
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Empirical Study on the Use of
Client-side Web Security
Mechanisms

Ping Chen

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

August 2018

Supervisors:
Prof. dr. ir. W. Joosen
dr. ir. L. Desmet

Empirical Study on the Use of Client-side Web
Security Mechanisms

Ping CHEN

Examination committee:
Prof. dr. ir. Y. Willems, chair
Prof. dr. ir. W. Joosen, supervisor
dr. ir. L. Desmet, supervisor
Prof. dr. ir. C. Huygens
Prof. dr. ir. V. Rijmen
Prof. dr. J. Davis
Prof. dr. ir. E. Steegmans
Prof. dr. A. Rashid
(University of Bristol, UK)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

August 2018

© 2018 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Ping Chen, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

As the Web has become an essential part of our society, it is important to
ensure the security of web applications. This dissertation focuses on measuring
web security by investigating the use of client-side defensive mechanisms. It
is the final result of my PhD research in the DistriNet research group. This
work would not have been possible without the help of many others. Thus, in
this preface, I would like to take the time to thank everyone who supported me
during the course of my PhD.

First and foremost, I am grateful to my supervisor Wouter Joosen, for giving
me the opportunity to join DistriNet family, and guiding me throughout my
PhD. Despite his busy schedule, he has always provided me helpful feedbacks
at critical points. My sincere gratitude also goes to my co-supervisor Lieven
Desmet, for the daily support and encouragement over the past five years. He
has patiently leaded me through difficult times during my PhD research. I also
want to thank Christophe Huygens for guiding my research.

Second, I would like to thank other memebrs of my doctoral jury, Yves Willems,
Vincent Rijmen, Jesse Davis, Eric Steegmans and Awais Rashid, for reading my
thesis and providing comments that greatly improved this text.

During my PhD, I enjoyed the friendly environment in the DistriNet research
group and the Computer Science Department. I am thankful to several past
DistriNet members, Nick Nikiforakis, Steven Van Acker, and Philippe De Ryck,
for providing help to my research on web security; and present colleagues Tom
Van Goethem, Zubair Rafique, and Thomas Vissers, for the collaboration and
inspiring discussions. I also want to thank my office mates in 04.152, Neline
van Ginkel, Jo Van Bulck and Andreas Nuyts, for the fun and chatting. And
a big thank you to DistriNet business office members: Ghita Saevels, Katrien
Janssens and Annick Vandijck. Thank everyone in the department for making
such an amicable environment.

Apart from all the colleagues in the department, I would like to thank several

i

ii PREFACE

friends in Belgium. Thank my housemates Chen Ruiqi and Hu Kaide, for
helping me settle down in Leuven, and encouraging me to keep going. Thank
Qing Xiaoyu and Huang Xu, for the strolls and other interesting activities.

I am also thankful to other friends in Europe, in the Netherlands: Roberto Lee,
Hu Kaipeng, and Li Nan; in Germany: Zou Hanhai and Liu Jia; and in United
Kindom: Lü You. And with special thanks to Hu Kaipeng, for being like a
brother to me, always giving me support.

My deepest gratitude goes to my family in China, in particular my parents
Qiusheng and Guiying, my sister Lijuan, for all their love and understanding
over the years. Since they are non-English speakers, I want to express my
thanks in Chinese:

天涯游子寸草心，无以为报三春晖。谢谢父母多年的理解与支持！

Lastly, I would like to thank the following institutions and projects for their
financial support: the Research Fund KU Leuven, the EU FP7 projects WebSand,
NESSoS and STREWS, the iMinds project TRU-BLISS, the Belgian Cost of
Cybercrime Research project funded by Belgian Science Policy Office (BELSPO),
and the Prevention of and Fight against Crime Programme of the European
Union (B-CCENTRE).

Ping Chen
Leuven, August 2018

Abstract

Nowadays, no one disputes the fact that the web has become an essential part
of our society. More and more organizations and individuals are relying on the
web for almost all kinds of activities. Naturally, the rising importance of the
web attracts an increasing number of web attacks. As the web (and the attacks)
keep on expanding, it is important for website operators to ensure the security
of their web applications. To defend against a rising number of web attacks,
one basic yet important step is to adopt various known defense mechanisms
that have been developed by the security community.

In this dissertation, we assess the security of websites from the adoption
perspective of these client-side defense mechanisms. Client-side security
mechanisms are configured and controled by web servers, and they help websites
to reduce their client-side attack surface. As such, the presence of these
mechanisms on a website might be used as an external indicator of the security
awareness and practices of the website owner.

Firstly, we discuss the eight most-important client-side defense mechanisms that
are used as metrics to design a web scoring system to measure the security of
web applications.

Secondly, we propose an efficient crawling approach for large-scale web
assessments to measure the adoption of these mechanisms. We then use this
crawling approach to investigate mixed-content inclusion weaknesses, to conduct
a security assessment for the Chinese Web, and to perform a longitudinal
assessment on the adoption of client-side security mechanisms on the European
Web. By quantifying a website’s security level as a web security score, we can
compare the security maturity of websites per country, sector and popularity.

Lastly, we explore the relationship between a company’s cybercrime cost and
the adoption of defense mechanisms on its website. Our correlational analysis
shows that companies with better security defense tend to have less business
loss caused by web attacks.

iii

Beknopte samenvatting

Niemand zal betwisten dat het web tegenwoordig een essentieel onderdeel
van onze samenleving geworden is. Steeds meer organisaties en individuen
vertrouwen voor allerlei activiteiten op het web. Tergelijkertijd brengt
het toenemende belang van het web ook steeds meer aanvallen met zich
mee. Aangezien het web (en de aanvallen) blijven groeien, is het belangrijk
voor website-exploitanten om de veiligheid van hun webapplicaties te blijven
waarborgen. Om zich te verdedigen tegen de toenemende aanvallen op het web, is
het gebruik van de reeds bestaande verdediging mechanismen een fundamentele
maar belangrijke stap.

In dit proefschrift analyseren we de beveiliging van websites op basis van
het gebruik van beveiligingsmechanismen aan de gebruikerszijde. Het gebruik
van beveiligingsmechanismen aan de gebruikerszijde worden door webservers
geconfigureerd en gecontroleerd, en helpen om het aanvalsoppervlak van websites
aan de gebruikerszijde te verkleinen. De aanwezigheid van deze mechanismen
op een website kan dus mogelijk gebruikt worden als een externe indicator van
het veiligheidsbewustzijn en de veiligheidspraktijken van de website-eigenaar.
Als eerste bespreken we de acht belangsrijkste verdedigingsmechanismen aan de
gebruikerszijde die verder als maatstaven gebruikt worden voor hete meten van
de veiligheid van webapplicaties.

Ten tweede stellen we een efficiënte webcrawl methode voor om grootschalige
veiligheidsanalyses uit te voeren op basis van de aanwezigheid van dergelijke
verdedigingsmechanismen. Vervolgens gebruiken we de webcrawl methode
om de aanwezigheid van mixed-content zwakheden te onderzoeken, om een
veiligheidsanalyse van het Chinese web uit te voeren, en om de evolutie
op lange termijn te onderzoeken wat betreft het gebruik van client-side
beveiligingsmechanismen op het Europese web. Door het beveiligingsniveau
van een website te kwantificeren als een web security score, kunnen we
veiliheidsmaturiteit van websites per land, sector en populariteit met elkaar
vergelijken.

v

vi BEKNOPTE SAMENVATTING

Tot slot onderzoeken we de relatie tussen de cybercrime kosten van een bedrijf en
het gebruik van verdedigingsmechanismen op de website. Onze correlatieanalyse
toon aan dat bedrijven met een betere verdediging aan de gebruikerszijde typisch
minder zakelijke verliezen door aanvallen vertonen.

Contents

Abstract iii

Beknopte samenvatting v

Contents vii

List of Figures xiii

List of Tables xv

Abbreviations xvii

1 Introduction 1

1.1 Goal of This Thesis . 2

1.2 Other Research Conducted . 4

1.3 Contributions . 5

1.4 Outline of the Text . 6

2 Background 9

2.1 The World Wide Web . 10

2.2 History of the Web . 12

2.3 Web Browser . 13

vii

viii CONTENTS

2.4 Web Application . 15

2.5 Web Security Threats . 17

2.6 Common Web Attacks . 18

2.6.1 Eavesdropping . 18

2.6.2 Man-in-the-Middle attack 19

2.6.3 Cross-site scripting . 20

2.6.4 Session hijacking . 22

2.6.5 Clickjacking . 23

2.7 Conclusion . 24

3 Assessing Web Security 27

3.1 Client-side Security Mechanisms 28

3.1.1 HTTPS Support . 28

3.1.2 HTTP Strict-Transport-Security 29

3.1.3 Public Key Pinning and Certificate Transparency 29

3.1.4 HttpOnly and Secure Cookies 31

3.1.5 Content Type Options 32

3.1.6 Content Security Policy 32

3.1.7 X-Frame-Options . 33

3.2 Large-scale Web Crawling Approach 34

4 Large-scale Analysis of Mixed-content Inclusion 37

4.1 Introduction . 37

4.2 Problem Statement . 39

4.3 Impact of Mixed Content Attacks 40

4.4 Data Collection . 41

4.5 Discussion . 43

4.5.1 Websites having mixed content 43

CONTENTS ix

4.5.2 Providers of mixed-content files 45

4.6 Mixed Content Mitigation Techniques 47

4.6.1 Browser vendor . 47

4.6.2 Website owner . 49

4.6.3 Resource provider . 49

4.7 Limitations . 50

4.8 Conclusion . 51

5 Security Assessment of the Chinese Web 53

5.1 Introduction . 53

5.2 Data Collection . 55

5.3 Usage of Client-side Security Policies 56

5.4 Security of HTTPS Implementations 58

5.4.1 HTTPS security issues 58

5.4.2 Client-side security policies for HTTPS websites 59

5.4.3 Findings and discussion 60

5.4.4 Usage of KNET trusted website certificate 62

5.5 Identity Leakage . 63

5.6 Revisiting the Situation in 2017 65

5.7 Limitations . 66

5.8 Conclusion . 66

6 Longitudinal Study of Web Security 69

6.1 Introduction . 69

6.2 Data Collection . 70

6.3 Security Features and Scoring System 71

6.3.1 Client-side security features 71

6.3.2 Web security scoring system 73

x CONTENTS

6.4 General Findings . 74

6.4.1 The use of security features on European web 74

6.4.2 Websites that adopted more security features 75

6.5 Web Security Score Analysis . 78

6.5.1 EU web security score, in terms of website popularity . 78

6.5.2 Web security score per business vertical in EU 80

6.5.3 Web security score per country in EU 81

6.6 HTTPS Migration Analysis . 81

6.7 Websites that Dropped Out During the Study 83

6.8 Limitations . 85

6.9 Conclusion . 85

7 Correlation with Cybercrime Cost 87

7.1 Introduction . 87

7.2 Data Collection . 88

7.2.1 Industry survey . 88

7.2.2 Website crawling . 90

7.3 General Findings . 91

7.3.1 Industry survey result 91

7.3.2 Website crawling result 92

7.4 Correlational Analysis . 93

7.4.1 Correlation with each security feature 93

7.4.2 Correlation with overall security score 96

7.5 Representativeness of the Samples 98

7.6 Limitations . 99

7.7 Conclusion . 99

8 Conclusion 101

CONTENTS xi

8.1 Summary . 102

8.2 Related Work . 104

8.3 Recent Development of Client-side Defenses 105

8.4 Concluding Thoughts . 107

Bibliography 109

List of publications 121

List of Figures

2.1 The structure of a typical URL 10

2.2 An example of an HTTP request and response 11

2.3 Reference architecture for web browsers [94] 14

2.4 Example of cookies sent from Google Search 16

2.5 A simple search application that is vulnerable to XSS attacks . . 21

2.6 A session hijacking attack via eavesdropping 23

2.7 An illustration of a clickjacking attack 24

3.1 Example of HttpOnly and Secure Cookies stored in a browser . . 31

3.2 Large-scale web crawling approach 35

4.1 Mixed-content vulnerability . 39

4.2 Percentage of HTTPS websites vulnerable to mixed-content attacks 43

4.3 Distribution of websites having mixed content over Alexa ranks 44

4.4 Distribution of websites having mixed content over top 10 categories 44

4.5 Percentage of mixed-content inclusion per cumulative number of
top mixed-content providers . 47

5.1 Distribution of websites using client-side security policies over
Alexa rank ranges . 57

5.2 Distribution of Chinese HTTPS websites over top 10 categories . 61

xiii

xiv LIST OF FIGURES

5.3 Searching inadvertent identity leakage via Google 63

6.1 Percentage of websites that adopted more security features in
2017 versus 2013, plotted per 10k Alexa ranks 77

6.2 Percentage of websites that adopted more security features in
2017 versus 2013, grouped per business vertical 77

6.3 The average overall security score for per 10k Alexa ranks . . . 79

6.4 The average overall security score for each business vertical . . 80

6.5 The average overall security score for each EU country 81

6.6 Percentage of websites in each business vertical that adopted
HTTPS over time . 82

6.7 Distribution of websites that dropped out the study 84

7.1 ECDFs for each security feature 92

List of Tables

4.1 Impact of mixed content attacks 41

4.2 Overview of distribution of mixed-content inclusions 42

4.3 Ten example “HTTPS-Only” pages having mixed-JavaScript
content . 45

4.4 Percentage of “HTTPS-Available” files, per mixed content type 46

4.5 Top ten mixed-JavaScript content providers 46

4.6 Mobile browsers’ behavior towards mixed content 48

5.1 Usage of client-side security policies on the Chinese web 57

5.2 Assessment overview for Chinese HTTPS websites 60

5.3 Distribution of websites leaking spreadsheet files containing
Chinese ID numbers . 64

5.4 Adoption rate of defence mechanisms on the Chinese Web in
2014 and 2017 . 65

6.1 Overview of European Web dataset for longitudinal study 71

6.2 Client-side security features for Secure Communication 72

6.3 Client-side security features for XSS Mitigation 72

6.4 Client-side security features for Secure Framing 73

6.5 Overview of the use of security features on European web . . . 75

xv

xvi LIST OF TABLES

6.6 The correlation between the adoption of security features in a
website and its Alexa rank . 76

6.7 The correlation between the security score of a website and its
Alexa rank . 79

6.8 Percentage of newly adopted HTTPS sites that enabled Secure
Cookies and HSTS features . 83

6.9 Percentage of European websites that adopted security features
over time . 84

7.1 The categorical levels of cybercrime cost 89

7.2 The cybercrime experience of 263 Belgian organisations 91

7.3 The cybercrime experience over different company size 91

7.4 Overview of the use of security features on European web . . . 93

7.5 Spearman’s rank correlation between the impact of unauthorised
access and web security features 94

7.6 Spearman’s rank correlation between the impact of cyber
extortion and web security features 94

7.7 Logistic regression on the business loss due to unauthorised access
over web security feature . 95

7.8 Logistic regression on the reputation damage due to unauthorised
access over web security feature 95

7.9 Logistic regression on the business loss due to cyber extortion
over web security feature . 96

7.10 Logistic regression on the reputation damage due to cyber
extortion over web security feature 96

7.11 Correlation between the cost of cybercrime and web security score 98

xvii

xviii ABBREVIATIONS

Abbreviations

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
APT Advance Persistent Threat

CA Certificate Authority
ccTLD country code Top-Level Domain
CERN European Organization for Nuclear Research
CI Confidence Interval
CNNIC China Internet Network Information Center
CSP Content Security Policy
CSS Cascading Style Sheets
CSRF Cross-Site Request Forgery
CT Certification Transparency

DNS Domain Name System
DANE DNS-based Authentication of Named Entities
DOM Document Object Model

ECDF Empirical Cumulative Distribution Function
EU European Union

HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS HTTP Secure, HTTP over TLS/SSL
HPKP HTTP Public Key Pinning
HSTS HTTP Strict Transport Security

ICP Internet Content Provider
ID Identity
IE Internet Explorer
IETF Internet Engineering Task Force
IP Internet Protocol
ISP Internet Service Provider

ABBREVIATIONS xix

JS JavaScript

MIME Multipurpose Internet Mail Extensions
MITM Man-In-The-Middle

OS Operating System
OWASP Open Web Application Security Project

SCT Signed Certificate Timestamps
SE Standard Error
SQL Structured Query Language
SSL Secure Sockets Layer

TCP Transmission Control Protocol
TLS Transport Layer Security

UI User Interface
URI Unifrom Resource Identifier
URL Uniform Resource Locator

VM Virtual Machine
VPN Virtual Private Network

WWW World Wide Web
W3C World Wide Web Consortium

XCTO X-Content-Type-Options
XFO X-Frame-Options
XML Extensible Markup Language
XSS Cross-Site Scripting

Chapter 1

Introduction

We might not have noticed but the Web has become an inalienable part of
our life. As of December 2017, more than half of the world’s population is
connected to the Internet [42]. Billions of users spend several hours online on
a daily basis, mostly interacting on social networking web applications, such
as sharing photos (“snap”) in Snapchat, or following stories (“moment”) in
WeChat. Meanwhile, businesses are also increasingly depending on the Web for
their day-to-day operations. As a noticeable example, the global e-commerce
built upon the Web has been expanding at an average rate of 20% per year
over the past decade, with trillions of dollars spent online per year, according
to statistics from Euromonitor [13].

Despite its importance, most web applications are not well protected. According
to a study by WhiteHat Security, the average age of an open critical vulnerability
is over 300 days [133]. In other words, most web applications are vulnerable most
of the time. The lack of web protection and the presence of vulnerabilities have
given attackers a good chance. The past decade has seen increasing cybercrime
activities on the web, which inflicted severe damage and harm to our society.
A report about cybercrime [141] estimates that the global losses caused by
cybercrime was $3 trillion in 2015 and the figure is projected to double by 2021.

Web attacks happen every day, and they affect both companies and individuals.
Companies that have become victims of cyber security incidents suffer from
business disruptions, which causes monetary losses in the short term, and
reputation damage, which causes long-term harmful effects, with customers
losing trust in them. Indeed, security breaches on websites can induce significant
collateral damage to individual users as well. For instance, a stolen database
that contains private data such as home address, mobile number, and identity

1

2 INTRODUCTION

information, can be leaked online, or be sold in underground black markets for
various illegal purposes.

Internet users in developed countries have long been concerned with their
personal information kept by companies. The European Union already adopted
the Data Protection Directive to protect private data back in 1995 [43], which
has been recently upgraded to the General Data Protection Regulation [49] in
2016 and takes effect from May 2018. And recent years have also witnessed a
rise of consumer privacy awareness in developing countries such as China [12].
The increasing security and privacy awareness results in stricter regulations and
more complaints about privacy issues from customers.

Amid growing cyber threats, tightening regulations, and more demanding
customers, ensuring the security of web applications has become critical for
website operators. But this is not an easy task, as web attacks are constantly
evolving. Instead of looking for a single silver-bullet solution, website owners
should adopt a risk-based approach, treating cyber attacks as always-present
risks. And to manage the risks properly, they can regularly assess their
security posture and implement known defensive mechanisms to improve security
protection.

1.1 Goal of This Thesis

The focus of this thesis is assessing websites security from the aspect of adopting
defensive mechanisms.

To assess a website’s security, a conventional approach is actively searching for
vulnerabilities, which typically involves internal penetration testing and source
code reviewing. While this approach is considerably effective in finding specific
security issues, it is time and labour consuming and hence lacks scalability in
both scope and consistency. Firstly, the traditional approach is limited in the
scope of analysis. For big companies that have many web applications and a
complex corporate structure, it is impractical to apply penetration testing to all
the applications. Also, penetration testing is usually conducted in an isolated
environment to void causing possible disruptions to service, so the analysis does
not completely reflect the daily situation that an application encounters.

Moreover, the traditional approach provides only a snapshot analysis at a
particular point in time. As web technology is changing fast and attackers
move fast as well, the snapshot analysis might become inaccurate after a period
of time. Ideally, companies can hire people to carry out periodical analysis.
However, as penetration testing is costly, few organizations would do that. This

GOAL OF THIS THESIS 3

is particularly true for small and medium-sized enterprises (SMEs), who often do
not have the resources for regular assessments. Thus, the traditional approach
lacks long-term consistency.

In order to have a broad and consistent view of websites security, this dissertation
proposes a complementary approach that stands outside of an application to
check for the presence of defense externally, instead of going inside an application
to look for vulnerabilities internally (as the conventional approach does). In
other words, the proposed approach tries to measure how well a web application
is protected from an outside perspective, which can serve as a proxy for its
internal security. As web applications employ a client-server architecture, an
outside view is the client-side view. Thus, the proposed approach focuses on
the presence of defensive mechanisms that can be detected from the client side,
henceforth referred to as client-side security mechanisms.

The client-side security mechanisms are developed by the security community
to defend against various kinds of web attacks. While these mechanisms cannot
completely prevent web attacks, they can be seen as basic hygiene practices,
which help websites to reduce the attack surface and alleviate the consequences
when attacks occur. Just as a man with good personal hygiene is less likely to
get sick, a website can improve web security hygiene to minimise risks. Moreover,
since some of these mechanisms are visible to the users (e.g., a green secure
lock icon in the browser), adopting them also sends a positive signal to users,
which helps an organisation to build trust with its customers.

Although the client-side security mechanisms requires a compliant client (web
browser) to enforce the specified policies, the policies are specified and sent by
the web server. Thus, the presence of these mechanisms on a website can be
used as an indicator of the security awareness and practices of that website. By
checking for the presence of client-side security mechanisms, we can have an
approximate view of a web application’s security posture. And this proposed
approach for external assessment has several advantages, which complements
the traditional internal assessment.

The main advantage is its simplicity and efficiency. Since client-side security
mechanisms can be detected from the client side, the assessment can be carried
out simply by visiting webpages in a browser, which does not cause any harm
to the assessed website. With a customized web crawler that mimics a normal
browser’s behaviour, the assessment can be automated, which brings efficiency.
As shown in later chapters, such an external assessment on a thousand websites
can be done in just a few days.

The automated efficiency in turn brings scalability. By standing outside to
conduct external assessment, one can straightforwardly expand the assessment

4 INTRODUCTION

to include a large number of websites, which enables a much broader view.
Thus, the assessor can have a bird’s eye view of the security posture of a group
of web applications. Furthermore, it allows the assessor to compare different
(groups of) websites based on the adoption of client-side security mechanisms.
In this way, a company can have a horizontal comparison, i.e., comparing itself
to its peers in the same industry and learn from the leading peers.

The proposed approach also scales well with respect to long-term consistency.
An assessor can employ it regularly to assess the security posture. By doing
this, a company can achieve a vertical comparison over periods of time, i.e.,
comparing itself to its historical performance and find room for improvement.
Such an external comprehensive assessment is also desirable for government
and supervisory organizations to continuously monitor the security of the web
environment.

This dissertation first presents the approach for assessing websites security from
the aspect of adopting defensive mechanisms, and then shows its effectiveness
through several large-scale assessments.

1.2 Other Research Conducted

The works presented in this dissertation are a subset of my PhD research. For
the consistency of this dissertation, I have selected works of which I am the
principal author and which are related to web security. Below I give a brief
description of the other research I conducted during my PhD.

A study on Advanced Persistent Threats This paper [68] presents a
comprehensive study on Advanced Persistent Threats (APTs). We characterize
the distinguishing characteristics and attack model of APTs, and then analyze
the adversaries’ tactics and techniques through case studies of four APTs. We
also enumerate some non-conventional countermeasures that can help to mitigate
APTs.

Publication data: P. Chen, L. Desmet, C. Huygens. “A study on Advanced
Persistent Threats”. In Proceedings of the 15th IFIP TC6/TC11 Conference on
Communications and Multimedia Security, pages 63-70, 2014.

Advanced or not? A comparative study of the use of anti-debugging
and anti-VM techniques in generic and targeted malware This work [70]
investigates the use of anti-debugging and anti-VM techniques in modern
malware, and compare their presence in 16,246 generic and 1,037 targeted
malware samples (APTs). Our study found that targeted malware does not use
more anti-debugging and anti-VM techniques than generic malware, although

CONTRIBUTIONS 5

targeted malware tend to have a lower antivirus detection rate. Moreover, this
paper also identifies a decrease over time of the number of anti-VM techniques
used in APTs.

Publication data: P. Chen, C. Huygens, L. Desmet, W. Joosen. “Advanced or
not? A comparative study of the use of anti-debugging and anti-VM techniques
in generic and targeted malware”. In IFIP Advances in Information and
Communication Technology, ICT Systems Security and Privacy Protection,
volume 471, pages 323-336, 2016.

Evolutionary algorithms for classification of malware families through
different network behaviors This paper [124] presents a framework to
efficiently classify malware families by modeling their different network behaviors.
We propose protocol-aware and state-space modeling schemes to extract
features from malware network behaviors. We analyze the applicability of
various evolutionary and non-evolutionary algorithms for our malware family
classification framework.

Publication data: M. Z. Rafique, P. Chen, C. Huygens, W. Joosen.
“Evolutionary algorithms for classification of malware families through different
network behaviors”, In Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation, pages 1167-1174, 2014.

1.3 Contributions

Despite the increasing reliance on the web for business, and the growing financial
losses caused by web attacks, many organizations fail to manage the security
risks properly. This is mainly due to a lack of understanding of the impact of
web security on business, and insufficient evidence to support policy decision
making. In this thesis, we explore what technology evidences can be collected
and analyzed to underpin an organization’s policy to address security risks.

The main contributions of this thesis are twofold. Firstly, we designed a
quantitative approach, based on the adoption of client-side security mechanisms,
to measure websites security. Secondly, with the proposed approach, we
investigated the relationship between a website’s security and the cost of
cybercrime induced to that site. To the best of our knowledge, this was
the first interdisciplinary work that examines this association.

Our study showed that companies with better web security defenses tend to
have less business loss and reputation damage. This finding, combined with the
proposed approach to assess web security, can help organizations to make proper
policy, based on data, to reduce the cybercrime cost. Our approach allows an

6 INTRODUCTION

assessor to continuously monitor the security posture of websites externally,
and it has been validated in collaboration with several financial institutions in
Belgium.

Such kind of external assessment may also be helpful for other parties - for
example, it can serve as a pricing factor for insurance company to establish
cyber insurance premiums; it might also desirable for government or supervisory
organizations to make proper policy based on evidence.

As for the other research related to targeted malware, our main contribution
is to systematically define the attack model of Advanced Persistent Threats
(APTs), and analyze techniques commonly seen in APT attacks. Our paper
is among the first academic works that studies APTs comprehensively, and
inspired others [107, 130, 108, 123] to this area.

1.4 Outline of the Text

In this dissertation, we discuss web security assessment from the client side.
To help prepare the readers to understand the topic, we first introduce the
basic knowledge of the web platform, and explains some common web attacks
in Chapter 2. It sets the context in which this work should be viewed.

In a first contribution (Chapter 3), we enumerate eight client-side defense
mechanisms that websites can adopt to maintain good web security hygiene. The
presence of these mechanisms can be used as metrics to assess websites security.
We then propose an efficient crawling approach for large-scale web security
assessments based on discovering the use of client-side security mechanisms.

The effectiveness of this approach is shown in several published conference and
workshop papers, which are adpated into four chapters for this thesis:

• Chapter 4 presents a thorough survey and analysis of mixed-content
inclusion (HTTP contents included on HTTPS webpages), using our web
crawling approach. This work was the first attempt to systematically
investigate the prevalence and impact of mixed HTTP content on HTTPS
webpages. It also documents the best practices to mitigate the issue for
browsers, website owners and content providers. This work was published
and presented at the 16th Information Security Conference [72].

