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Abstract

A traditional re-identification pipeline consists of a de-
tection and re-identification step, i.e. a person detector is
run on an input image to get a cutout which is then sent to
a separate re-identification system. In this work we com-
bine detection and re-identification into one single pass
neural network. We propose an architecture that can do
re-identification simultaneously with detection and classifi-
cation. The effect of our modification has only a negligible
impact on detection accuracy, and adds the calculation of
re-identification vectors at virtually no cost.

The resulting re-identification vector is strong enough
to be used in speed sensitive applications which can ben-
efit from an additional re-identification vector in addition
to detection. We demonstrate this by using it as detection
and re-identification input for a real-time person tracker.
Moreover, unlike traditional detection + re-id pipelines our
single-pass network’s computational cost is not dependent
on the number of people in the image.

1. Introduction

Re-identification (re-id), the task of matching person
identities between different appearances of the same person
is a well studied problem. Current state of the art techniques
use deep convolutional neural networks (CNNs) trained us-
ing a loss function like triplet loss [I1, 26], contrastive
loss [8] and on-line instance matching (OIM) loss [30].
The principle generally remains the same: the neural net-
work transforms an input image into an (embedding) vector
which contains distinctive features of the subject in the im-
age (people in our case). This vector is then embedded in
a space where vectors of same identities (eg. coming from
pictures of the same person) are close to each other, and
vectors of different identities far from each other. A dis-
tance measure (often cosine or Euclidean distance) in this
vector space can then be used to measure how similar two

Figure 1. We create a neural network that can do both detection
and re-identification at the same time. Left shows the Euclidean
distance of a tracked person compared to all other output cells,
right shows detection output and center uses both detection and
re-identification to create a tracker.

objects are to each other.

Re-id can be useful in many applications: In the field
of surveillance, it can be used to search for a person in
a huge quantity of video sequences coming from different
cameras. Other applications include recognizing people in
photos which is useful for all kinds of purposes (eg. social
media, photo albums). Apart from that, re-id can also be
used to make person tracking more robust. Matching iden-
tities in consecutive frames in a video sequence (with an
optional interval) can reaffirm tracks created by a tracker,
it makes it possible to overcome total occlusions and allows
the tracker to be used in applications where non-overlapping
multi camera handover is required. By treating the tracking
problem as a clustering problem it can also be used as a
tracker by itself.

The mapping from image to id-vector is generally done
from a cropped image containing one person to the embed-
ding space. A two stage pipeline is used: first a person de-
tector is used to locate all people in the image, after which
cutouts of the image containing each a single person are
sent to a re-id network which transforms them into an em-
bedding space. To detect people in a video frame an ob-
ject detection algorithm is used which can be based on hand



crafted features (like ACF [5] or DPM [7]) or use a CNN
pipeline (like YOLO [23], SSD [18], FPN [17] or Faster
R-CNN [25]).

Indeed, to get state-of-the-art results a computationally
intensive two-step CNN pipeline is mainly used. For off-
line processing pipelines that require highly accurate results
this is often acceptable. However, for systems that need to
work in real-time on the other hand (e.g. a tracker) this often
rules out re-id altogether.

This raises the question: Is it not possible to combine this
pipeline into one fast neural network that can fulfill both ob-
jectives at the same time? I.e. we envision a neural network
that at the same time outputs detections and also mappings
of these detections into an embedding space. So far, com-
bining these steps has only been attempted in a primitive
way by Xiao et al. [29] with the more computationally in-
tensive Faster R-CNN [25].

In this paper we investigate how this can be done using
a single one pass fully convolutional network. In this paper
we introduce YOLO-REID, a single shot convolutional neu-
ral network based on YOLOV?2 that is able to do both person
detection and re-identification at the same time introducing
only a negligible increase in computational cost and small
penalty in detection accuracy. We make the choice of the
YOLOV2 architecture because of its compactness (only 23
convolution layers), which gives it the ability to meet our
real-time constraints. We of course do not expect the same
accuracy as other re-id approaches like [12] which use the
deeper Inception or ResNet networks. If better accuracy is
desired, the proposed approach can however similarly be
used in deeper networks.

To the best of our knowledge we are the first to attempt a
combination of a single-shot-detector and re-identification.
This approach would have unique properties: it would be
able to do detection and re-id at the same time without much
extra cost. By running a detector you essentially get re-
id for free. It would be possible to output an embedding
vector of every person in the image without adding any extra
cost independent of the number of people in frame. We
demonstrate our approach by applying it to a tracker. The
output is visually shown in figure 1.

