
COBRASTS: A new approach to
Semi-Supervised Clustering of Time Series

Toon Van Craenendonck, Wannes Meert, Sebastijan Dumančić and
Hendrik Blockeel

KU Leuven, Department of Computer Science
{firstname.lastname}@kuleuven.be

Abstract. Clustering is ubiquitous in data analysis, including analy-
sis of time series. It is inherently subjective: different users may prefer
different clusterings for a particular dataset. Semi-supervised clustering
addresses this by allowing the user to provide examples of instances that
should (not) be in the same cluster. This paper studies semi-supervised
clustering in the context of time series. We show that COBRAS, a state-
of-the-art active semi-supervised clustering method, can be adapted to
this setting. We refer to this approach as COBRASTS. An extensive ex-
perimental evaluation supports the following claims: (1) COBRASTS far
outperforms the current state of the art in semi-supervised clustering for
time series, and thus presents a new baseline for the field; (2) COBRASTS

can identify clusters with separated components; (3) COBRASTS can
identify clusters that are characterized by small local patterns; (4) ac-
tively querying a small amount of semi-supervision can greatly improve
clustering quality for time series; (5) the choice of the clustering algo-
rithm matters (contrary to earlier claims in the literature).

1 Introduction

Clustering is ubiquitous in data analysis. There is a large diversity in algorithms,
loss functions, similarity measures, etc. This is partly due to the fact that cluster-
ing is inherently subjective: in many cases, there is no single correct clustering,
and different users may prefer different clusterings, depending on their goals and
prior knowledge [17]. Depending on their preference, they should use the right
algorithm, similarity measure, loss function, hyperparameter settings, etc. This
requires a fair amount of knowledge and expertise on the user’s side.

Semi-supervised clustering methods deal with this subjectiveness in a differ-
ent manner. They allow the user to specify constraints that express their sub-
jective interests [18]. These constraints can then guide the algorithm towards
solutions that the user finds interesting. Many such systems obtain these con-
straints by asking the user to answer queries of the following type: should these
two elements be in the same cluster? A so-called must-link constraint is obtained
if the answer is yes, a cannot-link otherwise. In many situations, answering this
type of questions is much easier for the user than selecting the right algorithm,
defining the similarity measure, etc. Active semi-supervised clustering methods



aim to limit the number of queries that is required to obtain a good clustering
by selecting informative pairs to query.

In the context of clustering time series, the subjectiveness of clustering is even
more prominent. In some contexts, the time scale matters, in other contexts it
does not. Similarly, the scale of the amplitude may (not) matter. One may want
to cluster time series based on certain types of qualitative behavior (monotonic,
periodic, . . . ), local patterns that occur in them, etc. Despite this variability, and
although there is a plethora of work on time series clustering, semi-supervised
clustering of time series has only very recently started receiving attention [7].

In this paper, we show that COBRAS, an existing active semi-supervised
clustering system, can be used practically “as-is” for time series clustering. The
only adaptation that is needed, is plugging in a suitable similarity measure and
a corresponding (unsupervised) clustering approach for time series. Two plug-in
methods are considered for this: spectral clustering using dynamic time warping
(DTW), and k-Shape [11]. We refer to COBRAS with one of these plugged in as
COBRASTS (COBRAS for Time Series). We perform an extensive experimental
evaluation of this approach.

The main contributions of the paper are twofold. First, it contributes a novel
approach to semi-supervised clustering of time series, and two freely download-
able, ready-to-use implementations of it. Second, the paper provides extensive
evidence for the following claims: (1) COBRASTS outperforms cDTWSS (the
current state of the art) by a large margin; (2) COBRASTS can identify clus-
ters with separated components; (3) COBRASTS can identify clusters that are
characterized by small local patterns; (4) actively querying a small amount of
supervision can greatly improve results in time series clustering; (5) the choice
of clustering algorithm matters, it is not negligible compared to the choice of
similarity. Except for claim 4, all these claims are novel, and some are at vari-
ance with the current literature. Claim 4 has been made before, but with much
weaker empirical support.