• Chapter 5 gives a large-scale security assessment of the Chinese Web. The
measurement is based on the usage of client-side security mechanisms
and the strength of HTTPS implementations. We assessed the top 10,000

OUTLINE OF THE TEXT 7

Chinese websites, and compare them to a set of 10,000 non-Chinese
websites (comprised of neighboring non-Chinese sites in Alexa’s top list).
It also reports a severe inadvertent private data leakage issue that is
unique in China. This work was published and presented at the 2014
Workshop on Cyber Security Analytics, Intelligence and Automation [71].

• Chapter 6 examines a long-term web evolution with respect to the adoption
of client-side security mechanisms, through a four-year longitudinal
security assessment of the European Web. It also proposes a web security
scoring system based on the usage of client-side security mechanisms
to compare the security postures among different (group of) websites.
Using the scoring system, we compared websites from different business
categories and different countries. We also identified several longitudinal
trends. This work was published and presented at the Workshop on
Empirical Research Methods in Information Security [69].

• As adopting client-side security mechanisms indicates a website’s security
awareness, we expect websites with better web hygiene will be more
secure and less vulnerable to attacks, hence fewer losses incurred due
to cybercrime. To verify this hypothesis, we study the relationship
between a company’s cybercrime cost and the adoption of client-side
security mechanisms on its website in Chapter 7. We surveyed 263
Belgian companies about the impact of cybercrime on their business, and
gathered the statistics on the usage of security features through website
crawling. This work was published and presented at 4th International
Workshop on Measurability of Security in Software Architectures [73].

We conclude the dissertation (Chapter 8) by revisiting the contributions,
reviewing related works, and considering opportunities for future research.

Chapter 2

Background

Since its founding in 1989, the World Wide Web has significantly influenced
human society. Browsing the Web has become an important part of people’s
daily lives, and the widespread use of smartphones in recent years further
intensified this trend, as the always-connected mobile devices allow people stay
online wherever they go. The web has also rapidly expanded into all kinds of
business, becoming a driving force of a nation’s economy.

In the meantime, the rising importance of the Web also attracts increasing
attention from attackers. Cybercriminals have been leveraging the web platform
to launch attacks against business and individuals, which costs global economy
trillions of dollars per year. Web attacks occur every day, and even renowned
giant companies such as Google are not immune to attacks, let alone ordinary
web users.

The problem of widespread cyber attacks is essentially an issue of lacking risk
management. Many companies are unaware of security risks when adopting
web technologies, which results in inadequate effort on protection. Most web
users are also not paying enough attention to web security. For both business
and individuals, the lack of security awareness is partly due to an insufficient
understanding of the Web.

Although people use the Web on a daily basis, many do not know the technology
behind it. This chapter introduces the basic knowledge of the Web platform, and
explains some common web attacks, which can help to raise security awareness
among people. The information presented in this chapter also helps prepare
the reader for the discussion in the following chapters.

9

10 BACKGROUND

2.1 The World Wide Web

W3C, an international standards organisation for the Web, defines the World
Wide Web (WWW or the Web) as “an information space in which the items
of interest, referred to as resources, are identified by global identifiers called
Uniform Resource Identifiers (URI).” [103] This definition is too technical for
a layman who might prefer the explanation given by Oxford Dictionary: “An
information system on the Internet which allows documents to be connected to
other documents by hypertext links, enabling the user to search for information
by moving from one document to another.”

Oxford Dictionary’s definition is more user-friendly, and it points out the
relationship between the Web and the Internet. Many people often confuse
them, and use the words “Web” and “Internet” interchangeably. However, they
are not synonymous. In reality, the Web is just an application running atop
the Internet. A simplistic difference between them is that the Internet is built
to connect computers, while the Web is built to connect people, i.e., to help
people share information on the Internet.

More technically speaking, the Internet is a global system of computer networks
that are interconnected using the TCP/IP protocols. Built on top of the
Internet, the Web is an information space where resources are hosted on
different networked computers, identified by Uniform Resource Locators (URLs),
interlinked by hypertext links, and can be accessed through the HTTP protocol.
The three fundamental elements of the web are URLs, HTTP, and HTML.

A Uniform Resource Locator (URL) [64], colloquially called a web address, is a
reference to a resource on the web. It is a specific type of Uniform Resource
Identifier (URI) [63] that, in addition to identifying a resource, specifies the
location and access mechanism for the resource. The structure of a typical URL
is illustrated in Figure 2.1, which includes a scheme, a hostname, and a path.

Figure 2.1: The structure of a typical URL

In addition to these basic URL parts, a generic URL can also specify
authentication credentials (a username and password), a port number, a
query, and a fragment. An example of a generic URL is: http://user:
pass@example.com:8080/path?key=value#fragment.

http://user:pass@example.com:8080/path?key=value#fragment
http://user:pass@example.com:8080/path?key=value#fragment

THE WORLD WIDE WEB 11

An URL contains all necessary information for a web browser to retrieve the
specified resource from a web server that hosts the resource. The communication
protocol used between web browser and web servers is HyperText Transfer
Protocol (HTTP) [90]. HTTP is a request/response-based client-server protocol,
which allows a client (a web browser or other user agents) to retrieve data from
a web server, and to submit data to a web server. Figure 2.2 shows an example
of an HTTP request and response process, in which a client gets a document
from a server.

Figure 2.2: An example of an HTTP request and response

HTTP can be used to transfer various types of contents (e.g., plain text, image,
audio), of which the most basic and popular type is an HTML document.
HTML (HyperText Markup Language) [62] is a markup language that describes
the structure of a webpage semantically. As shown in Listing 2.1, an HTML
document consist of nested HTML tags (also known as HTML elements) and
text content placed between the tags. HTML tags are enclosed in angle brackets,
and usually used in pairs. The entire document is marked with the <html> tag.
Metadata about the webpage, such as the title, is placed inside the <head> tag.
The <body> tag specifies the main content area of a webpage, where more than
100 different HTML tags can be used to organise the content. For example, the
<a> tag creates a reference (or hyperlink) to other webpages, files, locations
within the same page, or any other URLs.

1 <html >
2 <head >
3 <title >A simple webpage </ title >
4 </ head >
5 <body >
6 <h1 >This is a heading </h1 >
7 <p>This is a paragraph that contains a reference (URL) to

example .com </p>
8 </ body >
9 </ html >

Listing 2.1: A simple HTML document

12 BACKGROUND

2.2 History of the Web

The World Wide Web was born at CERN (European Organisation for Nuclear
Research) in 1989, originally developed for automatic information sharing
between scientists [38]. Tim Berners-Lee, a British scientist at CERN, is
considered as the father of the Web. He issued a proposal to build a web
of hypertext documents, and led a team that created HTTP and HTML. By
December 1990, Berners-Lee had built the first web server and web browser, as
well as the first web site, which described the project. In 1993, CERN made
the World Wide Web software publicly available with an open licence, which
allowed the Web to flourish.

In the early days of the Web, most web contents are just text and hyperlinks.
Browsers rely on external helper applications to view images. This plain
landscape was changed in 1993 with the release of the Mosaic browser [27],
which was the first browser able to display images along with text. With this
feature and an attractive interface, the Mosaic browser enriched users’ web
browsing experience, and greatly popularised the Web.

In 1994, many of the original Mosaic browser’s developers were employed by
Netscape to create a new browser, called Netscape Navigator. The release of
Netscape Navigator 2.0 in 1995, further influenced the Web with the introduction
of JavaScript. JavaScript (JS) is a high-level interpreted programming language
that can be used in webpages to make them dynamic and interactive. JavaScript
quickly proved to be a success, and other browsers, such as Microsoft’s Internet
Explorer, started to adopt this technology.

Another technological upgrade for the Web is the use of Cascading Style Sheets
(CSS) [111]. Along with HTML and JavaScript, CSS is one of the three core
technologies for web content production. Often used to set the visual style
of webpages, CSS is a computer language that expresses the presentation of
structured documents. It enables the separation of presentation and content,
which provides more flexibility and control on the formatting and rendering
of the content. For example, CSS can specify a webpage to display the same
content differently depending on the screen size or viewing devices.

Through the history of the Web, browser vendors have played a very prominent
role. For most ordinary users, a web browser is the only way to access the
Web. To attract more users, different browsers had been introducing various
new features that were incompatible with each other. The “first browser war”
between Netscape’s Netscape Navigator and Microsoft’s Internet Explorer in the
late 1990s, saw the proliferation of non-standard and proprietary extensions to
the HTML standard. In an effort to standardise web technology, Tim Berners-
Lee left CERN and founded the World Wide Web Consortium (W3C) in 1994.

WEB BROWSER 13

To solve the incompatibility problem of different browsers, W3C sets a series of
standards, guidelines, and recommendations for web developers.

After two decades of development, the Web has become an increasingly dominant
player on the Internet. Instead of using the Internet (TCP/IP) directly, more
and more services are leveraging the power of the Web (HTTP), making the
Web a rich application platform. The modern web is no longer limited to
displaying information on static webpages. It also supports multimedia content,
and allows user interaction. This new stage that features massively increased
user participation is known as Web 2.0 [118].

In the era of Web 2.0, end-users become a pivotal part of the websites.
For example, users can build social networks with other people in a virtual
community (e.g., Facebook), create user-generated content for others to see
(e.g., Wikipedia), work collaboratively with others in real-time (e.g., Google
Docs), broadcast to millions of audiences in live-streaming (e.g., YouTube).

With the emergence of Web 2.0, websites become powerful interactive
applications. Unlike desktop applications which need to be installed on a
computer, web applications run in a browser and do not need to be installed.
With a web browser, users can access web applications from anywhere, at any
time.

2.3 Web Browser

The main function of a web browser (a browser) is to retrieve information
resources on the Web, and to display them in a visual window for the user. The
information resource, identified by a URL, is usually an HTML document, but
may also be image, video or other type of content. Modern browsers typically
have a modular architecture, which consists of eight subsystems, as shown
in Figure 2.3:

14 BACKGROUND

Figure 2.3: Reference architecture for web browsers [94]

• User Interface. The visual interface that interacts directly with users,
which includes address bar, toolbars, and other buttons/menus.

• Browser Engine. A high-level interface to the underlying Rendering
Engine, which handles browsing actions such as URL loading, forward,
backward, and reload. It also provides hooks that allows querying and
manipulating the Rendering Engine.

• Rendering Engine. The subsystem that creates a visual representation
for the requested resource. It includes an HTML parser that turns an
HTML document into a DOM (Document Object Model [143]) tree,
wherein each node is an object representing a part of the document.
The DOM allows scripts to dynamically access and update the content,
structure and style of documents. The Rendering Engine is also responsible
for parsing CSS and displaying embedded content such as images.

• Networking Subsystem. This component provides network communi-
cation between a browser and a server, through protocols such as HTTP.
Besides transferring data, it converts data between different character
sets, and resolves MIME types for files.

• JavaScript Interpreter. Also known as JavaScript Engine, this
subsystem is used to parse and execute JavaScript code. In the browser,
JavaScript can manipulate the webpage through the DOM.

• XML Parser. This subsystem parses XML documents into a DOM tree.
The XML parser is a generic, reusable component. It is different from the
HTML parser that is often tightly integrated with the rendering engine
for performance reasons.

WEB APPLICATION 15

• Display Backend. This backend exposes a generic interface for drawing
basic widgets like combo boxes and windows.

• Data Persistence. A storage subsystem for various data associated
with the browsing session, such as bookmarks, browsing history, cookies,
security certificates, and browser settings.
The modular architecture allows different browsers vendors to share the
same components. For example, the Blink [9] browser engine, forked from
WebKit [41] and mainly developed by Google, is used in Google Chrome,
Opera, and other Chromium-based browsers. Browser subsystems are not
only reused by web browsers, but may also appeared in other desktop
applications. Internet Explorer’s layout engine, Trident [21], is also used by
many applications on the Windows platform, such as Outlook Express. An
interesting fact about the reuse of browser subsystems is, Chinese browsers
often adopt a “dual-core engine” architecture for compatibility reasons,
i.e., use two different browser engines. For instance, Maxthon uses Webkit
and Trident; 360 Browser uses Blink and Trident. The Trident engine is
used typically for accessing legacy Chinese online banking applications
that are only compatible with Internet Explorer’s specifications.

2.4 Web Application

The prominent feature of Web 2.0 is massive user interaction. To enable
this feature, modern web applications relies on two important techniques:
asynchronous JavaScript execution and session management.

Consider a common scenario of a user following a Twitter account on a webpage.
Once the page URL is obtained, the user’s browser retrieves HTML code and
other resources from the server, and then renders the page in a window. Without
the use of asynchronous JavaScript, the user would need to manually refresh
the page every now and then, in order to see if new tweets are popping up. This
is because the HTML code of the webpage is generated and sent by the web
server, and it could not update itself without JavaScript.

But with asynchronous JavaScript techniques such as Ajax [92], web applications
can retrieve data from a server asynchronously without interfering with the
display and behaviour of the existing page. In this way, Twitter’s server can
insert JavaScript code that regularly contacts the server to retrieve the latest
information in the background, and updates the webpage in seemingly real time.
The result is an active webpage that always displays the latest tweets.

16 BACKGROUND

Besides the interactivity enabled by JavaScript, modern web applications also
support authenticated sessions to keep track of users’ state. The authentication
step is often completed by requesting the user to enter a username and a
password in an HTML login form. By submitting the form, the credentials
are sent to the server for validation. However, because HTTP is a stateless
protocol that does not require the server to retain information about each user
for the duration of multiple requests. To avoid re-authentication in subsequent
requests, web applications need a session management mechanism.

Once a session is established between a web application and a user, the web server
can associate multiple requests from the same user, allowing the application
to store helpful information such as each user’s authentication state. The
most commonly used session management mechanism is an HTTP cookie [58].
An HTTP cookie is a small piece of data sent by a web server through the
“set-cookie” HTTP header, as shown in Figure 2.4.

Figure 2.4: Example of cookies sent from Google Search

Browsers store cookies received from a server, and automatically attach it to
every subsequent request to the same server. While cookies can be used for
saving simple settings such as language preference, they are more often used to
maintain an authenticated session. For this purpose, a web application creates
and sends a session cookie with a unique identifier, upon a user’s successful
login. After that, the browser sends this cookie on subsequent requests to the
server, allowing the web application to identify the user.

Since a session cookie is a user’s unique identifier, any requests bearing the
cookie is granted the privileges associated with the user’s session. This means
that the session cookie is similar to the user’s credentials, as they both grant
access to an authenticated session. The difference is cookies are limited to
the lifespan of the current session, while credentials can be used repeatedly to

WEB SECURITY THREATS 17

establish new sessions.

2.5 Web Security Threats

As Web applications become increasingly powerful, they have been widely
adopted by various kinds of business. Meanwhile, the rise of the Web platform
is also accompanied by increasing web attacks. Web attacks has caused great
adverse effects on companies and individuals. Understanding these attacks can
help both website owners and web users to protect themselves. But before diving
into the details of web attacks, it is necessary to know the threat (attacker)
behind them. Based on their capabilities, attackers can be categorized into
different models, which are called threat models or attacker models. Four
different threat models are often encountered in web attacks, as explained
below.

• Passive Network Attacker. A passive network attacker [102] is an
eavesdropper who passively monitors network traffic. The attacker can
learn all unencrypted information (such as DNS requests, HTTP content)
in the traffic, but cannot manipulate or spoof traffic. One common
example of a passive network attack is wireless sniffing, in which a nearby
attacker eavesdrops on unprotected wireless communications.

• Active Network Attacker. An active network attacker [53, 102]
positions himself on a network between the web browser and the web
server, and is able to intercept and tamper with the network traffic passing
by. The attacker can read, modify, delete, and inject HTTP requests
and responses, but he is not able to decipher encrypted information (e.g.
content sent over HTTPS), nor impersonate an HTTPS endpoint without
a valid certificate. An attacker can mount an active network attack
in various ways, such as setting up a fake wireless hotspot (“evil twin”
access point), and impersonating the user’s network gateway through
ARP poisoning.

• Web Attacker. A Web attacker [53, 60] is just a malicious principal
who is able to register domains, obtain valid certificates for these domains,
and control at least one web server to host web applications. As the web
attacker model requires no special network abilities such as monitoring or
intercepting traffic, every user on the Web can become a Web attacker.
Thus the Web attacker is the most common threat on the Web. A typical
web attacker can build a website that contains malicious code, and lure
users to visit the malicious website in order to exploit the user’s browser.

18 BACKGROUND

• Gadget Attacker. The gadget attacker [53, 60] has all the abilities of
a web attacker as well as the ability to inject content (“gadget”) into
benign web applications. The injected content can be hyperlinks, images,
and JavaScript code. In practice, this usually happens due to third-party
content inclusion, where an honest website willfully integrates contents
served by third-party content providers. Popular examples are JavaScript
libraries, such as JQuery and Google analytics. Additionally, an attacker
can also actively insert content into applications such as blog comments
and forum discussions.

2.6 Common Web Attacks

Depending on the capabilities of different threat models defined in the previous
section, attackers can carry out various attacks within the Web platform. This
section covers five common web attacks that are relevant for the remainder of
this dissertation.

2.6.1 Eavesdropping

Eavesdropping generally means secretly listening to private conversation of
others without their consent. In this dissertation, eavesdropping is limited to a
particular type of conversation, the network communication. By eavesdropping
on network traffic, a passive or active network attacker can obtain sensitive
data such as credit card info, username and password, and session cookies, if
these supposedly secret information are sent over unencrypted channels such as
HTTP.

The way to launch an eavesdropping attack depends on the type of targeted
network. For wireless networks, listening traffic is straightforward, which only
requires a powerful enough antenna. And there are many freely available tools
for wireless sniffing. For example, Firesheep [65] is a browser extension that
allows a user to sniffer session cookies in a WiFi network. Nowadays, the
increasing adoption of wireless networks, especially the presence of publicly
accessible WiFi hotspots, has made eavesdropping attacks extremely relevant
in the modern web.

Eavesdropping on wired network is more difficult, which typically requires access
to intermediaries within the network infrastructure, such as an ISP (Internet
Service Provider) and a proxy server. In practice, this type of monitoring is often

COMMON WEB ATTACKS 19

carried out by government bodies. An extreme example is NSA’s surveillance
on Internet communication revealed by Edward Snowden [95].

The main approach to mitigate eavesdropping attacks is using secure
communication channels such as HTTPS and VPN. HTTPS (HTTP over TLS
(Transport Layer Security) [125]) is a commonly used technique to guarantee
the confidentiality and integrity of web communication. It provides bidirectional
encryption of communications between a client and server, which protects
against eavesdropping and tampering with the contents. As of January 2017,
more than half of the Web traffic is encrypted using HTTPS [91].

To counter wireless sniffing in a public WiFi network, end users may also use
VPN (Virtual Private Network) to encrypt all the data during transmission.
However, this only guarantees the confidentiality between the user agent and
VPN server, an attacker with access to the VPN server or any intermediaries
between the VPN server and the web server, can still monitor HTTP traffic.

2.6.2 Man-in-the-Middle attack

A man-in-the-middle attack (MITM) can be considered as an active eavesdrop-
ping attack, in which an active network attacker positions himself between the
victim’s browser and the targeted web application. The goal of a MITM attack
is to be able to both monitor and manipulate the traffic. This often allows the
attacker to secretly relay the communication between two parties who believe
they are directly communicating with each other. In other words, the attacker
can impersonate the user or the server in a man-in-the-middle attack.

MITM attacks require the attacker to be in the middle of the network, which
can be achieved in various ways. For example, an attacker can control an
intermediary machine in the network path, or set up a fake wireless hotspot to
lure victim users to join in. Once an attacker positions himself in the middle,
monitoring and manipulating non-encrypted traffic becomes straightforward.
To mitigate MITM attacks, TLS protocol can be deployed. Besides offering
confidentiality and integrity to prevent the attacker from reading and modifying
any network traffic, TLS also provides entity authentication to authenticate the
identities of involved parties.

Although TLS is mainly designed to counter MITM attacks, in reality, its
actual details are often poorly understood, which frequently results in insecure
deployments. Two types of insecure deployments of TLS can lead to MITM
attacks. The first category is insecure design of web applications such as partial
TLS coverage and mixed-content inclusion. A partial TLS coverage means a
website does not force the use of TLS on all pages, which allows SSL-stripping

20 BACKGROUND

attacks. In an SSL-stripping attack [112], the attacker can exploit an HTTP
request to a TLS-enabled website, causing the downgrade of the connection
from HTTPS to HTTP. In mixed-content deployments [72], HTTP content is
included by an HTTPS page, thus an attacker can manipulate the mixed HTTP
content in order to compromise the HTTPS page.

The second type of insecure TLS deployments lies in the management of
certificates. The entity authentication in TLS is based on X.509 certificates [79],
which relies on a set of trusted third-party Certificate Authorities (CAs) to
establish the authenticity of certificates. In practice, a web browser stores a list
of trusted CAs, and any certificate issued by a trusted CA is inherently trusted
by the browser. As a consequence, an attacker can use fraudulent but verified
certificates to impersonate websites in MITM attacks. An example of such
incident is an Iran attacker compromised DigiNotar, a Dutch CA, and issued a
certificate for Google to conduct a MITM attack against Google services [99].
The trusted roles of CAs can even be further abused by government bodies to
issue fraudulent certificates for surveillance purpose [151].

To avoid MITM attacks in the presence of TLS, web developers are recommended
to follow best practices for deploying TLS [119]. For example, websites can
remove mixed content and use HTTP Strict Transport Security [97] to ensure
all the contents are always protected by TLS. As for the issue of fraudulent
certificates, HTTP Public Key Pinning [88] can be used to specify a set of
trusted public keys for a domain, and Certificate Transparency [20] can be used
to audit issued certificates. Additionally, DNS-based Authentication of Named
Entities (DANE) [98] can leverage the security of DNSSEC to bind certificates
to domain names.

2.6.3 Cross-site scripting

Cross-Site Scripting (XSS) is a type of injection attacks, in which a Web attacker
injects malicious scripts into otherwise benign and trusted websites. The injected
code has the same privileges as the target application code, which allows the
attacker to access all client-side application data such as session cookies. XSS
was ranked as the most critical web application vulnerability by OWASP in
2007 [120], and had been a serious problem on the Web in the last decade.
Nowadays, XSS attacks have become less relevant, but it remains one of the
top 10 web security risks in 2017 [121].

Since a Web attacker does not have the ability to manipulate network traffic,
the only way to inject content is through a web application’s input fields
such as HTML forms and URL parameters. To provide interactivity, modern
web applications usually allow users to submit data to the applications. XSS

COMMON WEB ATTACKS 21

attacks can occur, if the submitted data are not properly checked. As an
illustration, Figure 2.5 shows a simple search application that accepts inputs
from users, and echos back users’ queries on the page. A XSS attack occurred
when the input contained scripts that were not detected by the application, as
the end user’s browser assumed the data came from a trusted source and simply
executed the script.

Figure 2.5: A simple search application that is vulnerable to XSS attacks

XSS attacks can be categorised into three well-known types: Stored XSS,
Reflected XSS, and DOM-based XSS.

In a stored (or persistent) XSS attack, an attacker can store malicious code
inside a web application, for example by hiding it in a forum post or blog
comment. And when a victim’s browser renders a page that includes the data
provided by an attacker, the malicious code will be embedded and executed.
Stored XSS typically occurs when the input data provided by the attacker is
saved on a server-side database, but with the advent of client-side storage in
HTML5, the attack payload can be permanently stored in the victim’s browser
as well.

Reflected (or non-persistent) XSS attacks are those where the injected code
is not stored, but immediately reflected in a server’s response. To launch a
reflected XSS attack, an attacker typically hides malicious code in a link, and
trick a victim to click the malicious link. The victim’s browser then executes
the attacker’s code because it thinks the script came from a trusted server.
The example illustrated in Figure 2.5 is a reflected XSS, where the malicious
link has a form like this: http://example.com/search?query=%3Cscript%
3Ealert(%22XSSed%22)%3C%2Fscript%3E

A third class of XSS attacks is DOM-based XSS [105], wherein an attacker
stores malicious code into the DOM of a webpage that is visited by a victim user.
In a DOM-based XSS attack, the injected data is not processed by server-side

http://example.com/search?query=%3Cscript%3Ealert(%22XSSed%22)%3C%2Fscript%3E
http://example.com/search?query=%3Cscript%3Ealert(%22XSSed%22)%3C%2Fscript%3E

22 BACKGROUND

logic of the web application, but by its client-side logic, thus the entire data flow
never leaves the browser. The injected code is executed as a result of modifying
the DOM environment used by original client side script.

Since the problem of an XSS attack is essentially the failure of a web application
to recognize the insertion of code, the general approach to prevent XSS
attacks is sanitization: applying filters to untrusted data provided by the
users. Sanitization techniques typically replace or remove dangerous characters
such as < > & " or check against a whitelist of allowed characters. Depending
on the application context, several publicly available libraries can be used to
sanitize data. For example, OWASP Java Encoder Project [30] is a sanitizer
for Java applications, and HTML Purifier [16] offers automatic sanitization for
PHP applications.

Besides sanitization, another relatively new approach to mitigate XSS is Content
Security Policy (CSP) [148]. A Web application can use CSP to instruct a
browser to disallow the execution of inline scripts and only accept scripts from
specified trusted sources. In addition to sanitization and CSP, major modern
web browsers such as Google Chrome, Internet Explorer, and Mozilla Firefox,
also provide client-side XSS protection to detect and stop certain reflected XSS
attacks.

2.6.4 Session hijacking

Session hijacking, also known as cookie hijacking, refers to the exploitation of
an authenticated session to gain unauthorized access to a web application. Web
applications usually generate and send HTTP cookies to a user’s browser, in
order to maintain a session with the user. In a session hijacking attack, an
attacker steals the user’s session cookies and then transfers an authenticated
session from the victim’s browser to the attacker’s browser. In this way, the
attacker can impersonate the victim user, performing actions in the name of
the user in a web application.

A cookie hijacking attack is possible because a session cookie is a user’s unique
identifier, any requests bearing the cookie is granted the privileges associated
with the user’s session. To steal a user’s cookies, an attacker can eavesdrop on
the network traffic, as illustrated in Figure 2.6.

COMMON WEB ATTACKS 23

Figure 2.6: A session hijacking attack via eavesdropping

Besides eavesdropping or MITM attacks, an attacker can also obtain session
cookies via XSS attacks. This is because HTTP cookies are stored in the user
browser, and can be accessed by JavaScript through the document.cookie
property of current page. Additionally, an attacker can simply guess the session
cookie if it is generated in predictable patterns.

There are two different types of mitigation techniques for session hijacking. One
is to limit the capability of a session cookie, making it no longer a bearer token
for an authenticated session, thus even if an attacker has successfully obtained
cookies, he cannot use them to transfer sessions. This can be achieved by
binding a user’s session to some specific properties such as IP address, or browser
fingerprint [117]. When a web application detects changes of these properties,
it can abolish the current session and request a re-authentication. Another way
to limit a cookie’s capability is using one-time disposable tokens [81].

The second type of mitigation techniques focuses on preventing cookie stealing.
The HttpOnly and Secure cookie flags can be used respectively to ensure a
cookie is not accessible through JavaScript, and is always transmitted over TLS.
Correctly applying both attributes can effectively prevent the theft of session
cookies via XSS and eavesdropping attacks.