The remainder of the paper is structured as follows: Sec-
tion 2 will explain some of the related work. Section 3 will
go into further detail on the architecture of our network and
how we train it. In section 4 we demonstrate our work by
using it as the basis of a tracker, section 5 compares our
approach to both itself and others in terms of tracking, de-
tection and re-identification accuracy. Our conclusions can
be found in section 6.

2. Related Work

One of the motivations of this work is to use re-
identification to create a reliable tracker. We will first briefly

discuss the related work about tracking. Next, we will ex-
plain related work about re-identification and detection.

Multi-object tracking can be divided into two ap-
proaches. On the one hand there is tracking by detec-
tion which only looks at the output of an object detector,
and tries to associate detection boxes to create accurate
tracks [2,21]. The recent SORT [2] uses a simple Kalman
tracker combined with the Hungarian algorithm and an as-
sociation metric based on detection overlap to create an
accurate multi-person tracker. Other approaches [3] use
only a simple IoU measure that is able to achieve state-of-
the-art results thanks to the recent advances in object de-
tection accuracy. Off-line approaches have also been pro-
posed [1, 13, 14,20,22]. Because they have all detection
data available they can solve the track assignment problem
as a global optimization problem.

Approaches that make use of appearance features [ 1,28,

] generally perform better than tracking-by-detection on
its own at the cost of more computational complexity.

The rise of deep learning in the field of re-id lies at the
foundation of this paper [0,9, 10, 11, 15,26,27,32,33,34].
From these works triplet loss [ 1,26] in combination with
hard mining [11, 16] still seems to be a top performer in
terms of learning strategy.

The rise of deep learning has also had a big impact on
object detectors. Hand crafted approaches like ACF [5]
and DPM [7] have for a while now been overshadowed
by deep learning pipelines. Region based approaches like
R-FCN [4] and Faster R-CNN [25] in combination with
Feature Pyramid Networks [17] currently get the best re-
sults in terms of accuracy, while Single-Shot networks like
SSD [18] and YOLO [23, 24] offer an optimal trade-off in
terms of accuracy and speed.

Recent work [29, 30] has also tried to combine detec-
tion and tracking into one network for the task of identi-
fying a single person or multiple people in a larger video
set. They modify the Faster R-CNN [25] object detector.
The region proposal part of Faster R-CNN is kept as is, and
they concatenate the region proposal net of Faster R-CNN
with a re-id network, creating in essence a detector that can
be used directly for re-identification. Compared to our ap-
proach by using Faster-R-CNN they still use a two stage
pipeline, albeit a pipeline that was previously used for de-
tection and classification. The disadvantage of using Faster
R-CNN however is that it is not as fast as a single shot net-
work. Computational cost also increases when more people
are in the scene.

3. YOLO-REID

The idea of our person detection and re-identification
network YOLO-REID is to create one network, based on
YOLOV2 [23], that is able to accurately detect people in
an image (same accuracy as standard YOLOv2) and calcu-
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Figure 2. Simplified YOLOV2 network architecture

late re-identification vectors (embeddings) on these people
at the same time by evaluating the network only once.

3.1. Network architecture

Figure 2 gives a (simplified) overview of the YOLOv2
network architecture. An input image is first passed to the
Darknet19 fully convolutional network, which outputs a set
of feature maps which are used as input to an again fully
convolutional network that outputs class probabilities and
detections in the final layer. The output layer of YOLOV2 is
structured as a grid of 13x13 cells (in the case of the default
input size of 416x416) each containing k anchor points rep-
resenting different bounding box sizes. Every anchor point
contains a bounding box description (x and y-offset, a scale
in x and y direction w.r.t. the anchor and the probability that
this bounding box contains an object) and also a classifica-
tion output. In our modified architecture we propose to also
output an embedding for each cell in the output grid. For
more information about the YOLOV2 architecture we refer
to [23].

One of the goals in our proposed architecture is to
be able to share Darknetl9 weights for detection and re-
identification so we only need to pass through the network
once. To do this we tried two architectures: “split end”
(figure 3) and “mixed end” (figure 4). During training we
update all weights starting from the pre-trained Darknet19
weights trained on ImageNet. In both approaches the clas-
sification outputs from the original YOLO are removed, and
instead the network outputs a 128-value embedding at each
cell in the output grid.

