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Background Stress testing helps diagnose heart failure with preserved ejection fraction
(HFpEF), but there are no established criteria for quantifying left ventricular (LV) func-
tional reserve. The aim of this study was to investigate whether comprehensive analysis
of the timing and amplitude of LV long-axis myocardial motion and deformation through-
out the cardiac cycle during rest and stress can provide more informative criteria than
standard measurements.
Methods Velocity, strain, and strain rate traces were measured from all 18 LV segments
by echocardiographic myocardial velocity imaging at rest and during semisupine bicycle
exercise in 100 subjects aged 69 ± 7 years, including patients with HFpEF and healthy,
hypertensive, and breathless control subjects. A machine-learning algorithm, composed
of an unsupervised statistical method and a supervised classifier, was used to model spa-
tiotemporal patterns of the traces and compare the predicted labels with the clinical
diagnoses.
Results The learned strain rate parameters gave the highest accuracy for allocating sub-
jects into the four groups (overall, 57%; for patients with HFpEF, 81%), and into two
classes (asymptomatic vs symptomatic; area under the curve, 0.89; accuracy, 85%; sen-
sitivity, 86%; specificity, 82%). Machine learning of strain rate, compared with standard
measurements, gave the greatest improvement in accuracy for the two-class task (+23%,
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P < .0001), compared with +11% (P < .0001) using velocity and +4% (P < .05) using
strain. Strain rate was also best at predicting 6-min walk distance as an independent
reference criterion.
Conclusions Machine learning of spatiotemporal variations of LV strain rate during rest
and exercise could be used to identify patients with HFpEF and to provide an objective
basis for diagnostic classification.
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Highlights

• A machine-learning algorithm is proposed to diagnose HFpEF.

• Spatiotemporal patterns of echocardiographic deformation curves were analyzed.

• The algorithm’s ability to identify subjects of four clinical categories was tested.

• Analyzing rest and exercise strain rate data led to the best classification accuracy.

• Machine learning of strain rate is useful for identifying HFpEF objectively.

Patients with heart failure with preserved ejection fraction (HFpEF) may have mul-
tiple pathophysiologic mechanisms for their disease, including global diastolic [1] and
regional systolic dysfunction [2–4]. They can also have left ventricular (LV) mechanical
dyssynchrony [5, 6] that may be revealed only during stress testing [4]. Both spatial het-
erogeneity and temporal dyssynchrony of function may contribute to impaired diastolic
filling in patients with HFpEF, but subtle differences between regions and changes during
stress can be difficult to recognize visually, because of the limited temporal resolution of
human vision [7]. Two-dimensional visualization of cardiac images makes it difficult to
detect three-dimensional spatial relationships, and time-separated recordings at rest and
during stress hamper the detection of stress-induced effects. A complete formal analysis
of myocardial velocities and deformation recorded at high frame rates might reveal much
more.

Segmental velocity or deformation curves can be interpreted visually, or, for a more
objective assessment, a limited number of characteristic variables (such as end-systolic
strain) can be extracted from the curves and used to describe spatiotemporal interactions
[8]. Examples include calculating the SDs of times to segmental peak systolic strain, to
assess LV mechanical dyssynchrony during systole [6], and of times to segmental peak
early diastolic velocity, to study the effects of dyssynchronous relaxation on filling [9].
Such approaches, however, do not use all the available data. Because the SDs of tim-
ings take no account of the spatial distribution of those timings, important diagnostic
information might be lost.
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It may now be possible to overcome these limitations by using machine learning to
reveal patterns in functional traces obtained during the whole cardiac cycle [10–14]. We
reported recently that such a learning scheme applied to velocity profiles acquired from
the basal septum and the basal lateral wall at rest and during submaximal exercise
improved the characterization of HFpEF [10, 11]. This new approach has not yet been
applied to analyze function in all myocardial segments or to investigate the diagnostic
utility of deformation imaging during stress.

We designed this study to test the hypothesis that patients with HFpEF have tem-
poral and spatial variations in regional myocardial function and functional reserve that
contribute to impaired global function. We used machine learning to analyze the spa-
tiotemporal characteristics of velocity, strain, and strain rate traces acquired from all 18
segments of the left ventricle at rest and during submaximal exercise in four groups of
subjects.

Methods

Study Population

One hundred subjects aged 69 ± 7 years were recruited for this prospective observational
study, at two participating centers in the MEtabolic Road to DIAstolic Heart Failure
(MEDIA) project [15]: the University Hospital of Wales and the Wales Heart Research
Institute (Cardiff, United Kingdom) and the Scuola di Medicina of Eastern Piedmont
University (Novara, Italy). At each institution, the investigators obtained ethical approval
for the study from the ethics committee, and all subjects gave written informed consent.

There were 33 patients with diagnoses of HFpEF according to the consensus criteria
of the European Society of Cardiology [1] and 67 control subjects subdivided into three
groups. Patients with HFpEF had signs or symptoms of heart failure, preserved LV global
systolic function by echocardiography (ejection fraction > 50% and LV end-diastolic vol-
ume index < 97 mL/m2), and evidence of LV diastolic dysfunction. Twenty-five breath-
less subjects who did not meet these criteria, and who had no respiratory disease, were
identified as breathless control subjects. Asymptomatic subjects with no cardiovascular
history were recruited as healthy control subjects (n = 23). Asymptomatic volunteers
with no cardiovascular histories or findings apart from mildly elevated blood pressure
(systolic > 140 mm Hg and/or diastolic > 90 mm Hg) were categorized as asymptomatic
hypertensive control subjects (n = 19); this group included a few subjects on medical
treatment. The three control groups and the subjects with HFpEF were recruited to study
older subjects across a spectrum from good health to established disease. It was antici-
pated that the asymptomatic hypertensive control subjects would have relatively normal
exercise responses, while breathless control subjects might have impaired responses that
were less in magnitude than those observed in patients with HFpEF.

