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A B S T R A C T

The crop water stress index (CWSI) has been shown to be a tool that could be used for non-contact and real-time
monitoring of plant water status, which is a key requirement for the precision irrigation management of crops.
However, its adoption for irrigation scheduling is limited because of the need to know the baseline temperatures
which are required for its calculation. In this study, the canopy temperature of greenhouse cultivated lettuce
plants which were maintained as either well-watered or non-transpiring was continuously monitored along with
prevailing environmental conditions during a five week period. This data was applied in developing a dynamic
model that can be used for predicting the baseline temperatures. Input variables for the dynamic model included
air temperature, shortwave irradiance, and air vapour pressure deficit measured at a 10 s interval. During a
follow up study, the dynamic model successfully predicted the baseline temperatures producing mean absolute
errors (MAE) that varied between 0.17 °C and 0.29 °C, and root mean squared errors (RMSE) that varied between
0.21 °C and 0.35 °C when comparing model predictions with measured values. The model predicted baseline
temperatures were applied in calculating an empirical CWSI for lettuce plants receiving one of two irrigation
treatments. The empirical CWSI consistently differentiated between the irrigation treatments and was sig-
nificantly correlated with the theoretical CWSI with correlation coefficient (r ) values greater than 0.9. The
dynamic model presented in this study requires easily measured input parameters for the prediction of the
baseline temperatures. This eliminates the need to maintain artificial reference surfaces required in other em-
pirical approaches for the CWSI calculation and also eliminates the need for computing the complex theoretical
CWSI.

1. Introduction

Optimization of crop quality during protected crop cultivation re-
quires finely tuned water management; here, protected crop cultivation
refers to crops grown under fixed structures such as greenhouses and
polytunnels. The improvement of crop quality is a major aim of pro-
tected crop cultivation in humid countries such as the UK (Monaghan
et al., 2013). Imposing a certain degree of water stress in determined
phenological periods has been found to improve crop quality in a
number of crops including lettuce (Monaghan et al., 2017; Oh et al.,
2010), strawberries (Weber et al., 2016), tomatoes (Kuscu et al., 2014;
Shao et al., 2008). Monitoring tools that provide accurate information
regarding plant water status would, therefore, be beneficial for sche-
duling and management of irrigation in protected crop cultivation
(Adeyemi et al., 2017).

Plant canopy temperature (Tc) has long been considered as an

indicator of plant water status (Tanner, 1963) based on the cooling
effect of the transpiration process (Jones and Schofield, 2008). There-
fore, as a remote monitoring solution, infra-red thermometry offers the
potential of acquiring the surface temperature of plant canopies from
which plant water status can be inferred (Jones and Leinonen, 2003).Tc

is determined not only by the plant water status but also by prevailing
environmental conditions including incoming shortwave irradiance,
wind speed, air temperature and humidity (Jones et al., 1997).

To useTc as an indicator of plant water status, it must be normalized
to account for the varying environmental conditions (Agam et al.,
2013b). One of the most commonly used methods for normalizing Tc as
an indicator of plant water status is the crop water stress index (CWSI)
originally proposed by Jackson et al. (1981); Idso et al. (1981) in which
the measured crop canopy temperature (T )c is normalized using two
baseline temperatures, both assumed to be achieved under the same
environmental conditions as Tc; namely (a) the canopy temperature of a
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well-watered crop (T )nws ; referred to as the non-water-stressed baseline
temperature, and (b) the temperature of a non-transpiring canopy (T )dry ;
referred to as the upper limit baseline temperature. Ideally, the CWSI
ranges from 0 to 1, where 0 represents a well-watered condition and 1
represents a non-transpiring, water-stressed condition, hence providing
intuitive crop water status quantification as a simple tool for irrigation
scheduling (King and Shellie, 2016).

Two forms of the CWSI are currently available. The first is the
empirical CWSI, originally introduced by Idso et al. (1981). In their
empirical approach to quantifying the CWSI, Tnws and Tdry were de-
termined by developing a linear relationship for the canopy-air tem-
perature difference and the vapour pressure deficit (VPD). It has how-
ever been shown that Tnws is crop growth stage dependent and also
dependent on the agro climatic zone in which the crop is being grown
(Jones, 1999). The stable weather conditions required for the applica-
tion of the original approach to quantifying the CWSI is also seldom
encountered in humid regions where weather conditions are highly
variable in the short term (Maes and Steppe, 2012). Artificial wet and
dry reference surfaces have been successfully applied to estimate Tnws

and Tdry under the same environmental conditions as Tc for the calcu-
lation of an empirical CWSI (Grant et al., 2007; Möller et al., 2007).
These include the use of wet and dry filter papers, leaves sprayed with
water and those covered with petroleum jelly, and plots maintained as
well watered and water stressed. However, the required maintenance of
these artificial surfaces limit their potential use for automation in a
precision irrigation system including periods during which high fre-
quency data acquisition is required (Maes and Steppe, 2012).