“Split end” uses two separate layers (having the same
size as the YOLO detection layers) that are kept separate
from the detection pipeline, with the idea that the network
can use these to learn a better embedding without impact-
ing detection. “Mixed end” does away with this separate
pipeline and fits everything in the YOLO architecture, cre-
ating a network that is smaller than the original YOLO ar-
chitecture with 80 classes (see section 5.3). Training for
both architectures remains the same. Our total loss function
is the following:

L= Lregion + aLieid, (1)

where « is the weight of the re-id 10ss, Liegion is the stan-
dard YOLOV2 region loss with the softmax classification
loss removed, and Lq is the re-identification (triplet) loss
(see section 3.2).
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Figure 3. Overview of the “split end”-architecture: detection and
re-identification are preformed separately.
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Figure 4. Overview of the “mixed end”-architecture: detection and
re-identification layers are merged.

The scale factor o is determined empirically in part, but
also varies depending on the input resolution of the images
used to calculate region loss during training.

3.2. Triplet loss

We use triplet loss [11, 26] with batch hard mining as
described by Hermans et al. [ 1], implemented in the open-
reid framework ' :

Lll’i(e) = Z [D(L,n - Da,p + m]+ (2)

a,p,n
Ya=YpFYn

Where D, , is the Euclidean distance between two em-
beddings, a is an anchor embedding, p is a positive em-
bedding (same person as a), and n is a negative embedding
(different person than a). This loss function essentially tries
to maximize the distance between a and n, and tries to min-
imize the distance between a and p within some margin m.
If D, » < m the triplet is not moved closer to the anchor.

As proposed by Hermans et al. the loss function using
batch hard mining is given as follows:

all anchors

—

hardest positive

P K
Lee(6, X) =D > [m + max D(fo(x7), fo(x),))

i=1 a=1

— min_ DUfa(el), ol
1K
J#k

hardest negative
3)
where fy is the neural net parametrized by 6 that maps from
image space to embedding space. For every batch of size
P (= 6) the hardest positive sample (the one furthest away

lhttps://cysu.qithub.io/openfreid/
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Figure 5. Example of the output of the network. The distance be-
tween anchor point and embedding is visualized, brighter means a
large distance, darker means a small distance.

from the anchor) and the hardest negative sample (the one
closest to the anchor) is chosen to calculate loss. For every
identity two instances are sampled from the dataset.

3.3. Multi target training

During training we calculate both losses separately. Re-
gion loss is trained in the same manner as standard YOLOv?2
complete with data augmentation. Our implementation
is based on two free software PyTorch implementations:
Lightnet” and pytorch-yolo2?.

We use the CUHK-SYS dataset [29] as it seems to lend
itself perfectly for this purpose. Instead of cropped patches
it contains annotated persons (both id and bounding box) in
uncropped images in a variety of scenes.

As explained in section 3.2 we use batch hard mining to
train re-id. For every mini-batch a random set of ids and
corresponding images is sampled from which the hardest
positive and hardest negative is selected to calculate triplet
loss. To know which images are the hardest, we make a for-
ward pass of all images through the network. Since images
within this mini-batch are selected randomly, we also use
them to calculate region loss. For every image (not just the
one selected to calculate triplet loss) we have bounding box
annotations that we use to calculate region-loss in addition
to triplet-loss.

We use triplet loss as explained in section 3.2 with that
difference that we only learn the embedding-vector at the
grid cell in the center of the target person, the cell where
an anchor point would also generate a detection. Figure 5
illustrates the desired outcome, cells at the center of the pos-
itive patch (left) have a low Euclidean distance at the anchor
point in the center of the person (darker) and other samples
(right and elsewhere in the images) have a high distance
(lighter).

4. Person Tracking

We demonstrate the usefulness of our approach by mak-
ing a person tracker. Indeed, as the re-id vector computed by
our 23-layer network will not be equally powerful as those

Zhttps://gitlab.com/EAVISE/lightnet
3https://qithub.com/marvis/pytorch—yoloz
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Figure 6. Comparison of our YOLO-REID network to standard
YOLOV2.

computed by a full ResNet, we will test its usefulness in
the reasonably less demanding application of tracking peo-
ple within one camera view. We will now briefly discuss
the functionality of this tracker. We base our tracker on the
SORT tracking-by-detection tracker [2], which uses a sim-
ple Kalman tracker combined with the Hungarian algorithm
and a simple IoU metric for track assignment. Similarly
to [28] we extend this tracker using our learned re-id vector
as an association metric. The tracker uses both detections
and appearance embedding vectors coming from our net-
work. In contrast to [28], in our approach the addition of
an appearance feature comes at a negligible cost in terms of
computational complexity. The computational complexity
is also not influenced by the amount of people in the image.
Appearance features are calculated by the network for ev-
ery cell. A full evaluation of the tracking algorithm can be
found in section 5.4.