Exclusion criteria for all groups included any severe respiratory disease, any known
coronary artery disease including myocardial infarction or revascularization, and any cere-
brovascular disease or stroke within the previous 3 months. Subjects were also excluded
if their echocardiographic images were not of diagnostic quality or if they were unable to
perform the exercise protocol.
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Echocardiography

All subjects underwent a stress test on a semisupine bicycle according to the Cardiff–MEtabolic
Road to DIAstolic Heart Failure protocol, as described previously [8]. Echocardiography
was performed using Vivid E9 echocardiographic machines with M4S transducers (GE
Vingmed Ultrasound, Horten, Norway). Baseline images were acquired from subjects af-
ter a period of initial rest on the bicycle for 5 to 10 min, and then subjects were exercised
according to a ramped protocol, starting at an initial workload of 15 W for 1 min and
increasing in increments of 5 W every minute until a heart rate of 100 to 110 beats/min
was achieved (or the patient developed symptoms at a lower rate). The workload was
then maintained constant while exercise echocardiographic imaging was performed before
fusion of the early and atrial phases of diastolic filling.

Three-beat color myocardial velocity loops of apical four-chamber, two-chamber, and
long-axis images were acquired at a frame rate of 189 30 Hz and stored digitally. All
images were acquired at passive end-expiration to minimize effects of translation of the
heart. Offline analysis was performed using EchoPAC version 113 (GE Vingmed Ultra-
sound). Each myocardial wall was divided into three equal segments. A sample size
(region of interest) of 1 × 10 mm was placed in the middle of each segment, with the
first placed approximately 10 mm above the mitral annulus. Thus, velocity, strain, and
strain rate curves were obtained from all 18 myocardial segments [16] at rest and during
submaximal exercise. To compensate for any drift, the EchoPAC software automati-
cally returned the deformation curves back to the baseline at the end of each beat. The
derivation and clinical utility of Doppler-based deformation imaging have been reviewed
elsewhere [17, 18].

Machine Learning

The overall structure of the machine-learning framework is illustrated in Figure 1. The
three main phases were preprocessing of the data, statistical modeling, and automatic
classification.

Preprocessing

To adjust for differences between patients in the number of temporal samples of the
extracted curves, which can be due to differences in frame rate and/or heart rate, we
performed a temporal alignment independently for the rest and the exercise data on
the basis of linear interpolation (Figure 1A and B). After the temporal alignment, all
segmental curves acquired at rest had 208 time points, while all those acquired during
exercise had 123. More details are given in the Appendix.

Noisy or artifactual curves were omitted from the analysis by applying a set of quality
control indexes that are described in the Appendix (see Supplemental Figure 1 for exam-
ples of artifactual strain rate curves). Some traces were missing because a segment could
not be imaged or because a meaningful trace could not be extracted from that segment
during postprocessing. The preprocessing phase therefore included a “data imputation”
step (Figure 1C and D), during which the missing and omitted artifactual traces were
estimated through a learning method called KNNimpute, as previously described [19].
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Figure 1: Overall structure of the machine-learning framework. After performing the
temporal alignment separately for data obtained at rest (A) and during exercise (B),
the KNNimpute approach was adopted to estimate the missing (C) or artifactual (D)
curves. Each subject’s segmental curves acquired at rest and during exercise were then
concatenated, and the obtained set of data for the training subjects (E) was given to
the PCA model to learn their STRE patterns (F). Finally, the computed STRE features
of the training and testing subjects were applied respectively to build a classifier and to
make decisions about the category of the subjects (G). The decision-making phase was
performed twice, to classify the subjects into one of the four or two categories that were
considered in this study. This procedure was carried out independently for the velocity,
strain, and strain rate data.
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Statistical Modeling for Spatiotemporal-Rest-Exercise Representation

After preprocessing, the temporal characteristics of segmental velocities and deformation
throughout the whole cardiac cycle, as well as spatial associations at rest and during
exercise, were statistically modeled. Firstly, all 36 segmental curves of each parameter
that were acquired from each subject (i.e., 18 at rest and 18 during exercise) were con-
catenated in a fixed order on the basis of the 18-segment model of the left ventricle16 to
form a “spatiotemporal-rest-exercise” (STRE) representation of LV function with 5,958
samples (Figure 1E). Principal-component analysis (PCA) [20] was then used to learn
the major patterns of variation, called principal components (PCs), of the STRE data of
all subjects regardless of their diagnostic categories (i.e., “unsupervised learning”; Figure
1F). We refer to the parameters learned by PCA as the “STRE feature set”. We built
three independent PCA models using the velocity, strain, and strain rate STRE data sets.
In summary, this process allows simultaneous modeling of the behavior of all segments
from the traces of the subjects acquired at rest and during exercise in a compact manner.

For comparison, we also performed modeling on the basis of PCA using either the
traces obtained at rest or, independently, the traces extracted from the exercise studies.
Those results are presented in the Appendix.

Automatic Classification

Three independent classifiers were constructed with the STRE feature sets of the velocity,
strain, and strain rate data (Figure 1G) to categorize the subjects automatically into one
of four groups—healthy control subjects, hypertensive control subjects, breathless con-
trol subjects, or patients with HFpEF—in a “supervised learning” process. In this study
we used the distance-weighted -nearest-neighbor (DWKNN) method [21] as the classi-
fier, given its ability to solve classification problems with limited training samples and
to generate a probability (which necessitates using at least three KNNs [21]), not merely
a categorical value, representing the likelihood that a given test subject lies within each
group. In addition to this four-class task, a two-class problem was also solved, allocat-
ing the subjects by machine learning into a combined class of healthy and hypertensive
subjects (i.e., all asymptomatic subjects) or into a second class including all breathless
subjects and patients with HFpEF (i.e., all symptomatic subjects). Our hypothesis was
that asymptomatic control subjects with mild hypertension would behave similarly to
healthy control subjects, while breathless subjects would be similar to, but perhaps less
severely affected than, patients fulfilling the formal criteria for HFpEF. We compared the
performance of the two-class machine learning to the four-class discrimination.

More technical information about the implementation of the proposed machine-learning
framework is given in the Appendix and Supplemental Figure 2.