2.6.5 Clickjacking

Clickjacking, also known as UI (User Interface) redressing attack, is a malicious
technique of tricking a user into clicking on something different from what
the user perceives they are clicking on. In a clickjacking attack, an attacker
creates a malicious page that includes a frame page from a target application.

24 BACKGROUND

The targeted page is made transparent and hidden beneath the attacker’s
page. When a victim user clicks on a button or link on the malicious page,
he is unintentionally interacting with the target application, as illustrated
in Figure 2.7.

Figure 2.7: An illustration of a clickjacking attack

In essence, a clickjacking attack allows an attacker to forge a request from the
victim’s browser to the target application. The forged requests can be used
to achieve various goals, such as getting Facebook likes (making users like a
Facebook page) or Twitter followers (making users follow someone on Twitter);
tricking users into downloading malware or clicking ads.

Website owners can protect their users against clickjacking attacks by using
an HTTP header X-Frame-Options (XFO) [129] to disallow a webpage being
framed in external web applications. This feature has been recently integrated
in the Content Security Policy (CSP) with the frame-ancestors directive [148],
thus CSP can also be used to achieve the same goal.

Besides server-side defences, a user can install browser add-ons such as
NoScript [28], which includes a ClearClick feature to prevent users from clicking
on invisible page elements of embedded documents.

2.7 Conclusion

The Web is a double-edged sword. On one hand, it has greatly enriched people’s
lives and helped businesses to thrive. On the other hand, it can be abused

CONCLUSION 25

by cybercriminals, putting individuals and companies at risk. Understanding
web technologies and web attacks helps both website owners and web users to
protect themselves.

Many web attacks can be avoided (or at least be alleviated), if web users are
aware of security risks and websites owners manage the risks properly. As part
of risk management, websites owners can implement known security mechanisms
to prevent common attacks, and regularly assess their security posture. This
will be discussed in the forthcoming chapter.

Chapter 3

Assessing Web Security

As the Web rapidly expands and gets deeply integrated into our society, it is
important to ensure the security of Web applications. While individual users
can learn to avoid some web attacks through security awareness education, the
main responsibility of offering web protection should rest on the shoulder of
website owners.

In general, business owners have three main motivations to ensure their websites’
security: (1) to defend critical data assets from attacks. An unprotected website
might lead to severe data breaches; (2) to build trust with customers. A well-
protected website makes its user feel being cared and concerned; (3) to comply
with legal requirements. Some countries have strict data protection law (e.g.,
the General Data Protection Regulation in European Union [49]), which requires
websites to protect individuals’ private data.

Web attacks are constantly evolving, and there are no silver bullets. To protect
web applications, website owners can adopt a risk-based approach, i.e., to
treat cyber attacks as always-present risks and manage the risks properly.
As part of their risk management, websites owners can implement known
security mechanisms, and regularly assess their security posture. While this
cannot completely avoid attacks, it minimises attack surface and alleviates the
consequences when attacks occur. Moreover, since some security mechanisms
are visible from the client side, they provide reassurance to customers.

This chapter introduces several security mechanisms that websites owners can
adopt to protect their web applications. These mechanisms are detectable from
the client side, and can be used as metrics to assess Web security. Such an
assessment can be carried out in an automated way and on a large scale, which

27

28 ASSESSING WEB SECURITY

might be desirable to government and supervisory organizations to continuously
monitor the security of the Web environment. To efficiently conduct such a
large-scale assessment, a web crawling approach was proposed in this chapter.

3.1 Client-side Security Mechanisms

This section introduces some security mechanisms that are proposed to mitigate
the common attacks in Section 2.6. While these security mechanisms are
implemented by a web server, they require a client (conformant browser) to
enforce it, thus they are referred as client-side security mechanisms/features in
this dissertation.

3.1.1 HTTPS Support

The HTTPS [125] protocol is the standard solution for securing web traffic,
which can thwart the eavesdropping and MITM attacks. It guarantees the
confidentiality and integrity of web communications by adding the security
capabilities of SSL/TLS to HTTP. The original SSL (Secure Sockets Layer)
protocol was developed by Netscape for its Netscape Navigator browser in 1994.
In 1996, the Internet Engineering Task Force (IETF), an Internet standards
organization, took over the responsibility for the protocol. IETF later renamed
SSL to TLS (Transport Layer Security) which was formally specified in [82].

When a web application uses HTTPS, the connection between a web browser
and a web server is secured by TLS. A message transmitted over HTTPS is
encrypted and its integrity is validated with a message authentication code.
In addition to the confidentiality and integrity, TLS can also authenticate the
identity of the communicating parties by using public-key cryptography. In
practice, HTTPS only provides website authenticity with the CA/B (Certificate
Authority/Browser) trust model, while the end user is authenticated with other
mechanisms.

Since HTTP provides no security guarantees, website operators are strongly
recommended to adopt HTTPS. While HTTPS has long existed as a standard
solution, the adoption of it has been slow. Besides the performance overhead of
SSL/TLS, the complexity of HTTPS deployment has also deterred its adoption.
However, these concerns have been largely addressed by recent improvements
such as the support of HTTP/2 [61] and the free SSL/TLS certificates provided
by Let’s Encrypt [23]. And web browsers are holding non-secure sites more
accountable, for example, Google Chrome (from version 56) displays a “Not

CLIENT-SIDE SECURITY MECHANISMS 29

Secure” warning for pages served over HTTP. These efforts have speeded up
the HTTPS adoption in recent years.

To correctly deploy HTTPS, web developers can follow the best practices
recommended by OWASP [119].

3.1.2 HTTP Strict-Transport-Security

HTTP Strict Transport Security (HSTS) [97] is a web security policy mechanism
which helps websites to prevent SSL-stripping attacks [112]. The HSTS Policy
is sent by the server to the browser via an HTTPS response header field named
Strict-Transport-Security. It specifies a period of time during which the
user’s browser is instructed that all requests to that website need to be sent
over HTTPS, regardless of what a user requests.

To implement an HSTS policy, a web server supplies a Strict-Transport-Security
header over an HTTPS connection (HSTS headers sent over HTTP are ignored).
The header sets a max-age (specified in seconds) during which a browser can
only interact with the website by using secure HTTPS connections. For example,
Strict-Transport-Security: max-age=3600 instructs a browser to use only
HTTPS for future requests for an hour (3600 seconds). The HSTS header can
also specifies an optional parameter includeSubDomains to include all of the
site’s subdomains as well.

When a conformant browser receives an HSTS header from a website, it will
automatically turn any insecure HTTP links to that website into secure HTTPS
links during the specified time frame. The browser will update the expiration
time whenever it receives an HSTS header, so web applications can prevent the
timeout from expiring by always sending HSTS headers. Additionally, modern
browsers typically maintain an “HSTS preloaded list”, which is a list of known
HSTS-enabled sites that are hardcoded into the browser as being HTTPS only.
Google Chrome also offers an “HSTS Preload List Submission” service [15],
which allows a website to use preload parameter in an HSTS header to submit
itself to Chrome’s “HSTS preloaded list”.

3.1.3 Public Key Pinning and Certificate Transparency

Public Key Pinning and Certificate Transparency are two approaches that aim
to address the issue of fraudulent SSL/TLS certificates used in MITM attacks.

Public Key Pinning allows websites to specify trusted public keys in an HTTP
response header named Public-Key-Pins [88]. It tells a web browser to

30 ASSESSING WEB SECURITY

associate a set of specific cryptographic public keys with a certain website
for a given time. During that validity time, the browser only accepts a server
with one or more of those specified public keys. Thus, even if an attacker
compromises a CA to forge a certificate, he cannot use the forged certificate to
impersonate the website’s server.

The idea of public key pinning was originally started at Google in 2011, as an
effort to protect its web services from MITM attacks [45]. The approach was
called static pinning, in which Google hardcoded some whitelisted public keys
in Chrome. Google later expanded the idea into dynamic pinning, which was
standardized as Public Key Pinning Extension for HTTP (HPKP) in 2015 [88].
However, it turned out that HPKP was difficult to implement and maintain [48],
and it can be abused by attackers [50].

There are two main security issues with HPKP: HPKP Suicide and RansomPKP.
HPKP Suicide refers to the situation where an HPKP-enabled website loses the
pinned public keys. The keys might be accidentally deleted, or stolen in a hack
incident. Consequently, browsers that have stored the site’s HPKP policy will
not be able to connect to the site until the HPKP policy expires. The second
issue, RansomPKP, happens in a web server breach scenario. When an attacked
gains control of the server, he can set malicious HPKP headers such as pinning
the attacker’s keys. It will take a lot time and effort for a website to recover if
its HPKP is abused.

With these issues exist, and no support from other browsers (IE/Edge and Safari),
Google Chrome plans to abandon HPKP in 2018 [52], and turns to another
approach called Certificate Transparency. Certificate Transparency (CT) [20] is
an open framework for monitoring and auditing SSL/TLS certificates in nearly
real time. It requires certificate authorities to publish all issued certificates in
public CT Logs. This allows quick detection of any mis-issued certificates.

A website can use an HTTP response header called Expect-CT to enforce
Certificate Transparency. The Expect-CT header instructs a browser to expect
a valid Signed Certificate Timestamps (SCTs) to be served when connecting to
the website. By combining Expect-CT with active monitoring of CT logs, website
operators can pro-actively detect fraudulent SSL/TLS certificates. Certificate
Transparency and Expect-CT are still under the drafting process by IETF, and
there is no support from other browsers as of December 2017. But starting
from April 2018, Google Chrome requires Certificate Transparency for all newly
issued, publicly trusted certificates.

Since Public Key Pinning (HPKP) is phasing out, and Certificate Transparency
(CT) is proposed to achieve similar goals, these two approaches (HPKP/CT)
are being treated as a single security feature in this dissertation.

CLIENT-SIDE SECURITY MECHANISMS 31

3.1.4 HttpOnly and Secure Cookies

HttpOnly and Secure Cookies are cookies set with the HttpOnly and Secure
attributes. These two flags can be used to protect session cookies and prevent
session hijacking.

First introduced in Internet Explorer 6 SP1 in 2002, the HttpOnly attribute is
designed to mitigate the risk of malicious client-side scripts accessing sensitive
cookie values. Cookies are accessible to JavaScript code by default, which allows
attackers to steal the cookies via an XSS attack. Using the HttpOnly attribute
in a Set-Cookie header restrict the access of that cookie to the HTTP(S)
protocol, making it inaccessible to client-side JavaScript [58].

The purpose of the Secure flag is to prevent cookies from being observed by
unauthorized parties due to the transmission of a cookie in clear text. Although
the traffic between a web server and a browser is encrypted when using HTTPS,
the cookies stored in the browser are not, by default, limited to an HTTPS
context. Thus an active network attacker can intercept any outbound HTTP
request from the browser and redirect that request to the same website over
HTTP in order to reveal the cookies [58]. By setting the Secure attribute, the
scope of a cookie is limited to secure channels, thus stopping browsers from
sending cookies over unencrypted HTTP requests.

The HttpOnly and Secure attributes are set via a Set-Cookie HTTP response
header. For example, this header Set-Cookie: OSID=5wRhE...; path=/;
domain=mail.google.com; Secure; HttpOnly sets a cookie named OSID

with both flags enabled. A browser records this information as part of cookie
data in its storage system, as shown in Figure 3.1.

Figure 3.1: Example of HttpOnly and Secure Cookies stored in a browser

32 ASSESSING WEB SECURITY

3.1.5 Content Type Options

When a web server sends a resource to a browser, it can use the Content-Type
header to indicate the media type of the resource. The content type is specified as
a MIME (Multipurpose Internet Mail Extensions) type, which is a way to identify
different Internet resources. If a server does not provide the Content-Type
header or the specified MIME type is ambiguous, some browsers such as Internet
Explorer will use a detection algorithm to determine the content type, which is
called MIME sniffing. However, this MIME-sniffing feature can be abused by
attackers to disguise a particular file type as something else, which might give
them the opportunity to perform cross-site scripting attacks.

In order to disable MIME sniffing, thus reducing exposure to attacks, Microsoft
introduced the X-Content-Type-Options (XCTO) header [18]. A website can
send this header with “nosniff” value (X-Content-Type-Options: nosniff) to
tell a browser not to sniff MIME type and instead follow the value specified in
the Content-Type header. The X-Content-Type-Options header is supported
by most browsers including Chrome, Firefox, IE/Edge.

3.1.6 Content Security Policy

Content Security Policy (CSP) [148] is a security policy that helps to mitigate
several types of attacks, including cross-site scripting (XSS), clickjacking and
data injection attacks. CSP provides a standard method for website owners to
declare approved origins of content that browsers should be allowed to load on
that website. It can be used to cover many different type of web resources, such
as JavaScript, CSS, images, HTML frames, audio and video files, and other
embeddable objects.

CSP was originally proposed and implemented by Mozilla Firefox in 2010 [137],
in order to help websites to prevent XSS attacks. It was quickly adopted by
other web browsers and has been published as a W3C recommendation in
2014 [148]. As of 2017, a new version of CSP is being developed under W3C to
include more features [147].

To enable CSP, a web server can send the Content-Security-Policy header.
Alternatively, a CSP policy can also be specified in a <meta> element. The
primary use of CSP is to mitigate XSS attacks. To achieve this goal, a website
can send a CSP header that looks like Listing 3.1.

Listing 3.1: Preventing XSS with a CSP policy
1 Content−Secur i ty−Pol i cy : de fau l t−s r c ‘ s e l f ’ ; img−s r c ∗ ; \
2 s c r i p t −s r c t ru s t ed . example . com ;

CLIENT-SIDE SECURITY MECHANISMS 33

In the above example, the policy specifies that 1) the default trusted origin is
the website itself (via default-src directive); 2) images can be loaded from
anywhere (via img-src directive); 3) executable script is only allowed from
trusted.example.com (via script-src directive). Hence, whenever a requested
resource originates from a source that is not defined in the CSP, it will simply
not be loaded. For example, even if an attacker is able to inject malicious
JavaScript in the webpage, the injected code will not be executed, as it is not
from the specified trusted origin.

With more than 20 different directives, CSP is very versatile and flexible.
Besides specifying trusted origin for various content types, a website can
also use CSP to guarantee secure communication. For example, the
upgrade-insecure-requests directive instructs a browser to upgrade HTTP
links to HTTPS links; the block-all-mixed-content directive prevents loading
HTTP-served content in an HTTPS page.

3.1.7 X-Frame-Options

X-Frame-Options (XFO) [129] is an HTTP response header designed to mitigate
Clickjacking attacks. In a Clickjacking attack, the attacker redresses the user
interface of website A with transparent layers, and then trick the user into
clicking on a button on an embed page from website B when they were intending
to click on the same place of the overlaying page from website A.

To stop Clickjacking attacks, a website can use the X-Frame-Options header
to tell a browser whether a certain page is allowed to be embedded in a frame.
There are three possible directives for this header: DENY, SAMEORIGIN, and
ALLOW-FROM. If the header is set to DENY, then the browser will prevent the
page from rendering when embedded within a frame. On the other hand, if
SAMEORIGIN directive is specified, then the page is only allowed to be embedded
in other pages from the same domain. The ALLOW-FROM directive is used to
specify a trusted origin that can embed the page.

The function of X-Frame-Options has been integrated in the CSP version
2 [148] with the frame-ancestors directive. Thus a website can also use CSP
to prevent clickjacking attacks. Setting frame-ancestors: none in CSP has
the same effect as X-Frame-Options: DENY. And frame-ancestors: self is
similar to X-Frame-Options: SAMEORIGIN.

34 ASSESSING WEB SECURITY

3.2 Large-scale Web Crawling Approach

This section describes a web crawling approach that is used for several large-scale
web assessments presented in the forthcoming chapters of this dissertation. The
approach can be adopted by an outside assessor to analyse websites security in
an efficient fashion.

We begin with a set of websites to be assessed. Since the analysis is based on
the security features that can be found in webpages, we first need to find enough
webpages for each given website. To achieve this, the Bing Web Search API [8]
is used to obtain popular webpages from a domain. The popular webpages
found by Bing Search is a good representative of a website, as people typically
enter a website through search engines. The presence or absence of defensive
mechanisms on these popular webpages can largely reflect the website’s security.

More specifically, we use the site:domain operator with Bing Web Search API
to obtain a set of popular page URLs for a domain. For instance, a single search
for site:facebook.com in Bing will return a set of 50 webpages belonging to
facebook.com. Ideally, we should get as many pages as possible for a website,
since a larger sample size is more representative. However, modern websites
often serve dynamic pages, generating webpages based on the parameters in an
URL, which results in some very correlated page URLs. For example, although
http://example.com?id=1 and http://example.com?id=2 are different, they
are produced by the same server-side logic, thus having the same security
features. In other words, the representativeness is not fully determined by the
size of URLs set.

In our experiment, we typically obtain up to 200 page URLs for a website,
in order to have a reasonable representative sample size. Optionally, one can
measure the similarity between URLs to filter out correlated URLs, which can
reduce the sample size yet retain the same level of representativeness, making
the lateral crawling phase faster.

After page URLs of all websites are obtained, the second phase is to visit these
pages with a crawler. To avoid hurting the performance of websites, the URLs
of all websites are randomly shuffled before being feeded to the crawlers. The
crawlers are built on top of a headless scriptable browser, such as HtmlUnit [17]
and PhantomJS [31]. By loading webpages in a headless browser with an
appropriately set user-agent, we mimicked the behavior of a regular user visiting
a website with a normal browser.

To efficiently crawl millions of webpages within a reasonable period of time, we
distribute the work across multiple threads or machines. Celery [11], a Python
library, is used to manage such a distributed task queue, where it uses a broker

http://example.com?id=1
http://example.com?id=2

LARGE-SCALE WEB CRAWLING APPROACH 35

such as RabbitMQ [33] to accept crawling tasks. A crawling task is simply
using a crawler to visit a webpage, and receive HTTP responses. The results
obtained by crawlers are all stored into a database (MongoDB [26]), which can
be accessed by an analyser program for data processing or a visualizer program
for data visualization.

The steps of the web crawling approach is illustrated in Figure 3.2. Using this
approach, we can crawl 1 million webpages within 2 days, with 50 networked
machines.

Figure 3.2: Large-scale web crawling approach

Chapter 4

Large-scale Analysis of
Mixed-content Inclusion

Preamble

The contents of this chapter are adapted from the paper titled “A Dangerous
Mix: Large-scale analysis of mixed-content websites” [72], which was published
in the Proceedings of the 16th Information Security Conference in 2013. This
work was done with the collaboration of other authors from DistriNet, KU
Leuven. Ping Chen was the lead author of this paper.

This chapter investigates the issue of mixed-content inclusion, using the web
crawling approach introduced in the previous chapter. Our work sheds light on
the prevalence and impact of mixed HTTP content on HTTPS webpages.

4.1 Introduction

The World Wide Web is built on the HTTP protocol, which does not provide
security by default. To ensure secure communication of sensitive data, websites
can deploy SSL/TLS (Secure Socket Layer or Transport Layer Security)
protocol. In this way, the plain HTTP becomes HTTPS (HTTP over SSL/TLS).
HTTPS can protect web applications against passive network attackers, i.e.
eavesdroppers, that steal sensitive data and credentials from HTTP requests
and responses passing by over the network, as well as against active network

37

38 LARGE-SCALE ANALYSIS OF MIXED-CONTENT INCLUSION

attackers tampering with the content of these requests and responses. It has
become the standard solution for securing web communication.

While websites are migrating to HTTPS, attackers are also shifting efforts to
break the HTTPS communication. A variety of attacks against SSL/TLS have
been found. Some of them are targeting cryptographic weaknesses and design
flaw in the protocol, such as BEAST [83], CRIME [128] and POODLE [114];
some of them are exploiting implementation errors in popular cryptographic
software libraries, such as the Heartbleed [84] vulnerability in openSSL. Besides
exploiting these protocol vulnerabilities, attackers can also forge fake SSL/TLS
certificates to perform man-in-the-middle (MITM) attacks, as illustrated in the
DigiNotar [99] incident.

Complementary to protocol vulnerabilities and infrastructure flaw in HTTPS,
mixed-content inclusion can also be used to compromise TLS-enabled websites.
In mixed-content websites, the webpage is delivered to the browser over HTTPS,
but some of the additional content, such as images and scripts, are delivered
over a non-secured HTTP connection. These non-secured communications
can be exploited by an active network attackers to gain access to wide set of
capabilities ranging from access to cookies and the forging of arbitrary requests,
to the execution of arbitrary JavaScript code in the security context of the
TLS-protected website.

Desktop browsers are recently catching up to mitigate this vulnerability, but the
large majority of browsers on mobile devices, such as smartphones and tablets,
leave the end-user unprotected against this type of attack. This is worsened by
the fact that it is typically pretty straightforward to launch an active network
attack against a mobile user (e.g. via open Wi-Fi networks, or setting up a fake
wireless hotspot).

In this chapter, we report on an in-depth assessment of the state-of-practice with
respect to mixed-content vulnerabilities. In particular, the main contributions
of this chapter are the following:

• We study the different types of mixed-content inclusions, and assess their
security impact.

• We present a detailed analysis of mixed-content inclusions over the Alexa
top 100,000 Internet domains, showing that 43% of the Internet’s most
popular websites suffer from mixed-content vulnerabilities.

• We document the behaviour of mobile browsers in the face of mixed-content
inclusions.

PROBLEM STATEMENT 39

• We enumerate the best practices as well as novel mitigation techniques
against mixed-content inclusions for browsers, website owners and content
providers.

4.2 Problem Statement

It is well-known that HTTP is vulnerable to eavesdropping and man-in-the-
middle (MITM) attacks, and HTTPS is designed to precisely prevent these
attacks by adding the security capabilities of SSL/TLS to HTTP. SSL/TSL
enables authentication of the web server, and provides bidirectional encryption
of the communication channel between the client and server. While web
applications are increasingly adopt HTTPS for protection, it is important to
avoid mixed-content inclusion that might render the HTTPS protocol useless.

In a mixed-content (also known as non-secure/insecure content) website, the
webpage is delivered to the browser over TLS, but some of the additional content,
such as images and scripts, are directly delivered over a non-secured HTTP
connection from the content provider towards the web browser. Considering
an active network attacker, who positions himself on a network between the
web browser and the web server. Although the attacker can not intercept the
webpage delivered over HTTPS, he can read and modify any HTTP resources
on that page, which might lead to the compromise of a TLS-enabled website,
as shown in Figure 4.1.

Figure 4.1: Mixed-content vulnerability

An attacker can mount such an active network attack in various ways, such as
setting up a fake wireless hotspot (aka “evil twin” access point), sniffing and
spoofing network frames on an existing Wi-Fi network, or by impersonating the
user’s DNS server or gateway.

40 LARGE-SCALE ANALYSIS OF MIXED-CONTENT INCLUSION

4.3 Impact of Mixed Content Attacks

When mixed content passes by an active network attacker, he can launch various
attacks against the content provider, the TLS-protected website including the
mixed content, and the user’s browser. The impact of a mixed content attack
can be categorised as follows:

• Cookie stealing: When a browser requests mixed content, it may include
cookies associated with the content provider, which allows the attacker
to obtain the cookies. Moreover, if the content provider and the TLS-
protected website using mixed content happen to be on the same domain,
sensitive cookies used over HTTPS can get exposed to the attacker via a
HTTP request, unless the cookie is protected by the “secure” flag.

• Request forgery: As mixed content is requested over HTTP, the attacker
can manipulate the HTTP requests and responses and use them to trigger
or forge arbitrary HTTP requests, which may lead to certain variants of
SSL-Stripping [112] and Cross-Site Request Forgery (CSRF) [59].

• DOM data leakage: Mixed content may leak confidential data that
is displayed as part of the HTTPS webpage. For example, the attacker
can manipulate mixed-CSS content to obtain sensitive data in DOM via
scriptless attacks [96, 152]: CSS selectors can match against particular
content in the DOM, and leak the result of the test by fetching a web
resource (e.g. image) monitored by the attacker.

• JavaScript execution: For some types of mixed content, the attacker
can inject arbitrary JavaScript code that will be executed in the context
of the HTTPS website using the mixed content. This allows the attacker
to run arbitrary JavaScript code as if it was originating from the TLS-
protected site, and access a variety of security-sensitive JavaScript APIs.
Moreover, the attacker can inject malicious payloads, such as the BeEF
framework [7], to take over the user’s browser and even exploit the
vulnerabilities in the browser and underlying OS.

The impact of a mixed content attack depends on the content resource. Five
specific types of mixed content are studied in this chapter: Image, iframe, CSS,
JavaScript and Flash.

• Image: Though mixed-Image content, is considered passive content and
thus less harmful, it can still be used to forge HTTP requests, and it may
also reveal cookies. Additionally, an attacker may change the responses to

DATA COLLECTION 41

serve shocking images in order to harm the reputation of the vulnerable
site.

• iframe: Similar to mixed-Image content, mixed-iframe content may lead
to request forgery and cookie stealing attacks. Because of the same origin
policy, an iframe cannot break out of its own frame and thus the attack
does not give the attacker many more possibilities than mixed-Image
content, though it may lead to some attacks in older versions of vulnerable
browsers [19].

• CSS: Besides the aforementioned capabilities of mixed-Image content
which are equally present in mixed-CSS content, an attacker can also
use CSS content to obtain sensitive data from the DOM via scriptless
attacks [96].

• JavaScript: With the very rich set of JavaScript APIs available on the
web, the attacker can launch all the aforementioned attacks by intercepting
the mixed-JavaScript content and replacing it with his own malicious
code.

• Flash: Mixed-Flash content gives the attacker the same power as mixed-
JavaScript content, since it can also be used to execute arbitrary JavaScript
in the context of an HTTPS webpage, for example, via ActionScript’s
getURL("javascript:myfunction();");).

The various types of mixed content and their impact are summarised in Table 4.1.

Content type Cookie
stealing

Request
forgery

DOM data
leakage

JavaScript
execution

Image x x
iframe x x
CSS x x x
JavaScript x x x x
Flash x x x x

Table 4.1: Impact of mixed content attacks

4.4 Data Collection

To assess the prevalence mixed-content inclusion on the Web, we did a large-scale
data collection experiment. The main goal of this experiment is to assess the

42 LARGE-SCALE ANALYSIS OF MIXED-CONTENT INCLUSION

state-of-practice of mixed-content usage on the most popular Internet websites.
More specifically, we aim to (1) identify the distribution of mixed-content
inclusions over different types of mixed content, as well as over local and remote
inclusions; (2) investigate the availability of mixed content over HTTPS.

Starting with Alexa’s list of 100,000 most popular domains, we first select the
TLS-enabled websites by sending a single HTTPS request to each domain. With
the obtained list of HTTPS websites, we then crawled these domains, by using
the web crawling setup and methodology introduced in Section 3.2.

As a result, we extracted 18,526 HTTPS websites from Alexa top 100,000
Internet domains, and in total 481,656 HTTPS pages are crawled, with an
average of 26 HTTPS pages per website.

From the crawled HTTPS websites, 7,980 (43%) were found to have at least one
type of mixed content. This means that almost half of the HTTPS protected
websites, are vulnerable to one or more of the attacks mentioned in the previous
sections. In total, 620,151 mixed-content inclusions were found through our
experiment, which maps to 191,456 mixed-content files and 74,946 HTTPS
webpages.

Table 4.2 gives an overview of the distribution of mixed-content inclusions.
Image and JavaScript are the most included mixed content types, with 30% and
26% of the HTTPS websites using them respectively, while mixed-Flash content
is much less used. As for the distribution over remote and local inclusions
for each mixed content type, mixed iframe, JavaScript, and Flash content is
mostly served by remote providers, while the majority of mixed Image and CSS
inclusions are locally included.

