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Abbreviations used

ALI: Air-liquid interface

AR: Allergic rhinitis

BAL: Bronchoalveolar lavage

FD4: Fluorescein isothiocyanate–dextran 4 kDa

HDM: House dust mite

IR: Idiopathic rhinitis

KU: Katholieke Universiteit

pNEC: Primary nasal epithelial cell

TER: Transepithelial electrical resistance

TGN: Trigeminal neuron

TJ: Tight junction

ZO: Zonula occludens
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Background: Allergic rhinitis (AR) is characterized by mucosal
inflammation, driven by activated immune cells. Mast cells and
TH2 cells might decrease epithelial barrier integrity in AR,
maintaining a leaky epithelial barrier.

Objective: We sought to investigate the role of histamine and
TH2 cells in driving epithelial barrier dysfunction in AR.

Methods: Air-liquid interface cultures of primary nasal
epithelial cells were used to measure transepithelial electrical
resistance, paracellular flux of fluorescein isothiocyanate-
dextran 4 kDa, and mRNA expression of tight junctions. Nasal
secretions were collected from healthy control subjects, AR
patients, and idiopathic rhinitis patients and were tested in vitro.
In addition, the effect of activated TH1 and TH2 cells, mast cells,
and neurons was tested in vitro. The effect of IL-4, IL-13, IFN-g,
and TNF-a on mucosal permeability was tested in vivo.

Results: Histamine as well as nasal secretions of AR but not
idiopathic rhinitis patients rapidly decreased epithelial barrier
integrity in vitro. Pretreatment with histamine receptor-1
antagonist, azelastine prevented the early effect of nasal
secretions of AR patients on epithelial integrity. Supernatant of
activated TH1 and TH2 cells impaired epithelial integrity, while
treatment with anti-TNF-a or anti-IL-4Ra monoclonal
antibodies restored the TH1- and TH2-induced epithelial barrier
dysfunction, respectively. IL-4, IFN-g, and TNF-a enhanced
mucosal permeability in mice. Antagonizing IL-4 prevented
mucosal barrier disruption and tight junction downregulation
in a mouse model of house dust mite allergic airway
inflammation.

Conclusions: Our data indicate a key role for allergic
inflammatory mediators in modulating nasal epithelial barrier
integrity in the pathophysiology in AR. (J Allergy Clin Immunol
2018;141:951-63.)

Key words: Allergic rhinitis, idiopathic rhinitis, tight junctions, his-
tamine, TH2 cells, primary nasal epithelial cells

The nasal epithelium is of vital importance in host defense
because it not only provides a physical barrier between the
environment and the submucosal region, but it also contributes to
the induction of an appropriate immune response toward
pathogens, allergens, and noxious stimuli that overcome the
mucosal barrier.1 The maintenance of an intact physical barrier
depends on the coordinated expression and interaction of
interepithelial protein complexes such as tight junctions (TJs)
and adherence junctions.2 TJs are the most apically located
junctions and are important guards for maintaining selective
permeability to ions and small molecules. Occludin, the family
of claudins, tricellulin, and junctional adhesion proteins make
up the transmembrane proteins that seal off the paracellular space,
whereas zonula occludens (ZO)-1, -2 and -3 are cytoplasmic
linker proteins that connect the transmembrane proteins to the
cytoskeleton.1,2

Recently, studies have indicated that a defective epithelial
barrier, due to TJ and/or adherence junction defects, is part of the
underlying pathology in diseases such as atopic dermatitis,3

asthma,4 chronic rhinosinusitis,5 and allergic rhinitis (AR).6,7

AR is characterized by symptoms such as nasal obstruction,
rhinorrhea, itchy nose, and/or sneezing on contact with inhaled
allergens in sensitized individuals.8,9 The inflammatory cascade
in AR is initiated by an IgE-dependent mast cell degranulation
with release of histamine among other mediators and is further
orchestrated by TH2 cytokines IL-4, IL-5, and/or IL-13.10-12

These cytokines maintain a continuous inflammation in the nasal
mucosa by attracting inflammatory cells and by interfering with
the establishment of an intact mucosal barrier. The dynamic na-
ture of IL-4 and IL-13 is well demonstrated by their ability to
modulate the expression and assembly of TJ proteins.13,14