The use of theoretical equations of CWSI based on the energy bal-
ance model of Jackson et al. (1981) involves the combination of Tc and
meteorological measurements to compute the CWSI. This approach
eliminates the need to acquire separate measurements ofTnws andTdry. It
is however limited by the need to estimate net radiation and aero-
dynamic resistance, and also requires large model input parameters
(Agam et al., 2013b). The energy balance model proposed by Jones
(1999) requires less model input parameters and the baseline tem-
peratures computed using the model have been demonstrated to show
excellent agreement with the measured temperatures of artificial re-
ference leaf surfaces under minimal wind conditions (Fuentes et al.,
2012). It has further been demonstrated as producing a robust quanti-
fication of the CWSI and eliminates the need for artificial reference
surfaces (Ben-Gal et al., 2009). However, the model requires ancillary
measurement to reliably estimate equation parameters including the
boundary layer resistance to heat and water vapor which limits the
potential of its application in commercial crop production.

Baseline temperature prediction models which have limited data
requirements and straightforward calculation will, therefore, enhance
the adoption of the CWSI as a practical irrigation monitoring tool. Maes
and Steppe (2012) noted that this could be realized through improve-
ments in the prediction of the baseline temperatures employed in the
empirical CWSI approach. Including air temperature, solar radiation,
wind speed and VPD as predictors in multiple linear regression models
(MLR) has been found to improve the predictions of the baseline tem-
peratures (Payero and Irmak, 2006). King and Shellie (2016) also re-
ported improved predictions of the baseline temperatures using an ar-
tificial neural network (ANN), with air temperature, solar radiation,
wind speed and VPD applied as input variables. The plant response will
typically vary over the growth season due to crop growth and various
adaptation processes (Boonen et al., 2000). Dhillon et al. (2014)
showed that baseline temperature prediction models for tree crops
varied as the season progressed. Hedley et al. (2014) noted that adap-
tive monitoring systems which are able to account for the temporal
variability in plant response and water requirements would improve the
performance of irrigation management tools. The ANN and MLR ap-
proaches however fail to consider the time-varying nature of the plant
systems as their model parameters are assumed to remain constant once
identified.

Dynamic models provide a possible approach for accounting for the
time-varying nature of the plant system in the prediction of the baseline
temperatures. Dynamic models have been successfully applied in sim-
plifying and modelling complex environmental and biological processes
(Taylor et al., 2007; Young, 2006), predicting time-varying biological
responses (Kirchsteiger et al., 2011; Quanten et al., 2006), and in many
other irrigation decision support applications (Delgoda et al., 2016;
Lozoya et al., 2016). To the best of our knowledge, a dynamic model
has not ever been used to predictTnws orTdry for calculation of a CWSI. A
dynamic model is particularly well suited for predicting Tnws and Tdry

because the time varying nature of the system under study can be taken
into account through and adaptive and online estimation of the model
parameters. This means the model parameters are updated recursively
using all new incoming data from the system. Predicting plant canopy
temperature may involve an understanding of the timing of the opening
and closing of the stomates (Al-Faraj et al., 2000). A dynamic model is
however able to implicitly account for the stomatal response by the
inclusion of the time delay associated with each model input parameter.

The objectives of this paper are to exhibit the potential of using a
dynamic model to predict Tnws and Tdry (baseline temperatures) and
demonstrate the applicability in calculating an empirical CWSI for a
lettuce crop (Lactuca sativa) grown under greenhouse conditions.
Performance of the dynamic model was evaluated by comparing the
model predicted baseline temperatures with measured baseline tem-
peratures. The calculated empirical CWSI values were also compared
with theoretical CWSI values.