Inclusions % remote
inclusions # Files # Pages % Websites

Image 406,932 38% 138,959 45,417 30%
iframe 25,362 90% 15,227 15,419 14%
CSS 35,957 44% 6,680 15,911 12%
JavaScript 150,179 72% 29,952 45,059 26%
Flash 1,721 62% 638 1,474 2%
Total 620,151 47% 191,456 74,946 43%

Table 4.2: Overview of distribution of mixed-content inclusions

To better understand the risks associated with websites using different types
of mixed content, we calculate the percentage of websites that are exposed
to different levels of attacks as shown in Figure 4.2. The calculation is based
on the impact analysis for each mixed content type (Table 4.1), which groups

DISCUSSION 43

different types of mixed-content inclusions according to the associated attacks.
Figure 4.2 shows that 27% websites are exposed to attacks up to “JavaScript
execution”, by including mixed JavaScript or Flash content.

Figure 4.2: Percentage of HTTPS websites vulnerable to mixed-content attacks

4.5 Discussion

In this section, we discuss some characteristics of mixed content and the
websites including them, as discovered in our experiment. First, we identify
the distribution of websites having mixed content over Alexa rank ranges and
different site categories, and then present some examples of important websites
having mixed-JavaScript content. Second, we investigate the availability of
mixed content files over HTTPS, and present the some of the most popular
mixed-JavaScript content discovered. We mainly focus on mixed-JavaScript
inclusions when giving examples, since (1) the number of mixed-JavaScript
inclusions and websites including mixed-JavaScript content is large enough to
fully represent the mixed content inclusion problem, and (2) mixed-JavaScript
content is more dangerous than the other types of mixed content.

4.5.1 Websites having mixed content

The 18,526 HTTPS websites assessed in our experiment are roughly equal
distributed across Alexa’s rank ranges (per 10 thousand), as indicated by the
blue bar in Figure 4.3. And the percentage of sites having mixed content in
each rank range (the red line) fluctuates around 43%, which is the total average
number. This implies that there is no correlation between a website’s popularity
and its probability of having mixed content. Websites with high Alexa ranks
might also be vulnerable to mixed content attacks.

44 LARGE-SCALE ANALYSIS OF MIXED-CONTENT INCLUSION

Figure 4.3: Distribution of websites having mixed content over Alexa ranks

To better understand the websites having mixed content, we also categorize the
websites by checking McAfee’s TrustedSource Web Database [24], comprised of
104 site categories. Most of the visited HTTPS websites are categorized into
88 categories, with 1,181 websites remaining uncategorized. The majority of
visited websites (66%) can be categorized into 10 popular categories.

The number of websites and the percentage of websites having mixed content over
the top 10 categories are presented in Figure 4.4. The ‘Government/Military’
websites are doing better than websites in all other categories, with “only” 31%
of them websites having mixed content. 38% of ‘Finance/Banking’ websites
having mixed content, which is worrisome, since these websites contain valuable
information and are typically the targets of attackers.

Figure 4.4: Distribution of websites having mixed content over top 10 categories

DISCUSSION 45

For the 74,946 HTTPS pages having mixed content, we check whether these
pages have an equivalent HTTP version of the same content. While most of
them do have an HTTP version, 9,792 (11%) pages are only served over HTTPS,
and these “HTTPS-Only” pages map to 1,678 (9%) HTTPS websites. We
consider it likely that these “HTTPS-Only” pages contain more sensitive data
and should be more secure, compared to those pages having the same content
served over HTTP. Thus, mixed-content inclusions on “HTTPS-Only” pages
can have more severe consequences when successfully exploited.

Table 4.3 lists ten examples of “HTTPS-Only” pages (selected from Alexa’s
top 1,000 websites) having mixed-JavaScript content. These pages provide
important functionalities like “Account Signup” , “Account Login” , and
“Password Recovery”, all of which process sensitive user information and thus
can lead to user-data leakage if the mixed-JavaScript content is intercepted by
an attacker.

HTTPS-Only pages Functionality
www.aweber.com/signup.htm Account Signup
www36.verizon.com/callassistant/signin.aspx Account Login
secure.pornhublive.com/forgot-password/ Password Recovery
euw.leagueoflegends.com/account/recovery/password Password Recovery
ww15.itau.com.br/privatebank/contatoprivate/en/index.aspx Contact Form
dv.secure.force.com/applyonline/Page1?brand=ccn Application Form
www.tribalfusion.com/adapp/forms/contactForm.jsp Contact Form
support.makemytrip.com/ForgotPassword.aspx Password Recovery
jdagccc.custhelp.com/app/utils/create_account/red/1 Account Signup
ssl6.ovh.net/~pasfacil/boutiquemedievale/login.php Account Login

Table 4.3: Ten example “HTTPS-Only” pages having mixed-JavaScript content

Of the 1,678 HTTPS websites that have “HTTPS-Only” pages, we found 97
websites that are using HTTP Strict Transport Security (HSTS) policy [97],
which indicates that these websites are making use of the latest protection
technology for ensuring the use of SSL, but they still fail to achieve their goal
by including mixed content from insecure channels.

4.5.2 Providers of mixed-content files

For the total of 191,456 mixed-content files, we check whether the providers
serve these files over a secure HTTPS channel next to their insecure HTTP
versions. While the majority of mixed JavaScript, iframe and CSS content files
are available over HTTPS, the percentage of mixed Image content files available

www.aweber.com/signup.htm
www36.verizon.com/callassistant/signin.aspx
secure.pornhublive.com/forgot-password/
euw.leagueoflegends.com/account/recovery/password
ww15.itau.com.br/privatebank/contatoprivate/en/index.aspx
dv.secure.force.com/applyonline/Page1?brand=ccn
www.tribalfusion.com/adapp/forms/contactForm.jsp
support.makemytrip.com/ForgotPassword.aspx
jdagccc.custhelp.com/app/utils/create_account/red/1
ssl6.ovh.net/~pasfacil/boutiquemedievale/login.php

46 LARGE-SCALE ANALYSIS OF MIXED-CONTENT INCLUSION

over HTTPS is significantly less, as shown in Table 4.4. Though website owners
should be responsible for the mixed content issue, the data in Table 4.4 indicates
that blaming them is too simplistic, since it ignores the fact that approximately
half of the mixed content files are only available over HTTP.

Type # Files % HTTPS-Available Type # Files % HTTPS-Available
Image 138,959 40% JavaScript 29,952 58%
iframe 15,227 77% Flash 638 46%
CSS 6,680 60% Total 191,456 47%

Table 4.4: Percentage of “HTTPS-Available” files, per mixed content type

Table 4.5 presents the top ten providers of mixed-JavaScript content and
the number of websites using them. It shows that nine out of ten of the
most frequently used content providers offer their JavaScript content also over
HTTPS, and hence about 28% of the mixed-JavaScript inclusion can be avoided
if the websites correctly include JavaScript coming from these nine providers.

Mixed-JavaScript
content providers

Available
over HTTPS ? # Websites % Inclusions

googleapis.com Yes 753 6%
google.com Yes 617 4%
addthis.com Yes 451 4%
googleadservices.com Yes 443 3%
googlesyndication.com Yes 416 3%
twitter.com Yes 358 3%
facebook.net Yes 292 2%
google-analytics.com Yes 283 1%
sharethis.com No 234 2%
doubleclick.net Yes 175 2%

Table 4.5: Top ten mixed-JavaScript content providers

As for the other mixed content types, it is the same case that most of the top ten
providers of mixed content serve their content also over HTTPS. As shown in
Figure 4.5, about 60% mixed-iframe inclusions and 50% of mixed-Flash content
inclusion are provided by the top ten providers, which again indicates that many
insecure inclusions can be avoided if the websites correctly include this content.

MIXED CONTENT MITIGATION TECHNIQUES 47

Figure 4.5: Percentage of mixed-content inclusion per cumulative number of
top mixed-content providers

For cumulative numbers of top mixed-content providers, Figure 4.5 shows the
percentage of mixed-content inclusions per provider. For example, the top 100
content providers serve about 80% of mixed iframe and Flash inclusions, more
than half of mixed JavaScript and CSS inclusions, and 48% of mixed Image
inclusions. This indicates that if the top 100 mixed-content providers offer their
content over HTTPS and the websites correctly include this content, then the
majority of mixed-content inclusions can be altogether avoided.

4.6 Mixed Content Mitigation Techniques

In this section, we investigate and enumerate protection techniques that can be
used for browser vendors, TLS-protected websites, and content providers, to
mitigate the issue of insecure inclusion of content.

4.6.1 Browser vendor

Blocking mixed content at the browser level, is the most straightforward way to
mitigate the mixed content issue. While most desktop browsers have developed a
mixed-content blocker to protect users against insecure content, mobile browsers
lag behind on this, despite the fact that mobile browsing is becoming increasingly
important to users.

48 LARGE-SCALE ANALYSIS OF MIXED-CONTENT INCLUSION

As part of our study, we investigated how all the major mobile browsers for
Android, iOS, Windows Phone and Windows RT platform handle mixed content
– shown in Table 4.61. We unfortunately discovered that most of them do not
have a mixed-content blocker, with the exception of Chrome for Android and
IE 10 Mobile which protect the user against mixed content. Firefox for Android
plans to have a mixed-content blocker in a future release2.

Platform Mobile browser blocked ? secure padlock shown ?

Google Android 4.2

Chrome 28 Yes with a yellow triangle
Firefox 23 No No
Android browser No open padlock
Opera Mobile 12 No No

Apple iOS 6.1
Safari 6 No No
Chrome 28 No with a yellow triangle
Opera Mini 7 No No

Windows Phone/RT 8 IE 10 Mobile Yes No

Table 4.6: Mobile browsers’ behavior towards mixed content

With respect to desktop browsers, Internet Explorer (IE) is the first browser
that detected and blocked mixed content with IE 7, released in 2006. When
mixed content is detected, the browser warns the user and allows her to choose
whether insecure content should be loaded [44]. Many users, however, would
probably click “Yes”, rendering the mixed-content blocker useless [139]. An
elegant way to handle mixed content would be to silently block mixed content
without prompting the users. This approach has been chosen in Chrome (version
21+) [46], Internet Explorer (version 9+) [29], and the recently released Firefox
23 in August 2013 [47]. Safari3 and Opera4 browsers do not currently have a
mixed-content blocker.

Chrome, IE, and Firefox all have a mixed-content blocker, but they handle
different types of mixed content in different ways. While mixed CSS, JavaScript,
Flash content are blocked by all of them, currently only IE and Firefox block
mixed-iframe content, though Chrome plans to also block mixed-iframe content
in a near future release5.

An interesting fact is that mixed-Image content is blocked in IE 7 and IE 8,
but it is not blocked in IE 9 and IE 10. Since mixed Image and iframe content

1The study was conducted in July 2013, which might not reflect the status in 2017.
2Firefox for Android version 25 has a mixed content blocker (released in October 2013).
3Safari browser blocks mixed content from version 9 (released in September 2015).
4Opear adopted Chromium as its base since version 15 in August 2013, thus having the

same mixed content blocker as Chrome now.
5Chrome blocks mixed-iframe content from version 29 (released in September 2013).

MIXED CONTENT MITIGATION TECHNIQUES 49

technically have the same impact which may lead to attacks “Request forgery”
and “Cookie stealing”, we recommend all browsers vendors to block all types
of mixed content, thus completely eliminating the mixed content issue from
the browser side. While this move would likely break some insecurely-coded
websites, the security benefits of mixed-content-blocking definitely outweigh the
temporary frustration of users when they encounter some websites that do not
properly work.

4.6.2 Website owner

HTTPS websites can explicitly opt-in to only include content from secure
channels. As shown in Table 4.4, 44% of the mixed-content files are not
correctly included, since the secure HTTPS version of the same resources exist
and could thus be readily used. For the remaining set of mixed-content files that
do not have a secure version, the resources can be cached locally, or proxied
using their own SSL server.

To provide better security, a website using HTTPS can use a combination
of the HTTP Strict Transport Security (HSTS) and Content Security Policy
(CSP) [137] protocols, as illustrated in Listing 4.1.

Listing 4.1: Protecting TLS-protected sites via HSTS and CSP
1 S t r i c t −Transport−Secur i ty : max−age=86400; includeSubDomains
2 Content−Secur i ty−Pol i cy : de fau l t−s r c https : ; \
3 s c r i p t −s r c https : ’ unsafe−i n l i n e ’ ; \
4 s ty l e−s r c https : ’ unsafe−i n l i n e ’

First, HSTS can be used to guarantee that webpages are only served over
HTTPS by forcing a compliant browser to only issue HTTPS requests for that
website (line 1). By enforcing the HSTS policy, it can prevent SSL-stripping
attacks [112]. Second, CSP can be used to detect mixed content violations
(in report-only mode), and to actively block mixed content by specifying that
only TLS-protected resources are allowed to be included (line 2). Notice that
in this example the unsafe-inline directives are added to preserve temporary
compatibility (lines 3-4), but website owners are encouraged to fully embrace
the CSP technology so that they achieve full protection and no longer need
these unsafe directives.

4.6.3 Resource provider

Resource providers can also mitigate the mixed content issue by offering content
over HTTPS (even only over HTTPS). Moreover, resource providers can also use

50 LARGE-SCALE ANALYSIS OF MIXED-CONTENT INCLUSION

HSTS to migrate non-HTTPS resources automatically and secure to HTTPS
version. Based on the figures in Table 4.5, pushing an HSTS header on only nine
of the most frequently used script providers would already render the mixed-
content inclusion problem harmless for about 28% of the JavaScript inclusions.
And as shown in Figure 4.5, if all the top 100 mixed-content providers enforce
HSTS headers, the majority of insecure mixed-content inclusions can be avoided.

Notice, however, that not all browsers have support for HSTS policies (e.g.,
latest IE 10 and Safari 6)6, and that HSTS inherently has a bootstrapping
problem during a browser’s very first visit to an HSTS website. During this first
request, an active network attacker can strip the HSTS header and circumvent
this protection technique. To counter this, Firefox and Chrome are shipped with
a pre-loaded list of important HSTS websites [32]. Additionally, Google Chrome
offers an “HSTS Preload List Submission” service [15] to allow a website submit
itself to Chrome’s “HSTS preloaded list”.

4.7 Limitations

To analyze the mixed-content issue on a large scale, our study relies on automated
crawling. This automation might overlook some facts. Firstly, the crawler is built
upon a headless browser, which does not interact with webpages. So, it could not
detect mixed content that are triggered by user interaction (dynamically loaded
via CSS/JavaScript code execution). Secondly, when checking the availability
of mixed content over HTTPS, we simply changed the scheme in resource URL
from “http” to “https”, and then examined the response status of the new
URL. This might fail to observe the same “HTTPS-available” resources located
on other domains or other paths. Also it includes measurement errors if the
“https-version” resource does not match the “http-version” resource. One way to
address this latent error would be downloading the resource files and comparing
the hash values of these files.

Readers should also note that the study presented in this chapter only provides
a snapshot analysis in 2013. As web technology evolves, the landscape of mixed-
content issues might have changed. To detect mixed content on a webpage, one
can manually check the error messages prompted in a browser’s console, or use
some online tools to scan the page [34, 25, 36].

6IE 11 added HSTS support in June 2015, Safari 7 supported HSTS in October 2013.

CONCLUSION 51

4.8 Conclusion

The issue of mixed content was already noticed by security researchers in 2008,
Collin Jackson and Adam Barth documented different browsers’ behaviour
towards mixed content [102]. At that time, only Internet Explorer 7 displays a
“nonsecure content” warning prompt to let users decide whether to allow mixed
content or not. The issue was largely ignored for several years, mainly due to
the very low usage of HTTPS.

As the Web increasingly adopts SSL/TLS, the mixed content issue becomes
more relevant. To better understand the issue, this chapter presents a large-scale
survey on the mixed-content inclusion problem in 2013. It was the first attempt
to systematically analyze the issue, and uncover the state of practice of mixed
content inclusion. Our study shows that almost half of the HTTPS websites
have at least one mixed-content page. And more than half of these vulnerable
pages allow for the most powerful attacker model, i.e., the ability to execute
arbitrary JavaScript in the context of the vulnerable website.

A sincere effort from the websites themselves involving converting the HTTP
requests to HTTPS requests, would significantly diminish the total number
of vulnerabilities but it would not eradicate them completely since a large
amount of content is only provided over HTTP. This, in turn, points towards
the responsibility of the content providers who must take action so that their
resources may be made available over secure channels.

Another approach to mitigate the issue is blocking mixed content in browsers.
While most desktop browsers already have a mixed content blocker in 2013,
some mobile browsers lagged behind on offering protection against mixed
content, despite the increasing popularity of mobile devices. Additionally,
mobile browsers, when compared to desktop browsers, have less support for
displaying HTTPS connection details, and for the warning of users about mixed
content [56]. Since users are entering into the “Post-PC era”, i.e., preferring
mobile devices for regular Internet browsing and even for sensitive online
transactions, it is important for mobile browsers to have equivalent protections
as their desktop counterparts.

As of December 2017, all major web browsers (both desktop and mobile versions)
block mixed content by default, which considerably alleviated the issue. However,
this does not completely solve the problem for websites owners and web users.
Firstly, browsers’ mixed-content blocker might cause some webpages to become
unfunctional if, for example, the page depends on a mixed JavaScript file. To
ensure both functionality and security, websites owners still need to fix the
issue by themselves. Furthermore, some web users are still using old web
browsers that do not provide protection. These users are still under the threat

52 LARGE-SCALE ANALYSIS OF MIXED-CONTENT INCLUSION

of MITM attacks. Thus our study on mixed-content issue is still relevant for
websites owners and web users. It motivates websites owners to address the
issue, and reminds web users the possible invisible threat behind a seemingly
secure website.

Chapter 5

Security Assessment of the
Chinese Web

Preamble

The contents of this chapter are adapted from the paper titled “Security Analysis
of the Chinese Web: How well is it protected?” [71], which was published in the
Proceedings of the 2014 Workshop on Cyber Security Analytics, Intelligence
and Automation. This work was done with the collaboration of other authors
from DistriNet, KU Leuven. Ping Chen was the lead author of this paper.

This chapter presents a large-scale security assessment of the Chinese
Web. The assessment is based on analysing the usage of known security
mechanisms introduced in Section 3.1, and evaluating the strength of HTTPS
implementations. Our work uncovers some “Chinese characteristics” with
respect to Web security.

5.1 Introduction

With the establishment of a 64K dedicated circuit to the United States, China
became part of the global Internet in April 1994 [67]. Since then the Web
develops fast in China. As of June 2017, China has 751 million Internet users,
which accounts for 54% of its population, and more than 5 million websites
exist on the Chinese Web [76]. The Web is getting increasingly integrated

53

54 SECURITY ASSESSMENT OF THE CHINESE WEB

into Chinese society, and this process is further facilitated by the widespread
availability of cheap smartphones in recent years. 96% of Chinese Internet users
regularly access the Web with their mobile phones.

While Chinese Internet users enjoy the convenience and flexibility that the
web brings them, and Chinese companies heavily depend on the Web for their
business operations, at the same time, the Chinese Web also draws increasing
attention from attackers. Several severe data breaches have made a headline
in the past few years. In 2011, more than 40 million user accounts were stolen
from Tianya Club (天涯, tianya.cn, the largest Chinese online forum). Over 20
million hotel booking records containing customers’ private information (e.g.,
identity number, home address) were leaked on the Chinese web in 2013. And
recently JD.com (京东商城), a popular Chinese e-commerce site, was reported
to have been attacked, which resulted the leakage of 12GB of user data in 2017.

These security incidents are often caused by unpatched known vulnerabilities.
According to an analysis report from Qihoo 360, a Chinese Internet security
company, about 46% Chinese websites have vulnerabilities in 2016 [132]. Active
scanning/testing for vulnerabilities, as done by Qihoo 360, can help websites to
mitigate attacks, but it is typically time and labor consuming. In this chapter,
we assess the security of the Chinese web from another perspective. Instead of
searching for vulnerabilities and weaknesses, we seek to discover the usage of
defense mechanisms by Chinese websites, trying to answer the question “How
well is the Chinese web protected?”.

In particular, we focus on client-side security policies, and HTTPS implementa-
tions, both of which can be passively detected. These defense mechanisms are
developed by the security community for securing the Web, thus the presence
of these mechanisms on a website can be used as an indicator of the security
awareness and practices of that website. By passively analysing the adoption of
defense mechanisms, an outsider can assess the security of a large number of
websites belonging to a country, or a specific industry sector. As people depend
more and more on the web for their daily lives and businesses, such a large-scale
assessment might be desirable for government and supervisory organizations to
continuously monitor the security of the Web environment.

The recent work by Van Goethem et al. [140], in which they conducted a
security assessment for more than 22,000 European websites, has shown such a
large-scale security analysis of the web is achievable, albeit challenging. In this
chapter, we apply the same basic methodology to investigate the security of the
Chinese web through a large-scale experiment.

The main contributions of this chapter are the following:

DATA COLLECTION 55

• We report the usage of client-side security policies in the top 10,000
Chinese websites, and compare it to the statistics obtained from non-
Chinese websites, showing that the Chinese web lags behind with respect
to the adoption of client-side security policies.

• We provide a comprehensive evaluation of HTTPS implementations on
the Chinese web, illustrating that the majority of HTTPS adopters do
not have secure and protected HTTPS implementations.

• We present a case study on the inadvertent private data leakage, showing
that 6% of websites leak Chinese identity numbers, that are collected in
spreadsheet files and can be obtained by search engines.

5.2 Data Collection

According to the status report published by China Internet Network Information
Center (CNNIC) in 2017, there are more than 5 million websites on the Chinese
web [76]. Since checking the whole content of all websites on the Chinese web is
close to infeasible due to its enormous size, we focus on the high-profile websites
that are ranked in Alexa’s list of most popular websites.

Starting with Alexa’s list of top 1 million sites, we first select the set of
.cn domains from the list. Next, we cross-check top.chinaz.com, a website
providing a ranked list consisting of more than 6,000 Chinese websites, in order
to identify the set of Chinese websites not using .cn domain (e.g., baidu.com,
qq.com) in Alexa’s list. As a result, we obtain a set of more than 12,000 Chinese
websites.

We then filter out the websites without an ICP (Internet Content Provider)
license. The ICP license is a permit issued by the Chinese government to permit
China-based websites to operate. Websites operating in China without an ICP
license will be fined or shut down as specified by Chinese Internet regulations.
By removing websites without an ICP license from our dataset, we try to avoid
the inclusion of some malicious websites involved in illegal online activities,
such as phishing and porn websites. After this filtering step, we obtained about
10,000 websites as our targets, to represent the high-profile part of the Chinese
Web.

In order to assess the security of the top 10,000 Chinese websites, we conducted
a crawling experiment to visit the popular webpages from these websites. For
each website, we obtain up to 200 webpage URLs by using the Bing Search
API [8] with parameters site:domain and Market:zh-cn. For instance, the
search for site:baidu.com Market:zh-cn in Bing will return a set of Chinese

top.chinaz.com

56 SECURITY ASSESSMENT OF THE CHINESE WEB

webpages belonging to baidu.com. By setting the parameter Market:zh-cn, we
instruct Bing to only search for Simplified Chinese webpages originating from
Mainland China, while excluding any English or Traditional Chinese webpages
that are not targeting users in Mainland China (hence they not considered as
part of Chinese web). After the webpage URLs are obtained, we use the web
crawling setup and methodology introduced in Section 3.2 to visit each URL.

For a comparison analysis, we collected a set of 10,000 non-Chinese websites,
and launched the same crawling experiment for these non-Chinese websites.
The set of non-Chinese websites was collected as follows: for each Chinese
website included in our study, we randomly select a non-Chinese website with
the closest rank from Alexa’s top 1 million sites. For example, yahoo.com (rank
4) is selected as it is the closest neighbor of baidu.com (rank 5).

In total, we analyzed more than 1.4 million webpages for the top 10,000 Chinese
websites, with an average of 147 webpages per website.

5.3 Usage of Client-side Security Policies

Client-side security policies are declarative security mechanisms, whereby a
website communicates its intent and leaves it up to the browsers to enforce it.
There are a number of benefits to the use of client-side security policies [101],
with auditability being one of them. Client-side security policies are typically
sent via HTTP response headers, thus it is straightforward to determine a
website’s security expectations by passive analysis.

By instructing browsers to enforce protection through server-provided policies,
websites can address a number of security issues in a very straightforward
manner. Although these policies are not security panacea, their usage on a
website can indicate the “security consciousness” of that website and its security
objectives.

In our assessment, we focus on four security features that are briefly described
below (detailed explanation can be found in Section 3.1).

• HttpOnly Cookies The HttpOnly attribute in a Set-Cookie header
restrict the access of that cookie to the HTTP(S) protocol, preventing
cookie stealing via JavaScript.

• Content Security Policy (CSP) CSP can be used to mitigate several
types of attacks including XSS. It allows a site to declare trusted sources
of content that browsers should be allowed to load on that site.

USAGE OF CLIENT-SIDE SECURITY POLICIES 57

• X-Frame-Options The X-Frame-Options header is designed to avoid
Clickjacking attacks.

• X-Content-Type-Options The X-Content-Type-Options header pre-
vents MIME-sniffing, thus reducing exposure to certain attacks.

Table 5.1 gives an overview of the usage of these security policies on the Chinese
web. HttpOnly cookies are much more widely used than other policies, and
their usage on Chinese websites is greater than that of non-Chinese websites.
The X-Frame-Options and X-Content-Type-Options header are much less
popular, and their usage on the Chinese web is lower than the estimated global
statistics. For CSP, the adoption both on the Chinese web and globally is quite
low, most likely due to the relative newness of the mechanism.

Security mechanism % Non-Chinese
Website

% Chinese
Website

Example
Chinese Website

HttpOnly Cookies 25.7% 43% alipay.com
Content Security Policy 0.06% 0.01% zhihu.com
X-Frame-Options 5.8% 1.2% weibo.com
X-Content-Type-Options 4.6% 0.5% alibaba.com

Table 5.1: Usage of client-side security policies on the Chinese web

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

1~1000	
 1001~2000	
 2001~3000	
 3001~4000	
 4001~5000	
 5001~6000	
 6001~7000	
 7001~8000	
 8001~9000	
 9001~10000	

N
um

be
r	
 o

f	
 w
eb

sit
es
	

website	
 rank	
 ranges	
 HTTP-­‐Only	
 Cookie	
 X-­‐Frame-­‐OpHons	
 X-­‐Content-­‐Type-­‐OpHons	
 HTTPS	
 Supported	

Figure 5.1: Distribution of websites using client-side security policies over Alexa
rank ranges

By analyzing the rank of websites using client-side security policies, we found
that there is no strong correlation between a website’s popularity and its

58 SECURITY ASSESSMENT OF THE CHINESE WEB

adoption of client-side security policies, as shown in Figure 5.1. The figure also
shows the distribution of Chinese websites with HTTPS implemented, which
will be discussed in next section.

Since client-side security policies rely on a browser’s enforcement, it is important
to supply the browser with a correct policy. In our experiment, we found 5
Chinese websites using the X-Frame-Options header with an incorrect value,
e.g., SAMEORIGIN/DENY, which is effectively ignored by the browser. Overall,
the adoption of client-side security policies on the Chinese web is low, which
indicates that a lot Chinese websites lag behind with respect to adopting
countermeasures on the client side.