2 Related work

Semi-supervised clustering has been studied extensively for clustering attribute-
value data, starting with COP-KMeans [18]. Most semi-supervised methods ex-
tend unsupervised ones by adapting their clustering procedure [18], their sim-
ilarity measure [20], or both [2]. Alternatively, constraints can also be used to
select and tune an unsupervised clustering algorithm [13].

Traditional methods assume that a set of pairwise queries is given prior to
running the clustering algorithm, and in practice, pairs are often queried ran-
domly. Active semi-supervised clustering methods try to query the most infor-
mative pairs first, instead of random ones [9]. Typically, this results in better
clusterings for an equal number of queries. COBRAS [15] is a recently proposed
method that was shown to be effective for clustering attribute-value data. In this
paper, we show that it can be used to cluster time series with little modification.
We describe COBRAS in more detail in the next section.



In contrast to the wealth of papers in the attribute-value setting, only one
method has been proposed specifically for semi-supervised time series clustering
with active querying. cDTWSS [7] uses pairwise constraints to tune the warp-
ing width parameter w in constrained DTW. We compare COBRASTS to this
method in the experiments.

In contrast to semi-supervised time series clustering, semi-supervised time
series classification has received significant attention [19]. Note that these two
settings are quite different: in semi-supervised classification, the set of classes is
known beforehand, and at least one labeled example of each class is provided. In
semi-supervised clustering, it is not known in advance how many classes (clus-
ters) there are, and a class may be identified correctly even if none of its instances
have been involved in the pairwise constraints.

3 Clustering time series with COBRAS

3.1 COBRAS

We describe COBRAS only to the extent necessary to follow the remainder of
the paper; for more information, see Van Craenendonck et al. [14, 15].

COBRAS is based on two key ideas. The first [14] is that of super-instances:
sets of instances that are temporarily assumed to belong to the same cluster in
the unknown target clustering. In COBRAS, a clustering is a set of clusters, each
cluster is a set of super-instances, and each super-instance is a set of instances.
Super-instances make it possible to exploit constraints much more efficiently:
querying is performed at the level of super-instances, which means that each
instance does not have to be considered individually in the querying process.
The second key idea in COBRAS [15] is that of the automatic detection of the
right level at which these super-instances are constructed. For this, it uses an
iterative refinement process. COBRAS starts with a single super-instance that
contains all the examples, and a single cluster containing that super-instance.
In each iteration the largest super-instance is taken out of its cluster, split into
smaller super-instances, and the latter are reassigned to (new or existing) clus-
ters. Thus, COBRAS constructs a clustering of super-instances at an increas-
ingly fine-grained level of granularity. The clustering process stops when the
query budget is exhausted.

We illustrate this procedure using the example in Figure 1. Panel A shows
a toy dataset that can be clustered according to several criteria. We consider
differentiability and monotonicity as relevant properties. Initially, all instances
belong to a single super-instance (S0), which constitutes the only cluster (C0).
The second and third rows of Figure 1 show two iterations of COBRAS.

In the first step of iteration 1, COBRAS refines S0 into 4 new super-instances,
which are each put in their own cluster (panel B). The refinement procedure uses
k-means, and the number of super-instances in which to split is determined based
on constraints; for details, see [15]. In the second step of iteration 1, COBRAS
determines the relation between new and existing clusters. To determine the



Fig. 1. An illustration of the COBRAS clustering procedure.

relation between two clusters, COBRAS queries the pairwise relation between
the medoids of their closest super-instances. In this example, we assume that the
user is interested in a clustering based on differentiability. The relation between
C1 = {S1} and C2 = {S2} is determined by posing the following query: should

and be in the same cluster? The user answers yes, so C1 and C2 are
merged into C5. Similarly, COBRAS determines the other pairwise relations
between clusters. It does not need to query all of them, many can be derived
through transitivity or entailment [15]. The first iteration ends once all pairwise
relations between clusters are known. This is the situation depicted in panel C.
Note that COBRAS has not produced a perfect clustering at this point, as S2

contains both differentiable and non-differentiable instances.

