreporting of the food
intake. A potential solution to this problem is the use of a
monitoring system that automatically monitors a user’s food
intake. Eating activity can be detected using various wearable
devices. Using a wearable microphone, the sounds related
to eating activity, such as chewing, can be automatically
distinguished from other activities [2], [3]. Using wearable
accelerometers, eating activity can be detected from charac-
teristic movements of the body during eating activity [4]–[6].

Measuring the amount of food can be done by integrating
weight sensors into the eating surface of the subject. This
method was first proposed by Kissileff et al. in 1980 [7].
Several modern adaptations to this approach have been pro-
posed since then [8], [9]. These devices can detect the overall
consumed food and measure individual bites, but lack the
ability to estimate the type of food consumed. Furthermore,
existing methods require either extensive adaptation of the
existing eating surface or are big and not easily adoptable.

In this work, we propose a novel smart plate system with
a low hardware footprint. It can accurately detect individual
bites and estimate the position from where the bite was taken.
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II. HARDWARE

A. Mechanical Design

A custom acquisition system that integrates with an exist-
ing off-the-shelf eating plate was developed, shown in Figure
1. The system consists of a base station that contains all the
hardware. The polymer eating plate is mounted and rests
on top of weight sensors in the base station. Load cells
are used to accurately measure changes in weight. A load
cell is a mechanical structure that can measure weight by
measuring the deformation of the structure when a mass is
placed onto it. These sensors are commonly used in accurate
weight scales. The base station is circular in shape to fit most
common eating-plates. Currently, however, the base station
only accepts one type of plate, but this can be expanded in
the future. Three load cells are mounted on the base station,
placed at 120◦ intervals around the circumference of the
base, as shown in Figure 2. One side of the load cell is
permanently fixed to the base station while the other end
is free floating. The free floating part of the cell mates up
with mounting points at the bottom of the polymer plate.
The polymer plate is not permanently fixed to the load cells.
It is kept in place using a reversible friction-fit connection.
This allows for easy removal of the plate for cleaning,
while ensuring that the plate stays in the same position
and orientation when in use. The load cells are of the type
CZL616C. This type of cell has a small footprint with a
height of 6 mm, which allows for a low-profile base station.
The cells have a rated capacity of 780 g. Since the weight of
the plate is spread out over three load cells, this allows for
a rated capacity of 2.3 kg. The polymer plate has a mass of
400 g, which allows for a maximum meal weight of 1.9 kg
while keeping a buffer available for physical interaction with
the plate, such as pushing into the plate while cutting. This
should be sufficient for most, if not all, meals. While this is
highly dependent on the type of food being consumed, meal
weight never exceeded 600 g during our testing, even with
the plate completely full.

B. Electrical Design

A custom embedded system was designed around an
Atmel ATmega644 MCU to capture and store data from the
load cells. The system is powered by a Li-ion battery and
can be charged via USB. Sensor data is stored locally on a
SD card. A real-time clock module allows synchronization
with an external clock. There is a Bluetooth module for
wireless communication with the system. The wireless link
can be used to configure the device and to execute commands



Fig. 1: The smart plate system: base station and plate.

Fig. 2: Orientation of the load cells in the base station.

such as starting or stopping a measurement. There are four
channels available for respectively four load cells. Each
channel is amplified by an AD623 instrumentation amplifier.
Sampling is done by an ADS1224 24-bit, 4-channel ADC.
Only three channels are currently occupied to accommodate
a round plate. The sampling rate can be selected at 6 Hz,
12 Hz or 24 Hz. The resolution and accuracy of the system
is 0.1 g and 0.3 g respectively.

III. METHODOLOGY

A. Bite Localization

The location of each bite can be derived from the plates’
center of mass. Assuming three load cells, the coordinates R
of the center of mass can be calculated relative to a chosen
origin using formula 1. It is derived from the force and
momentum balance equation of the plate resting on the load
cells, with Ftot being the amplitude of the total force acting
on all load cells, Fi the force on sensor i and ri the distance
vector from the origin to sensor i.