5.4 Security of HTTPS Implementations

The HTTPS protocol is the standard solution for securing web traffic, which
guarantees the confidentiality and integrity of web communications by adding the
security capabilities of SSL/TLS to HTTP. It also provides website authenticity
with the CA/B (Certificate Authority/Browser) trust model. While HTTPS is
designed to provide strong security, it may fail to achieve the desired security
goals if it is implemented in the wrong way. A range of security issues associated
with HTTPS have, over the time, been discovered, ranging from cryptographic
weaknesses and design flaws in SSL/TLS protocol, to the insecure design of
HTTPS websites, and bad coding practices [74].

When migrating to HTTPS, websites should try to avoid known security issues,
and consider to add extra defenses to HTTPS. In this section, we assess a
website’s HTTPS implementation in two ways: (1) the presence of known
security issues related to HTTPS; (2) the usage of extra client-side security
policies for the better enforcement of HTTPS.

Note that when discussing HTTPS security, we use the active network attacker
model. An active network attacker positions himself on a network between the
host running the web browser and the web server, and is able to intercept and
tamper with the network traffic passing by. The attacker can read, modify,
delete, and inject HTTP requests and responses, but he is typically not able to
decipher any encrypted information.

5.4.1 HTTPS security issues

To build a secure HTTPS website, there are a number of security pitfalls that
websites should try to avoid. In this section, we check whether an HTTPS

SECURITY OF HTTPS IMPLEMENTATIONS 59

website suffers from the following security issues:

• Insecure SSL/TLS Implementation In our assessment, we use an
SSL scanner called sslyze [37] to search for the following security issues
related to SSL/TLS: broken certificate validation chain (e.g. untrusted
CA), support of insecure SSL 2.0, use of weak ciphers (e.g. export-grade
ciphers with small encryption key length), and the vulnerability to insecure
renegotiation attacks [39], and CRIME attacks [128]. This assessment is
similar to Qualys’ SSL survey for the global SSL landscape [35].

• Post-to-HTTPS Forms It is a relatively common practice in many
HTTPS websites to provide a form (such as a login box) on an HTTP
page while arranging for any sensitive information to be submitted over
HTTPS. This, however, is a bad practice, since an active network attacker
can launch an SSL-stripping attack to steal a user’s sensitive data without
raising the user’s suspicion [112].

• Mixed-content Inclusion Mixed-content inclusion occurs when the
main webpage is sent over a secure HTTPS channel, while some additional
content included on that page, such as images and scripts, are delivered
over non-secured HTTP connections. As a result, an active network
attacker can still try to compromise an HTTPS website by intercepting
and modifying the unencrypted content [72].

5.4.2 Client-side security policies for HTTPS websites

In addition to the client-side security policies discussed in Section 5.3, HTTPS
websites can also make use of the HTTP Strict-Transport-Security policy
and the Secure attribute of cookies. These mechanisms are specifically designed
for HTTPS websites and can be used to mitigate some HTTPS-specific security
issues.

These two security features are briefly described below (detailed explanation
can be found in Section 3.1).

• HTTP Strict-Transport-Security (HSTS) Set by a website via
a HTTP response header field (Strict-Transport-Security), HSTS
specifies a period of time during which the user’s browser is instructed
that all requests to that website need to be sent over HTTPS, regardless
of what a user requests. The HSTS Policy helps protecting website users
against both passive eavesdropping, as well as active man-in-the-middle
(MITM) attacks.

60 SECURITY ASSESSMENT OF THE CHINESE WEB

• Secure Cookies Although the traffic between a web server and a browser
is encrypted when using HTTPS, the cookies stored in the browser are
not, by default, limited to an HTTPS context. By setting the Secure
attribute, the scope of a cookie is limited to secure channels, thus stopping
browsers from sending cookies over unencrypted HTTP requests.

5.4.3 Findings and discussion

In order to identify HTTPS pages from the 10,000 websites, we try to enumerate
HTTPS URLs for each website. First, we select HTTPS URLs obtained from
Bing. Additionally, we search for any HTTPS links on HTTP webpages during
our crawling experiment, and add these HTTPS links to our dataset for later
crawling. By doing so, we identified 672 Chinese HTTPS websites, with an
average number of 15 HTTPS pages per site. For the dataset of non-Chinese
websites, we found 1,601 HTTPS websites, with an average number of 19
HTTPS pages per site. We summarise our findings concerning HTTPS security
issues and defense mechanisms in Table 5.2.

% Non-Chinese
HTTPS websites

% Chinese
HTTPS websites Example findings

Insecure SSL/TLS
Implementation

70.9% 84.1% passport.baidu.com

Post-to-HTTPS
Forms

31.8% 21.4% tenpay.com

Mixed-content
Inclusion

20.7% 10.6% xiu.com

HTTP Strict
Transport Security

3.6% 1.3% alipay.com

Secure Cookies 19.9% 30.7% hangseng.com.cn

Table 5.2: Assessment overview for Chinese HTTPS websites

The vast majority (84.1%) of Chinese HTTPS websites have SSL/TLS
implementation issues. More specifically, 13% of websites are using self-signed
certificates, 19% have insecure SSL 2.0 enabled, 30% support weak ciphers,
and 18% and 33% are vulnerable to CRIME and SSL Renegotiation attacks,
respectively.

One can see that Chinese HTTPS websites tend to have less problems with
respect to post-to-HTTPS forms and mixed-content inclusion, when comparing

SECURITY OF HTTPS IMPLEMENTATIONS 61

to the non-Chinese HTTPS websites. Note, however, that we can not claim that
Chinese HTTPS websites are doing better than non-Chinese HTTPS websites.
Since 28% of Chinese HTTPS websites have only one HTTPS webpage, the
probability of these issues occurring in Chinese websites is smaller than on
non-Chinese websites, which offer many more pages over HTTPS.

As for the usage of client-side security policies on HTTPS websites, we only
found 8 websites using HSTS policies, and 206 websites having secure cookies.
Interestingly, we noticed that websites are more likely to enable other client-side
security policies when they have HTTPS implemented. For example, 69.8% of
Chinese HTTPS website also make use of HTTP-Only Cookies, a fraction much
higher than the one presented earlier in Table 5.1 (43%).

00%	

05%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

45%	

50%	

0	

20	

40	

60	

80	

100	

120	

Business	
 Educa5on	
 Government	
 Finance	
 Online	

Shopping	

Marke5ng	
 Travel	
 Internet	

Services	

Portal	
 Sites	
 Online	

Gaming	

Pe
rc
en

ta
ge
	
 o
f	
 H

TT
PS
	
 w
eb

sit
es
	

N
um

be
r	
 o

f	
 H
TT
PS
	
 w
eb

sit
es
	

website	
 categories	
 #	
 of	
 HTTPS	
 website	
 in	
 a	
 category	
 %	
 of	
 HTTPS	
 website	
 using	
 secure	
 cookie	
 in	
 a	
 category	

Figure 5.2: Distribution of Chinese HTTPS websites over top 10 categories

As for the distribution of HTTPS websites, we didn’t find any strong
correlation between a website’s popularity and its adoption of HTTPS (as
shown in Figure 5.1). To better understand the Chinese websites using HTTPS,
we categorized the 672 HTTPS websites, using McAfee’s TrustedSource Web
Database [24]. For HTTPS websites not found in McAfee’s database, we
manually visit the websites and label them.

The number of HTTPS websites and the percentage of HTTPS websites having
secure cookies over the top 10 categories are presented in Figure 5.2. One
can see that, the financial websites are doing better than websites in all other
categories, with 110 financial websites having HTTPS implemented, and about
half of them using secure cookies.

With only 6.7% of websites having HTTPS implemented, the adoption rate of
HTTPS on the Chinese web is much lower, compared to the global statistic
of 27% of the Alexa top 1 million websites already used HTTPS in 2010 [127].

62 SECURITY ASSESSMENT OF THE CHINESE WEB

Although HTTPS is good for security, many websites are reluctant to migrate to
HTTPS, due to several concerns, such as, SSL/TLS performance overhead, and
operational costs. Beside these common concerns shared by websites globally,
Chinese websites have to consider a China-specific issue when deciding whether
to adopt HTTPS, which is the lack of HTTPS support from Baidu.

As explained in Baidu’s official search engine optimization (SEO) guide [5],
Baidu does not have a good support for HTTPS, thus Chinese websites are
recommended to avoid the use of HTTPS. If HTTPS is essential for a website,
the website should try to make the HTTPS webpages also available over HTTP,
in order to get indexed by Baidu.

To further support our claim about Baidu’s partial liability for the low HTTPS
adoption on the Chinese web, we compare the search results from Baidu and
Bing, for the 672 Chinese HTTPS websites. While we obtained about 2,000
HTTPS URLs for 296 (44%) HTTPS websites during data collection with Bing
Search API, we didn’t get any HTTPS URLs from Baidu when using the same
queries like site:example.com to search for the popular webpages of each
HTTPS website.

5.4.4 Usage of KNET trusted website certificate

One of the benefits of implementing HTTPS is website authenticity, which can
help users to identify legitimate websites and prevent some phishing attacks.
With only 605 Chinese websites having HTTPS implemented, and 13% of them
using a self-signed certificate, it is challenging for Chinese Internet users to
identify phishing websites by checking SSL certificates. In order to protect their
users from phishing attacks, many Chinese websites opt for a Chinese-specific
approach for website authentication by using trusted website certificate issued
by KNET (owned by CNNIC) [22].

KNET certifies a website based on its ICP license, registration information
in industrial and commercial bureau, and organization information. Certified
websites are recorded in the “National Trusted Site Database Open Platform”,
which is used by various client-side applications to help users identify trusted
websites. These applications include search engines (Sogou, SOSO and Bing),
browsers (Sougou, Maxthon, Taobao, Ali, QQ and 114la), anti-virus software
(Jinshan), and IE browser plugins. Considering the large amount of phishing
websites on the Chinese web [77], and the various concerns about HTTPS
implementations, we think that using a trusted website certificate is a practical
and effective way for Chinese websites to defend themselves against phishing
attacks.

IDENTITY LEAKAGE 63

By querying the trusted site database, we found that only 21.8% (2,182) of
the investigated Chinese website are using KNET’s trusted website certificate.
Similar to the distribution of HTTPS websites, certified trusted websites mostly
belong to categories such as government, business, finance, and online shopping.

5.5 Identity Leakage

Online data leakage incidents are usually caused by cyber attacks. For example,
in December 2013, Chinese hackers leaked over 20 million hotel reservation
records containing customer information [1]. Careless or improper management
of sensitive data, however, may also lead to incidents. For instance, a Chinese
university inadvertently made 2,000 students’ identity numbers and bank
accounts available, through files located on their website [2]. In this section,
we investigate the issue of inadvertent data leakage. More specifically, we
check whether a website is hosting spreadsheet files containing Chinese identity
numbers (henceforth ID numbers), that can be obtained simply via search
engines (as shown in Figure 5.3).

Figure 5.3: Searching inadvertent identity leakage via Google

For each Chinese website in our dataset, we query both Google and Baidu with
“身份证(literally means ID card) site:example.cn filetype:xls” in order
to obtain the first hundred search results. Then, for each result, we examine
the description part using regular expressions and the Chinese ID checksum
algorithm [150], in order to find valid ID numbers. If the description part of a
search result contains a valid ID number, then we claim that the search result
(spreadsheet file) leaks private ID information. At the end of this process, we
found 2,496 spreadsheet files hosted on 548 websites through Google searches,
and 1,422 spreadsheet files hosted on 315 websites through Baidu searches.

64 SECURITY ASSESSMENT OF THE CHINESE WEB

In total, 3,680 spreadsheet files containing ID numbers were found, located on
603 (6%) Chinese websites. After categorizing these 603 websites, we found
that the majority of these files are hosted on governmental and educational
websites, as shown in Table 5.3. By examining the file names and descriptions
from the results of the two search engines, we found that these spreadsheet files
containing ID numbers are typically used for announcing the results of various
activities, such as recruitment in government, enrollment in universities, and
awarding prizes and scholarships.

Category #/% websites #/% files Example findings
Government 247 (41%) 1,592 (43.2%) Candidates for a govern-

ment bureau
(广州市工商局体检名单)
(gzaic.gov.cn)

Education 237 (39.3%) 1,543 (41.9%) Registrants in a university
(浙江大学报名点名单)
(zju.edu.cn)

Others 119 (19.7%) 545 (14.9%) Participants in match
(竞走锦标赛人员名单)
(sport.org.cn)

Table 5.3: Distribution of websites leaking spreadsheet files containing Chinese
ID numbers

The issue of inadvertent private data leakage on Chinese Web, is mainly due
to the lack of privacy awareness in Chinese organizations and the lack of legal
protection for private information in China. Although such inadvertent mistakes
are not malicious in nature, the leaked IDs can be used by criminals for various
illegal activities, such as selling them to teenagers for online gaming registration
(to evade the anti-addiction system), using them for train ticket scalping (a
valid ID is required for buying train tickets online), and operating malicious
online shops with impersonated identities.

Moreover, some leaked spreadsheet files also contain other types of personal
information such as phone numbers, occupations and addresses. A motivated
adversary can leverage all these private information to conduct social engineering
attacks against related individuals, and subsequently to launch targeted attacks
against associated organizations. For example, some leaked spreadsheet files
contain recruitment information for the government, which could, in principal, be
used by advanced persistent threat actors [68] to attack the Chinese government.

We consider this as a severe privacy issue on the Chinese web. If an ID number

REVISITING THE SITUATION IN 2017 65

or phone number must be made available for identification or authentication,
organizations can straightforwardly mask some digits in the number (e.g.,
123456******1234 for an ID number, 138****1234 for a phone number), in order
to protect private information. Considering that the last digit of an ID number
is a checksum, it is better to also mask that digit (e.g., 12345619****567*)
instead of masking only 4 birthday digits (as used for printing an ID number on
a train ticket), in order to obtain higher anonymity and prevent brute-forcing
the ID number based on the ID checksum algorithm.

To quantify websites that are using masked digits for protection, we also searched
for masked ID numbers when examining results from search engines. In total,
we found 83 websites using masked digits when publishing spreadsheet files.
Not surprisingly, 9 of them are financial websites, including the big four Chinese
banks. This shows that financial organizations put more effort in protecting
themselves and their users.

5.6 Revisiting the Situation in 2017

It has been almost three years since our first study on Chinese Web [71]. To
get a view on the recent situation, this section presents a follow-up assessment
in 2017. For each security feaure, Table 5.4 shows the percentage of Chinese
websites with that feature enabled in 2014 and 2017. Clearly, the usage of
defence mechanisms on the Chinese Web has considerably increased over years,
although the overall adoption rate is still lower, compared to the global Web.

Security Features % Websites in 2014 % Websites in 2017
HttpOnly Cookies 43.0% 56.7%
Content Security Policy 0.01% 1.7%
X-Frame-Options 1.2% 16.8%
X-Content-Type-Options 0.5% 7.8%
HTTPS Support 6.7% 25.8%
Secure Cookies 2.1% 6.8%
Strict Transport Security 0.07% 4.6%

Table 5.4: Adoption rate of defence mechanisms on the Chinese Web in 2014
and 2017

A particular progress is the increasing adoption of HTTPS on the Chinese Web.
This improvement can be partly attributed to the change of Baidu’s crawling
policy. As explained in Section 5.4.3, Baidu was partially blamed for the low

66 SECURITY ASSESSMENT OF THE CHINESE WEB

HTTPS adoption in 2014, it had no support for HTTPS websites until May
2015 [6]. While more Chinese websites are migrating to HTTPS, many of them
fail to address HTTPS security issues. 37% of Chinese HTTPS websites have
mixed-content inclusion in 2017, a significant increase from the 10% in 2014.

As for the inadvertent identity leakage, it remains a serious privacy issues.
Although we found more websites are using masked digits to hide identity
number, there are still about 4% of Chinese websites should be blamed for
their poor management of individuals’ private data in 2017. Most of them are
websites of government bodies or educational institutes.

5.7 Limitations

During our data collection process, we used Alexa’s list to select .cn domains
and Bing search engine to obtain page URLs. However, both Alexa and Bing are
not dominant in the Chinese market. Thus our dataset might be biased towards
Chinese websites that are optimized for Alexa and Bing (e.g., by including
site validation code in HTML). Moreover, our crawler runs outside China, the
content it retrieved might be different if it runs inside China. This is mainly due
to the so-called “Great Firewall” employed by Chinese government to censor
international traffic, and content restrictions (based on IP geolocation, copyright,
etc.) imposed by website owners. To have a better representative dataset, one
can use the Baidu search engine and run the crawler inside China.

A second limitation is that many small and medium Chineses organizations,
while having their own websites, do not use the website to provide service to
customers, instead they rely on web services provided by big companies like
BAT (the three largest tech giants in China: Baidu, Alibaba, and Tencent) for
business operations. For example, a small company might have an online shop
on Taobao (owned by Alibaba), or a service site in WeChat (owned by Tencent),
while its own website is only used for displaying some static information. Thus,
the impact of an insecure Chinese website might not be as severe as an insecure
European website.

5.8 Conclusion

As the web becomes more complex and popular, security and correctness become
ever more crucial attributes of web applications. A variety of methods and
techniques have been proposed to test web applications [110], and most of them
are designed to detect specific vulnerabilities and errors such as SQL Injections

CONCLUSION 67

and XSS attacks. In this paper, we analyze the presence of defense mechanisms,
and use it as a security indicator to measure the security of the Chinese web.

To the best of our knowledge, this paper is the first that attempts to analyze the
overall security of the Chinese web from the aspect of the adoption of defense
mechanisms. By investigating the usage of client-side security policies, and
assessing the HTTPS implementations on the Chinese web, we observed that
the majority of websites lack support for client-side security policies, and that
the statistics of vulnerable HTTPS implementations of Chinese websites are
also worrisome. Moreover, we found that 6% of websites are leaking Chinese ID
numbers through spreadsheet files that can be obtained by simple searches in
Google and Baidu. We hope that our study can help Chinese websites owners
to discover and prioritize the adoption of security mechanisms, and raise the
security and privacy awareness among Chinese web users.

Chapter 6

Longitudinal Study of Web
Security

Preamble

The contents of this chapter are adapted from the paper titled “Longitudinal
Study of the Use of Client-side Security Mechanisms on the European Web” [69],
which was published in the Proceedings of the 25th International Conference
Companion on World Wide Web in 2016. This work was done with the
collaboration of other authors from DistriNet, KU Leuven. Ping Chen was the
lead author of this paper.

This chapter presents a long-term longitudinal security assessment of the
European Web. Our study identifies a trend of increasing usage of client-
side security mechanisms on the web, and proposes a web security scoring
system to compare the security postures among different websites.

6.1 Introduction

The web is constantly evolving, with new technologies such as HTML5 and
CSS3 getting widely used and supported, which provide Internet users richer
experience. In the mean time, the attacks on the web are also changing, shifting
from server exploitation such as SQL injection to client-side attacks such as
XSS and Man-in-the-Middle (MITM) attacks such as SSL-stripping.

69

70 LONGITUDINAL STUDY OF WEB SECURITY

In response to this trend, various client-side security mechanisms are developed,
such as Content Security Policy (CSP) and HTTP Strict-Transport-Security
(HSTS). These client-side security mechanisms are server-driven, but requires
the browser to enforce them. The presence of these mechanisms on a website
can be used as an indicator of the security awareness and practices of that
website.

This chapter tries to give an overview of the adoption of client-side security
mechanisms on the web, and provide a state-of-practice reference model of web
security for website operators. To achieve this, we crawled more than 18,000
European websites in a four-year period. With the gathered data, we analyze
the evolution of the usage of client-side security mechanisms, and use a security
scoring system to compare a website to its peers (based on business vertical or
popularity), in order to provide a web security baseline for website operators.

Our main contributions are the following: (1) We report the usage of seven
client-side security mechanisms on European web in September 2013, September
2015 and September 2017, and analyze the evolution of adoption (i.e., identify
which security features are being adopted over time); (2) We propose a web
security scoring system to compare the security posture (i.e., the practice of
the usage of client-side security features) among different websites, and among
countries, business sectors; (3) We provide a web security baseline and maturity
model for website operators, by applying the web security scoring system to a
set of websites.

6.2 Data Collection

To study the security posture of the European web popular websites from the 28
member states in the EU are chosen to represent the European web. For each
EU country, we selected the top 1,000 websites ending with the corresponding
ccTLD (country code top-level domain) from Alexa’s list of the top 1 million
sites [3]1. As a result, we have a set of 23,050 European websites.

We then use the crawling approach introduced in Section 3.2 to collect data
from these websites in a four-year’s timeframe. We remove the websites with
less than 50 successfully crawled pages from our dataset. As a result, we have a
dataset of 20,157 websites in 2013, 18,074 websites in 2015, and 14,984 websites
in 2017, as shown in Table 6.1. The number of websites decreased over time
because some websites disappeared and some websites changed domain names.

1Alexa top 1 million list in September 2013

SECURITY FEATURES AND SCORING SYSTEM 71

Time # of sites # of pages avg. # of pages/site
Sept. 2013 20,147 3,499,080 174
Sept. 2015 18,074 2,992,395 166
Sept. 2017 14,984 2,266,338 151

Table 6.1: Overview of European Web dataset for longitudinal study

6.3 Security Features and Scoring System

To design a scoring system that reflects a website’s security level, we had a
panel, consisted of four web security experts from our research group, to discuss
about what metrics can be used for that. Instead of focusing on finding web
vulnerabilities, we considered the question “how could we change a non-secure
website to be better secure, by adopting defensive mechanisms step by step,
based on priority consideration?”

6.3.1 Client-side security features

We began with literature on the common web attacks and best practices to
improve web security. In particular, we went through the OWASP Top Ten Most
Critical Web Application Security Vulnerabilities [120] and the CWE/SANS
Top 25 Most Dangerous Software Errors [113], to identify the major web threats.
We observed that while server-side attacks, such as SQL injection and command
injection, are still prevalent, the client side is receiving increasing attention from
web attackers. Meanwhile, client-side countermeasures and security policies are
also developing [131].

We identified three categories of threats that can be mitigated from the client
side: Insecure Communication, Cross-site Scripting (XSS), Insecure Framing.
In order to counter these threats, website operators can adopt seven client-side
security features.

• Category 1: Secure Communication This category includes four
features that contribute to secure communication between a server and a
browser: HTTPS support, HTTP Strict Transport Security (HSTS) and
Secure Cookies.

• Category 2: XSS Mitigation This category includes three features
that can be used to mitigate XSS attacks: HTTPOnly Cookies, X-Content-
Type-Options (XCTO), and Content Security Policy (CSP).

72 LONGITUDINAL STUDY OF WEB SECURITY

• Category 3: Secure Framing This category has one feature X-Frame-
Options (XFO) to enable secure framing.

By taking into consideration of the maturity of the feature, the complexity
to implement, the coverage of the feature, and the impact of related attacks,
we discussed how these client-side security features should be adopted. The
maturity is assessed based on the age of a feature, and the support from browsers.
The implementation complexity reflects the efforts needed to deploy the feature.
The coverage indicates the effect of a feature to prevent attacks.

Feature Maturity (Year) Coverage Complexity Impact
HTTPS support High (1996) Low High High
HSTS Medium (2012) High Low High
SecureCookies High (2000) Medium Low Medium

Table 6.2: Client-side security features for Secure Communication

For the first category (“Secure Communication”), HTTPS is the most
fundamental feature. While it is well matured, the implementation of HTTPS
still involves complex configuration and management [74, 115]. Once a website
has HTTPS implemented, it can then adopt Secure Cookies and HSTS to
strength HTTPS. Both HSTS and SecureCookies are relatively easier to adopt,
since they only require web developers to specify the policy in HTTP response
headers. Though HSTS is less matured than SecureCookies, it provides broader
coverage against attacks by forcing all communication over HTTPS (hence
preventing cookies stealing as well).

Feature Maturity (Year) Coverage Complexity Impact
HttpOnlyCookies High (2002) Medium Low Medium
XCTO Medium (2008) Low Low Low
CSP Low (2014) High Medium High

Table 6.3: Client-side security features for XSS Mitigation

For the second category (“XSS Mitigation”), the HttpOnly Cookies is the
most matured feature. It addresses the issue of cookie stealing in XSS attacks
(medium coverage and impact). While CSP is relatively newer and difficult to
implement [144, 89], it can be used to prevent not only XSS, but also clickjacking
and data injection attacks (high coverage and impact). XCTO has low coverage
and impact, since it only address XSS via MIME sniffing.

SECURITY FEATURES AND SCORING SYSTEM 73

For the third category (“Secure Framing”), X-Frame-Options (XFO) can be
used to prevent clickjacking attack. Compared to the other two categories,
clickjacking has lower impact, and it is easy to mitigate.

Feature Maturity (Year) Coverage Complexity Impact
XFO Medium (2009) Medium Low Low

Table 6.4: Client-side security features for Secure Framing

6.3.2 Web security scoring system

Based on our expert opinions, we came up with a web security scoring system
built upon the assessment of seven web security features. These features serve
as the metrics of our web security scoring system, since they reflect a website’s
effort on security and they are easily detectable from normal browsing.

For each (group of) website(s), we define the overall security score (OverallScore)
as a weighted average of three distinct subscores:

OverallScore = 40
100 × SecureCommunicationScore

+ 40
100 ×XSSMitigationScore

+ 20
100 × SecureFramingScore

As part of of scoring system, we assess for each security feature how well the
(group of) website(s) is doing compared to websites in the full dataset. For
instance, we want to grade a website with a score 0.61 for the feature HTTPS,
if the website outperforms 61% of the websites in our dataset (i.e. by having a
higher percentage of pages over HTTPS). The scores of the individual features
are then combined to provide a metric for the three subscores.

More concretely, we apply the following approach:

1. For each security feature, we compute an empirical cumulative distribution
function (ECDF) for all websites. The ECDF is computed based on the
percentage of webpages having that feature on a particular website.

74 LONGITUDINAL STUDY OF WEB SECURITY

2. This computed ECDF is used to calculate an ECDF value per website
and per feature.

3. The subscores are calculated by applying a weighted averages of the ECDF
values.

The weight given for each feature reflects the relative importance and maturity
of the feature in each category. The more fundamental and matured feature
get relatively higher weights. In particular, the following weights are used to
calculated the three subscores:

Secure Communication Score. This subscore is measured by applying a
weighted average of the HTTPS, HSTS, and Secure Cookies usage.

SecureCommunicationScore = 45
100 ×HTTPS

+ 25
100 × SecureCookies

+ 30
100 ×HSTS

XSS Mitigation Score. This subscore measured by applying a weighted
average of the HttpOnly Cookies, XCTO, and CSP usage.

XSSMitigationScore = 50
100 ×HttpOnlyCookies

+ 30
100 ×XCTO

+ 20
100 × CSP

Secure Framing Score. This subscore is measured by the XFO usage.

SecureFraming = 100
100 ×XFO

6.4 General Findings

6.4.1 The use of security features on European web

Table 6.5 gives an overview on the use of security features on European web
over four years. It clearly illustrates that the web security on the European

GENERAL FINDINGS 75

Web did improve, as each of the security features have been adopted in 2017 by
a larger fraction of websites than in 2013. One can also observe that the pace
of improvement accelerates over time; the past two years have seen much faster
adoption of security features.

Security feature % of websites
Sept. 2013 Sept. 2015 Sept. 2017

HTTPS Support 22.96% 33.29% 71.97%
Secure Cookies 5.86% 7.56% 25.01%
HSTS 0.49% 4.30% 19.82%
HttpOnly Cookies 36.52% 43.86% 54.89%
XCTO 2.24% 6.82% 24.43%
CSP 0.05% 0.43% 5.71%
XFO 4.80% 14.93% 32.08%

Table 6.5: Overview of the use of security features on European web

We then assess to what extent the security of a particular website did improve
over time, by measuring for each website if it adopts more security features over
time or not. Since none of the websites have all seven security features enabled
in 2013, there is space for improvement for all the websites.