In the second iteration, COBRAS again starts by refining its largest super-
instance. In this case, S2 is refined into S5 and S6, as illustrated in panel D. A new
cluster is created for each of these super-instances, and the relation between new
and existing clusters is determined by querying pairwise constraints. A must-link
between S5 and S1 results in the creation of C9 = {S1, S5}. Similarly, a must-link
between S6 and S3 results in the creation of C10 = {S3, S4, S6}. At this point, the
second iteration ends as all pairwise relations between clusters are known. The
clustering consists of two clusters, and a data granularity of 5 super-instances
was needed.



y

x x x

p(x)

must-

link

cannot-

link
Project

User view Data view User feedback

Fig. 2. Clusters may contain separated components when projected on a lower-
dimensional subspace.

In general, COBRAS keeps repeating its two steps (refining super-instances
and querying their pairwise relations) until the query budget is exhausted.

Separated components A noteworthy property of COBRAS is that, by in-
terleaving splitting and merging, it can split off a subcluster from a cluster
and reassign it to another cluster. In this way, it can construct clusters that
contain separated components (different dense regions that are separated by a
dense region belonging to another cluster). It may, at first, seem strange to call
such a structure a “cluster”, as clusters are usually considered to be coherent
high-density areas. However, note that a coherent cluster may become incoher-
ent when projected onto a subspace. Figure 2 illustrates this. Two clusters are
clearly visible in the XY-space, yet projection on the X-axis yields a trimodal
distribution where the outer modes belong to one cluster and the middle mode
to another. In semi-supervised clustering, it is realistic that the user evaluates
similarity on the basis of more complete information than explicitly present in
the data; coherence in the user’s mind may therefore not translate to coherence
in the data space1.

The need for handling clusters with multi-modal distributions has been men-
tioned repeatedly in work on time series anomaly detection [5], on unsupervised
time series clustering [11], and on attribute-value semi-supervised constrained
clustering [12]. Note, however, a subtle difference between having a multi-modal
distribution and containing separated components: the first assumes that the
components are separated by a low-density area, whereas the second allows them
to be separated by a dense region of instances from another cluster.

3.2 COBRASDTW and COBRASk-Shape

COBRAS is not suited out-of-the-box for time series clustering, for two reasons.
First, it defines the super-instance medoids w.r.t. the Euclidean distance, which
is well-known to be suboptimal for time series. Second, it uses k-means to refine

1 Note that Figure 2 is just an illustration; it can be difficult to express the more
complete information explicitly as an additional dimension, as is done in the figure.



super-instances, which is known to be sub-state-of-the-art for time series clus-
tering [11]. Both of these issues can easily be resolved by plugging in distance
measures and clustering methods that are developed specifically for time series.
We refer to this approach as COBRASTS. We now present two concrete instan-
tiations of it: COBRASDTW and COBRASk-Shape. Other instantiations can be
made, but we develop these two as DTW and k-Shape represent the state of the
art in unsupervised time series clustering.

Algorithm 1 COBRASDTW

Input: A dataset, the DTW warping window width w, the γ parameter used in con-
verting distances to similarities and access to an oracle answering pairwise queries

Output: A clustering
1: Compute the full pairwise DTW distance matrix
2: Convert each distance d to an affinity a: ai,j = e−γdi,j

3: Run COBRAS, substituting k-means for splitting super-instances with spectral
clustering on the previously computed affinity matrix

COBRASDTW uses DTW as its distance measure, and spectral clustering
to refine super-instances. It is described in Algorithm 1. DTW is commonly
accepted to be a competitive distance measure for time series analysis [1], and
spectral clustering is well-known to be an effective clustering method [16]. We use
the constrained variant of DTW, cDTW, which restricts the amount by which
the warping path can deviate from the diagonal in the warping matrix. cDTW
offers benefits over DTW in terms of both runtime and solution quality [11, 7],
if run with an appropriate window width.

COBRASk-Shape uses the shape-based distance (SBD, [11]) as its distance
measure, and the corresponding k-Shape clustering algorithm [11] to refine super-
instances. k-Shape can be seen as a k-means variant developed specifically for
time series. It uses SBD instead of the Euclidean distance, and comes with a
method of computing cluster centroids that is tailored to time series. k-Shape
was shown to be an effective and scalable method for time series clustering in
[11]. Instead of the medoid, COBRASk-Shape uses the instance that is closest to
the SBD centroid as a super-instance representative.