R =
1

Ftot

3∑
i=1

Firi (1)

When a bite is taken from the plate at a certain position,
R will shift in the opposite direction with a distance pro-
portional to the bite weight. By calculating R before and
after the bite, the bite can be localized. Formula 1 can be
rewritten for this purpose. This results in equations 2 and 3,
with x and y the bites’ location, ∆Fi the change in force on
sensor i from before to after the bite, ∆Ftot the total change

in force on all sensors and xi and yi the distance from the
origin to sensor i.

x =
1

∆Ftot

3∑
i=1

∆Fixi (2)

y =
1

∆Ftot

3∑
i=1

∆Fiyi (3)

The above equations were tested by placing a mass at
known positions on the plate. A mass of 5 g was chosen to
reflect a realistic bite size. The result is shown in Figure
3. The blue dots are the sensor positions, the red crosses
indicate the detected locations, while the crossings of the
grid lines indicate the actual position. Also shown is the
measured weight and the error in mm for each detection,
calculated as the Euclidean distance between the detected
and actual position. The average error is 5.16 mm. This error
is due to the limited accuracy of the load cells. While the
individual cells have a precision of 0.1 g, this measurement
error accumulates in formulas 2 and 3. For small masses,
this can result in a location error of several millimeters, but
since the walls of the compartments in the plate are at least
10 mm thick, the error is small enough to accurately detect
the compartment of each bite.
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Fig. 3: Accuracy of the position detection. The blue dots
indicate the sensor locations.

B. Step Detection

As discussed in the previous section, the force on the load
cells before and after the bite should be known in order to
detect the bites’ location. A bite typically results in a sudden
decrease in weight in the raw sensor data. As such, a step
detection algorithm can be used to detect the time of each
bite, after which the force before and after the bite can be
found and the location calculated. To begin with, the raw
signals from the three load cells are added together. After
calibration and subtracting the weight of the plate, this signal
immediately gives us the total weight of the food. The signal
is then filtered with a moving median filter to discard noise
and outliers. The goal is to filter out any movement prior
to each bite that may be caused by pressing down on the



Fig. 4: The test setup of the lab (left) and home (right)
measurements. The compartments are numbered 1 to 3.

plate or movements such as cutting or scooping. Steps are
subsequently detected by calculating the local maxima of the
first derivative of the filtered signal. The local maxima are
thresholded so that only sufficiently big steps are regarded
as a bite. The size of a step is subsequently calculated by
subtracting the mean value of all samples after the step (up
until the next step) from the mean value of all samples before
the step (up until the previous step).

C. Data Collection

To show the feasibility of the proposed approach, data was
collected from two test subjects. Meals were consumed using
the smart plate system and sampled at 6 Hz. One subject
was asked to consume a meal in a lab environment and
the other subject was asked to consume a meal in a home
environment. Figure 4 shows the start situation for each
measurement. Food was pre-cut in both cases and subjects
were only allowed to use a fork. For the lab measurement,
the subject was asked to eat slowly and take care to minimize
actions that would introduce large amounts of movement or
pressure, such as overly pushing into the plate. For the home
measurement, the subject could eat at their own speed and
no restrictions were placed on how the food was picked up.
Subjects and the plate were video recorded synchronously to
the smart plate to validate the detected bites. This was done
by synchronizing the plate’s real time clock with the video
capture system clock at the start of each measurement. The
drift of the plate’s clock is less than 0.5 s for the duration of
the measurement, which is sufficient to verify detected bites.

IV. RESULTS

A. Bite Location Detection

Table I shows the results of the bite localization for both
measurements. Figure 5 shows a graphical representation of
all detected bites in the lab measurement. The compartment
of each bite can be determined by overlaying the detection
results on top of the plate layout. Figure 4 shows the com-
partment numbers. Almost all of the bites are detected. In the
lab measurement, one bite that was supposed to be detected
in compartment 1, is detected in compartment 2. This kind
of error can occur when a bite is taken near the wall that
divides both compartments. A similar situation occurs in the
results of the home measurement. A bite that was taken from
compartment 3 is detected in compartment 1. Additionally,
two bites remain undetected from compartment 3. This can

TABLE I: Bite localization results per compartment.

Lab data

Real Bites Detected Bites # Errors
Compartment 1 9 10 1
Compartment 2 11 10 1
Compartment 3 14 14 0

Home data

Real Bites Detected Bites # Errors
Compartment 1 8 9 1
Compartment 2 8 8 0
Compartment 3 11 9 2

happen when the subject takes a bite and immediately takes
another bite without allowing the weight-signal to stabilize
(e.g.: taking two bites while still manipulating the plate
with the free hand). This can result in multiple bites being
aggregated into one. When bites from the same compartment
are aggregated together, however, the total weight of the
compartment will still be correct, which is the case in the
home measurement.