Diagnostic Comparisons

To test the diagnostic impact of using all available mechanical data throughout the whole
cardiac cycle against that of using only selected parameters as would be obtained using
conventional statistical analysis, we extracted a set of markers from the segmental traces
acquired at rest and during exercise in each of the 100 subjects in this study. These
extracted markers were as follows:
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• for velocity, (1) peak systolic amplitude, (2) time to peak systolic velocity, (3)
the SD of segmental times to peak systolic velocity, and (4) peak early diastolic
amplitude;

• for strain, (1) amplitude at end-systole, (2) when present, postsystolic deformation,
and (3) the amplitude of diastolic strain at the end of the first third of the duration
of diastole [22–24]; and

• for strain rate, (1) peak systolic amplitude, (2) peak early diastolic amplitude, (3)
peak late diastolic amplitude during atrial contraction, (4) time to peak systolic
strain rate, and (5) time to peak early diastolic strain rate.

The peak systolic values were extracted from the curves during the ejection phase
(i.e., from aortic valve opening until aortic valve closure) by excluding electromechanical
coupling and isovolumetric contraction phases [25]. To compute the peak early diastolic
values, the period between mitral valve opening and the onset of the P wave on the
electrocardiogram was considered, while the peak late diastolic values were calculated
between the onset of the P wave and mitral valve closure.

For each subject and each type of marker, the values extracted from the segmental
curves were concatenated to form a vector of markers (e.g., 36 values of peak systolic strain
rate extracted from the curves acquired at rest and during exercise). This resulted in 12
different sets of markers (four sets for velocity, three sets for strain, and five sets for strain
rate). The sets of markers extracted from each type of curves were also concatenated
(“all markers”), forming a long vector of parameters (e.g., 180 parameters for strain rate
by concatenating five sets of markers each of size 36). In total, therefore, we used 15
sets of markers, which we named “conventional feature sets,” to build 15 independent
DWKNN classifiers. Similar to the classification based on the STRE features, outputs of
the classifiers built with the conventional features were also used to solve the two-class
problem of discriminating healthy, hypertensive versus breathless, HFpEF subjects.

In addition, we compared the performance of our proposed machine-learning frame-
work for identifying to which of the four predefined diagnostic groups each subject
belonged against independent DWKNN classifiers built with some baseline echocardio-
graphic and clinical measurements. The examined measurements were LV end-diastolic
volume index, LV end-systolic volume index, left atrial volume index, and 6-min walk dis-
tance. We also concatenated these four measurements and built another classifier with
the obtained vector.

In an independent set of experiments, we tested the utility of analyzing the complex
spatiotemporal patterns of regional myocardial function, to predict exercise capacity.
Hereto, we assessed whether the proposed learning framework is suitable for predicting
diagnostic classes other than those that are already established (i.e., the four clinical
categories included in the present study). We tested if independent analysis of the rest
and submaximal exercise data, as well as combined rest-exercise data (i.e., STRE), on the
basis of PCA could classify the subjects into binary groups of good versus poor exercise
performance, using three thresholds (350, 400, and 450 m) according to their 6-min walk
distance.
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Statistical Analysis

As is common in machine learning [26], the subjects were randomly split into a “training
set” for building the classifier and a “testing set” for evaluating its performance. The
training set consisted of 64 subjects, whereby the same number of subjects was randomly
taken from each of the four groups (i.e., 16 subjects per group), to ensure that all groups
had the same chance in the classification phase, and the testing set contained the re-
maining 36 subjects. This process was repeated 100 times, and the average classification
accuracy was calculated; it is reported as a mean value with its SD. Using this process,
we were able to find the optimal number of PCs (i.e., STRE features) and nearest neigh-
bors for DWKNN, and we ensured that all subjects were used in the training and testing
phases and that the learning algorithm was not biased toward a subset of the subjects.
A more detailed explanation of the process of training and testing the machine-learning
algorithm is provided in the Appendix.

In the same manner, subjects with good and poor exercise tolerance (defined as more
or less than the threshold 6-min walk distance) were randomly divided into training and
testing sets such that the training set had the same number of subjects from the two
groups. Similarly to the previous experiments, DWKNN was used as classifier, and the
process of random sampling of the subjects was repeated 100 times.

To compare the classification results obtained with the different types of feature sets,
the Mann-Whitney U test was used. Data processing and statistical analyses were per-
formed in MATLAB version 2015b (The MathWorks, Natick, MA).

Results

The characteristics of the subjects included in this study are given in Table 1. There
were 43 men and 57 women, and the mean age of all subjects was 69 ± 7 years.

The diagnostic categories assigned by the classifiers that were trained with the STRE
features are compared with the clinical diagnoses in Table 2. The classifier that per-
formed best was built on the strain rate data; it performed well in identifying subjects
with HFpEF (accuracy, 81%) and otherwise classified them mainly as breathless subjects
(12%). This classifier also worked moderately well when analyzing the breathless and
healthy subjects, with accuracy rates of 53% and 51%, respectively. It had difficulties in
differentiating breathless subjects from patients with HFpEF (“misclassification,” 26%)
and healthy from hypertensive control subjects (“misclassification,” 29%). The velocity
classifier had lower performance than that of strain rate, but its predictive pattern was
similar, except that it failed to identify a majority of the hypertensive subjects, who were
assigned almost equally to all four groups. The strain classifier yielded the highest per-
formance in identifying the hypertensive subjects (although still only 49% concordance
with the clinical diagnosis) but at the cost of poorer performance on the other groups.
The optimal numbers of PCs used for building the STRE feature sets for the velocity,
strain, and strain rate curves were 50, 10, and 25, respectively. Using these numbers of
PCs, > 90% of the data variation was captured.
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Figure 2: Diagnostic accuracy of STRE patterns compared with conventional features of
segmental function. Classification accuracy rates (mean ± SD) are shown for the STRE
and conventional feature sets, separately for velocity, strain, and strain rate data, for
the four-class case. ∗ P < .0001. Velocity measurements were peak systolic velocity,
time to peak systolic velocity (Timing), the SD of times to peak systolic velocities (SD
Timing), and early diastolic velocity. For strain, peak amplitude during systole, and
during early diastole and the amplitude after the first third of diastole (1/3 diastole)
were computed. Strain rate measurements were peak systolic amplitude, time to the
systolic peak (Timing), peak early diastolic amplitude (Peak E) and timing (Timing E),
and peak amplitude during atrial filling (Peak A). “All markers” refers to the results
obtained using a concatenated sequence of all the standard measurements.