By doing this, we found that more websites improved from 2015 to 2017 than
they did between 2013 and 2015. There are 8,685 websites adopted more security
features by 2017 than what they already have in 2015, while the number of
improved websites from 2015 to 2017 is 5,756. And by 2017, there are 377
websites have all seven security features enabled.

6.4.2 Websites that adopted more security features

In this section, we investigate the relationship between the adoption of security
features on a website and its popularity (measured by its Alexa global rank [3]),
its sector (derived from McAfee’s TrustedSource Web Database [24]). We
expect that higher ranked popular website and websites belonging to critical
sectors such as finance and online shopping, might have more incentive to adopt
security features in order to protect their asset, compared to the less-known or
less-valuable websites.

To confirm this hypothesis, we first use Point-biserial correlation to study the
correlation between the adoption of security features in a website and its Alexa
rank. Generally, the Pearson product-moment correlation coefficient (Pearson’s
r) is widely used in statistics as a measure of the degree of linear dependence

76 LONGITUDINAL STUDY OF WEB SECURITY

between two quantitative variables. In our case, the adoption of security feature
is a binary choice, thus we use the Point-biserial correlation coefficient. The
Point-biserial correlation coefficient is a special case of Pearson in which one
variable is quantitative and the other variable is dichotomous. The result of
Point-biserial correlation varies between −1 and +1, and a positive coefficient
implies that as one variable increases, the other variable also increases and
vice versa. When using Point-biserial correlation to test statistical dependence,
we set the significance level to 5%. The p-value is calculated using Student’s
t-distribution. We accept the hypothesis only if the p-value is smaller than the
significance level.

datasets coefficient p-value
2013 vs 2015 -0.076 3.1 × 10−29

2015 vs 2017 -0.089 7.4 × 10−27

2013 vs 2017 -0.098 3.2 × 10−32

Table 6.6: The correlation between the adoption of security features in a website
and its Alexa rank

We compared the three datasets in pairs to study the websites that adopted
more security features over different time periods. As shown in Table 6.6, all
the correlation coefficients are negative, with p-value less than 5% (hence a
negative correlation). It confirms our hypothesis that higher ranked websites
tend to adopt more security features. To better illustrate this correlation, for
per 10,000 Alexa ranks, we calculate the percentage of websites that belongs
to that rank range, which have adopted more security features in 2017 versus
2013, as shown in Figure 6.1. We can observe a downtrend for the percentage
of websites that adopted more security features over the Alexa ranks.

GENERAL FINDINGS 77

Figure 6.1: Percentage of websites that adopted more security features in 2017
versus 2013, plotted per 10k Alexa ranks

Figure 6.2: Percentage of websites that adopted more security features in 2017
versus 2013, grouped per business vertical

78 LONGITUDINAL STUDY OF WEB SECURITY

As for the relationship between the adoption of security features in a website and
its sector, we calculate the percentage of websites that adopted more security
features in each sector. Figure 6.2 shows the top 10 sectors that have larger
percentage of websites adopted more security features over time. It comes as
no surprise that Education and Finance are the best two performing categories.
Since educational and financial organizations handle a lot sensitive personal
data (students’ profiles, financial transactions), they have more incentives to
adopt security features for protection.

And among the 377 websites that have all seven security features enabled in
2017, 72 sites are from the Education sector, accounting for 10% educational
websites; 63 sites are from the Finance sector, accounting for 11% financial
websites.

6.5 Web Security Score Analysis

In the previous section, we assess to what extent the security of a particular
website did improve over time, by measuring for each website if it adopts
more security features over time or not. In this section, we investigate how
consistently a security features is applied on a given website, by calculating
ECDF-based security scores (as explained in Section 6.3), which essentially
compare the usage of a security feature on a particular website with the usage
on other websites in the dataset.

6.5.1 EU web security score, in terms of website popularity

To assess the web security score in terms of website popularity, the websites are
grouped per 10,000 Alexa ranks, and the average score is calculated for websites
that belongs to that rank range. Figure 6.3 shows the average OverallScore
for per 10k Alexa ranks.

Figure 6.3 hints that higher ranked websites tend to have higher score. To
confirm this assumption, the Spearman correlation is used to assert the
correlation between the OverallScore in a website and its Alexa rank (as
listed in Table 6.7).

Spearman’s rank correlation coefficient is a nonparametric measure of the
monotonicity of the relationship between two variables. It is defined as the
Pearson correlation coefficient between the ranked variables. However, unlike
the Pearson correlation, the Spearman correlation does not assume that both
variables are normally distributed. It is a nonparametric statistic, which do

WEB SECURITY SCORE ANALYSIS 79

Figure 6.3: The average overall security score for per 10k Alexa ranks

not rely on assumptions that the dataset is drawn from a given probability
distribution. The result of Spearman correlation varies between −1 and +1, and
a positive coefficient implies that as one variable increases, the other variable also
increases and vice versa. When using Spearman correlation to test statistical
dependence, we set the significance level to 5%. The p-value is calculated using
Student’s t-distribution. We accept the hypothesis only if the p-value is smaller
than the significance level.

As expected from Figure 6.3, there is negative correlation between the
OverallScore in a website and its Alexa rank (see Table 6.7), and this correlation
also holds for all three sub scores. This correlation is consistent with the
correlation that higher ranked websites tend to adopt more security features, as
we discussed in the previous section.

datasets coefficient p-value
Sept. 2017 -0.18 1.1 × 10−108

Sept. 2015 -0.15 2.9 × 10−86

Sept. 2013 -0.14 5.4 × 10−95

Table 6.7: The correlation between the security score of a website and its Alexa
rank

80 LONGITUDINAL STUDY OF WEB SECURITY

6.5.2 Web security score per business vertical in EU

In this section, we compare the security evolution of the websites per business
vertical. For the ten most popular business vertical, the average score is
calculated for websites that belongs to that business vertical. Figure 6.4 shows
the average OverallScore for 10 business verticals, sorted by their 2013 security
score, to easily identify business verticals that got better than their adjacent
peers.

Figure 6.4: The average overall security score for each business vertical

The Education and Finance verticals are the two best performing categories,
which is consistent with the finding that educational and financial organizations
tend to adopt more security features (as shown in Figure 6.2 in Section 6.4.2). In
addition, we can also observe that the Business, Shopping, and Marketing sectors
improved a lot and eventually caught up their neighbors. This improvement
might be driven by the fast growth of E-commerce in recent years [13]. As
more companies expand their business online, and more people choose online
shopping, websites from these sectors are incentivised to provide better web
protection.

HTTPS MIGRATION ANALYSIS 81

6.5.3 Web security score per country in EU

In this section, we compare the security evolution of the websites per country.
For each EU country, the average score is calculated for websites that belongs to
that country. Figure 6.7 shows the average OverallScore for 25 EU countries.
Cyprus(.cy), Malta(.mt) and Luxemburg(.lu) were removed from the dataset,
as the number of websites in these countries were less than 100. The countries
in Figure 6.7 are sorted by their 2013 security score, to easily identify countries
that got better than their adjacent peers.

Figure 6.5: The average overall security score for each EU country

One can easily observe that the Netherlands (.nl), Germany (.de) and United
Kingdom (.uk) stay ahead over the past few years. Others’ positions fluctuated
a bit, but there are no big changes except for Belgium (.be) which improved
considerably from 2015 to 2017, making it the fourth best EU country in terms
of web security performance.

6.6 HTTPS Migration Analysis

HTTPS in the standard solution for securing web traffic nowadays. Although
it increases performance overhead and operating costs, the security benefits it
brings outweigh these disadvantages. As previously shown in Table 6.5, more
than 70% of websites have enabled HTTPS support as of September 2017. In

82 LONGITUDINAL STUDY OF WEB SECURITY

this section, we investigate the websites that have adopted HTTPS since 2013.
We call these websites the newly adopted HTTPS sites.

To understand the types of newly adopted HTTPS sites, we plot the top
10 sectors that have the most percentage of websites with HTTPS support
in Figure 6.6. One can see that Finance and Education sectors are the first
movers of HTTPS adoption, with more than 50% of websites have HTTPS
support in 2013. They remain the best two verticals over years, but other sectors
caught up by 2017. In particular, the past two years have seen substantial
improvement of HTTPS adoption in other sectors such as Shopping and Real
Estate.

Figure 6.6: Percentage of websites in each business vertical that adopted HTTPS
over time

While HTTPS already provides securing communication, it would be better to
also implements HSTS and Secure Cookies to have stronger protection against
Man-in-the-middle (MITM) attacks. In this section, we also investigate whether
the newly adopted HTTPS sites implement HSTS and Secure Cookies as well,
when migrating to HTTPS.

WEBSITES THAT DROPPED OUT DURING THE STUDY 83

HTTPS sites
in 2015

Newly adopted
sites 2013-2015

HTTPS sites
in 2017

Newly adopted
sites 2015-2017

HSTS 11.4% 14.1% 27.2% 38.1%
Secure 24.5% 32.8% 34.7% 48.4%

Table 6.8: Percentage of newly adopted HTTPS sites that enabled Secure
Cookies and HSTS features

As shown in Table 6.6, 14% of newly adopted HTTPS sites from 2013 to 2015
have HSTS implemented, which is more than the overall percentage (11% of
all HTTPS sites in 2015). And the use of Secure Cookies in newly adopted
HTTPS sites is also more than the overall percentage. The same pattern can
be also found for the newly adopted HTTPS sites from 2015 to 2017.

This indicates that the newly adopted HTTPS sites in recent years tend to be
more security conscious than the websites having HTTPS already for a long
time. In other words, the use of Secure Cookies and HSTS features occurs
more often on new HTTPS websites.

6.7 Websites that Dropped Out During the Study

While our longitudinal study showed an improvement on the European web,
with respect to the adoption of client-side defense mechanisms, this might
partly due to the disappearance of websites during the four-year period. To
exclude this bias, we selected the websites that appeared in all the three datasets
shown in Table 6.1, which results a dataset that contains 13,827 websites, and
re-analyzed the trend.

Table 6.9 shows the percentage of websites that adopted security features over
time. Compared to figures in Table 6.5, the percentage differences are all less
than 1%. And one can still observe an obvious improvement.

84 LONGITUDINAL STUDY OF WEB SECURITY

Security feature % of websites
Sept. 2013 Sept. 2015 Sept. 2017

HTTPS Support 23.56% 34.37% 71.85%
Secure Cookies 6.07% 8.88% 24.68%
HSTS 0.43% 4.38% 19.71%
HttpOnly Cookies 37.81% 46.01% 54.82%
XCTO 2.47% 7.25% 24.43%
CSP 0.05% 0.43% 5.62%
XFO 5.13% 15.33% 31.98%

Table 6.9: Percentage of European websites that adopted security features over
time

As for the web security score and its correlation with websites’ popularity, the
dropped websites have no impact on our conclusion. We still found a negative
correlation between a website’s score and its Alexa rank. To better understand
the 6,320 websites that dropped out from 2013 to 2017, we plot the distribution
of these websites (“Dropped set”) against the original 20,147 websites (“Full
set”) in 2013. As shown in the following figure, the boxplots of the two datasets
are very similar. This implies that the set of websites that dropped out has,
more or less, the same distribution of the original dataset, with respect to the
Alexa rank and web security score.

Figure 6.7: Distribution of websites that dropped out the study

As for the dispersion over countries and categories, we also found that the
“Dropped set” has similar distribution to the “Full set”. Thus, our dataset

LIMITATIONS 85

remains representative over the four-year study period, despite of the dropout
of some websites.

6.8 Limitations

In order to evaluate the general state of security of a website, we designed
a scoring system, which is subject to three types of limitations. Firstly, the
scoring system focus on the client-side security features, which may not always
reflect the actual security level of a website. Although we can validate that
the well-known secure websites (e.g., banking sites) have higher score than
the most-likely vulnerable websites (e.g., sites with published yet unfixed XSS
vulnerability) [140], the score only indicates part of a website’s state of security.
For a complete analysis, it would be worthwhile to have a more invasive security
assessment (with website owners’ consent).

Secondly, the selection of security features and the weights given to each feature
are based on opinions of a relatively small expert group. While we are trying
to be objective, there might be different opinions from readers. An assessor
can adapt the scoring system to incorporate his own opinions. Moreover, since
the scoring system is built with ECDF (Empirical Cumulative Distribution
Function), it cannot give score for a single website, instead it relies on a
set of sites and calculates comparative scores. Thus, having a diverse and
representative dataset is important for obtaining relevent result.

6.9 Conclusion

To mitigate common web attacks, websites owners can adopt several defensive
mechanisms (as introduced in Section 3.1) for protection. This chapter gives
an overview of the evolution of the adoption of these security features on
European Web for the past few years. More than 8 million webpages of 20,000
websites were crawled for analysis, through which we could observe the following
longitudinal trends:

First, the usage of client-side security mechanisms increased over time, especially
the past two years (2016 and 2017) which have seen a greater improvement
than the previous two-year timeframe.

Second, the most popular websites (according to the Alexa ranking) have a
higher web security metric that less popular websites. Moreover, these popular
websites were adopting new security features quicker that less popular websites.

86 LONGITUDINAL STUDY OF WEB SECURITY

Third, by examining the websites based on their business vertical, we can state
that Education and Finance are outperforming other verticals. They were the
first movers of adoption of security features, and stayed ahead over the past
few years.

To compare the web security level of different websites, we also proposed a web
security scoring system. The scoring system can be used to establish a web
security baseline among a set of websites, and this might help website operators
to consider the adoption of security features.

The proposed web security scoring system is not optimal, since the weights
given for each security feature were arbitrarily chosen based on their relative
importance. To further understand the importance of these defensive
mechanisms, we will present a correlational study in the forthcoming chapter.

Chapter 7

Correlation with Cybercrime
Cost

Preamble

The contents of this chapter are adapted from the paper titled “The relationship
between the cost of cybercrime and web security posture: a case study on
Belgian companies” [73], which was published in the Proceedings of the 11th
European Conference on Software Architecture: Companion Proceedings in
2017. This work was done with the collaboration of other authors from KU
Leuven. Ping Chen was the lead author of this paper.

This chapter presents a correlational study on the use of security features on a
company’s website and its cybercrime cost. As a preliminary case study, our
work provides some lessons that future research in this area can draw from.

7.1 Introduction

The past few years have seen rapid adoption of client-side security mechanisms
on the web (as discussed in the previous chapter). These security features are
developed by security community to thwart common web attacks. In addition
to reducing attack surfaces, adopting client-side security mechanisms also shows
a website’s security awareness, which helps to build trust with its customers.
Thus, website operators are recommended to adopt these security features.

87

88 CORRELATION WITH CYBERCRIME COST

However, it is unclear whether the adoption can help organisations to reduce
the actual cost of cybercrime as well.

It can be argued that the adoption of advanced security practices by a website
not only secures the web presence, but is also proxy for the quality of the
companies security management practice in general. So organisations with a
secure presence should ultimately suffer less losses due to security incidents.
To verify the hypothesis, this chapter presents a preliminary correlation study
to analyse the relationship between the cost of cybercrime and web security
posture.

To the best of our knowledge, this is the first work that studies this correlation.
Our analysis shows that companies with better web security defences tend
to have less business loss and reputation damage. The finding can motivate
companies to focus on web security, and devote more attention to cybersecurity.
Practical implications may also be significant - for example, it may also serve
as an assessment factor when establishing cyber insurance premiums or audit
costs.

7.2 Data Collection

For the analysis, we surveyed 263 Belgian companies about the impact of
cybercrime on their business, and gathered the statistics on the usage of security
features through website crawling.

7.2.1 Industry survey

To investigate the impact of cybercrime on businesses, we first conducted an
online survey. The survey was composed of different parts. We only discuss
the parts that are relevant for this paper (The full result and analysis of this
industry survey can be found online [122]).

First of all, we asked several general questions to enable the categorization of the
businesses based on their size, economic sector, location etc. Secondly, we asked
respondents whether the business had been confronted with the cybercrime
type in the past 12 months. Five types of cybercrime are surveyed, including
unauthorised access to IT systems, incidents resulting in IT failure, cyber
extortion, corporate espionage and internet fraud. In this paper, we only focus
on unauthorised access and cyber extortion attacks, as they are much more
relevant to web security than the others.

DATA COLLECTION 89

In the case of single or multiple victimization, respondents were expected,
respectively for the only or the last incident, to give a specification of the
incident as well as to assess the harms of the incident. Unlike other studies,
the present project draws from the conviction that not all harms of cybercrime
can be monetarised or even quantified. Some harms - such as the harms
to individuals’ dignity or harms to individuals’ and entities’ reputation and
privacy - are inherently not quantifiable; other harms can at least in principle
be expressed with a number, but the available data do not support their full
monetary or quantitative estimation.

Our conceptualisation of the harms of cybercrime is inspired by Greenfield and
Paoli’s Harm Assessment Framework [93] and in particular follows the latter’s
conceptualisation of harm. Specifically, we understand harm as a violation of
stakeholders’ legitimate interests, thus recognising that the dominant political
morality and the underlying socio-economic conditions play a central part in
establishing which interests are regarded as legitimate. Following Greenfield
and Paoli’s Framework, we further assume that businesses - as well as the other
‘bearers’ identified by their taxonomy - experience harms as damages to one
or more ‘interest dimensions’ [142]. In the case of businesses, these dimensions
consist of material support, functional integrity (i.e. services to customers
and internal operational activities), reputation, and privacy and autonomy.
Following Greenfield and Paoli [93], who build on von Hirsch and Jareborg [142]
and Sen [135], we treat these interest dimensions as representing capabilities
or pathways to achieving a certain quality of life, referred to as a ‘standard of
living’, or, by analogy, institutional mission.

Categorical levels

business loss Nothing;< 1, 000;< 10, 000;
< 50, 000;< 200, 000;> 200, 000

reputation damage No harm; Marginal; Moderate;
Serious; Grave; Catastrophic

Table 7.1: The categorical levels of cybercrime cost

In our survey we have included questions intended to develop a monetary
estimate of the harms to material support, that is, harms to the businesses’
financial and material interests. Aspects of material harm that were questioned
were the costs for hardware and software replacement, the regulatory fines and
compensation payments, business loss, the value of the lost or stolen assets
(with the exception of one cybercrime type) and the money paid to the offender
(only for one cybercrime type). The respondents were asked to assess these
aspects of material harm on a 6-point scale ranging from nothing to more than

90 CORRELATION WITH CYBERCRIME COST

200,000. In line with Greenfield and Paoli’s Harm Assessment Framework [93],
we have asked the respondents to assess the severity of the harms to the other
‘interest dimensions’ on a 6-point scale ranging from no harm to catastrophic.

7.2.2 Website crawling

We then manually checked the samples to find out the corresponding website
for each survey sample, which results 263 valid websites (sites with less than
10 webpages were excluded from the dataset). After that, we used the Bing
search engine [8] to obtain up to 200 webpage URLs for each website, and then
a distributed crawler to visit the URLs and retrieve data from webpages (the
crawling approach is explained in detail in Section 3.2).

For a comparative analysis, we also crawled more than 18,000 European websites,
which are the popular websites from the 28 member states in the EU. The
selection is based on the ccTLD (country code top-level domain) of each EU
country. All the crawling experiments were all done in September 2016, within
a week’s time frame.

In order to assess a website’s security posture, we analyse the usage of eight
client-side security features (as introduced in Section 3.1), which can be grouped
into three categories.

• Category 1: Secure Communication This category includes four
features that contribute to secure communication between a server
and a browser: HTTPS support, Secure Cookies, HTTP Strict
Transport Security (HSTS), and HTTP Public Key Pining or Certificate
Transparency (HPKP/CT).

• Category 2: XSS Mitigation This category includes three features
that can be used to mitigate XSS attacks: HTTPOnly Cookies, X-Content-
Type-Options (XCTO), and Content Security Policy (CSP).

• Category 3: Secure Framing This category has one feature X-Frame-
Options (XFO) to enable secure framing.

GENERAL FINDINGS 91

7.3 General Findings

7.3.1 Industry survey result

The target population of the survey consisted of all the businesses based
in Belgium. We constructed a sampling frame of more than 9,000 business
representatives of which the contact details were provided by the Federation of
Enterprises in Belgium (FEB), the largest business consortium in Belgium, and
the sector federations Comeos (commerce and services) and Febelfin (banks,
stock markets, credit and investment). However, about 10% of them could not
be reached, due to undeliverable emails, unavailable mailboxes or expired e-mail
addresses. Of the business representatives that could be reached, 453 filled out
(entirely or partially) the questionnaire, which brings the initial participation
rate to 4.9%. From the 453 responses, we obtained 310 valid samples.

As shown in Table 7.2, of the valid 263 samples, about 44% (118) of websites
experienced business loss and reputation damage due to unauthorised access,
and about 22% (55) of websites experienced business loss and reputation damage
due to cyber extortion. The statistics shows that the threat of cybercrime is a
real concern for organisations.

cyber attacks business loss reputation damage
unauthorised access 44.9% 43.7%
cyber extortion 22.1% 22.1%

Table 7.2: The cybercrime experience of 263 Belgian organisations

While advanced attackers tend to target large companies that possess strategic
resources, cybercrime poses threat to small and medium-sized enterprises (SMEs)
as well. As shown in Table 7.3, more SMEs experienced unauthorised access
than large companies did. However, large companies had more cyber extortion
experience than SMEs, which might due to their higher market value.

Company size unauthorised access cyber extortion
Small (< 50) 38.4% 24.2%

Medium (50 − 250) 26.5% 21.2%
Large (> 250) 35.1% 54.5%

Table 7.3: The cybercrime experience over different company size

92 CORRELATION WITH CYBERCRIME COST

7.3.2 Website crawling result

In order to compare different (groups of) website(s), we calculated ECDF scores
for each website. More concretely, for each security feature, we first compute
an empirical cumulative distribution function (ECDF) for all EU websites. The
ECDF is computed based on the percentage of webpages having that feature
on a particular website, as shown in Figure 7.1.

The ECDF score reflects how well a website is doing compared to websites in the
EU dataset. For instance, if a website has a score 0.61 for the feature HTTPS,
it means the website outperforms 61% of the websites in the EU dataset (i.e.
by having a higher percentage of pages over HTTPS). Websites with no pages
found to have a security feature are given a zero ECDF score for that feature.

Figure 7.1: ECDFs for each security feature

Table 7.4 gives an overview on the use of security features on 263 surveyed
Belgian websites and 18,731 EU websites. The percentages of EU websites
that having security features enabled are greater than the surveyed Belgian
websites for most features (except XCTO and XFO), this is probably due to the
EU set is comprise of the popular websites, which tend to adopt more security
features [69].

CORRELATIONAL ANALYSIS 93

Security feature % of websites ECDF Avg. & Std. Error
BE EU BE EU

HTTPS Support 37.3% 49.7% 0.28, 0.37 0.37, 0.38
Secure Cookies 13.0% 15.0% 0.12, 0.31 0.14, 0.33
HSTS 6.8% 10.0% 0.07, 0.24 0.10, 0.28
HPKP 0.0% 0.2% 0.00, 0.00 0.002, 0.04
HttpOnly Cookies 41.4% 50.2% 0.33, 0.40 0.38, 0.39
XCTO 25.1% 15.9% 0.23, 0.41 0.15, 0.34
CSP 2.3% 2.0% 0.02, 0.15 0.02, 0.14
XFO 27.00% 23.53% 0.24, 0.40 0.21, 0.37

Table 7.4: Overview of the use of security features on European web

However, when comparing the average of ECDF scores with the statistical z-test,
there is no significant differences in the use of security features between Belgian
websites and EU websites.

7.4 Correlational Analysis

To study the relation between the cost of cybercrime and web security posture,
we first try to correlate the cybercrime cost with each security feature separately,
and then with a combined web security score.

7.4.1 Correlation with each security feature

We use Spearman’s rank correlation coefficient to analyse the relationship
between the cost of cybercrime and web security posture. The result of
Spearman’s correlation varies between −1 and +1, and a positive coefficient
implies that as one variable increases, the other variable also increases and vice
versa. When using Spearman correlation to test statistical dependence, we set
the significance level to 5%. A hypothesis is rejected if the p-value is greater
than the significance level.

Table 7.5 and Table 7.6 shows the correlation between the use of seven web
security features and the impact of unauthorised access and cyber extortion,
respectively. The feature HPKP/CT is not included, since it is not found on any
of the surveyed 263 websites.

94 CORRELATION WITH CYBERCRIME COST

unauthorised access
business loss reputation damage

coefficient, p-value coefficient, p-value
HTTPS Support -0.05, 0.611 -0.03, 0.725
Secure Cookies -0.11, 0.232 -0.22, 0.017
HSTS -0.04, 0.658 -0.14, 0.126
HttpOnly Cookies -0.09, 0.351 -0.002, 0.978
XCTO -0.13, 0.163 -0.19, 0.041
CSP 0.06, 0.531 -0.18, 0.055
XFO -0.08, 0.414 -0.04, 0.660

Table 7.5: Spearman’s rank correlation between the impact of unauthorised
access and web security features

cyber extortion
business loss reputation damage

coefficient, p-value coefficient, p-value
HTTPS Support -0.24, 0.065 -0.06, 0.658
Secure Cookies -0.30, 0.023 -0.27, 0.044
HSTS -0.19, 0.154 -0.19, 0.149
HttpOnly Cookies -0.27, 0.035 -0.01, 0.951
XCTO -0.31, 0.016 -0.38, 0.003
CSP -0.15, 0.255 -0.18, 0.178
XFO -0.31, 0.018 -0.22, 0.093

Table 7.6: Spearman’s rank correlation between the impact of cyber extortion
and web security features

For cyber extortion, all the correlation coefficients are significant, which indicates
that the use of client-side security features helps reduce the business loss and
reputation damage. But many of them have p-values greater than significance
level 5%, thus this negative correlation is not significant for some features. The
same case goes for unauthorised access.

CORRELATIONAL ANALYSIS 95

business loss
β SE 95% CI P

Constant -1.19 0.35 −1.88 ∼ −0.51 0.001
HTTPS Support 0.31 0.85 −1.35 ∼ 1.98 0.71
Secure Cookies -3.71 3.82 −11.2 ∼ 3.78 0.33
HSTS -0.02 1.40 −2.76 ∼ 2.71 0.98
HttpOnly Cookies -0.83 0.77 −2.36 ∼ 0.68 0.28
XCTO -1.66 1.07 −3.78 ∼ −0.45 0.12
CSP 4.84 3.74 −2.49 ∼ 12.18 0.19
XFO 0.72 0.99 −1.17 ∼ 2.70 0.44

Table 7.7: Logistic regression on the business loss due to unauthorised access
over web security feature

reputation damage
β SE 95% CI P

Constant 1.47 0.38 0.72 ∼ 2.22 0.000
HTTPS Support 0.50 0.90 −1.27 ∼ 2.27 0.58
Secure Cookies -1.25 0.89 −3.09 ∼ 0.38 0.13
HSTS -0.23 0.81 −2.08 ∼ 1.62 0.81
HttpOnly Cookies 0.08 0.67 −1.22 ∼ 1.38 0.90
XCTO -1.67 0.86 −3.37 ∼ 0.01 0.05
CSP -1.60 1.31 −4.17 ∼ 0.98 0.22
XFO 1.69 0.99 −0.25 ∼ 3.62 0.09

Table 7.8: Logistic regression on the reputation damage due to unauthorised
access over web security feature

To further analyse this correlation, we dichotomised the business loss and
reputation damage variables and run a logistic regression over the different
security features. As shown in Table 7.7 and Table 7.8, the coefficient β for most
features are negative, although many of them are not significant, they indicate
a negative association between the use of security feature and the impact of
unauthorised access. Table 7.9 and Table 7.10 give the logistic regression result
on the impact of cyber extortion over web security features, which also indicates
a negative correlation.