4 Experiments

In our experiments we evaluate COBRASDTW and COBRASk-Shape in terms
of clustering quality and runtime, and compare them to state-of-the-art semi-
supervised (cDTWSS and COBS) and unsupervised (k-Shape and k-MS) com-
petitors. Our experiments are fully reproducible: we provide code for COBRASTS

in a public repository2, and a separate repository for our experimental setup3.
The experiments are performed on the public UCR collection [6].

2 https://bitbucket.org/toon vc/cobras ts or using pip install cobras ts
3 https://bitbucket.org/toon vc/cobras ts experiments



0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
0

1

ItalyPowerDemand

WordsSynonyms
MoteStrain

CBF
TwoLeadECG

ECG200

50 constraints, w = 10

ARI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

ItalyPowerDemand

WordsSynonyms

MoteStrain

CBF

TwoLeadECG

ECG200

50 constraints, = 0.5

ARI

w

Fig. 3. Sensitivity to γ and w for several datasets.

4.1 Methods

COBRASTS COBRASk-Shape has no parameters (the number of clusters used
in k-Shape to refine super-instances is chosen based on the constraints in CO-
BRAS). We use a publicly available Python implementation4 to obtain the k-
Shape clusterings. COBRASDTW has two parameters: γ (used in converting
distances to affinities) and w (the warping window width). We use a publicly
available C implementation to construct the DTW distance matrices [10]. In our
experiments, γ is set to 0.5 and w to 10% of the time series length. The value
w = 10% was chosen as Dau et al. [7] report that most datasets do not require
w greater than 10%. We note that γ and w could in principle also be tuned for
COBRASDTW. There is, however, no well-defined way of doing this. We cannot
use the constraints for this, as they are actively selected during the execution
of the algorithm (which of course requires the affinity matrix to already be con-
structed). We did not do any tuning on these parameters, as this is also hard in
a practical clustering scenario, but observed that the chosen parameter values
already performed very well in the experiments. We performed a parameter sen-
sitivity analysis, illustrated in Figure 3, which shows that the influence of these
parameters is highly dataset-dependent: for many datasets their values do not
matter much, for some they result in large differences.

cDTWSS cDTWSS uses pairwise constraints to tune the w parameter in
cDTW. In principle, the resulting tuned cDTW measure can be used with any
clustering algorithm. The authors in [7] use it in combination with TADPole
[4], and we do the same here. We use the code that is publicly available on the
authors’ website5. The cutoff distances used in TADPole were obtained from the
authors in personal communication.

COBS COBS [13] uses constraints to select and tune an unsupervised clus-
tering algorithm. It was originally proposed for attribute-value data, but it can
trivially be modified to work with time series data as follows. First, the full
pairwise distance matrix is generated with cDTW using w = 10% of the time
series length. Next, COBS generates clusterings by varying the hyperparame-

4 https://github.com/Mic92/kshape
5 https://sites.google.com/site/dtwclustering/



ters of several standard unsupervised clustering methods, and selects the re-
sulting clustering that satisfies the most pairwise queries. We use the active
variant of COBS, as described in [13]. Note that COBS is conceptually sim-
ilar to cDTWSS, as both methods use constraints for hyperparameter selec-
tion. The important difference is that COBS uses a fixed distance measure
and selects and tunes the clustering algorithm, whereas cDTWSS tunes the
similarity measure and uses a fixed clustering algorithm. We use the follow-
ing unsupervised clustering methods and corresponding hyperparameter ranges
in COBS: spectral clustering (K ∈ [max(2,Ktrue − 5),Ktrue + 5]), hierarchical
clustering (K ∈ [max(2,Ktrue − 5),Ktrue + 5], with both average and com-
plete linkage), affinity propagation (damping ∈ [0.5, 1.0]) and DBSCAN (ε ∈
[min pairwise dist., max. pairwise dist], min samples ∈ [2, 21]). For the
continuous parameters, clusterings were generated for 20 evenly spaced values
in the specified intervals. Additionally, the γ parameter in converting distances
to affinities was varied in [0, 2.0] for clustering methods that take affinities as
input, which are all of them except DBSCAN, which works with distances. We
did not vary the warping window width w for generating clusterings in COBS.
This would mean a significant further increase in computation time, both for
generating the DTW distance matrices, and for generating clusterings with all
methods and parameter settings for each value of w.