2. Theoretical background

2.1. Empirical CWSI

The empirical CWSI introduced by Idso et al. (1981) hereafter re-
ferred to as CWSIE, is defined as

= −
−

T T
T T

CWSI C nws

dry nws
E

(1)

where TC (°C) is the actual canopy surface temperature under given
environmental conditions, Tdry (°C) is the upper limit for canopy tem-
perature and equates to the temperature of a non-transpiring canopy
such as would occur if the stomata were completely closed as a result of
drought, while Tnws (°C) is the non-water stressed baseline representing
the typical canopy of a well-watered crop transpiring at maximum rate.

Therefore, the temperature of a plant transpiring without soil water
shortage can be assumed to represent Tnws and the temperature of a
plant canopy from which all transpiration has been blocked, for ex-
ample using petroleum jelly, can be assumed to represent Tdry. This is
similar to the methodology employed by Rojo et al. (2016) to calculate
an empirical CWSI for grape and almond trees. In their study, Tnwsand
Tdry were measured using a well-watered tree and a simulated dry ca-
nopy.

2.2. Theoretical CWSI

The theoretical CWSI proposed by Jackson et al. (1981) hereafter
referred to as CWSIT is calculated as

= − − −
− − −

T T T T
T T T T

CWSI ( ) ( )
( ) ( )

c a c a LL

c a UL c a LL
T (2)

where −T Tc a is the canopy-air temperature difference, −T T( )c a LL is the
lower baseline representing a non-stressed canopy, transpiring at po-
tential rate and −T T( )c a UL is the upper baseline representing a stressed,
non-transpiring canopy. The lower and upper baselines are given as

− =T T r I
ρ c

R( )c a UL
a c

a p
n

(3)
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where ra is the aerodynamic resistance −(sm )1 , Ic is the interception
coefficient, ρa is the air density −(kgm )3 , cp is the specific heat capacity
of air − −(J Kg K )1 1 , Rn is the net radiation −(Wm )2 , s is the slope re-
lating temperature with the saturation vapour pressure deficit −(PaK )1 ,
rc pot, is the canopy resistance at potential transpiration −(sm )1 , γ is the
psychometric constant −(kPaK )1 , and δe is the vapour pressure deficit
(kPa).

CWSIT has been shown to provide a robust quantification of the
water status of various crops (Osroosh et al., 2015; Shaughnessy et al.,
2012; Yuan et al., 2004). It can be estimated using the canopy tem-
perature as measured by infrared radiometers and appropriate en-
vironmental measurements, including aerodynamic and canopy re-
sistances.

2.3. Dynamic response of the plant canopy temperature

The plant canopy can be viewed as a natural dynamic input/output
system. The inputs (prevailing meteorological conditions) applied to
the system causes the system to respond with an output (canopy tem-
perature) (Al-Faraj et al., 2000). Under minimal wind speed ( −u ms, 1)
conditions, the dynamic response of the canopy temperature can be
expressed in form of a first-order differential equation given as (Jones,
2014)
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With =∗ ∗ ∗ρ C l ξp where t is the time (s), τ a r v( , , ) are the advective time
delays (s) associated with the air temperature, radiation and vapour
pressure deficit inputs respectively, ρ is the air density −(Kgm )3 , Cp is
the heat capacity of air (J Kg−1 °C−1),Tc is the canopy temperature (°C),
Ta is the air temperature (°C), ∗eC is the saturated vapour pressure at
canopy temperature (kPa), ea is the vapour pressure of air (kPa), rH is
the aerodynamic resistance −(sm )1 , rCis the canopy resistance −(sm )1 , Rn

is the net radiation −(Wm )2 and γ is the psychrometric constant (Pa
°C−1).

Using Laplace transform, Eq. (5) can be rewritten as (Al-Faraj et al.,
2000)

+ = − + − − − −∗s a T t aT t τ bR t τ c e e t τ( ) ( ) ( ) ( ) ( )( )c a a n r c a v (6)

where

=s d dt/ is the time derivative operator
= −a ρC ξr[ ]/[ ](s )p H

1

= −b ξ 1 (m2°CW−1 S−1)
= +c ρC ξγ r r[ ]/[ ( )]p c H (°CPa−1 S−1)

The net radiation flux (Rn) absorbed by the crop can be system-
atically assumed to be equal to the net radiation measured above the
crop, thus neglecting the radiation exchanged below the canopy and the
ground. Thus, net radiation above the canopy is almost equal to the
total shortwave irradiance Rsw

−(Wm )2 during the day (Cannavo et al.,
2016).