Noteworthy, idiopathic rhinitis (IR) is a subgroup of rhinitis
characterized by an identical phenotype as AR though in the
absence of an overt inflammation in the nasal mucosa.15,16 IR is
assumed to be mediated by dysfunctional sensory C-fibers in
the nasal mucosa, rather than by TH2 inflammation.17-19 At
present, the contribution of a defective epithelial barrier as an
underlying part in the pathology of AR and IR has not been
investigated or compared.
Therefore, we hypothesized that inflammation is a key node in

initiating and sustaining defective epithelial barrier function in
AR, which is unlikely to be the case in IR. For this purpose, nasal
secretions from patients with AR and IR and from healthy control
subjects were collected and tested on primary nasal epithelial cell
(pNEC) cultures in vitro. In addition, we evaluated the effect of
different inflammatory cells and their mediators on epithelial bar-
rier function in vitro and in a mouse model of house dust mite
(HDM)-induced allergic airway inflammation. Patients with IR,
in whom nasal inflammation is absent, showed an intact nasal
epithelial barrier. Impaired epithelial barrier function in AR was
induced by histamine during the early phase allergic immune
response and is maintained in the late phase allergic immune
response by TH2 cell inflammation. Antagonizing IL-4 and IL-
13 in vitro and anti-IL-4 treatment in mice prevented epithelial
barrier disruption and hence represents a possible strategic target
for breaking persistent nasal inflammation in AR.
METHODS

Patients
The study protocol was approved by the local ethics committee of

University Hospitals Leuven and was registered at clinicaltrials.gov

(NCT02461797, NCT02288156). Patient characteristics are depicted in

Table E1 in this article’s Online Repository at www.jacionline.org. Allergic

status was determined via skin prick testing for the most frequent inhalant al-

lergens in Belgium—birch pollen, grass pollen, cat dander, dog dander,

Dermatophagoides pteronyssinus (Stallergenes, Antony, France),

rabbit and spores of Alternaria, Aspergillus (HAL Allergy, Leiden,

The Netherlands)—as described previously.20 All study participants were

http://clinicaltrials.gov
http://www.jacionline.org


J ALLERGY CLIN IMMUNOL

VOLUME 141, NUMBER 3

STEELANT ET AL 953
asked to score their rhinitis symptoms on a visual analog scale (score 0-10).

The major nasal symptom was selected based on the highest visual analog

scale score.

Nasal secretions
Nasal secretions were collected from each study participant. A nasal

sponge (Ivalon Surgical products, San Diego, Calif) was weighed and inserted

in both nostrils. After 10minutes, the spongewas removed andweighed again.

Avolume of salinewas added depending on theweight of the collected sponge

(1/5 dilution). The sponge was then squeezed and centrifuged at 1500g at 48C
for 5 minutes. Supernatant was stored at 2208C until analysis.
Isolation of naive CD41 T cells and TH1/TH2

polarization in vitro
Details on the isolation and polarization of TH1/TH2 cells can be found in

the Methods section of this article’s Online Repository at www.jacionline.org.
Isolation and culture of mast cells and eosinophils

and murine TGN
The method for isolation and culturing mast cells,21 eosinophils,22 and mu-

rine trigeminal neurons (TGNs)23 has been described previously. Supernatant

of the different activated cells was stored at 2208C until further analysis.
ALI cultures of pNECs and Calu-3 epithelial cells
Inferior turbinates were used for isolation of pNECs from nonallergic,

nonasthmatic healthy control subjects. A highly purified pNEC population

was obtained as reported previously.6 Isolated pNECs or Calu-3 epithelial

cells were seeded on 0.4-mm3 0.33-cm2 polyester Transwell inserts (Greiner

Bio-One, Vilvoorde, Belgium) at a density of 100,000 cells per Transwell. The

culture medium used for pNECs was Dulbecco modified Eagle medium/F12,

supplemented with antibiotics and Ultroser G (2%) (Pall Life Sciences, Tie-

nen, Belgium), Calu-3 culture medium was Eagle minimal essential medium,

supplemented with antibiotics, FCS (10%), and L-glutamine (1%). Culture

medium was refreshed every other day. Once the cells grew to complete

confluence, the apical culture medium was removed to allow further cell dif-

ferentiation at air-liquid interface (ALI). At day 21 in ALI, epithelial cell cul-

tures were used for in vitro stimulation studies.
TER measurement
Epithelial integrity of ALI cultures was evaluated by transepithelial

electrical resistance (TER) measurements using an EVOM/Endohm (World

Precision Instruments, Sarasota, Fla) as described in the Methods section of

this article’s Online Repository. Wells not building up sufficiently

(TER < 200 V 3 cm2) were not included in experiments.