Automatic Classification Compared with Clinical Diagnoses

The diagnostic accuracy of machine learning, using the features extracted by analysis
of the whole signal throughout the cardiac cycle at rest and during exercise in all 18
segments (“STRE”), is compared with the performance of the conventional features in
Figure 2. For each variable (velocity, strain, and strain rate), STRE was more accurate
for classifying the subjects into the four groups determined using conventional diagnostic
labels (P < .0001). The overall accuracy of STRE was highest using strain rate (57%),
compared with 50% using velocity and 31% using strain data. Among the extracted
conventional features, the highest diagnostic accuracy was obtained using the time to
peak systolic velocity (42%).

The classification performance of the machine-learning framework trained with the
STRE features of the strain rate curves is contrasted with the results obtained with the
baseline echocardiographic and clinical measurements in Figure 3. The STRE features
yielded significantly better results than the individual and combined measurements (P <
.0001) for classifying the subjects into four groups. The results obtained with left atrial
volume index were better than the other measurements (51%), but the classifier built
with this parameter was biased toward the breathless control subjects and patients with
HFpEF and failed to correctly classify the healthy and hypertensive subjects.
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Figure 3: Diagnostic accuracy of STRE patterns compared with left heart volumes and
with exercise capacity. Accuracy rates (mean ± SD) for allocating subjects to four
classes, obtained using the STRE features of the strain rate curves, compared with base-
line echocardiographic measurements of indexed LV end-diastolic volume (LVEDVI) and
indexed LV end-systolic volume (LVESVI), indexed left atrial volume (LAVI), and the
6-min walk test (6MWT) distance. Results are also shown for a feature vector consisting
of all the baseline measurements (“All basic parameters”) and the 6MWT results. ∗ P <
.0001.

Discriminating Symptomatic from Asymptomatic Subjects

Machine learning using STRE data was compared with extracted conventional feature
sets for their ability to separate subjects into two classes, namely, asymptomatic versus
symptomatic subjects. The results are illustrated as receiver operating characteristic
(ROC) analyses in Figure 4. For each echocardiographic variable that was studied, the
STRE feature set had a larger area under the curve (AUC) than the conventional feature
sets. The highest AUCs were obtained with strain rate STRE (0.89) and velocity STRE
features (0.84). The conventional features extracted from the velocity curves resulted in
larger AUCs than those obtained with the other conventional features.

The accuracy, sensitivity, and specificity of each feature set were calculated using
optimal cutoff values obtained from the results of the ROC analyses. The results are pre-
sented in Figure 5 and compared with the performance of the four-class case. For each
classifier, the optimal cutoff value was selected by plotting its sensitivity and specificity
curves obtained with examining different cutoffs and taking a value that led to similar
sensitivity and specificity results. The highest average accuracy, sensitivity, and speci-
ficity were obtained using strain rate STRE, at 85%, 86%, and 82%, respectively. The
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Figure 4: ROC curves comparing the diagnostic performance of STRE against conven-
tional features. ROC analyses for the two-class classification achieved with STRE and
with the conventional features of the velocity, strain, and strain rate data. The optimal
cutoff values for the STRE features are demonstrated with a circle.

peak early diastolic velocity marker had higher diagnostic performance than the other
conventional features (average accuracy, sensitivity, and specificity of 70%, 70%, and 69%,
respectively). All classifications into two groups were more accurate than classifications
into four groups (P < .0001).

In addition to the ROC analyses, H measures [27] of the classifiers, as an alter-
native to AUC, were computed using an R package called hmeasure (https://cran.r-
project.org/web/packages/hmeasure/index.html), and the results are presented in Sup-
plemental Table 1.

Prediction of Exercise Capacity

Six-minute walk distances in this study ranged from a minimum of 180 m in one of the
subjects with HFpEF to a maximum of 690 m in one of the healthy control subjects,
but there was considerable overlap between groups. We used ROC analysis to assess
the ability of machine learning to discriminate subjects according to a threshold value
for their 6-min walk distance of 400 m (Figure 6). For velocity, strain, and strain rate,
analyses using all the features at rest and on exercise (STRE) gave slightly larger AUCs.
The highest values were obtained using features derived by machine learning from the
strain rate curves acquired during exercise (0.83) and during rest and exercise (STRE;
0.86).

The AUCs, H values, and average accuracy, sensitivity, and specificity of the different
feature sets for three examined thresholds are listed in Supplemental Table 2, Supple-
mental Table 3, Supplemental Table 4.

Discussion

This study suggests that (1) analysis of the complex spatiotemporal patterns of regional
myocardial mechanical function at rest and during exercise is a promising method for



14 Published in: Journal of the American Society of Echocardiography

Figure 5: Comparison of diagnostic performance by clinical labels or by symptomatic
status. Accuracy, sensitivity, and specificity (%; mean ± SD) of the optimal cutoff values
for velocity, strain, and strain rate derived from the ROC analyses presented in Figure
4, for identifying two classes (breathless or asymptomatic), compared with the accuracy
rates for identifying four classes (healthy, asymptomatic hypertensive, breathless, and
breathless with HFpEF). Abbreviations as in Figure 2. ∗ P < .0001.
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Figure 6: ROC curves for machine learning to predict exercise capacity. ROC analyses
summarizing the classification outcomes obtained using the spatiotemporal data at rest,
during exercise, and combining rest and exercise data (STRE), to predict the 6-min walk
distance applying a threshold of 400 m. The optimal cut points for the STRE features
are demonstrated with a circle.

identifying HFpEF, and (2) the strain rate of longitudinal deformation has higher diag-
nostic power than either myocardial velocity or segmental strain.