96 CORRELATION WITH CYBERCRIME COST

business loss
β SE 95% CI P

Constant -0.11 0.48 −1.05 ∼ 0.84 0.83
HTTPS Support -0.44 0.97 −2.33 ∼ 0.64 0.27
Secure Cookies -25.2 7.9e4 −1.6e5 ∼ 1.6e5 1.00
HSTS -16.7 4.2e3 −8.3e3 ∼ 8.3e3 1.00
HttpOnly Cookies -1.12 0.90 −2.88 ∼ 0.64 0.21
XCTO -1.95 1.70 −5.28 ∼ 1.38 0.25
CSP -5.3 2.6e6 −5.1e6 ∼ 5.1e6 1.00
XFO 0.66 1.54 −2.36 ∼ 3.70 0.67

Table 7.9: Logistic regression on the business loss due to cyber extortion over
web security feature

reputation damage
β SE 95% CI P

Constant 2.54 0.88 0.81 ∼ 4.27 0.004
HTTPS Support 0.08 1.66 −3.16 ∼ 3.32 0.96
Secure Cookies -1.62 1.72 −4.99 ∼ 1.76 0.35
HSTS 0.12 1.53 −2.88 ∼ 3.13 0.93
HttpOnly Cookies -0.38 1.28 −2.90 ∼ 2.13 0.76
XCTO -4.53 3.13 −10.7 ∼ 1.60 0.15
CSP -0.02 1.47 −2.90 ∼ 2.86 0.99
XFO 5.07 3.46 −1.70 ∼ 11.8 0.14

Table 7.10: Logistic regression on the reputation damage due to cyber extortion
over web security feature

7.4.2 Correlation with overall security score

In the previous section, we found a negative correlation for some security features
in some cases, through a series of detailed analysis. For website owners, it would
be better to have a simple conclusion regarding the issue. Thus, we utilise the
web security scoring system presented in the previous chapter (Section 6.3), with
some changes, to calculate a security score and analyse the overall correlation.

In Section 6.3, we arbitrarily assign the weight to each feature based on maturity
and importance. In this section, we reassign the weights according to the
correlational findings in the previous section. Higher weights were given to
features with more significant correlation with cybercrime cost.

In particular, the following weights are used to calculated the three subscores:

CORRELATIONAL ANALYSIS 97

Secure Communication Score. This subscore is measured by applying a
weighted average of the HTTPS, HSTS, and Secure Cookies usage.

SecureCommunicationScore = 30
100 ×HTTPS

+ 50
100 × SecureCookies

+ 20
100 ×HSTS

XSS Mitigation Score. This subscore measured by applying a weighted
average of the HttpOnly Cookies, XCTO, and CSP usage.

XSSMitigationScore = 50
100 ×HttpOnlyCookies

+ 10
100 ×XCTO

+ 40
100 × CSP

Secure Framing Score. This subscore is measured by the XFO usage.

SecureFraming = 100
100 ×XFO

An overall web security score (OverallScore) can be obtained by combine the
above three subscores:

OverallScore = 30
100 × SecureCommunicationScore

+ 60
100 ×XSSMitigationScore

+ 10
100 × SecureFramingScore

We then analyse the correlation between the obtained OverallScore and the
cost of cybercrime, as shown in Table 7.11. The negative coefficients implies
that the higher the OverallScore is, the lower the costs of cybercrime is.
For unauthorised access, the p-values are around 10%, which indicates this
correlation is not very significant. However, the correlation between cyber
extortion and web security score significantly holds.

98 CORRELATION WITH CYBERCRIME COST

Spearman’s rank correlation β P

unauthorised access business loss -0.16 0.089
reputation damage -0.15 0.106

cyber extortion business loss -0.43 0.0008
reputation damage -0.27 0.037

Table 7.11: Correlation between the cost of cybercrime and web security score

7.5 Representativeness of the Samples

For our industry survey, we received 453 responses. The response rate is low, but
not much lower than the participation rate of the few other studies that explicitly
report such rate1: in a survey on computer crime, done by Computer Security
Institute [126], for example, 6.4% of the contacted businesses participated. And
our sample is bigger than those of two earlier studies from PWC Belgium [80] that
provided preliminary data on the impact of cybercrime on Belgian businesses.

The majority of the businesses that took part in the survey have their
headquarters in Flanders (62%). Further, Brussels account for 21% of the
sample, and Wallonia 14%. The number of businesses whose headquarters is
outside Belgium is considerably lower, amounting to 3.6% of the sample. By
comparing these figures with the official data [85] from Belgian Ministry of the
Economy, we note that the percentage of the Flanders-based businesses taking
part in the survey corresponds to the official figure (61%). However, there is an
overrepresentation of the Brussels-based businesses, as they effectively count
only for 11%, and an underrepresentation of those based in Wallonia.

The businesses taking part in the survey belong to many different economic
sectors, but many sectors, and the related sector federations, are only represented
once or twice in our sample. The sectors most strongly represented in our
sample of respondents are the following: technology (23%), the chemical and
life sciences (10%), and commerce and services (10%). Due to the low number
of representatives of many sector federations, we could not make the analysis of
the incidence or impact of cybercrime per sector.

As for the size of the businesses, we distinguish between small, medium and
large businesses, based on staff headcount, following the standard classification
of the European Commission [78]. In our sample, around half of the businesses
are small (52%), the rest of the sample being almost equally distributed amongst

1Most of the studies about the costs or harms of cybercrime do not provide information on
the participation/response rate or the number of contacted units, but only report the number
of respondents.

LIMITATIONS 99

medium (22%), or large (27%) businesses. Comparing these figures with the
official data [85] from Belgian Ministry of the Economy, we note that our sample
is not representative for the size: according to the Ministry’s data, 99% of all
the persons and entities liable for VAT are small, 0.6% are medium and 0.2%
are large.

For the distribution of our samples over Alexa’s rank ranges, we observed that
27.4% of them are listed in top 1 million global Internet domains, 31.9% of
them are ranked between 1 million and 10 million, and the rest of the samples
(40.7%) are either listed beyond top 10 million or not indexed by Alexa. The
dataset seems skewed towards lower-ranked sites, this is mainly due to the fact
that the majority of the samples are small local businesses in Belgium, which
have relatively lower traffic.

7.6 Limitations

As the first attempt to investigate the relationship between the cost of cybercrime
and web security posture, this paper has some limitations. Firstly, the dataset is
not optimal. It consists of organizations from Belgium only, and the sample size
(263 companies) is relatively small. Furthermore, the business loss is measured
in absolute amount of money, instead of measuring as the percentage of business
revenue and security investment.

Secondly, our study only covers a short time period (one year), which prevents
us to investigate the change over time. It might obviously be worthwhile to have
a longitudinal study, working more closely with participated organizations to
identify trends, and have more conclusive results. Despite these limitations, we
hope our preliminary case study can provide some guidance for future research
in this area.

7.7 Conclusion

Cybercrime is a growing threat to business [100], but many organisations fail
to take it seriously. Anderson et al. [57] provided the first systematic study
of the costs of cybercrime, distinguishing different types of cybercrime, and
estimating the financial cost for each type. As the web gets rapidly integrated
into business, it is also increasingly leveraged by the cybercriminals. While
academia has been advocating improving web security, there is little effort in
correlating the web security with the cost of cybercrime.

100 CORRELATION WITH CYBERCRIME COST

In this chapter, we have investigated the current status of cybercrime impact
on Belgian companies, and the usage of web security features. By correlating
the use of security features with the cost of cybercrime, we found a negative
correlation between them. In other words, companies should adopt more web
security features, which helps them to mitigate web attacks and minimise
damages caused by cybercrime.

Chapter 8

Conclusion

While the web was originally developed as an information-sharing tool for
scholars, it has risen to unprecedented levels over the past two decades, and it
is continuously developing. Nowadays, the web has become an essential tool
for both business and individuals. More and more people rely on the web for
almost all kinds of activities, such as acquiring knowledge, getting information,
shopping and networking. Companies are also increasingly depending on the
web to conduct various kinds of business (e.g., marketing, e-commerce).

Meanwhile, the past decades have also seen the rise of cyber threats on the web.
Cybercriminals have been launching attacks against business and individuals,
which inflicted severe damage and harm to our society. The problem of
widespread web attacks is partly due to the lack of adequate protection on
many websites. Many web attacks can be prevented (or at least be alleviated),
if websites owners regularly assess their security posture and implement known
defensive mechanisms to improve security protection.

To have a broad view of the current state of security protections on the web,
this thesis has focused on assessing websites security by investigating the use of
client-side defensive mechanisms. We proposed an approach to measure how well
a web application is protected from an outside perspective, and demonstrated
its effectiveness through several large-scale assessments. In this chapter, we
first revisit our approach and findings with a brief summary, and then give an
overview of related works from both academia and industry. Lastly, we present
some concluding thoughts.

101

102 CONCLUSION

8.1 Summary

The web is constantly evolving, so do the web attackers. The past decade has
seen a shift in web attackers’ target. Traditionally, attackers mostly focused on
exploiting web servers, aiming to gain control over server machines. Typical
examples of such attacks are SQL Injection and Command Injection. As more
and more features are deployed at the client side, the attackers started targeting
client machines, attempting to obtain sensitive information from a user and
performing actions in the name of the user in a web application. Well-known
examples of such attacks are Cross-Site Scripting (XSS) and Session Hijacking.

In respond to this trend, security defence also shifts towards the client. Various
client-side security mechanisms have been developed to counter client-side
attacks. For example, Content Security Policy (CSP) is proposed to prevent
XSS. In Chapter 3, we enumerated eight client-side defense mechanisms that
websites can adopt to prevent common attacks: HTTPS Support, HTTP Strict-
Transport-Security, Public Key Pinning and Certificate Transparency, HttpOnly
and Secure Cookies, Content Type Options, and Content Security Policy.

Although these mechanisms are deployed on and enforced by the client side,
they are specified and sent by the web server. Thus, the presence of client-
side security mechanisms on a website can be used as an indicator of the
website’s security level. Based on this assumption, we designed a large-scale
web crawling approach to assess websites by detecting the use of client-side
security mechanisms. As explained in more detail in Chapter 3, our approach
leveraged Bing Search [8] to get popular pages of a site, and used a customized
headless browser to visit the pages. By doing this, we try to mimic the behavior
of a normal user visiting a website.

This large-scale web crawling approach was first used to survey the prevalence
of mixed-content issue in Chapter 4. While the issue of mixed HTTP content
on HTTPS websites is not new, our work was the first attempt to systematically
analyze the issue. Our study showed that almost half of HTTPS websites are
vulnerable, and more than half of these vulnerable pages allow the attacker can
execute arbitrary JavaScript once successfully exploited. A common mitigation
technique employed by web browser is to block the execution of mixed content.
When this work was published, most of the mobile browsers lack protection
against this issue. As of 2018, all major web browsers (both desktop and mobile
versions) block mixed content by default.

We then employed the crawling approach to demonstrate the effectiveness
of large-scale external assessment based on the use of client-side security
mechanisms. In Chapter 5, we presented an assessment for the top 10,000
Chinese websites, and observed that the majority of Chinese websites lack

SUMMARY 103

support for client-side security policies. Although the situation got better
over the past few years (with particular noticeable improvement on HTTPS
adoption), the overall adoption rate is still lower when compared to the global
web. Our study also identified a severe privacy issue that is unique in China,
6% of websites are inadvertent leaking private identity information.

Next, in Chapter 6, we expand the assessment over a four-year timeframe,
examining the longitudinal trend of the adoption of client-side security
mechanisms on more than 20,000 European websites. Our assessment showed
that the adoption of defence mechanisms increased over time, and the popular
websites were adopting new security features quicker that less popular websites.
To quantify web security protection, a web security scoring system is proposed.
Using the scoring system, we compared the security postures of websites from
different countries and sectors. Unsurprisingly, we found that the most popular
websites have higher scores and websites from Education and Finance sector
are outperforming others.

In order to optimize the web security scoring system in Chapter 6, and have a
further understanding of client-side security mechanisms, we investigated the
relationship between a company’s cybercrime cost and the adoption of defence
mechanisms on its website in Chapter 7. Through a correlational case study on
263 Belgian companies, we found a negative correlation between them. Although
the correlation is not very strong, it confirmed that our approach of assessing
websites security externally by detecting client-side security mechanisms is
useful. It helps to motivate websites owners to invest more on security protection.
Additionally, it may also serve as an assessment factor when establishing cyber
insurance premiums or audit costs.

Nowadays, the client side (a user’s browser) has become increasingly powerful,
which takes over many features and functionalities that was conventionally
managed by the web server. This shift towards the client side enables a new
approach to security, namely using security policies to instruct web browsers to
enforcement defence mechanisms. By adopting client-side security mechanisms,
website owners are not only protecting their customers, but also demonstrating
their security awareness to outsiders. Assessing websites security from the aspect
of adopting defensive mechanisms enables efficiency and scalability, which is
desirable to outside auditors, such as regulatory authority and supervisory
organizations.

104 CONCLUSION

8.2 Related Work

As the Web becomes ubiquitous, it is imperative to ensure the security and
correctness of Web applications. A variety of methods have been proposed
to test web applications in the past two decades [110], and most of them are
designed to detect specific vulnerabilities and errors such as SQL injection and
XSS attacks. One of the commonly used techniques is active scanning, which
automatically finds known vulnerabilities based on defined rules and patterns.
As an example, Kals et al. developed the SecuBat tool [104] in 2006, which
automatically finds exploitable SQL injection and XSS vulnerabilities.

Nowadays, web scanning tools have become much more sophisticated, and there
are various commercial products available on the market [40]. These tools
are typically used by penetration testers to assess a specific web application,
with permission granted by the website owner. Due to their aggressiveness and
laboriousness, vulnerability scanners are not suitable for large-scale assessment.
To illustrate the impact of certain vulnerability, security researchers often limited
their analyze to just a couple of major popular websites in 2000s [104, 153].

With the advancement of web crawling techniques, the past few years have seen
more larger-scale assessment [116, 109, 136, 66, 106]. For instance, Nikiforakis
et al. presented a large-scale analysis of remote JavaScript inclusions for more
than three million pages of the top 10,000 Alexa websites in 2012 [116]. In 2016,
Cahn et al. conducted an empirical study of web cookies for the top 100,000
Alexa websites [66]. Kumar et al. performed a large-scale detection of web
dependencies on third-party resources (e.g., images, scripts, etc.) for the Alexa
top 1 million websites in 2017 [106].

These large-scale assessments typically explicate certain vulnerability or
weakness of web applications. In contrast, this thesis has focused on analysing
the client-side defence mechanisms, instead of examining vulnerabilities. The
past few years have seen increasing attention towards client-side security in
literature. De Ryck et al. provided a detailed introduction on this topic in a
book called “Primer on Client-Side Web Security” [131]. The book discussed
various client-side vulnerabilities and attacks, and enumerated best practices
with existing countermeasures and emerging mitigation techniques. In a recent
study by Stock et al. [138], the authors presented a historical perspective on
client-side security, by examining a large corpus of archived web documents.

To detect the use of client-side defence mechanisms, one can manually inspect
the HTTP responses in a browser. There are also free online tools that allow
people to analyse the strength of a server’s SSL/TLS implementation [36],
and to check security headers of a specific webpage [4]. This thesis proposed
crawling approach for large-scale assessment and presented security evaluation

RECENT DEVELOPMENT OF CLIENT-SIDE DEFENSES 105

of websites in China and EU. A similar assessment for a specific demographic
area is presented in [55], where Alarifi et al. evaluated the security of popular
Arabic websites, by analyzing malicious webpages from 7,000 domains using
web scanner APIs like Google Safe Browsing [14]. Another regional web security
assessment is presented in [134], where the authors analyzed the malicious
servers in the .nz domain.

8.3 Recent Development of Client-side Defenses

As web technology evolves, the landscape of cyber threats also changes over
time [87, 121]. Meanwhile, the client-side countermeasures evolve as well. For
example, Public Key Pinning is phasing out and being replaced by Certificate
Transparency (as introduced in Section 3.1). Since our web security scoring
system is based on the use of client-side security mechanisms, it can also be
adapted to reflect changes over time 1. In this section, we discuss the recent
development on client-side countermeasures.

While Content Security Policy (CSP) was originally proposed to mitigate
Cross-site scripting (XSS), its directives are expanding to cover more security
issues. For example, the frame-ancestors directive has been proposed to
prevent clickjacking attack, which has the same effect as the X-Frame-Options
(XFO)+ header. And W3C Working Group is considering adding a
new cookie-scope [145] directive to CSP, in order to achieve similar goals
as HttpOnly and Secure Cookies. Since CSP is under active development and
some browsers do not yet support all the directives, these new CSP features
should only be used as a defense-in-depth to compliment the primary security
mechanisms.

CSP allows a website to restrict the loading and execution of malicious resources
on its pages. However, it does not apply the restrictions to third-party content
loaded in via <iframe>. To be able to place restrictions on the embedded
content, an embedder can use Embedded CSP [146] to negotiate a policy with
the embedded-content provider. Embedded CSP proposes a Content Security
Policy as an attribute on the <iframe> element. This policy is transmitted
along with the HTTP request for the framed content in an Embedding-CSP
header. A browser renders the embedded content only if the embedded-
content provider accept the proposed policy (by returning the policy in a
Content-Security-Policy header along with the response). As of August

1The longitudinal study presented in this thesis covers a four-year period, but our scoring
system remained the same. This is because we have to maintain consistency when comparing
the security performance of websites over time.

106 CONCLUSION

2018, Embedded CSP is still a W3C Working Draft [146], with support from
Chrome (version 61+ [51]) only.

Referrer Policy [86] is a new mechanism that controls the referrer information
sent in the Referer header. It can be set via the Referrer-Policy HTTP
header, or the referrer keyword in a <meta> element, or the referrer policy
attribute in an <a> element. It can prevent sensitive information in the URL,
for example, the user’s session identifier in the URL, from leaking via referrer
headers. Currently, Referrer Policy is a W3C Candidate Recommendation [86].
It has already received full support from Chrome and Firefox, and partial
support from Edge and Safari [10].

Similar to HTTP Public Key Pinning (HPKP), which pins a cryptographic
hash to a server, Subresource Integrity (SRI) [54] pins a cryptographic hash to a
resource. While HPKP ensures the server is genuine (no attackers in between),
it cannot guarentee the fetched resource has been delivered without unexpected
manipulation. If an attacker gains access to the server, it can manipulate
content with impunity. To address this issue, SRI allows a website to specify the
expected hash as integrity attribute in the <link> and <script> element. The
browser will load and execute the resource only if the fetched script matches
the expected hash. SRI is a W3C Recommendation, and it has already been
supported in most browsers (except IE).

Modern browsers provide an expanding set of features and APIs for websites
to offer richer functionality. For example, the geolocation feature allow a
web application to obtain users’ location information. Feature Policy [75] is
mechanism that allows websites to selectively enable and disable various browser
features and APIs. Feature Policy can be set in the Feature-Policy HTTP
header and the allow attribute in <iframe> element. By specifying a feature
policy to disable access to certain browser features, a website can prevent
own and third-party content from introducing unwanted behaviors within its
application. Currently, Feature Policy is still a W3C Working Draft. It is
supported in Chrome, and partially supported in Safari.

HTTP cookie is an important mechanism for web applications to store users’
session information. By default, cookies are automatically sent with every
request to a website. This default behaviour might be abused by attackers
to perform cross-site request forgeries (CSRF) attacks, i.e., to force a user to
perform unwanted actions on the site where they are logged in. To prevent
CSRF attacks and mitigate the risk of cross-origin information leakage, a
website can use the Same-Site [149] attribute. There are two possible values
for the Same-Site attribute: “Lax” and “Strict”. In the strict mode, the cookie
is withheld with any cross-site usage. As of August 2018, Same-site cookies has
been supported in the latest version of major browsers.

CONCLUDING THOUGHTS 107

8.4 Concluding Thoughts

This thesis proposed a simple yet effective approach to assess websites security
from an outside perspective. The proposed approach allows people to compare
the security levels of a group of websites. As ensuring web security is becoming
more and more important, this approach come in handy for both website
operators and supervisory bodies. They can employ it to regularly monitor
a large number of websites and have a broad comparative view. This kind of
large-scale assessments will spur websites to put more effort on security.

In our work, we tried to validate that the efforts on security are worthwhile by
correlating cybercrime cost with websites security. While we found some facts
to support this view, our case study is limited. It only provides an correlational
analysis at a certain point in time. Further research can focus on finer-grained
and longitudinal studies, i.e., to have a continuous follow-up over the surveyed
companies in order to see changes over time. Moreover, as web technologies
evolve, new defensive features might appear. They should also be included as
part of the web scoring metrics.

By quantifying a website’s security level as a web security score, we compared
websites based on country, sector and popularity (Alexa ranking). For future
work, we can include other properties of a website for comparison, such as a
site’s domain age and a company’s annual revenue. Furthermore, as different
countries have different regulations on a company’s responsibility to protect
customers’ data, it might also be worthwhile to look for regional differences
between EU, US and China.

Despite these limitations, our work shed some light on efficient large-scale web
security assessment. It has practical applicability for government and companies,
and it also provides valuable lessons for further research in this area.

Bibliography

[1] The 20 million hotel reversation records (in chinese). http://net.
chinabyte.com/2/12850502.shtml.

[2] 2000 students’ id number and bank acount leaked (in chinese). http:
//tech.sina.com.cn/i/2012-03-23/07326867582.shtml.

[3] Alexa top 1 million sites. http://s3.amazonaws.com/alexa-static/
top-1m.csv.zip.

[4] Analyse your HTTP response headers. https://securityheaders.com/.

[5] Baidu SEO Guide V2.0 (in Chinese). http://baiduseoguide.com.

[6] Baidu starts to index HTTPS websites (in Chinese). http://ziyuan.
baidu.com/wiki/392.

[7] BeEF - The Browser Exploitation Framework Project. http://
beefproject.com/.

[8] Bing Web Search API. https://azure.microsoft.com/en-us/
services/cognitive-services/bing-web-search-api/.

[9] Blink - The Chromium Projects. https://www.chromium.org/blink.

[10] Can I use Referrer Policy. https://caniuse.com/#feat=referrer-
policy.

[11] Celery: Distributed Task Queue. http://www.celeryproject.org/.

[12] Data privacy: Public pushback. https://www.economist.com/node/
21735613.

[13] E-commerce: The new bazaar. https://www.economist.com/node/
21730546.

109

http://net.chinabyte.com/2/12850502.shtml
http://net.chinabyte.com/2/12850502.shtml
http://tech.sina.com.cn/i/2012-03-23/07326867582.shtml
http://tech.sina.com.cn/i/2012-03-23/07326867582.shtml
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://securityheaders.com/
http://baiduseoguide.com
http://ziyuan.baidu.com/wiki/392
http://ziyuan.baidu.com/wiki/392
http://beefproject.com/
http://beefproject.com/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
https://www.chromium.org/blink
https://caniuse.com/#feat=referrer-policy
https://caniuse.com/#feat=referrer-policy
http://www.celeryproject.org/
https://www.economist.com/node/21735613
https://www.economist.com/node/21735613
https://www.economist.com/node/21730546
https://www.economist.com/node/21730546

110 BIBLIOGRAPHY

[14] Google Safe Browsing. https://safebrowsing.google.com/.

[15] HSTS Preload List Submission. https://hstspreload.org/.

[16] HTML Purifier. http://htmlpurifier.org/.

[17] HtmlUnit. http://htmlunit.sourceforge.net/.

[18] IE8 Security Part V: Comprehensive Protection. https:
//blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-
v-comprehensive-protection/.

[19] Iframes security summary. http://www.thespanner.co.uk/2007/10/
24/iframes-security-summary/.

[20] Intent To Deprecate And Remove: Public Key Pinning. https://www.
certificate-transparency.org/.

[21] Internet Explorer Architecture. https://msdn.microsoft.com/en-us/
library/aa741312(v=vs.85).aspx.

[22] KNET Trusted Website Database (in Chinese). http://t.knet.cn/.

[23] Let’s Encrypt - Free SSL/TLS Certificates. https://letsencrypt.org/.

[24] Mcafee trustedsource web database. https://www.trustedsource.org/
en/feedback/url.

[25] Mixed content checker online. https://mixed-content.info/mixed-
content-checker-ligne/.

[26] MongoDB. https://www.mongodb.com/.

[27] NCSA MOSAIC. http://www.ncsa.illinois.edu/enabling/mosaic.

[28] NoScript - JavaScript/Java/Flash blocker for a safer Firefox experience!
https://noscript.net/.

[29] “only secure content is displayed” notification in internet explorer 9 or
later. http://support.microsoft.com/kb/2625928.

[30] OWASP Java Encoder Project. https://www.owasp.org/index.php/
OWASP_Java_Encoder_Project.

[31] Phantomjs: Headless webkit with javascript api. https://www.
phantomjs.org/.

[32] Preloading HSTS. https://blog.mozilla.org/security/2012/11/01/
preloading-hsts/.

https://safebrowsing.google.com/
https://hstspreload.org/
http://htmlpurifier.org/
http://htmlunit.sourceforge.net/
https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-v-comprehensive-protection/
https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-v-comprehensive-protection/
https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-v-comprehensive-protection/
http://www.thespanner.co.uk/2007/10/24/iframes-security-summary/
http://www.thespanner.co.uk/2007/10/24/iframes-security-summary/
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/
https://msdn.microsoft.com/en-us/library/aa741312(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa741312(v=vs.85).aspx
http://t.knet.cn/
https://letsencrypt.org/
https://www.trustedsource.org/en/feedback/url
https://www.trustedsource.org/en/feedback/url
https://mixed-content.info/mixed-content-checker-ligne/
https://mixed-content.info/mixed-content-checker-ligne/
https://www.mongodb.com/
http://www.ncsa.illinois.edu/enabling/mosaic
https://noscript.net/
http://support.microsoft.com/kb/2625928
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.phantomjs.org/
https://www.phantomjs.org/
https://blog.mozilla.org/security/2012/11/01/preloading-hsts/
https://blog.mozilla.org/security/2012/11/01/preloading-hsts/

BIBLIOGRAPHY 111

[33] RabbitMQ. https://www.rabbitmq.com/.

[34] Ssl check - scan your website for non-secure content. https://www.jitbit.
com/sslcheck/.

[35] SSL Pulse. https://www.trustworthyinternet.org/ssl-pulse/.

[36] SSL Server Test. https://www.ssllabs.com/ssltest/.

[37] sslyze. https://github.com/iSECPartners/sslyze.

[38] The birth of the web. https://home.cern/topics/birth-web.

[39] Understanding the TLS Renegotiation Attack. http://www.
educatedguesswork.org/2009/11/understanding_the_tls_
renegoti.html.

[40] Vulnerability Scanning Tools. https://www.owasp.org/index.php/
Category:Vulnerability_Scanning_Tools.

[41] WebKit - Open Source Web Browser Engine. https://webkit.org/.

[42] World Internet Users in the World. http://www.internetworldstats.
com/stats.htm.