The canopy-air vapor pressure difference is Eq. (6). can be expressed
in terms of vapor pressure deficit of the ambient air as

− = − +∗ ∗e e e e( ) Δc a a a (7)

where Δ (k Pa °C−1) is the slope of the curve relating the saturation
vapor pressure to temperature which is assumed to be approximately
constant over the range Tc to Ta (Jones, 2014).

Since Δ is a constant, Eq. (7) is expressed with respect to time as
−∗e e( )a a which is the VPD of the ambient air as a function of time.
Therefore, Eq. (5) can be expressed as a first order continuous time

multiple-input-single-output (MISO) transfer function model

=
+

− +
+

− −
+

−T t a
s a

T t τ b
s a

R t τ c
s a

VPD t τ( ) ( ) ( ) ( )c a a sw r v (8)

The dynamic model in Eq. (8) has the canopy temperature (T )c as the
model output. The model inputs are the dynamic course of air tem-
perature (Ta), shortwave irradiance (Rsw) and the air vapour pressure
deficit (VPD). The physical meaningfully model parameters to be esti-
mated are a, b and c which can be accomplished using a suitable system
identification technique described in Section 2.4. The identified para-
meters will be unique to the well-watered and non-transpiring canopies,
and will also drive the dynamic response of their temperatures to the
prevailing meteorological conditions.

Mechanistic formulation of model 
structure

Identification 
Experiments

1

2

Mechanistic Phase

Data-Based Phase

Parameter 
Estimation

Physical Knowledge and assumptions 
about the physical nature of the 

process 

Fig. 1. The DBM modelling approach (Desta et al., 2004).
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2.4. Data-based mechanistic modelling approach

Data-based mechanistic (DBM) modelling is a dynamic modelling
approach applicable to transfer function models (Young, 2006). It
consists of two phases as illustrated in Fig. 1. In the mechanistic phase,
a model structure is formulated based on the physical knowledge of the
process under consideration. In the data-based phase, time-series input/
output data are exploited to estimate the physically meaningful model
parameters and the advective time delay associated with each model
input (Desta et al., 2004).

The DBM model can be formulated in the form of a MISO con-
tinuous-time transfer function written as

= −∂ + ⋯+ −∂ +y t B s
A s

u t B s
A s

u t
C s

e t( ) ( )
( )

( ) ( )
( )

( ) 1
( )

( )k
k k

1
1 1

(9)

In Eq. (9), y t( ) is the output which isTc in this study, uk are the set of
k inputs into the system which are Ta, Rsw and VPD in this study, ∂k are
the advective time delays associated with each input and e t( ) is the
noise signal considered as zero mean, white noise with Gaussian am-
plitude distribution and variance.

A s( ) and B s( ) are polynomials in the derivative operator =s d dt/ of
the form

= + + ⋯ +−
−A s s y s y s y( ) n n

n n1
1

1 (10)

= + + ⋯ +−
−B s x s x s x s x( ) m m

m m0 1
1

1 (11)

where x y, are model parameters to be estimated for the A s( ) and
⋯B s B s( ) ( )k1 polynomials. The model structure is denoted by the triad

∂n m[ , , ] where n represents the number of parameters in the A s( )
polynomial, m represents the number of parameters in each B s( )
polynomial and ∂ is the time delay associated with each input. By
comparing Eq. (8) with Eqs. (9)–(11), in the present study, the model
parameters to be identified are a b c, , , n= 1 (a in the denominators of
Eq. (8) and m=1 for each input (a b c, , in the numerators of Eq. (8).
The time delays are τa, τr and τv.

The continuous time MISO transfer function model parameters and
time delays are estimated from the experimental input/output time-
series data using the recursive refined instrumental variable algorithm
for continuous time systems (RIVC) (Taylor et al., 2007). This algorithm
has been applied and validated for many practical applications (Young
and Garnier, 2006). The RIVC optimally filters the data which ensures
the estimation is statistically efficient and also generates the filtered
derivatives of the input and output signals. The model estimated using
the RIVC approach has statistically optimum properties due to the
iterative and adaptive mode of solution used by the algorithm (Youssef
et al., 2011).

3. Methodology

Plant canopy temperature and meteorological data for lettuce plants
cultivated under greenhouse conditions were collected for the devel-
opment and testing of the dynamic model.

The lettuce crop was selected for our study because of its highly
sensitive response to water stress. Irrigation is also widely optimized to

enhance the post-harvest quality of the crop (Monaghan et al., 2017).
Some previous studies have reported the canopy temperature as a
useful indicator of the plant water status of the lettuce crop (Qiu et al.,
2009; Story and Kacira, 2015).