k-Shape and k-MS Besides the three previous semi-supervised methods,
we also include k-Shape [11] and k-MultiShape (k-MS) [11] in our experiments
as unsupervised baselines. k-MS [11] is similar to k-Shape, but uses multiple
centroids, instead of one, to represent each cluster. It was found to be the most
accurate method in an extensive experimental study that compares a large num-
ber of unsupervised time series clustering methods on the UCR collection [11].
The number of centroids that k-MS uses to represent a cluster is a parameter;
following the original paper we set it to 5 for all datasets. The k-MS code was
obtained from the authors.

4.2 Data

We perform experiments on the entire UCR time series classification collection
[6], which is the largest public collection of time series datasets. It consists of
85 datasets from a wide variety of domains. The UCR datasets come with a
predefined training and test set. We use the test sets as our datasets as they are
often much bigger than the training sets. This means that whenever we refer to
a dataset in the remainder of this text, we refer to the test set of that dataset
as defined in [6]. This procedure was also followed by Dau et al. [7].

As is typically done in evaluating semi-supervised clustering methods, the
classes are assumed to represent the clusterings of interests. When computing
rankings and average ARIs, we ignored results from 21 datasets where cDTWSS

either crashed or timed out after 24h.6

6 These datasets are listed at https://bitbucket.org/toon vc/cobras ts experiments



4.3 Methodology

We use 10-fold cross-validation, as is common in evaluating semi-supervised clus-
tering methods [3, 9]. The full dataset is clustered in each run, but the methods
can only query pairs of which both instances are in the training set. The result
of a run is evaluated by computing the Adjusted Rand Index (ARI) [8] on the
instances of the test set. The ARI measures the similarity between the generated
clusterings and the ground-truth clustering, as indicated by the class labels. It
is 0 for a random clustering, and 1 for a perfect one. The final ARI scores that
are reported are the average ARIs over the 10 folds.

We ensure that cDTWSS and COBS do not query pairs that contain instances
from the test set by simply excluding such candidates from the list of constraints
that they consider. For COBRASTS, we do this by only using training instances
to compute the super-instance representatives.

COBRASTS and COBS do not require the number of clusters as an input
parameter, whereas cDTWSS, k-Shape and k-MS do. The latter three were given
the correct number of clusters, as indicated by the class labels. Note that this is
a significant advantage for these algorithms, and that in many practical appli-
cations the number of clusters is not known beforehand.

10 20 30 40 50 60 70 80 90 100
1.0

2.8

kShape

COBRASDTW

COBS

COBRASkShape
COBRASkMeans

cDTWSS

k-MS

Rank

Number of queries

(a)

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

kShape

COBRASDTW

COBS

COBRASkShape
COBRASkMeans

cDTWss

k-MS

Average ARI

Number of queries

(b)

Fig. 4. (a) Average rank over all clustering tasks. Lower is better. (b) Average ARI.
Higher is better.

4.4 Results

Clustering quality Figure 4(a) shows the average ranks of the compared meth-
ods over all datasets. Figure 4(b) shows the average ARIs. Both plots clearly show
that, on average, COBRASTS outperforms all the competitors by a large margin.
Only when the number of queries is small (roughly < 15), is it outperformed by
COBS and k-MS.

For completeness, we also include vanilla COBRAS (denoted as COBRASkMeans)
in the comparison in Figure 4. Given enough queries (roughly> 50), COBRASkMeans

outperforms all competitors other than COBRASTS. This indicates that the CO-



BRAS approach is essential. As expected, however, COBRASDTW and COBRASkShape

significantly outperform COBRASkMeans.

These observations are confirmed by Table 1, which reports the number of
times COBRASDTW wins and loses against the alternatives. The differences
with cDTWSS and k-Shape are significant for all the considered numbers of
queries (Wilcoxon test, p < 0.05). The difference between COBRASDTW and
COBS is significant for 50 and 100 queries, but not for 25. The same holds
for COBRASDTW vs. k-MS. This confirms the observation from Figure 4(a),
which showed that the performance gap between COBRASDTW and the com-
petitors becomes larger as more queries are answered. The difference between
COBRASDTW and COBRASk-Shape is only statistically significant for 100 queries.