[43] Directive 95/46/EC on the protection of individuals with regard to the
processing of personal data and on the free movement of such data. Official
Journal of the European Union (1995).

[44] Internet Explorer 8 Mixed Content Handling. http://msdn.microsoft.
com/en-us/library/ee264315(v=vs.85).aspx, 2009.

[45] New Chromium security features, June 2011. https://blog.chromium.
org/2011/06/new-chromium-security-features-june.html, 2011.

[46] Ending mixed scripting vulnerabilities. http://blog.chromium.org/
2012/08/ending-mixed-scripting-vulnerabilities.html, 2012.

[47] Mixed content blocking enabled in firefox 23! https:
//blog.mozilla.org/tanvi/2013/04/10/mixed-content-blocking-
enabled-in-firefox-23/, 2013.

[48] Is HTTP Public Key Pinning Dead? https://blog.qualys.com/
ssllabs/2016/09/06/is-http-public-key-pinning-dead, 2016.

[49] Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation).
Official Journal of the European Union (2016).

https://www.rabbitmq.com/
https://www.jitbit.com/sslcheck/
https://www.jitbit.com/sslcheck/
https://www.trustworthyinternet.org/ssl-pulse/
https://www.ssllabs.com/ssltest/
https://github.com/iSECPartners/sslyze
https://home.cern/topics/birth-web
http://www.educatedguesswork.org/2009/11/understanding_the_tls_renegoti.html
http://www.educatedguesswork.org/2009/11/understanding_the_tls_renegoti.html
http://www.educatedguesswork.org/2009/11/understanding_the_tls_renegoti.html
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://webkit.org/
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://msdn.microsoft.com/en-us/library/ee264315(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ee264315(v=vs.85).aspx
https://blog.chromium.org/2011/06/new-chromium-security-features-june.html
https://blog.chromium.org/2011/06/new-chromium-security-features-june.html
http://blog.chromium.org/2012/08/ending-mixed-scripting-vulnerabilities.html
http://blog.chromium.org/2012/08/ending-mixed-scripting-vulnerabilities.html
https://blog.mozilla.org/tanvi/ 2013/04/10/mixed-content-blocking-enabled-in-firefox-23/
https://blog.mozilla.org/tanvi/ 2013/04/10/mixed-content-blocking-enabled-in-firefox-23/
https://blog.mozilla.org/tanvi/ 2013/04/10/mixed-content-blocking-enabled-in-firefox-23/
https://blog.qualys.com/ssllabs/2016/09/06/is-http-public-key-pinning-dead
https://blog.qualys.com/ssllabs/2016/09/06/is-http-public-key-pinning-dead

112 BIBLIOGRAPHY

[50] Using security features to do bad things. https://scotthelme.co.uk/
using-security-features-to-do-bad-things/, 2016.

[51] CSP: Embedded Enforcement - Chrome Platform Status. https://www.
chromestatus.com/feature/5750241810710528, 2017.

[52] Intent To Deprecate And Remove: Public Key Pinning.
https://groups.google.com/a/chromium.org/forum/#!msg/blink-
dev/he9tr7p3rZ8/eNMwKPmUBAAJ, 2017.

[53] Akhawe, D., Barth, A., Lam, P. E., Mitchell, J., and Song,
D. Towards a formal foundation of web security. In Computer Security
Foundations Symposium (CSF), 2010 23rd IEEE (2010), IEEE, pp. 290–
304.

[54] Akhawe, D., Braun, F., et al. Subresource Integrity. W3C
Recommendation (2016).

[55] Alarifi, A., and AI-Salman, A. Security analysis of top visited arabic
web sites. In 15th International Conference on Advanced Communication
Technology (2013), IEEE.

[56] Amrutkar, C., Traynor, P., and van Oorschot, P. C. Measuring
ssl indicators on mobile browsers: extended life, or end of the road? In
Proceedings of the 15th International Security Conference (2012), ISC ’12,
Springer, pp. 86–103.

[57] Anderson, R., Barton, C., Böhme, R., Clayton, R., van Eeten,
M. J. G., Levi, M., Moore, T., and Savage, S. Measuring the
Cost of Cybercrime. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
pp. 265–300.

[58] Barth, A. HTTP State Management Mechanism. IETF RFC 6265
(2011).

[59] Barth, A., Jackson, C., and Mitchell, J. C. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM conference
on Computer and communications security (New York, NY, USA, 2008),
CCS ’08, ACM, pp. 75–88.

[60] Barth, A., Jackson, C., and Mitchell, J. C. Securing frame
communication in browsers. Communications of the ACM 52, 6 (2009),
83–91.

[61] Belshe, M., and Peon, R. Hypertext Transfer Protocol Version 2
(HTTP/2). IETF RFC 5280 (2015).

https://scotthelme.co.uk/using-security-features-to-do-bad-things/
https://scotthelme.co.uk/using-security-features-to-do-bad-things/
https://www.chromestatus.com/feature/5750241810710528
https://www.chromestatus.com/feature/5750241810710528
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/he9tr7p3rZ8/eNMwKPmUBAAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/he9tr7p3rZ8/eNMwKPmUBAAJ

BIBLIOGRAPHY 113

[62] Berners-Lee, T., and Connolly, D. Hypertext Markup Language -
2.0. IETF RFC 1866 (1995).

[63] Berners-Lee, T., Fielding, R., and Masinter, L. Uniform Resource
Identifier (URI): Generic Syntax. IETF RFC 3986 (2005).

[64] Berners-Lee, T., Masinter, L., and McCahill, M. Uniform
Resource Locators (URL). IETF RFC 1738 (1994).

[65] Butler, E. Firesheep. https://codebutler.github.io/firesheep/,
2010.

[66] Cahn, A., Alfeld, S., Barford, P., and Muthukrishnan, S. An
empirical study of web cookies. In Proceedings of the 25th International
Conference on World Wide Web (2016), International World Wide Web
Conferences Steering Committee, pp. 891–901.

[67] CERNET. Evolution of Internet in China. http://www.edu.cn/
introduction_1378/20060323/t20060323_4285.shtml, 2001.

[68] Chen, P., Desmet, L., and Huygens, C. A Study on Advanced
Persistent Threats. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014,
pp. 63–72.

[69] Chen, P., Desmet, L., Huygens, C., and Joosen, W. Longitudinal
study of the use of client-side security mechanisms on the european web.
In Proceedings of the 25th International Conference Companion on World
Wide Web (2016), WWW ’16 Companion, International World Wide Web
Conferences Steering Committee, pp. 457–462.

[70] Chen, P., Huygens, C., Desmet, L., and Joosen, W. Advanced
or not? a comparative study of the use of anti-debugging and anti-
vm techniques in generic and targeted malware. In IFIP International
Information Security and Privacy Conference (2016), Springer, pp. 323–
336.

[71] Chen, P., Nikiforakis, N., Desmet, L., and Huygens, C. Security
analysis of the chinese web: How well is it protected? In Proceedings of the
2014 Workshop on Cyber Security Analytics, Intelligence and Automation
(New York, NY, USA, 2014), SafeConfig ’14, ACM, pp. 3–9.

[72] Chen, P., Nikiforakis, N., Huygens, C., and Desmet, L. A
Dangerous Mix: Large-scale analysis of mixed-content websites. In 16th
Information Security Conference (2013), ISC ’13.

https://codebutler.github.io/firesheep/
http://www.edu.cn/introduction_1378/20060323/t20060323_4285.shtml
http://www.edu.cn/introduction_1378/20060323/t20060323_4285.shtml

114 BIBLIOGRAPHY

[73] Chen, P., Visschers, J., Verstraete, C., Paoli, L., Huygens, C.,
Desmet, L., and Joosen, W. The relationship between the cost of
cybercrime and web security posture: A case study on belgian companies.
In Proceedings of the 11th European Conference on Software Architecture:
Companion Proceedings (New York, NY, USA, 2017), ECSA ’17, ACM,
pp. 115–120.

[74] Clark, J., and van Oorschot, P. C. SoK: SSL and HTTPS: Revisiting
Past Challenges and Evaluating Certificate Trust Model Enhancements.
In IEEE Symposium on Security and Privacy (2013), SP ’13, pp. 511–525.

[75] Clelland, I. Feature Policy. W3C Draft Community Group Report
(2018).

[76] CNNIC. The 40th China Statistical Report on Internet Development (in
Chinese), 2017.

[77] CNNIC, and APAC. Global Chinese Phishing Sites
Report. http://www.cnnic.cn/gywm/xwzx/rdxw/rdxx/201305/
W020130531616450986485.pdf, 2013.

[78] Commission, E. Commission recommendation of 6 may 2003 concerning
the definition of micro, small and medium-sized enterprises, 2003.

[79] Cooper, D., Santesson, S., , Farrell, S., et al. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. IETF RFC 5280 (2008).

[80] Coopers, P. Redefining the security culture a better way to
protect your business. https://www.pwc.be/en/documents/20170315-
Information-security-breaches-survey.pdf, 2017.

[81] Dacosta, I., Chakradeo, S., Ahamad, M., and Traynor, P.
One-time cookies: Preventing session hijacking attacks with stateless
authentication tokens. ACM Transactions on Internet Technology (TOIT)
12, 1 (2012), 1.

[82] Dierks, T., and Allen, C. The TLS Protocol Version 1.0. IETF RFC
2246 (1999).

[83] Duong, T., and Rizzo, J. Here Come The ⊕ Ninjas, 2011.

[84] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A., Bailey,
M., Li, F., Weaver, N., Amann, J., Beekman, J., Payer, M., et al.
The matter of heartbleed. In Proceedings of the 2014 Conference on
Internet Measurement Conference (2014), ACM, pp. 475–488.

http://www.cnnic.cn/gywm/xwzx/rdxw/rdxx/201305/W020130531616450986485.pdf
http://www.cnnic.cn/gywm/xwzx/rdxw/rdxx/201305/W020130531616450986485.pdf
https://www.pwc.be/en/documents/20170315-Information-security-breaches-survey.pdf
https://www.pwc.be/en/documents/20170315-Information-security-breaches-survey.pdf

BIBLIOGRAPHY 115

[85] Economie, F. Aantal actieve btw-plichtige ondernemingen volgens
werknemersklasse en plaats maatschappelijke zetel, meest recente
jaar. https://bestat.economie.fgov.be/bestat/crosstable.xhtml?
view=9d19ebe2-f35a-4b51-ac1a-c153e6d77d67, 2016.

[86] Eisinger, J., and Stark, E. Referrer Policy. W3C Candidate
Recommendation (2017).

[87] ENISA. Enisa threat landscape report 2017. https://www.enisa.
europa.eu/publications/enisa-threat-landscape-report-2017,
2017.

[88] Evans, C., Palmer, C., and Sleevi, R. Public key pinning extension
for HTTP. IETF RFC 7467 (2015).

[89] Fazzini, M., Saxena, P., and Orso, A. Autocsp: automatically
retrofitting csp to web applications. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering (2015), vol. 1, pp. 336–
346.

[90] Fielding, R., Gettys, J., Mogul, J., et al. Hypertext Transfer
Protocol – HTTP/1.1. IETF RFC 2616 (1999).

[91] Finley, K. Half the Web Is Now Encrypted. That Makes Everyone
Safer. https://www.wired.com/2017/01/half-web-now-encrypted-
makes-everyone-safer/, 2017.

[92] Garrett, J. J. Ajax: A New Approach to Web Applications. http://
adaptivepath.org/ideas/ajax-new-approach-web-applications/.

[93] Greenfield, V. A., and Paoli, L. A framework to assess the harms
of crimes. The British Journal of Criminology 53, 5 (2013), 864.

[94] Grosskurth, A., and Godfrey, M. W. Architecture and evolution of
the modern web browser. Preprint submitted to Elsevier Science 12, 26
(2006), 235–246.

[95] Guardian, T. Edward Snowden. https://www.theguardian.com/us-
news/edward-snowden, 2013.

[96] Heiderich, M., Niemietz, M., Schuster, F., Holz, T., and
Schwenk, J. Scriptless attacks: stealing the pie without touching
the sill. In Proceedings of the 2012 ACM conference on Computer and
communications security (New York, NY, USA, 2012), CCS ’12, ACM,
pp. 760–771.

https://bestat.economie.fgov.be/bestat/crosstable.xhtml?view=9d19ebe2-f35a-4b51-ac1a- c153e6d77d67
https://bestat.economie.fgov.be/bestat/crosstable.xhtml?view=9d19ebe2-f35a-4b51-ac1a- c153e6d77d67
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017
https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://www.theguardian.com/us-news/edward-snowden
https://www.theguardian.com/us-news/edward-snowden

116 BIBLIOGRAPHY

[97] Hodges, J., Jackson, C., and Barth, A. HTTP strict transport
security (HSTS). IETF RFC (2012).

[98] Hoffman, P., and Schlyter, J. The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA.
IETF RFC 6698 (2012).

[99] Hoogstraaten, H., Prins, R., et al. Black Tulip: Report of the
investigation into the DigiNotar Certificate Authority breach. FOX IT
(2012).

[100] Hyman, P. Cybercrime: It’s serious, but exactly how serious? Commun.
ACM 56, 3 (Mar. 2013), 18–20.

[101] IEBlog, M. Declaring Security. http://blogs.msdn.com/b/ie/
archive/2009/06/25/declaring-security.aspx, 2009.

[102] Jackson, C., and Barth, A. Forcehttps: protecting high-security
web sites from network attacks. In Proceedings of the 17th international
conference on World Wide Web (2008), ACM, pp. 525–534.

[103] Jacobs, I., and Walsh, N. Architecture of the World Wide Web,
Volume One. W3C Recommendation (2014).

[104] Kals, S., Kirda, E., Kruegel, C., and Jovanovic, N. Secubat:
a web vulnerability scanner. In Proceedings of the 15th international
conference on World Wide Web (2006), ACM, pp. 247–256.

[105] Klein, A. DOM Based Cross Site Scripting or XSS of the
Third Kind. http://www.webappsec.org/projects/articles/071105.
shtml, 2005.

[106] Kumar, D., Ma, Z., Durumeric, Z., Mirian, A., Mason, J.,
Halderman, J. A., and Bailey, M. Security challenges in an
increasingly tangled web. In Proceedings of the 26th International
Conference on World Wide Web (2017), International World Wide Web
Conferences Steering Committee, pp. 677–684.

[107] Lamprakis, P., Dargenio, R., Gugelmann, D., Lenders, V.,
Happe, M., and Vanbever, L. Unsupervised Detection of APT C&C
Channels using Web Request Graphs. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment (2017),
pp. 366–387.

[108] Laurenza, G., Aniello, L., Lazzeretti, R., and Baldoni,
R. Malware triage based on static features and public apt reports.

http://blogs.msdn.com/b/ie/archive/2009/06/25/declaring-security.aspx
http://blogs.msdn.com/b/ie/archive/2009/06/25/declaring-security.aspx
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml

BIBLIOGRAPHY 117

International Conference on Cyber Security Cryptography and Machine
Learning (2017), 288–305.

[109] Lekies, S., Stock, B., and Johns, M. 25 million flows later: Large-
scale detection of dom-based xss. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security (2013),
ACM, pp. 1193–1204.

[110] Li, Y.-F., Das, P. K., and Dowe, D. L. Two decades of Web
application testing - A survey of recent advances. Information Systems
43, 0 (2014), 20 – 54.

[111] Lie, H. W., and Bos, B. Cascading Style Sheets, level 1. W3C
Recommendation (1996).

[112] Marlinspike, M. New tricks for defeating ssl in practice. Blackhat
(2009).

[113] Martin, B., Brown, M., Paller, A., and Kirby, D. 2011 cwe/sans
top 25 most dangerous software errors. http://cwe.mitre.org/top25/,
2011.

[114] Möller, B., Duong, T., and Kotowicz, K. This poodle bites:
exploiting the ssl 3.0 fallback.

[115] Naylor, D., Finamore, A., Leontiadis, I., Grunenberger, Y.,
Mellia, M., Munafo, M., Papagiannaki, K., and Steenkiste,
P. The Cost of the "S" in HTTPS. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and
Technologies (New York, NY, USA, 2014), CoNEXT ’14, ACM, pp. 133–
140.

[116] Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S.,
Joosen, W., Kruegel, C., Piessens, F., and Vigna, G. You are
what you include: large-scale evaluation of remote javascript inclusions. In
Proceedings of the 2012 ACM conference on Computer and communications
security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 736–747.

[117] Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C.,
Piessens, F., and Vigna, G. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In Security and privacy
(SP), 2013 IEEE symposium on (2013), IEEE, pp. 541–555.

[118] O’Reilly, T. What Is Web 2.0. http://www.oreilly.com/pub/a/
web2/archive/what-is-web-20.html.

http://cwe.mitre.org/top25/
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html

118 BIBLIOGRAPHY

[119] OWASP. Transport Layer Protection Cheat Sheet. https://www.owasp.
org/index.php/Transport_Layer_Protection_Cheat_Sheet.

[120] OWASP. The Ten Most Critical Web Application Security Vulnerabilities.
OWASP Top 10 (2007).

[121] OWASP. The Ten Most Critical Web Application Security Risks. OWASP
Top 10 (2017).

[122] Paoli, L., Visschers, J., Verstraete, C., and van
Hellemont, E. The impact of cybercrime on belgian businesses.
https://bcc-project.be/newsandpublications/Industry-survey-
Final-report-2017, 2017.

[123] Quintero-Bonilla, S., del Rey, A. M., and Queiruga-Dios, A.
New perspectives in the study of advanced persistent threats. practical
applications of agents and multi agent systems 619 (2017), 242–244.

[124] Rafique, M. Z., Chen, P., Huygens, C., and Joosen, W.
Evolutionary algorithms for classification of malware families through
different network behaviors. In Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation (2014), ACM, pp. 1167–1174.

[125] Rescorla, E. HTTP Over TLS. IETF RFC 2818 (2000).

[126] Richardson, R. 15th annual 2010/2011 computer crime and se-
curity survey. https://cours.etsmtl.ca/gti619/documents/divers/
CSIsurvey2010.pdf, 2011.

[127] Ristić, I. Internet SSL Survey 2010. In Black Hat USA 2010 (2010).

[128] Rizzo, J., and Duong, T. Crime: Compression ratio info-leak made
easy. In ekoparty Security Conference (2012).

[129] Ross, D., and Gondrom, T. HTTP Header Field X-Frame-Options.
IETF RFC 7034 (2013).

[130] Rubio, J. E., Alcaraz, C., and Lopez, J. Preventing advanced
persistent threats in complex control networks. In European Symposium
on Research in Computer Security (2017), vol. 10493, pp. 402–418.

[131] Ryck, P. D., Desmet, L., Piessens, F., and Johns, M. Primer on
Client-Side Web Security. Springer, 2014.

[132] Security, Q. Chinese websites security vulnerability situation analysis
report (in Chinese), 2017.

[133] Security, W. Web Applications Security Statistics Report, 2016.

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://bcc-project.be/newsandpublications/Industry-survey-Final-report-2017
https://bcc-project.be/newsandpublications/Industry-survey-Final-report-2017
https://cours.etsmtl.ca/gti619/documents/divers/CSIsurvey2010.pdf
https://cours.etsmtl.ca/gti619/documents/divers/CSIsurvey2010.pdf

BIBLIOGRAPHY 119

[134] Seifert, C., Delwadia, V., Komisarczuk, P., Stirling, D., and
Welch, I. Measurement Study on Malicious Web Servers in the .nz
Domain. In Information Security and Privacy, vol. 5594. Springer, 2009.

[135] Sen, A., and Hawthorn, G. The Standard of Living - The tanner
lectures. Cambridge University Press, 1988.

[136] Son, S., and Shmatikov, V. The postman always rings twice: Attacking
and defending postmessage in html5 websites. In NDSS (2013).

[137] Stamm, S., Sterne, B., and Markham, G. Reining in the web with
content security policy. In Proceedings of the 19th international conference
on World wide web (New York, NY, USA, 2010), WWW ’10, ACM,
pp. 921–930.

[138] Stock, B., Johns, M., Steffens, M., and Backes, M. How the web
tangled itself: Uncovering the history of client-side web (in) security.

[139] Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., and Cranor,
L. F. Crying Wolf: An Empirical Study of SSL Warning Effectiveness. In
Proceedings of the 18th Usenix Security Symposium (2009), pp. 399–416.

[140] van Goethem, T., Chen, P., Nikiforakis, N., Desmet, L., and
Joosen, W. Large-Scale Security Analysis of the Web: Challenges and
Findings. Springer International Publishing, Cham, 2014, pp. 110–126.

[141] Ventures, C. 2017 Cybercrime Report, 2017.

[142] von Hirsch, A., and Jareborg, N. Gauging criminal harm: A living-
standard analysis. Oxford Journal of Legal Studies 11, 1 (1991), 1–38.

[143] W3C. Document Object Model (DOM). https://www.w3.org/DOM/.

[144] Weichselbaum, L., Spagnuolo, M., Lekies, S., and Janc, A. Csp is
dead, long live csp! on the insecurity of whitelists and the future of content
security policy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (2016), pp. 1376–1387.

[145] West, M. Content Security Policy: Cookie Controls. W3C Working
Group Note (2016).

[146] West, M. Content Security Policy: Embedded Enforcement. W3C
Working Draft (2016).

[147] West, M. Content Security Policy Level 3. W3C Working Draft (2016).

[148] West, M., Barth, A., and Veditz, D. Content Security Policy Level
2. W3C Recommendation (2016).

https://www.w3.org/DOM/

120 BIBLIOGRAPHY

[149] West, M., and Goodwin, M. Same-site Cookies. IETF Draft (2016).

[150] Wikipedia. Resident Identity Card. http://en.wikipedia.org/wiki/
Resident_Identity_Card_(PRC).

[151] Wilson, K. Revoking Trust in one CNNIC Intermediate Certifi-
cate. https://blog.mozilla.org/security/2015/03/23/revoking-
trust-in-one-cnnic-intermediate-certificate/, 2015.

[152] Zalewski, M. Postcards from the post-xss world. http://lcamtuf.
coredump.cx/postxss/, 2011.

[153] Zeller, W., and Felten, E. W. Cross-site request forgeries:
Exploitation and prevention. The New York Times (2008), 1–13.

http://en.wikipedia.org/wiki/Resident_Identity_Card_(PRC)
http://en.wikipedia.org/wiki/Resident_Identity_Card_(PRC)
https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic-intermediate-certificate/
https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic-intermediate-certificate/
http://lcamtuf.coredump.cx/postxss/
http://lcamtuf.coredump.cx/postxss/

List of publications

Papers at international conferences and workshops,
published in proceedings

• Ping Chen, Jonas Visschers, Cedric Verstraete, Letizia Paoli, Christophe
Huygens, Lieven Desmet, Wouter Joosen. “The relationship between the
cost of cybercrime and web security posture: A case study on Belgian
companies”. In Companion Proceedings of the 11th European Conference
on Software Architecture, pages 115-120, Canterbury, UK, 2017.

• Ping Chen, Christophe Huygens, Lieven Desmet, Wouter Joosen.
“Advanced or not? A comparative study of the use of anti-debugging
and anti-VM techniques in generic and targeted malware”. In 31st
International Conference on ICT Systems Security and Privacy Protection
(IFIP SEC 2016), Springer, pages 323-336, 2016.

• Ping Chen, Christophe Huygens, Lieven Desmet, Wouter Joosen,
Longitudinal study of the use of client-side security mechanisms on
the European web. In Proceedings of the 25th International Conference
Companion on World Wide Web, pages 457-462, Montreal, Canada, 2016.

• Ping Chen, Nick Nikiforakis, Lieven Desmet, Christophe Huygens.
“Security analysis of the Chinese web: how well is it protected?” In
Proceedings of the 2014 Workshop on Cyber Security Analytics, Intelligence
and Automation (SafeConfig 2014), pages 3-9, ACM, 2014.

• Ping Chen, Lieven Desmet, Christophe Huygens. “A study on Advanced
Persistent Threats”. In Proceedings of the 15th IFIP TC6/TC11
Conference on Communications and Multimedia Security, pages 63-70,
Aveiro, Portugal, 2014

121

122 LIST OF PUBLICATIONS

• Ping Chen, Nick Nikiforakis, Christophe Huygens, Lieven Desmet. “A
dangerous mix: Large-scale analysis of mixed-content websites.” In
Proceedings of the 16th International Conference on Information Security
(ISC 2013), pages 354-363, Dallas, USA, 2013.

• M. Zubair Rafique, Ping Chen, Christophe Huygens, Wouter Joosen.
“Evolutionary algorithms for classification of malware families through
different network behaviors.” In Proceedings of the 2014 Conference
on Genetic and Evolutionary Computation, pages 1167-1174, Vancouver,
Canada, 2014

• Tom Van Goethem, Ping Chen, Nick Nikiforakis, Lieven Desmet, Wouter
Joosen. “Large-scale security analysis of the web: Challenges and findings.”
In Trust and Trustworthy Computing, volume 7, pages 110-125, Heraklion,
Greece, 2014.

• Sebastiaan de Hoogh, Berry Schoenmakers, Ping Chen, Harm op
den Akker, “Practical secure decision tree learning in a teletreatment
application”, In 18th International Conference on Financial Cryptography
and Data Security, pages 179-194, Springer, 2014.

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

IMEC-DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Leuven
https://distrinet.cs.kuleuven.be

	Abstract
	Beknopte samenvatting
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Goal of This Thesis
	Other Research Conducted
	Contributions
	Outline of the Text

	Background
	The World Wide Web
	History of the Web
	Web Browser
	Web Application
	Web Security Threats
	Common Web Attacks
	Eavesdropping
	Man-in-the-Middle attack
	Cross-site scripting
	Session hijacking
	Clickjacking

	Conclusion

	Assessing Web Security
	Client-side Security Mechanisms
	HTTPS Support
	HTTP Strict-Transport-Security
	Public Key Pinning and Certificate Transparency
	HttpOnly and Secure Cookies
	Content Type Options
	Content Security Policy
	X-Frame-Options

	Large-scale Web Crawling Approach

	Large-scale Analysis of Mixed-content Inclusion
	Introduction
	Problem Statement
	Impact of Mixed Content Attacks
	Data Collection
	Discussion
	Websites having mixed content
	Providers of mixed-content files

	Mixed Content Mitigation Techniques
	Browser vendor
	Website owner
	Resource provider

	Limitations
	Conclusion

	Security Assessment of the Chinese Web
	Introduction
	Data Collection
	Usage of Client-side Security Policies
	Security of HTTPS Implementations
	HTTPS security issues
	Client-side security policies for HTTPS websites
	Findings and discussion
	Usage of KNET trusted website certificate

	Identity Leakage
	Revisiting the Situation in 2017
	Limitations
	Conclusion

	Longitudinal Study of Web Security
	Introduction
	Data Collection
	Security Features and Scoring System
	Client-side security features
	Web security scoring system

	General Findings
	The use of security features on European web
	Websites that adopted more security features

	Web Security Score Analysis
	EU web security score, in terms of website popularity
	Web security score per business vertical in EU
	Web security score per country in EU

	HTTPS Migration Analysis
	Websites that Dropped Out During the Study
	Limitations
	Conclusion

	Correlation with Cybercrime Cost
	Introduction
	Data Collection
	Industry survey
	Website crawling

	General Findings
	Industry survey result
	Website crawling result

	Correlational Analysis
	Correlation with each security feature
	Correlation with overall security score

	Representativeness of the Samples
	Limitations
	Conclusion

	Conclusion
	Summary
	Related Work
	Recent Development of Client-side Defenses
	Concluding Thoughts

	Bibliography
	List of publications