Stimulation experiments in vitro
For long-term experiments (up to 72 hours), ALI cultures of pNECs and

Calu-3 cells were stimulated basolaterally for 3 days with IL-4, IL-13, TNF-a,

and IFN-g (all 10 ng/mL; R&D Systems, Abingdon, United Kingdom),

supernatant of activated TH1/TH2 cells, supernatant of IgE-activated mast

cells, supernatant of C5a-activated eosinophils and supernatant of

capsaicin-activated murine TGN. Two hours before addition of the above-

mentioned stimuli, ALI cultures were pretreated with anti-IL-4Ra antibody,

anti-IFN-gR antibody (both 2 mg/mL; Sigma-Aldrich, St Louis, Mo) or

anti-TNF-a (Inflectra, 40 mg/mL, Celltrion Healthcare, Incheon, Korea).

For short-term experiments (up to 4 hours), ALI cultures of Calu-3

epithelial cells were stimulated for 4 hours with nasal secretions of AR and IR

patients and healthy control subjects using different doses of histamine

(0.01-1 mmol/L; Sigma-Aldrich) or substance P (10-100 pmol/L; R&D

Systems). To evaluate the effect of histamine in nasal secretions, Calu-3

epithelial cell cultures were pretreated for 2 hours with a selective histamine

receptor-1 antagonist (azelastine; Sigma-Aldrich) before adding the nasal
secretions. TER was measured as a function of time and is expressed as

relative change compared with baseline values.
Ussing chamber experiments for the evaluation of

mucosal explant integrity
Nasal biopsy specimens were taken from the inferior turbinate after the

application of a nasal spray with local anesthesia (cocaine 5%) by using a

Fokkens forceps. Connective tissue was removed and biopsies were mounted

in Ussing chambers (Mussler Scientific Instruments, Aachen, Germany) to

evaluate mucosal integrity by measuring transtissue resistance ex vivo as

described previously.6
RT-quantitative PCR for TJ genes
The methods for mRNA isolation and RT-quantitative PCR have been

reported previously.18 Detailed information and primer sequences can be

found in the Methods section and Table E2 in this article’s Online Repository

at www.jacionline.org.
Mice
Male BALB/c and C57Bl/6 mice (6-8 weeks) were obtained from Harlan

(Horst, The Netherlands) and were kept under conventional conditions.

Experimental procedures were approved by the Ethical Committee for Animal

Research at the Katholieke Universiteit (KU) Leuven (P103/2013). BALB/c

mice were 3 times endonasally instilled with IL-4, IL-13, IFN-g, TNF-a (all

250 ng), or saline at 1-hour intervals. One hour after the last

endonasal instillation, 20 mL fluorescein isothiocyanate–dextran 4 kDa

(FD4) (50 mg/mL) was applied endonasally allowing evaluation of nasal

mucosal permeability. One hour later, serum and nasal mucosa were collected

for further analysis.

C57Bl/6 micewere endonasally sensitized with 50mLHDM extract (1mg)

(Greer Laboratories, Lenoir, NC) or 50 mL saline at day 1. From days 8 to 12,

mice were endonasally challenged with 50 mL HDM extract (10mg) or saline.

One hour prior to each challenge, mice were injected intraperitoneally with

either anti-IL-4 (250 mg) or anti-TNF-a (100 mg) or sham (kind gift from L.

Boon). One hour after FD4 (50mg/mL) application, micewere sacrificed with

intraperitoneal injection of Nembutal (Ceva, Brussels, Belgium). Levels of

FD4 were determined in the serum by a fluorescence reader (FLUOstar

Omega; BMG Labtech, Cary, NC). Albumin leakage from the lungs to

bronchoalveolar lavage (BAL) fluid, as a surrogate marker for lung

permeability, was measured with ELISA according to the manufacturer’s

protocol (Abcam, Cambridge, United Kingdom). IL-4 and IL-13 concentra-

tions in BAL fluid were determined with ELISA.

Immunofluorescence staining of occludin and ZO-1.
See the Methods section in this article’s Online Repository for a detailed

description of immunofluorescence staining of nasal mucosal biopsies.
Statistical analysis
Data were analyzed using GraphPad Prism 7 (La Jolla, Calif). Differences

between 2 groups were analyzed using 2-tailed unpaired t-test or

Mann-Whitney U test, depending on normality. Data are presented as

mean 6 SD or median (interquartile range). One-way ANOVA or

Kruskal-Wallis test with post hoc analysis was used to compare multiple

groups. Values were considered significantly different when P < .05.
RESULTS

Decreased transtissue resistance and mRNA

expression of occludin and ZO-1 in nasal biopsies

from AR but not IR patients
To address the potential role of inflammation inmucosal barrier

dysfunction, transtissue resistance and FD4 permeability were
measured on nasal mucosal biopsies from healthy subjects and IR

http://www.jacionline.org
http://www.jacionline.org


FIG 1. Epithelial barrier function in patients with AR and IR. A, Transtissue resistancemeasured with Ussing

chambers on nasal explants from AR and IR patients and control subjects. B, FD4 permeability. C, Visual

analog scale (VAS) scores for major nasal symptom. D, Hematoxylin and eosin staining of nasal mucosal

biopsies from healthy control subjects and patients with AR and IR. Bars 5 100 mm. *P < .05 and