Impaired exercise capacity in HFpEF may be caused by different mechanisms in sub-
jects in the early or later stages of its natural history. We tested the hypothesis that
patients with HFpEF have more temporal and spatial variations in LV regional my-
ocardial diastolic and/or systolic function than healthy subjects, because such variations
would reduce early diastolic filling by inefficient relaxation and reduce cardiac output by
causing dyssynchronous contraction. To extract as much information as possible from all
LV segments both at rest and during exercise, we used machine learning to analyze the
spatiotemporal patterns of regional myocardial mechanics.

The results presented in the present study are in agreement with our recent investi-
gation [12] demonstrating that modeling spatiotemporal characteristics of baseline strain
rate curves using machine learning is more efficient than using the same model built
with strain curves for identifying myocardial infarction. In the present study, we ex-
tended our previous model by analyzing the baseline and exercise data simultaneously
and showed that such an analysis is more useful than modeling the baseline or exercise
data independently (see Supplemental Figure 3).

Diagnostic Classification

HFpEF is a clinical syndrome that can result from many etiologies, and any diagnostic
study is limited by the lack of definitive reference criteria. To recruit patients with
HFpEF, we applied the consensus recommendations [1], but it is recognized that these
have some limitations [28–30]. Because they do not include any diagnostic information
obtained during exercise, some subjects without significant respiratory disease, coronary
artery disease, or heart valve disease, who have breathlessness from a cardiac cause but
relatively normal function at rest, may be diagnosed as normal. Other subjects may be
diagnosed as having HFpEF because of atrial fibrillation and some echocardiographic
findings that are common with aging. In addition to an age-matched control group of
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healthy asymptomatic subjects, therefore, we also recruited two intermediate control
groups. An asymptomatic mildly hypertensive group was included because there is little
consensus on how to define healthy older people as control subjects, in particular whether
they should have any risk factors apart from age. The breathless control group was
included because we suspected that their functional capacity would be little different
from the patients who fulfilled the formal diagnostic criteria for HFpEF. We envisaged
that taken together, these four groups would include subjects across a wide spectrum
from health to disease.

We used machine learning first to classify subjects into the four groups as defined by
the clinical diagnostic criteria. Performing this task purely at random would result in a
25% overall accuracy, assuming that each subject has a likelihood of one in four to be in
a particular category. The STRE feature set performed substantially better, particularly
when identifying patients with HFpEF, since it classified 81% accurately based only on
the characteristics of their regional myocardial function and deformation.

Unsurprisingly, the highest probability of error in classifying the breathless subjects
was due to confusion with the patients with HFpEF, whereby 26% of the breathless
subjects—used in the testing set during the 100 runs of the algorithm—were misclassified
as having HFpEF. One can question whether these subjects were truly misclassified on
the basis of their LV mechanical characteristics or if they had been attributed an incorrect
clinical label. This potential misclassification effect was mitigated when machine learning
was used to divide the subjects into symptomatic versus asymptomatic subjects (i.e., a
two-class classification problem); this gave higher overall accuracies, up to 85% (see Figure
5).

An important question is whether the observed classification performance was achieved
because the full spatiotemporal myocardial mechanical information was considered or
whether the essential information could be captured by standard markers derived from
these data sets. We found that the STRE patterns showed a clear advantage over the
conventional feature sets and the baseline echocardiographic and clinical measurements,
thereby demonstrating that current measurements such as the peak amplitudes of systolic
and early diastolic velocity or strain rate, or indexed LV end-diastolic and end-systolic
volumes, do not exploit all available diagnostic information. The number of STRE pa-
rameters used (e.g., 25 for strain rate) was smaller than the number of parameters of
the concatenated segmental curves (i.e., 5,958) and also smaller than the number of con-
catenated conventional echocardiographic markers (e.g., 180 for strain rate), implying
that the statistical model used (i.e., PCA) was computationally efficient. Interestingly,
classification performance was better (P < .0001) when using velocity or strain rate data
acquired during exercise (Supplemental Figure 3, available at www.onlinejase.com) than
at rest, suggesting that any LV mechanical differences among the four groups become
amplified during stress. This would therefore support the use of stress testing to reveal
HFpEF. In addition, when using strain rate, simultaneous modeling of both the rest and
exercise data (i.e., STRE) led to better results (P < .0001) than modeling exercise data
alone. This supports the utility of analyzing both the rest and exercise data for diagnostic
classification.

In this study, we also examined the utility of machine learning of the full spatiotem-
poral myocardial mechanical information for classifying the subjects into good or poor
exercise performance groups as defined by their 6-min walk test results. As expected,
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modeling the submaximal exercise data led to better results than those obtained using
the resting data because the signs and symptoms of abnormal LV function can be re-
vealed by exercise testing. However, analyzing both the resting and exercise data (i.e.,
STRE) appeared to be more efficient, suggesting that resting data can also contribute to
the prediction of exercise capacity.

Clinical Implications

It could reasonably be asked whether machine learning in this study added any particular
value. Indeed, its outcome corresponded only moderately to diagnostic labels based on
current clinical consensus statements. However, this criticism could be reversed, as one
could claim that using sophisticated spatiotemporal analysis of LV mechanics did not en-
able separation of some patients with HFpEF from the control groups, thereby suggesting
that current clinical diagnostic criteria might be suboptimal. Indeed, the analysis per-
formed significantly better when dividing subjects into those who were asymptomatic and
those who were breathless on exertion. When compared against an independent reference
for exercise capacity (i.e., 6-min walk distance), our machine-learning algorithm was al-
most 80% accurate, even when nonphysiologic factors influencing walk distance or other
determinants of functional capacity in HFpEF, such as peripheral muscle metabolism
and oxygenation, were not taken into account. Cardiopulmonary stress tests with mea-
surement of Vo2max or the VE/Vco2 slope would have been more useful but were not
performed routinely in this study.