B. Bite Weight Detection

Each bite now has a weight and a compartment assigned
to it. The total weight of food taken from each compartment
can thus be determined by summing the weights of all bites
detected in each compartment. The results are shown in
Table II for both measurements. The real weight of the food
in each compartment was measured with a kitchen scale
before the start of the meal. The total weight is the sum
of the weights of each compartment. For the lab and home
measurement, the total detected weight only differs 0.1 %
and 0.6 % respectively from the real weight.

Looking at the detected weights of individual compart-
ments, the home measurement performs better than the lab
measurement. This, however, is a coincidence. In the lab
measurement, only a single bite was detected in the wrong
location, causing an error in both the detected and the
real compartment. Since compartment weights are relatively
small, a single wrong-detected bite can have a substantial
impact on the relative error. The total weight, however,
remains correct as the size of all bites was detected correctly.
For the home measurement, multiple subsequent bites from
compartment 3 were aggregated together in a single bite, but
because all bites were taken from the same compartment, the
total weight for compartment 3 remains correct.

V. DISCUSSION AND OUTLOOK

The test results show that the system is capable of detect-
ing the total amount of food taken from each compartment
with a precision in the grand order of several grams. This
is sufficient to estimate the total amount of calories, given
that the food present on the plate is known beforehand. In
situations where food monitoring may be required, such as
treatment of eating disorders, hospitalization or elderly care,
food is typically served from a central kitchen with a known
menu. The caloric value of the full meal is often already



TABLE II: Bite weight detection results per compartment.

Lab data

Real Weight Detected Weight Rel. Error
Compartment 1 77.1 g 80.5 g 4.4%
Compartment 2 62.9 g 56.8 g 9.7%
Compartment 3 137.2 g 139.8 g 1.9%

Total Weight 277.2 g 277.1 g 0.1%

Home data

Real Weight Detected Weight Rel. Error
Compartment 1 115.0 g 114.6 g 0.3%
Compartment 2 102.4 g 100.9 g 1.4%
Compartment 3 64.9 g 65.0 g 0.2%

Total Weight 282.3 g 280.5 g 0.6%

known beforehand. This information can be combined with
the output of our system to accurately measure the intake.

Our test results, however, were obtained with data captured
in a controlled environment. The lab measurement was
heavily constrained with a minimum amount of interaction
with the plate. The home environment was less constrained,
but the meal was consumed in a calm manner, which is
highly dependent on the test subject, resulting in relatively
clean data in which bites can easily be detected. While the
home measurement also had pre-cut foods and the subject
could only use a fork, it remains a realistic scenario. In
situations where food monitoring is prevalent, especially in
elderly care, pre-cut and ready-to-eat food is common.

The step detection algorithm, however, is not yet suited
for use in uncontrolled environments. The biggest challenge
during unrestricted eating is distinguishing bites from other
activities such as cutting, re-arranging food or resting utensils
on the plate. Care should also be taken to detect situations
where users pick up a piece of food and then return it
to the plate, potentially half-eaten. Mattfeld et al. propose
an algorithm that detects epochs of stability combined with
constraints to solve this problem [9]. If a change in weight is
observed between subsequent stable epochs, this is regarded
as a bite. The idea behind this approach is similar to the
moving median filter used in our algorithm. Furthermore, a
set of constraints is defined by which bites should comply.
For example, after a detected bite, the weight may not
increase. If this is the case, this can indicate a half eaten-bite
or the user resting utensils on the plate. While the algorithm
proposed by Mattfeld et al. is built with unrestricted eating
in mind, only 39 % of bites were correctly detected. Further
improvement of the algorithm could be a part of future work.

Our system has the advantage that it can also detect
location and estimate the amount of calories without external
sensors. Furthermore, it can also be used to extract param-
eters such as bite size or eating speed. Typical methods of
measuring caloric intake require the user to keep a detailed
food diary. Camera based systems can be used to estimate
the amount of food using image based methods, but require
usage of a smartphone or a camera system in the eating
area [10]–[12]. Zhou et al. propose a pressure sensitive mat
to detect location, but this type of sensor is not suitable
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Fig. 5: The location of detected bites in the lab measurement.

to measure weight [8]. To increase the robustness of the
smart plate in unrestricted environments, more data will be
recorded in realistic environments. Furthermore, future work
will focus on the process of step detection. This can be
done by exploring different signal processing techniques and
by combining data from different sensors such as wearable
devices with the smart plate.
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