***P < .001. NS, Not significant.
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and AR patients. A reduced transtissue resistance, accompanied
with increased FD4 permeability was found in mucosal explants
of AR patients (Fig 1,A andB). No difference inmucosal integrity
or FD4 permeability was found in mucosal explants from IR pa-
tients compared with those of healthy subjects (Fig 1, A and B).
The visual analog scale scores for major symptoms were similar
in IR and AR patients and significantly higher than for healthy
subjects (Fig 1, C). Histologically, AR patients showed a clear
influx of inflammatory cells in the nasal mucosa, which was ab-
sent in the nasal mucosa of IR patients and healthy subjects
(Fig 1, D).
Consistent with the absence of an impaired mucosal barrier in

IR patients, no decreased mRNA expression for occludin and
ZO-1 was observed compared with that of healthy subjects (Fig 2,
A). Occludin and ZO-1 mRNA expression was significantly lower
in AR patients than in healthy subjects and IR patients.
Interestingly, claudin-1 expression was significantly increased
in IR patients than in AR patients (Fig 2, A). Claudin-4 showed
a similar, though nonsignificant increased expression in IR
patients. Immunofluorescence of the TJ proteins occludin and
ZO-1 of paraffin-embedded mucosal biopsy specimens revealed
an intact TJ layer in healthy mucosa and mucosa of IR patients.
This layer was disrupted more severely in AR patients along
with an irregular TJ protein expression (Fig 2, B).
Nasal secretions of AR but not IR patients induce a

rapid decrease in TER during the early allergic

immune response, which is prevented by azelastine
To investigate the factors leading to decreased nasal epithelial

integrity in AR patients, we first studied the effect of nasal
secretions on Calu-3 epithelial cell cultures at ALI. Calu-3
epithelial cells were cultured for 4 hours with nasal secretions
collected from healthy subjects and IR and AR patients and TER
was measured. Nasal secretions from AR patients consistently
decreased TER in a time-dependent manner, whereas nasal
secretions of IR patients and healthy subjects had no effect
(Fig 3, A). Moreover, nasal secretions of AR patients only
temporarily decreased TER of Calu-3 cell cultures at ALI as the
effect was returned to baseline after 24 hours (see Fig E1 in this
article’s Online Repository at www.jacionline.org).

We next measured the presence of inflammatory mediators in
the nasal secretions. Nasal secretions of both control subjects and
IR patients, compared with those of AR patients, contained low
levels of histamine and type 2 cytokines IL-4 and IL-13 (Fig 3,
B-E). The neuropeptide, substance P, was significantly increased
in nasal secretions of IR patients compared with those of control
subjects (Fig 3, E). Subsequently, we tested which inflammatory
mediators in the nasal secretions of AR patients were responsible
for the decreased TER during the early phase allergic immune

http://www.jacionline.org
http://www.jacionline.org


FIG 2. Tight junction expression in mucosal biopsies from control subjects and AR and IR patients.

A,mRNA expression of occludin, ZO-1, and claudin-1 and -4 in patients with AR and IR and control subjects.

RelativemRNA expression versus the housekeeping genes encoding b-actin and b2microglobulin is shown.

B, Representative images of protein expression of occludin and ZO-1. Original magnification 403.

Data presented as medians and interquartile ranges. *P < .05 and **P < .01.
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response induced by nasal secretions of AR patients. Calu-3
epithelial cell cultures at ALI were stimulated for 4 hours with
histamine, IL-4, IL-13, or substance P. Histamine rapidly
decreased TER of Calu-3 epithelial cells in a dose-dependent
manner (Fig 3, F). The supernatant of IgE-activated mast cells
showed a similarly rapid effect as that of histamine on TER,
which had returned to baseline values after 24 hours (see Fig
E2 in this article’s Online Repository at www.jacionline.org).
IL-4, IL-13, or substance P did not decrease TER of Calu-3
epithelial cell cultures during the time window representing the
early phase allergic immune response (Fig 3, G and H).
To verify that histamine in the AR nasal secretions is decreasing
epithelial integrity in vitro, Calu-3 epithelial cell cultures at ALI
were pretreated for 2 hours with different concentrations of
azelastine, a selective histamine receptor-1 antagonist. Azelastine
inhibited the effect of the nasal secretions of AR patients on TER
in a dose-dependent way (Fig 3, I). Noteworthily, a 2-hour
pretreatment of Calu-3 epithelial cells with anti-IL-4Ra
(2 mg/mL) to antagonize the effect of IL-4 and/or IL-13 did not
inhibit the decrease in TER during the early phase allergic immune
response induced by the nasal secretions ofAR patients (see Fig E3
in this article’s Online Repository at www.jacionline.org).