In future, the process of extracting segmental traces of LV long-axis function could be
automated and used in a machine-learning algorithm that gives the probability of disease
as its output. This would provide a purely objective diagnosis but with the option to
reconstruct curves from the PCs that allow some pathophysiologic interpretation. The
main purpose of our study was to investigate how this could be performed.

In future, the process of extracting segmental traces of LV long-axis function could be
automated and used in a machine-learning algorithm that gives the probability of disease
as its output. This would provide a purely objective diagnosis but with the option to
reconstruct curves from the PCs that allow some pathophysiologic interpretation. The
main purpose of our study was to investigate how this could be performed.

Choice of Parameter

Since the introduction of speckle-tracking as an alternative to color myocardial velocity
imaging (tissue Doppler) for measuring myocardial deformation, it has been applied as
a tool for measuring changes in function during stress [31]. The frame rate of speckle-
tracking is much lower than myocardial velocity imaging, however, and we have demon-
strated that high–frame rate acquisitions are needed to optimize the performance of ma-
chine learning. The variability of measurements of segmental strain using speckle-tracking
is not trivial [32], which will also compromise comparisons of function in different seg-
ments. The main concern with using strain, however, is that it is decreased at peak stress
if there is a reduction in LV volumes [33] and that is strongly load dependent [34]. In our
study, strain was not useful for quantifying peak myocardial responses, which suggests
that global longitudinal strain will not be a good criterion for measuring maximal stress
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responses in patients with suspected HFpEF.

The best classification results were achieved using STRE features derived from seg-
mental recordings of myocardial strain rate. These findings reinforce earlier reports that
strain rate, which is a less load sensitive index, correlates well with local and global LV
contractile function [34, 35] and that it is more sensitive than strain, for example to detect
inducible ischemia during dobutamine stress testing [36], to detect infarcted myocardium
[12], and to predict outcome in cardiac amyloidosis with normal ejection fraction [37].
Strain rate curves derived from myocardial velocity imaging can appear quite noisy but
were shown to contain more diagnostic information given an appropriate analysis than
the less noisy strain curves. The incorporation of PCA as the statistical model in our pro-
posed framework ensured that the diagnostic information within the strain rate curves
was preserved and the noise was removed. In fact, PCA can serve as a noise-filtering
technique [20] whereby the important PCs (i.e., the first ones that were used in our ex-
periments) modeled major patterns of the strain rate curves, and the unimportant PCs
(i.e., the last ones that were ignored in our analyses) captured their noise.

One of the most sensitive indicators of myocardial diastolic dysfunction is early dias-
tolic relaxation [38], but current commercial tools for echocardiographic analysis do not
usually provide any means for measuring it on strain curves. Using machine learning,
therefore, we applied the concept of the “first-third filling fraction” [22–24] but we found
that in our study it did not perform better when used as a single index in identifying
subjects with HFpEF.

Pathophysiologic Interpretation

Concatenated velocity and strain rate traces from a healthy control and a patient with
HFpEF are displayed in Figure 7. These subjects were consistently classified correctly
during the iterations of our machine-learning algorithm (see Supplemental Figure 4). The
healthy subject has larger increments in strain rate during stress, particularly during early
diastole and particularly in the free walls of the left ventricle rather than the septum.

It is also possible to construct traces that show variations in the PCs identified by
the machine-learning algorithm as being most discriminant between subjects. Traces
demonstrating variability of the first two (and therefore the most important) PCs for each
of velocity, strain, and strain rate, are shown in Supplemental Figure 5, Supplemental
Figure 6, Supplemental Figure 7.

The first PC of the velocity traces appears to correspond to the amplitude of peak
velocities at rest and during submaximal exercise. The second is more difficult to interpret
from a physiologic perspective, but there is variation in the rate of increase of early
diastolic velocity at rest and in the timing of the peak systolic velocity during exercise.

The first two PCs of strain both show variations in the peak amplitude of shortening
at rest, but with segmental patterns including less variation in the basal septal segments
than the basal lateral segments; the former is more affected by aging and therefore may
be less discriminant between healthy and diseased subjects. The first PC shows less
variation in the traces during exercise, perhaps because of the load dependency of strain
and its biphasic response to all stress tests.

In comparison, the first PC of strain rate shows more variation in amplitudes dur-
ing exercise, both in systole and in early diastole. There are also differences between
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Figure 7: Myocardial function in all segments at rest and during exercise. Concatenated
segmental velocity curves (top) and strain rate curves (bottom) from all 18 LV segments,
in a healthy control subject (blue) and a patient with HFpEF (red) who were correctly
classified by the machine learning method during all 100 repeated analyses. For each
segmental curve, end-systole is indicated by a green vertical dashed line. To make it
possible to appreciate variations in amplitude from rest to exercise, the scales of the
vertical axes are constant, which makes some segments with very small amplitudes at
rest appear almost flat.
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segments, particularly at rest. The second PC of strain rate is difficult to assess, il-
lustrating how machine learning can discern patterns for diagnosis that are not always
physiologically interpretable.

Study Limitations

During the off-line analysis of the acquired images, no angle corrections were used. This
might have influenced the accuracy of the measurements, but care was taken to align
both LV walls in each image to the axial planes of the ultrasound beams as much as
possible.

The scalar or “standard” measurements (or conventional feature sets) that we com-
pared with the complete spatiotemporal patterns, as inputs for the machine-learning
algorithm, were extracted from the digital traces using a MATLAB program. The tim-
ings that we used to define systole and diastole were global rather than regional, taken
from aortic and mitral flow signals obtained at each stage of the exercise protocol. Of
course, these are not synchronous with each subsequent individual beat or segmental
trace. It is possible, therefore, that some of the suboptimal diagnostic performance of the
conventional features could be due to inaccuracy in the timing of the phases of the cardiac
cycle. There is currently no obvious solution to this problem, as simultaneous and beat-
by-beat acquisition of blood flow and myocardial velocity or deformation signals is not
possible. That is another reason why analysis of function throughout the cardiac cycle
by machine learning may be advantageous and why it is likely to be more reproducible.