3.1. Plants and measurements

The canopy temperature of randomly selected lettuce plants was
continuously measured for two five week study periods.

At the start of the initial five week study, eight plants were main-
tained as well-watered by adding irrigation volumes to fully replace
daily water loss through crop evapotranspiration (ETC). This set of
plants were used for Tnws measurements. Petroleum jelly was applied on
the leaves of eight other plants to completely inhibit transpiration, and
this set of plants were used for Tdry measurements. Prior to the appli-
cation of the petroleum jelly, these plants received irrigation volumes to
fully replace ETC water loss. The plants selected for Tdry measurements
were replaced after three days with a new set of plants which had been
receiving full irrigation volumes in order to ensure uniform develop-
ment of the plant canopy.

During a follow up five week study with a new set of lettuce plants
receiving irrigation volumes to fully replace water loss through ETC,
two days prior to the commencement of measurements, four replicate
lettuce plants received one of two irrigation treatments supplying; 80%
of ETC and 40% of ETC. The treatments are hereafter referred to as 80ET

Table 1
Model Identified for the different LAI intervals.

LAI interval Tnws Tdry

n m τa τr τv n m τa τr τv

0.8 or lower 1 1 2 2 2 1 1 2 2 2
0.8–1.6 1 1 1 2 2 1 1 1 2 2
1.6–2.5 1 1 1 1 2 1 1 2 1 2
2.5 or higher 1 1 1 1 1 1 1 1 1 2

Fig. 2. Comparison between the measured and modelled predicted baseline
temperatures for the four model evaluation days (A) Tnws (B) Tdry.

Table 2
Results of the comparison between the measured and model predicted baseline
temperatures.

LAI interval Tnws Tdry

RMSE (°C) MAE (°C) RMSE (°C) MAE (°C)

0.8 or lower 0.35 0.29 0.31 0.24
0.8–1.6 0.23 0.18 0.25 0.20
1.6–2.5 0.21 0.17 0.28 0.21
2.5 or higher 0.22 0.18 0.22 0.17
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Fig. 3. The diurnal dynamics of the baseline temperatures (Tdry and Tnws) along with the incoming shortwave irradiance (Rsw) and ambient air temperature (Tair). (A)
Sunny day (B) Cloudy day.

Fig. 4. Comparison of CWSIEand CWSIT during the model evaluation period (A)
D1 (B) D2 (C) D3 (D) D4.

Fig. 5. Diurnal dynamics of CWSIE during the model evaluation period (A) D1
(B) D2 (C) D3 (D) D4.
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and 40ET respectively. These sets of plants were used for Tc measure-
ments for the calculation of the CWSI. This methodology was applied in
order to ensure uniform development of the plant canopy. A total of ten
plants were also maintained as well-watered and stressed for assessing
the model prediction of the baseline temperatures.

The canopy temperature of each of the plants was continuously
measured using Pyro NFC infrared (IR) sensors (Calex Electronic
Limited, Bedfordshire, UK). The IR sensors operate at a spectral range of
8–14 μm. The sensors were positioned approximately 30–50 cm above
the plant canopy and pointed in a nadir direction. The temperature
sensing area was approximately 3–5 cm to ensure only the plant canopy
was in the view of the IR sensors. Readings from the IR sensors were
recorded every 10 s.

Environmental variables measured at plant canopy level included
ambient air temperature and relative humidity using a temperature and
humidity probe (Model EE08, E+E Elektronik, Engerwitzdorf, Austria),
and shortwave irradiance using a pyranometer sensor (Model SP-110,
Apogee Instruments, Logan, Utah, USA). Wind speed was measured
using a hot wire anemometer (Model AM – 4202, Lutron Electronics,
London, UK) installed 10 cm above the crop canopy. The VPD was
calculated using temperature and relative humidity data following the
equations outlined in Allen et al. (1998). Readings from the sensors
were recorded every 10 s. All sensors were factory calibrated by their
respective manufacturers.

Data from all the sensors were collected and stored using a CR1000
data acquisition system (Campbell Scientific, Logan, Utah, USA).

The leaf area index (LAI) values for the plants used for IR mea-
surement were assessed using digital images captured with a mobile
phone camera. The LAI values were then extracted from the digital
images using the Easy leaf area software (Department of Plant Sciences,
University of California). During the initial study period, leaf area
measurement was conducted on six random plants every three days.
The measurements were conducted prior to the application of petro-
leum jelly on the Tdry plants. During the follow up study leaf area
measurement was conducted on six random plants, prior to the initia-
tion of irrigation treatments.