Table 1. Wins and losses over the 64 datasets. An asterisk indicates that the difference
is significant according to the Wilcoxon test with p < 0.05.

25 queries 50 queries 100 queries
win loss win loss win loss

COBRASDTW vs. COBRASk-Shape 35 29 37 27 41* 23

COBRASDTW vs. COBRASk-Means 41* 23 36 28 40* 24
COBRASDTW vs. k-MS 35 29 40* 24 47* 14
COBRASDTW vs. COBS 37 27 42* 22 45* 19

COBRASDTW vs. cDTWSS 62* 2 53* 11 55* 9
COBRASDTW vs. k-Shape 40* 24 46* 18 50* 14

Surprisingly, the unsupervised baselines outperform the semi-supervised cDTWSS.
This is inconsistent with the claim that the choice of w dwarfs any improvements
by the k-Shape algorithm [7]. To ensure that this is not an effect of the evaluation
strategy (10-fold CV using the ARI, compared to no CV and the Rand index
(RI) in [7]), we have also computed the RIs for all of the clusterings generated
by k-Shape and compared them directly to the values provided by the authors of
cDTWSS on their webpage7. In this experiment k-Shape attained an average RI
of 0.68, cDTWSS 0.67. We note that the claim in [7] was based on a comparison
on two datasets. Our experiments clearly indicate that it does not generalize
towards all datasets.

Runtime COBRASDTW, cDTWSS and COBS require the construction of
the pairwise DTW distance matrix. This becomes infeasible for large datasets.
For example, computing one distance matrix for the ECG5000 dataset took ca.
30h in our experiments, using an optimized C implementation of DTW.

k-Shape and k-MS are much more scalable [11], as they do not require com-
puting a similarity matrix. COBRASk-Shape inherits this scalability, as it uses
k-Shape to refine super-instances. In our experiments, COBRASk-Shape was on
average 28 times faster than COBRASDTW.

7 https://sites.google.com/site/dtwclustering/



5 Case studies: CBF, TwoLeadECG and MoteStrain

To gain more insight into why COBRASTS outperforms its competitors, we in-
spect the clusterings that are generated for three UCR datasets in more detail:
CBF, TwoLeadECG and MoteStrain. CBF and TwoLeadECG are examples for
which COBRASDTW and COBRASk-Shape significantly outperform their com-
petitors, whereas MoteStrain is one of the few datasets for which they are out-
performed by unsupervised k-Shape clustering. These three datasets illustrate
different reasons why time series clustering may be difficult: CBF because one of
the clusters comprises two separated subclusters; TwoLeadECG, because only
limited subsequences of the time series are relevant for the clustering at hand,
and the remaining parts obfuscate the distance measurements; and MoteStrain
because it is noisy.

CBF The first column of Figure 5 shows the “true” clusters as they are indicated
by the class labels. It is clear that the classes correspond to three distinct patterns
(horizontal, upward and downward). The next columns show the clusterings that
are produced by each of the competitors. Semi-supervised approaches are given
a budget of 50 queries. COBRASDTW and COBRASk-Shape are the only methods
that provide a near perfect solution (ARI = 0.96). cDTWSS mixes patterns of
different types in each cluster. COBS find pure clusters, but too many: the plot
only shows the largest three of 15 clusters for COBS. k-Shape and k-MS mix
horizontal and downward patterns in their third cluster. To clarify this mixing of
patterns, the figure shows the instances in the third k-Shape and k-MS clusters
again, but separated according to their true class.

Fig. 5. The first column shows the true clustering of CBF. The remaining columns
show the clusterings that are produced by all considered methods. For COBS, only
the three largest of 15 clusters are shown. All the cluster instances are plotted, the
prototypes are shown in red. For COBRASDTW, cDTWSS and COBS the prototypes
are selected as the medoids w.r.t. DTW distance. For the others the prototypes are the
medoids w.r.t. the SBD distance.