We performed an exploratory study in a small population, which may limit the accu-
racy of our proposed machine-learning algorithm. To account for this and to effectively
test the generalization power of the learning algorithm, we ran it 100 times with ran-
domly selected sets of training and testing subjects and then computed and reported the
average performance. Our results confirm in principle that machine learning may be very
informative to interpret myocardial responses to stress, but of course larger numbers of
subjects should be studied prospectively to assess the efficacy of the proposed automatic
classification system and to further develop it.

Conclusion

In our study, we used statistical modeling and machine learning to analyze strain rate
curves from all segments of the left ventricle, acquired both at rest and during exercise.
Variations in strain rate can demonstrate regional and global dysfunction as well as
dyssynchrony. A machine-learning approach accomplished this complex analysis in an
objective and accurate manner, so it could aid clinicians in identifying patients with
HFpEF. Machine learning of the STRE patterns of segmental strain rate profiles is a
promising approach that now merits further evaluation.
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Appendix

Preprocessing

Velocity and deformation traces acquired during exercise had fewer samples than those
acquired at rest (120 ± 31 vs 186 ± 45, P < .0001), because the R-R intervals were
shorter, so interpolation was performed independently for the rest and exercise data.
Each of the six mechanical phases of the cardiac cycle [1] was interpolated separately, to
have the same number of data points as the average number for that phase in all “healthy
control” subjects.

Statistical Modeling for STRE Representation Based on PCA

The STRE representation of LV function of each subject consisted of 5,958 samples,
with 3,744 samples from the resting curves (18 segmental curves each with 208 temporal
instances) and 2,214 samples from the exercise curves (18 segmental curves each with 123
temporal instances). The rationale of using PCA for learning the STRE representations
of the subjects was its capacity to model data of high dimensionality (i.e., with a large
number of input parameters) compactly [2]. This feature allowed us to significantly reduce
the initial dimensionality of the STRE data in order to build a classification system with
our database consisting of 100 subjects.

Quality Control Indexes to Detect Artifactual Curves

We considered the following three indexes to detect artifactual and/or physiologically
implausible segmental curves (equivalent to 9% of the resting data and 7% of the exercise
data):

1. positive strain amplitude throughout most of the cardiac cycle (defined as > 66%
of the RR interval);

2. strain amplitude that is more negative than −50% at any time during the cardiac
cycle; and

3. strain rate amplitude that is more negative than -4/sec during early diastole (when
longitudinal strain rate would normally be positive); the traces of all subjects are shown
superimposed in Supplemental Figure 1, with a dashed horizontal line demonstrating
the cut point of -4/sec to illustrate how its application will remove the extreme outlying
traces.

These indexes were applied to the segmental curves acquired at rest and during exer-
cise, and every curve that had any of the aforementioned index conditions was removed
from the data set. If a strain trace met either or both conditions 1 and 2, then its corre-
sponding velocity and strain rate traces were also removed. Likewise, if a strain rate trace
met the third condition, its corresponding velocity and strain traces were omitted. The
removed segmental traces were then approximated through KNNimpute and replaced in
the data set.
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Figure 1: Superimposed segmental strain rate curves acquired at rest and during exercise.
The dashed horizontal line shows the cutoff point for excluding the segmental curves with
amplitude more negative than -4/sec during early diastole. End-systole is shown with a
dashed vertical line.

Finding the Optimal Parameters of the Machine-Learning Frame-
work

Supplemental Figure 2 illustrates an overview of the process of training and testing the
machine-learning algorithm in 100 rounds. In each round, 16 unique subjects from each
of the four groups were randomly selected to form the training set, and the remaining
subjects formed the testing set. In this way, it is ensured that the learning system was
evaluated on a set of unseen subjects (i.e., the testing set). The training data were used
to build the PCA model and to compute an eigenvector matrix (i.e., matrix of PCs).
Both the training and testing data were then projected onto the space spanned by the
PCs and the obtained values (i.e., features) were used for training and testing a DWKNN
classifier. We examined different number of features by preserving a variety of PCs, and
for each DWKNN classifier, different KNNs were tested. After running the machine-
learning algorithm 100 times, a combination of the number of PCs and KNNs that led
to the best average testing result was selected.

The same strategy was used for selecting the optimal number of KNNs when the
conventional features, extracted from the deformation curves, and baseline echocardio-
graphic measurements were used for the classification task. More detailed explanations
of the process of parameter selection and evaluation of a machine-learning algorithm are
given in chapter 7 of The Elements of Statistical Learning [3].

Discriminating Symptomatic from Asymptomatic Subjects

The computed H values for the STRE and conventional features are presented in Sup-
plemental Table 1. They are consistent with the results of the ROC analyses, in which
the strain rate and velocity STRE features yielded the highest H values (0.508 and 0.353,
respectively), and the conventional measurements of the velocity curves had higher H val-
ues than the other standard echocardiographic measurements. It is of note that H takes
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Figure 2: Process of finding optimal parameters of the machine-learning algorithm and
evaluating its performance. In each round of the machine learning analysis, 64 unique
subjects were randomly selected from the four groups (16 subjects per group) as the
training data, and the remaining (36 subject) were used as testing. After building the
PCA model and computing an eigenvector matrix, the training and testing data are
projected onto the space spanned by the eigenvector matrix to obtain the feature vectors
required for building a DWKNN classifier. After performing the above process in 100
rounds, a combination of the number of PCs and KNNs that resulted in the best average
testing outcome was selected.

values between 0 (for worst classification performance) and 1 (for perfect classification),
where higher performance corresponds to larger values [4].