3.2. Dynamic model development for the baseline temperatures

The DBM modelling approach was applied in developing the dy-
namic model of the baseline temperatures. This was achieved using all
incoming time-series measurements of Tnws, Tdry and environmental
variables recorded during the initial five week period, resulting in an
approximate total of 302, 000 data points for each measured variable.
The parameter estimation was constrained to a first-order model fol-
lowing Eq. (8), and the model parameters and the time delay associated
with each input were identified using the recursive RIVC algorithm.

3.3. CWSI calculations

The CWSI proposed by Idso et al. (1981) was intended as a tool for
detecting the water status of plants around noon which corresponds to
the period of peak plant transpiration. However, an extended period of
between 8:00 and 16:00 h was explored during this study.

CWSIE was calculated for the 40ET and 80ET plants using their
measured canopy temperature and the baseline temperatures predicted
using the dynamic model. CWSIT was also calculated for these plants
using their measured canopy temperature and ancillary meteorological
measurements. The aerodynamic resistance, ra was calculated following
the equations of Thom and Oliver (1977) given as

= ⎧
⎨⎩

⎡
⎣⎢

− ⎤
⎦⎥

⎫
⎬⎭

+r In z d
z

u4.72 /(1 0.54 )a
o

2

(12)

where z is the measurement height (m), d the displacement height (m),
zo the roughness length (m), and u the windspeed ( −ms 1). Values of zo

and d were derived from the plant height h (m) as =z h0.13o and
=d h0.67 . The canopy resistance at potential transpiration, rc pot, was

determined for each of the evaluation days by adjusting its value until
the lowest CWSI value on that day was zero (González-Dugo et al.,
2006).

The CWSI values were computed using 15mins average values of
the measured canopy temperature and environmental variables.

3.4. Statistical analysis

Model evaluation was carried out by comparing the Tnws and Tdry

values predicted by the dynamic model and the measured values using
several goodness-of-fit statistical indicators. These included the coeffi-
cient of determination (R2), the mean absolute error (MAE) and the root
mean square error (RMSE). The coefficient of correlation (r) was ap-
plied in comparing CWSIE with CWSIT.

The MAE and RMSE were calculated as (Chai and Draxler, 2014).

∑= −
=n

P OMAE 1 | |
i

n

i i
1 (13)

= ⎡

⎣
⎢

∑ − ⎤

⎦
⎥

= P O
n

RMSE
( )i

n
i i1

2 0.5

(14)

where Oi and Pi are measured and predicted value at time
= ⋯⋯i i n( 1, 2, ) respectively. R2 values close to 1 indicate that the

model explains well the variance of observations, and MAE and RMSE
values close to zero indicate good model predictions (González et al.,
2015). r values close to 1 indicate a strong positive linear relationship
between the compared variables.

4. Results and discussion

The recursive parameter identification for the development of the
dynamic model was conducted using all incoming time-series of data
collected during the initial five week study period. Data from four se-
lected days during the follow up study, however, seem to be sufficient
to conduct the model evaluation as this data shows a contrast in the

Fig. 6. Diurnal dynamics of the baseline temperatures (Tdry and Tnws) during the
model evaluation period (A) D1 (B) D2 (C) D3 (D) D4.
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prevailing environmental conditions (Appendix A) and crop growth
stage (Appendix B). These days are hereafter referred to as D1, D2, D3
and D4 respectively.

4.1. Dynamic modelling of the baseline temperatures

The measured canopy temperatures of each of the plants maintained
as either Tnws or Tdry were usually within 1 °C of each other. The average
coefficient of variance was 1.8% for Tnws measurements and 2% for Tdry

measurements. The average measured canopy temperature of the plants
in each baseline temperature group was therefore applied in recursive
parameter identification.

The dynamics of Tnws and Tdry were consistently described by a first
order model as indicated in the transfer function model in Eq. (8). The
standard errors associated with the recursive parameter estimates
ranged from 4% to 10%. The model residuals also had a zero mean with
a standard deviation less than ± 1 °C. These low parameter standard
errors and residuals give evidence in favour of the first order model. It
was however observed that the recursively identified model parameters
and the time delay associated with the model inputs varied temporally
over the plant growth cycle. For this reason, the LAI was used to divide
the models into four intervals as shown in Table 1. The intervals include
LAI values less than 0.8, 0.8–1.6, 1.6–2.5 and above 2.5. For the divi-
sion, it is easy to change the LAI into other time units such as days after
planting. The LAI evolution over the study period and identified model
parameters are presented in Appendix C.