Figure 6 illustrates how repeated refinement of super-instances helps COBRASTS

deal with the complexities of clustering CBF. It shows a super-instance in the
root, with its subsequent refinements as children. The super-instance in the root,
which is itself a result of a previous split, contains horizontal and upward pat-
terns. Clustering it into two new super-instances does not yield a clean separation
of these two types: a pure cluster with upward patterns is created, but the other
super-instance still mixes horizontal and upward patterns. This is not a problem
for COBRASTS, as it simply refines the latter super-instance again. This time
the remaining instances are split into nearly pure ones separating horizontal from
upward patterns. Note that the two super-instances containing upward patterns
correspond to two distinct subclusters: some upward patterns drop down very
close to the end of the time series, whereas the drop in the other subcluster
occurs much earlier.

Fig. 6. A super-instance that is generated while clustering CBF, and its refinements.
The green line indicates a must-link, and illustrates that these two super-instances
will be part of the same multi-modal cluster (that of upward patterns). The red lines
indicate cannot-links. The purity of a super-instance is computed as the ratio of the
occurrence of its most frequent class, over its total number of instances.

The clustering process just mentioned illustrates the point made earlier, in
Section 3.1, about COBRAS’s ability to construct clusters with separated com-
ponents. It is clear that this ability is advantageous in the CBF dataset. Note
that being able to deal with separated components is key here; k-MS, which is
able to find multi-modal clusters, but not clusters with modes that are separated
by a mode from another cluster, produces a clustering that is far from perfect
for CBF.

Figure 6 also illustrates that COBRAS’s super-instance refinement step is
similar to top-down hierarchical clustering. Note, however, that COBRAS uses
constraints to guide this top-down splitting towards an appropriate level of gran-
ularity. Furthermore, this refinement is only one of COBRAS’s components; it is
interleaved with a bottom-up merging step to combine the super-instances into
actual clusters [15].



Fig. 7. The first column shows the “true” clustering of TwoLeadECG. The second
column shows the clustering produced by COBRASDTW. The third column shows the
clustering produced by COBS, which is the best competitor for this dataset. Prototypes
are shown in red, and are the medoids w.r.t. the DTW distance.

TwoLeadECG The first column in Figure 7 shows the “true” clusters for
TwoLeadECG. Cluster 1 is defined by a large peak before the drop, and a slight
bump in the upward curve after the drop. Instances in cluster 2 typically only
show a small peak before the drop, and no bump in the upward curve after the
drop. For the remainder of the discussion we focus on the peak as the defining
pattern, simply because it is easier to see than the more subtle bump.

The second column in Figure 7 shows the clustering that is produced by
COBRASDTW; the one produced by COBRASk-Shape is highly similar. They are
the only methods able to recover these characteristic patterns. The last column
in Figure 7 shows the clustering that is produced by COBS, which is the best of
the competitors. This clustering has an ARI of 0.12, which is not much better
than random. From the zoomed insets in Figure 7, it is clear that this clustering
does not recover the defining patterns: the small peak that is characteristic for
cluster 2 is hard to distinguish.

This example illustrates that by using COBRASTS for semi-supervised clus-
tering, a domain expert can discover more accurate explanatory patterns than
with competing methods. None of the alternatives is able to recover the char-
acteristic patterns in this case, potentially leaving the domain expert with an
incorrect interpretation of the data. Obtaining these patterns comes with rela-
tively little additional effort, as with a good visualizer answering 50 queries only
takes a few minutes. This time would probably be insignificant compared to the
time that was needed to collect the 1139 instances in the TwoLeadECG dataset.

MoteStrain In our third case study we discuss an example for which COBRASTS

does not work well, as this provides insight into its limitations. We consider the
MoteStrain dataset, for which the unsupervised methods perform best. k-MS
attains an ARI of 0.62, and k-Shape of 0.61. COBRASk-Shape ranks third with
an ARI of 0.51, and COBRASDTW fourth with an ARI of 0.48. These results are
surprising, as the COBRAS algorithms have access to more information than



(a) (b)

Fig. 8. Two super-instances generated by COBRASDTW. The super-instances are
based on the location of the noise.

the unsupervised k-Shape and k-MS. Figure 8 gives a reason for this outcome;
it shows that COBRASTS creates super-instances that are based on the location
of the noise. The poor performance of the COBRASTS variants can in this case
be explained by their large variance. The process of super-instance refinement
is much more flexible than the clustering procedure of k-Shape, which has a
stronger bias. For most datasets, COBRASTS’s weaker bias led to performance
improvements in our experiments, but in this case it has a detrimental effect due
to the large magnitude of the noise. In practice, the issue could be alleviated
here by simply applying a low-pass filter to remove noise prior to clustering.