5. Results

In this section we evaluate the performance of our net-
work. We will first evaluate the detection performance,
compared to our standard YOLOV2, trained and evaluated
on the CUHK-SYS train/test-set. Next, we evaluate the net-
work using the criteria of person search. We calculate aver-
age precision and top-1 accuracy on the test set of CUHK-
SYS yielding a combined figure for detection and re-id. We
also give an overview of the computational complexity of
the different architectures. We evaluate the tracker using
the MOT16 tracking challenge metrics.

5.1. Detection

Figure 6 compares the standard YOLO people detector
to our YOLO-REID network with embedding vectors built
in. Both detectors where trained on the same CUHK-SYS
dataset [29], “Mixed end” uses shared weights up to the last
output layer of the network (figure 4), “split end” uses a
different approach where the two last output layers are kept
separate (figure 3). We can see that detection accuracy does
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| mAP (%) Top 1 (%)
YOLO-REID (mixed end) 20.38 33.37
YOLO-REID (split end) 21.58 35.67
YOLOV2 + histogram 4.44 9.66
Xijao et al. [29] 55.7 62.7

Table 1. The re-id performance of our two architectures compared
to colour histogram matching, which has a similar computational
cost.
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Figure 7. Comparison in speed and accuracy.

not seem to suffer much by replacing the multi class clas-
sification with a re-id vector. Compared to “mixed end”,
“split end” seems to perform better by a small margin. This
can be expected considering the extra layers in “split end”.

5.2. Person search

Person search is the combination of detection and re-id
merged into one task. Given some query images together
with the annotated query person, it is the task of the algo-
rithm to find this person in the gallery. It has to detect the
person and also correctly identify them as the query person.

Table 1 shows the “person search” accuracy in terms
of both mean average precision (mAP) and top-1 score.
We evaluate on the CUHK-SYS test set with a gallery
size of 50. As a baseline we also compare to colour his-
togram matching (based on an implementation of a particle
tracker*) with YOLOV?2 region only detections, which is of-
ten used in tracking as another low cost method. It is clear
that our method performs a lot better. We can also see that
adding extra layers in “split end” clearly has increased ac-
curacy over “mixed end”. Xiao et al. [29] still seems to be
more accurate than our method. However, if we also com-
pare them in terms of speed (figure 7) our method makes a
great trade-off in terms of speed and accuracy. This makes
it usable in resource constraint applications like embedded
platforms and large scale video processing.

5.3. Computational complexity

We mentioned frequently that our network does not
come with much extra cost compared to standard YOLO.
Table 2 shows the computational complexity in terms of net-
work parameters and floating point operations (FLOPs) per
image of both architectures compared to standard YOLOV2.

4https://bitbucket.org/kschluff/particle_
tracker

‘ Parameters MFLOPs
YOLO-REID (mixed end) | 50704 761 29 370.03
YOLO-REID (split end) 62 505337 33357.24
YOLOV2 (80 class) 50983 561 29464.17

Table 2. Computational cost of different networks.

The complexity of “mixed end” is lower than the standard
YOLOV2 because classification output is removed. Adding
extra layers comes at the cost of 12% extra computation and
19% extra parameters.

5.4. Person tracking

We evaluate our tracker using re-id appearance features
against a standard one class YOLO tracker trained ourselves
without the use of appearance features (tracking by de-
tection, which only uses a Kalman tracker combined with
Hungarian algorithm and IoU) using the MOT16 evaluation
framework. The result is shown in table 3. Both trackers
are run at the same working point on the PR curve. Over-
all we get great improvements in tracking accuracy using
our method. We get significantly more mostly tracked (MT)
and partly tracked (PT) trajectories suggesting that our re-id
vector is successful in reconstructing tracks. Overall MOTA
and IDF scores are also increased. More information about
these measurements can be found in [19].

6. Conclusion

We presented a single shot neural network architecture
based on YOLOV2 that is able to perform both detection
and re-identification, while only introducing a negligible in-
crease in complexity compared to the normal YOLOv2. Our
experiments indicate that our architecture is able to yield a
usable re-id vector, with minimal loss in accuracy (+0.5%
average precision), compared to other low cost approaches.
We evaluated two architectures and found that adding extra
layers in the more complex “split end” architecture benefits
detection and re-id accuracy only a small amount.

We demonstrated the effectiveness of our approach in the
application of tracking. Using our approach tracking accu-
racy increased greatly compared to only using detection for
tracking.
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