Taking plant growth into account when predicting baseline tem-
peratures would greatly reduce the errors associated with the predic-
tion as a result of the time-varying nature of the plant system. Payero
and Irmak (2006) noted that plant growth affects the crop aerodynamic
resistance, surface albedo and canopy resistance which affects the ca-
nopy temperature response and hence induces a change in established
model parameters. The accuracy of regression models developed by the
authors for predicting baseline temperatures for corn and soybean was
greatly improved when they accounted for the evolution of the plant
height.

4.2. Baseline temperature prediction

The comparisons between the model predicted and measured
baseline temperatures are presented in Fig. 2. The data points in Fig. 2
are selected from D1 to D4 which corresponds to a day in each of the
four LAI intervals used to divide the models (Appendix B). It is seen that
the predicted Tnws are highly correlated with the measured Tnws values
( =R 0.922 ). The predictedTdry values are also highly correlated with the
measured Tdry values ( =R 0.952 ). Summary statistics on the comparison
between the measured and model predicted baseline temperatures are
also presented in Table 2.

Table 2 shows the model performs with reasonable accuracy in each
LAI interval, recording low MAE and RMSE values. This suggests that
the dynamic model can account for the time-varying response of the
plant system and its influence on the canopy temperature response.

The dynamic response of the measured baseline temperatures along
with prevailing shortwave irradiance and ambient air temperature for a
sunny and cloudy day, are presented in Fig. 3. Tdry values are con-
sistently higher than Tnws values which in turn maintain values lower
than the ambient air temperature. It can also be seen that the fluctua-
tions in the baseline temperature values closely follow the fluctuations
in the incoming solar radiation. This is in agreement with results pre-
sented by Agam et al. (2013a). The importance of considering the
diurnal dynamics of the baseline temperatures was highlighted in a
study by Payero and Irmak (2006). In their study, significant diurnal
variations as high as 5 °C was recorded for the baseline canopy and air
temperature difference measured on corn and soybean crops. They at-
tributed these variations to diurnal variations in the incoming solar
radiation. They concluded that accounting for these diurnal variations

and its effect on the canopy temperature dynamics will result in more
accurate and realistic baseline temperature predictions. The empirical
CWSI approach proposed by Idso et al. (1981) assumes the baseline
temperatures are constant often leading to erroneous values during
cloudy periods. Agam et al. (2013a) has shown that neglecting the in-
fluence of the prevailing environment on the baseline temperatures
leads to a severe underestimation of CWSI values for stressed olive trees
during periods of abrupt changes in radiation intensity.

It should be noted that the DBM modelling technique constitutes a
data-driven approach in which the dynamic response of the baseline
temperatures is parametrized for the specific ranges of environmental
and crop conditions encountered during model development, and
therefore the models are only applicable to the specific crop and en-
vironment for which they are developed. The methodology can, how-
ever, be adapted to any other location and crop grown under green-
house conditions.

The high speed of the prevailing wind under field conditions results
in turbulent and atmospheric and canopy exchanges which in turn al-
ters the canopy energy balance. Hence, it may be important to consider
the influence of the prevailing wind when developing dynamic models
to estimate baseline temperatures for field grown crops.

4.3. Comparison of the empirical and theoretical CWSI

A comparison of the CWSIE and CWSIT values calculated during the
four model evaluation days for the 40ET and 80ET plants is presented in
Fig. 4. Both CWSI approaches are able to clearly separate the water
status of the plants which explains the gaps in the plots. The CWSI
values are significantly correlated (p < 0.01) during all days with r
values greater than 0.9. These high correlation values are demonstrated
during all crop growth stages in form of the LAI evolution.

The empirical CWSI approach demonstrated in this paper requires
easily measured meteorological variables and crop canopy temperature
for its computation. The high correlation between the empirical CWSI
and the widely validated theoretical CWSI further suggests it can be
deployed as part of an irrigation monitoring tool. This will eliminate the
need for the computation of the crop canopy and aerodynamic re-
sistance which is required for the computation of the theoretical CWSI.
It also eliminates the need to physically maintain dry and wet reference
surfaces which are required for the baseline temperature computation
in other empirical CWSI approaches.