6 Conclusion

Time series arise in virtually all disciplines. Consequently, there is substantial
interest in methods that are able to obtain insights from them. One of the most
prominent ways of doing this, is by using clustering. In this paper we have pre-
sented COBRASTS, an novel approach to time series clustering. COBRASTS is
semi-supervised: it uses small amounts of supervision in the form of must-link
and cannot-link constraints. This sets it apart from the large majority of ex-
isting methods, which are unsupervised. An extensive experimental evaluation
shows that COBRASTS is able to effectively exploit this supervision; it outper-
forms unsupervised and semi-supervised competitors by a large margin. As our
implementation is readily available, COBRASTS offers a valuable new tool for
practitioners that are interested in analyzing time series data.

Besides the contribution of the COBRASTS approach itself, we have also
provided insight into why it works well. A key factor in its success is its ability
to handle clusters with separated components.

Acknowledgements

We thank Hoang Anh Dau for help with setting up the cDTWSS experiments.
Toon Van Craenendonck is supported by the Agency for Innovation by Science
and Technology in Flanders (IWT). This research is supported by Research



Fund KU Leuven (GOA/13/010), FWO (G079416N) and FWO-SBO (HYMOP-
150033).

References

1. A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, 31(3):606–660, May 2017.

2. S. Basu, A. Banerjee, and R. J. Mooney. Active semi-supervision for pairwise
constrained clustering. In Proceedings of SDM 2004.

3. S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-
supervised clustering. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 59–68. ACM, 2004.

4. N. Begum, L. Ulanova, J. Wang, and E. Keogh. Accelerating dynamic time warping
clustering with a novel admissible pruning strategy. In Proc. of SIGKDD 2015.

5. H. Cao, V. Y. F. Tan, and J. Z. F. Pang. A parsimonious mixture of Gaussian trees
model for oversampling in imbalanced and multimodal time-series classification.
IEEE Trans. on Neural Networks and Learning Systems, 25(12):2226–2239, 2014.

6. Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista. The UCR time series classification archive, July 2015.
http://www.cs.ucr.edu/˜eamonn/time series data/.

7. H. A. Dau, N. Begum, and E. Keogh. Semi-supervision dramatically improves time
series clustering under dynamic time warping. In Proc. of CIKM 2016.

8. L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 1985.
9. P. K. Mallapragada, R. Jin, and A. K. Jain. Active query selection for semi-

supervised clustering. In Proc. of ICPR 2008.
10. W. Meert. DTAIDistance, Mar. 2018. https://doi.org/10.5281/zenodo.1202379.
11. J. Paparrizos and L. Gravano. Fast and accurate time-series clustering. ACM

Trans. Database Syst., 42(2):8:1–8:49, June 2017.
12. M. Śmieja and M. Wiercioch. Constrained clustering with a complex cluster struc-

ture. Advances in Data Analysis and Classification, 11(3):493–518, 2017.
13. T. Van Craenendonck and H. Blockeel. Constraint-based clustering selection. In

Machine Learning. 2017.
14. T. Van Craenendonck, S. Dumancic, and H. Blockeel. COBRA: A fast and simple

method for active clustering with pairwise constraints. In Proc. of IJCAI 2017.
15. T. Van Craenendonck, S. Dumančić, E. Van Wolputte, and H. Block-

eel. COBRAS: Fast, Iterative, Active Clustering with Pairwise Constraints.
https://arxiv.org/abs/1803.11060, under submission, Mar. 2018.

16. U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, Dec 2007.

17. U. von Luxburg, R. C. Williamson, and I. Guyon. Clustering: Science or Art? In
Workshop on Unsupervised Learning and Transfer Learning, 2014.

18. K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained K-means clustering
with background knowledge. In Proc. of ICML 2001.

19. L. Wei and E. Keogh. Semi-supervised time series classification. In Proc. ACM
SIGKDD 2006.

20. E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with
application to clustering with side-information. In NIPS 2003.