Independent Statistical Modeling of the Rest and Exercise Data

We conducted an experiment to demonstrate if modeling the combined rest-exercise data
(i.e., STRE) leads to better results than modeling the rest and exercise data indepen-
dently. We first concatenated 18 segmental curves of each subject acquired at rest to form
a spatiotemporal-rest (rest) representation of LV function. Similarly, a spatiotemporal-
exercise (exercise) representation of LV function was formed by concatenating 18 seg-
mental curves acquired during submaximal exercise. Independent PCA models were
then built with the rest and exercise data to learn their main patterns. This resulted in
six different sets of learned PCA parameters for the velocity, strain, and strain rate data
and six distinct DWKNN classifiers that were constructed with these parameter sets for
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Figure 3: Diagnostic accuracy of spatiotemporal patterns of the rest, exercise, and com-
bined rest-exercise data. The best classification accuracy rates (mean ± SD) obtained by
our proposed machine learning method on the basis of modeling of the echocardiographic
variables (velocity, strain, and strain rate) acquired either at rest or during exercise. The
results are compared with machine learning of combined rest-exercise (STRE) modeling
( ∗ P < .0001).

solving the four-class classification problem. We repeated this procedure 100 times with
the same splits used for evaluating the STRE modeling.

Supplemental Figure 3 shows the best average classification outcomes as well as the
results of statistical comparison of the rest and exercise parameter sets with the STRE
features. Although the strain rate STRE features could significantly improve the results
obtained by the rest and exercise features, STRE modeling of the strain data did not
yield better results than rest and exercise modeling. For the velocity data, STRE only
outperformed rest, and its result was comparable to that of exercise. This observation
again highlights the diagnostic value of the strain rate variable acquired at rest and during
exercise.

Prediction of Exercise Capacity

The classification results obtained by applying thresholds equal to 350, 400, and 450 m
to the 6-min walk test results are listed in Supplemental Table 2, Supplemental Table 3,
Supplemental Table 4 for the velocity, strain, and strain rate curves, respectively. The
tables show the AUCs, H values, and accuracy, sensitivity, and specificity of the classifiers
built with the rest, exercise, and STRE data. For all examined thresholds, the STRE
features of the strain rate curves yielded the highest results. Consistent with the results
of the ROC analyses, the largest H values were obtained with the STRE features of the
strain rate curves.

Influence of Frame Rate

The 11 subjects with low–frame rate acquisitions (mean, 130 ± 24 Hz) belonged to the
hypertensive, breathless, and HFpEF groups. Before temporal alignment, their traces
included 108 ± 22 sampling points at rest and 70 ± 11 during exercise; after alignment,
the points were increased, as indicated in the methods, to 208 and 123. The cut point
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Figure 4: Stacked bar graph of the results obtained on repeated analyses (100 times)
using strain rate STRE demonstrating the classification results for each subject. Eleven
subjects with low acquisition frame rates are identified by the asterisks. The arrows
show two subjects that were consistently classified by our machine-learning algorithm,
and their concatenated segmental curves are displayed in Figure 7 in the main text.

for selecting low frame rates was set at 150 Hz for curves acquired either at rest or
during exercise. To study the effect of low frame rate on the performance of the machine
learning, a stacked bar graph was generated to display the classification results obtained
with the strain rate STRE features, as the best feature set, in each subject, when the
evaluation was repeated 100 times (Supplemental Figure 4).

From the total of 100 subjects, 39 were misclassified > 70% of the times that they
were used in the test set. This group included all 11 subjects with low acquisition frame
rates (i.e., 28% of the misclassified subjects); they are identified by the asterisks above
the columns in Supplemental Figure 4. Six of these subjects had HFpEF, according
to the clinical diagnosis; five were usually categorized as breathless subjects and one
was categorized either as healthy or hypertensive. One breathless subject was classified
as having HFpEF and another as healthy. Three hypertensive subjects were classified
as breathless control subjects. These findings emphasize the importance of acquiring
deformation curves at frame rates > 150 Hz, in order to identify dyssynchrony in patients
with HFpEF.

To examine whether low acquisition frame rate affects the performance of machine
learning, the PCA modeling of segmental strain rate (STRE features) and the automatic
classification were repeated for the four-class case, after excluding the 11 subjects with
low frame rates. This resulted in classification accuracy of 63 ± 7%, instead of 57 ± 7%
if the low frame rate subjects were included (P < .0001). Thus, the diagnostic power of
myocardial deformation imaging is related to the frame rate at which data are acquired.
High temporal resolution is crucial for resolving the characteristics of short-lived events,
especially during stress testing.
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Physiological Interpretation of the Modeled STRE Patterns Us-
ing PCA

The first two PCs of the velocity, strain, and strain rate curves are visualized in Sup-
plemental Figure 5, Supplemental Figure 6, Supplemental Figure 7. These PCs were
more important than the others given that the PCs were sorted on the basis of their
contributions in modeling data variations. Because the STRE data were generated by
concatenating all the segmental curves from each subject acquired at rest and during
exercise, each PC is broken into the rest and exercise phases and for each phase, the
concatenated curves from the basal and mid segments are illustrated separately to enable
easier reading of the PCs.
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Figure 5: Mathematically reconstructed curves demonstrating the variations in the veloc-
ity curves modeled by PCA. Directions of variation of the first and second most important
STRE patterns (i.e., PCs) of the velocity curves. The red and green curves are the re-
sults of adding and subtracting ±2

√
λi of PCi to the mean velocity curve, which is shown

in blue. λi is the eigenvalue of PCi, which demonstrates the amount of data variation
modeled by the ith PC.
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Figure 6: Mathematically reconstructed curves demonstrating the variations in the strain
curves modeled by PCA. Directions of variation of the first and second most important
STRE patterns (i.e., PCs) of the strain curves. The red and green curves are the results
of adding and subtracting ±2

√
λi of PCi to the mean strain curve, which is shown in blue.

λi is the eigenvalue of PCi, which demonstrates the amount of data variation modeled
by the ith PC.
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Figure 7: Mathematically reconstructed curves demonstrating the variations in the strain
rate curves modeled by PCA. Directions of variation of the first and second most impor-
tant STRE patterns (i.e., PCs) of the strain rate curves. The red and green curves are
the results of adding and subtracting ±2

√
λi of PCi to the mean strain rate curve, which

is shown in blue. λi is the eigenvalue of PCi, which demonstrates the amount of data
variation modeled by the ith PC.
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