4.4. Daily dynamics of the crop water stress index

The diurnal dynamics CWSIEcalculated for the 40ET and 80ET
plants were well differentiated during the four model evaluation days as
shown in Fig. 5. The CWSI recorded for the 80ET crops ranged between
0.1 and 0.4 while those of the 40ET plants consistently approached
values ranging from 0.8 to 1 at noon which coincides with the period of
maximum atmospheric evaporative demand. The dynamics of the
modelled baseline temperatures are also presented in Fig. 6.

Agam et al. (2013b) suggested that the diurnal course of CWSI of
well-watered plants will maintain a relatively constant level while that
of stressed plants will increase until early afternoon and decrease after
that, following the dynamics of evaporative demand. Indeed the diurnal
course of CWSIE calculated for both 80ET and 40ET plants followed
these patterns as shown in Fig. 5. The cloudless conditions that are
required for the application of the original empirical CWSI approach
may not occur often enough during noon in humid climates such as UK
(Jones, 1999). The ability of the empirical CWSI approach proposed in
this paper to depict the plant water status of lettuce over an extended
diurnal period should, however, make its application in practice more
flexible. This is because the baseline temperature values applied in its
calculation are predicted as a function of the prevailing environment,
limiting the underestimation of CWSI of stressed plants during cloudy
periods as shown by Agam et al. (2013a). Furthermore, the results
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indicate that the CWSI calculated during diurnal periods different from
the solar noon separates the water status of the stressed and well-wa-
tered plants, which will be particularly attractive for applications where
there is a rapid change in the plants water status due to limited con-
tainer volume or substrate water holding capacity.

It is however noted that while the empirical CWSI described in this
paper can provide a useful indication of the need for irrigation, it is
unable to estimate the amount of irrigation water that is needed. As
such, this tool should be complemented with soil moisture measure-
ments or estimations of ETC in order to implement a robust irrigation
decision support system.

5. Conclusions

In this paper, the feasibility of using a dynamic model to predict the
baseline temperatures needed to calculate an empirical CWSI was de-
monstrated for the lettuce crop cultivated in a greenhouse. The dynamic
response of the baseline temperatures was modelled as a function of
shortwave irradiance, air temperature and VPD, and parameters of the
model varied in response to crop growth. The empirical CWSI values
computed using the dynamic model predicted baseline temperatures

were significantly correlated with theoretical CWSI values at all crop
growth stages and successfully differentiated between two levels of ir-
rigation treatment for the lettuce crop.

The dynamic modelling approach adopted in this study for pre-
dicting the baseline temperatures should enhance the application of the
CWSI method for irrigation scheduling. It requires easily measured
meteorological variables as input parameters, and it is able to account
for the diurnal fluctuations in these variables in the baseline tempera-
ture prediction. It can also be applied in computing the CWSI over an
extended diurnal period making its application more flexible. The re-
quirement for the calculation of the aerodynamic resistances needed in
the theoretical CWSI computation is eliminated. The need to maintain
artificial reference surfaces applicable in other empirical CWSI ap-
proaches is also eliminated. The implementation of this model in a
commercial greenhouse and model development for other high-value
crops will be the focus of future research.

The authors wish to acknowledge John Oldacre foundation for
funding this research project.

Appendix A. Climatic conditions during model evaluation

See Figs. A1–A4.

Fig. A1. Climatic conditions during D1 (A) Tair (Air temperature) and VPD (B) R (sw Incoming shortwave irradiance).
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Fig. A2. Climatic conditions during D2 (A) Tair (Air temperature) and VPD (B) Rsw (Incoming shortwave irradiance).
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Fig. A3. Climatic conditions during D3 (A) Tair (Air temperature) and VPD (B) R (sw Incoming shortwave irradiance).
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Appendix B. Crop growth stage during the model evaluation days

See Table B1.

Fig. A4. Climatic conditions during D4 (A) Tair(Air temperature) and VPD (B) R (sw Incoming shortwave irradiance).

Table B1
LAI values (standard deviations in brackets) during the model evaluation days.

LAI value LAI interval Model evaluation day

0.6 (0.03) 0.8 or lower D1
1.3 (0.05) 0.8–1.6 D2
2.2 (0.15) 1.6–2.5 D3
4.2 (0.11) 2.5 or higher D4
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Appendix C. Model parameters as a function of LAI evolution

See Fig. C1 and Table C1.
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