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 3. Effect of nasal fluid of AR patients on epithelial barrier function of Calu-3 cells. A, Effect of nasal fluid

of healthy control subjects and AR and IR patients (n 5 5/group). B, Histamine content measured in nasal

fluid of healthy control subjects and patients with AR and IR. C and D, IL-4 and IL-13 concentration in

nasal fluid. E, Substance P (SP) concentration in nasal fluid. F-H, Effect of histamine, IL-4 (10 ng/mL),

IL-13 (10 ng/mL), and SP on Calu-3 epithelial cell integrity after 4-hour stimulation. I, Effect of 2-hour

pretreatment with azelastine on the decrease of Calu-3 epithelial cell integrity induced by AR nasal

secretions. *P < .05, **P < .01, and ***P < .001. M, Mol/L; SN, supernatant.
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FIG 4. Effect of SN from activated immune cells on epithelial barrier function of Calu-3 cells and pNECs.

A, Effect of SN from activated TH1 and TH2 cells. B, Effect of SN from IgE-activated mast cells. C, Effect of SN

from capsaicin-activated murine TGNs. D, Effect of SN from C5a-activated eosinophils. n 5 5 for all experi-

ments. Data presented as medians and interquartile ranges. **P < .01 and ***P < .001.
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Together, these data indicate that histamine in nasal secretions of
AR patients transiently decreases TER of Calu-3 epithelial cells in
a time window representing the early phase allergic immune
response. Azelastine prevented the AR nasal secretion-mediated
decrease in TER, indicating a possible role for histamine and the
histamine receptor-1 signaling in mediating barrier dysfunction.
TH1 and TH2 cytokine-mediated decrease in TER of

epithelial cells in vitro during the delayed allergic

immune response
We next studied whether other inflammatory cells can alter

epithelial integrity during a time window representing the
secondary phase allergic immune response. To this end, TH1
and TH2 cells were polarized in vitro from naive peripheral blood
CD41 T cells and the supernatant of activated cells was collected
to examine the effect on both Calu-3 and pNEC cultures at ALI
for 3 days. Both supernatants of activated TH1 or TH2 cells
decreased TER of Calu-3 epithelial cell and pNEC cultures (Fig
4, A). No decline in TER was found when Calu-3 and pNEC cul-
tures were stimulated with supernatant of IgE-activated mast
cells, C5a-activated eosinophils, or capsaicin-activated murine
TGN for 3 days (Fig 4, B-D).

Anti-TNF-a and anti-IL4-Ra antibody prevent the

decline in TER orchestrated by activated TH1 and

TH2 cells
Several cytokines were detected in the supernatant of activated

TH1 and TH2 cells in vitro (see Fig E4 in this article’s Online
Repository at www.jacionline.org). To study which cytokines
released by TH1 and TH2 cells impair epithelial barrier integrity
during the secondary phase allergic immune response, recombi-
nant cytokines were used in vitro. Stimulation with TNF-a
(10 ng/mL) for 3 days decreased TER of Calu-3 and pNEC
cultures at ALI (Fig 5), whereas IFN-g (10 ng/mL) did not alter
TER (Fig 5). In addition, TH2-derived IL-4 and IL-13
(10 ng/mL) also impaired TER (Fig 5, B). Pretreatment of
Calu-3 and pNEC cultures at ALI for 2 hours with anti-IL-4Ra
(2 mg/mL) or anti-TNF-a (40 mg/mL) monoclonal antibodies
prevented the cytokine-mediated barrier disruption. Likewise,
pretreatment with anti-IFN-gR and anti-TNF-a monoclonal
antibodies prevented the effect of supernatant from activated
TH1 cells, while pretreatment with anti-IL-4Ra monoclonal
antibody prevented the effect of supernatant from activated TH2
cells (Fig 5, A).

Collectively, these results indicate that both TH1 and TH2 cells
can impair epithelial barrier function during the secondary phase
allergic immune response, which is ascribed to either TNF-a or to
IL-4 and IL-13, respectively.
IL-4, IL-13, and TNF-a increase transmucosal FD4

permeability via decreasing expression of occludin

and ZO-1 in vivo
As IL-4, IL-13, and TNF-a decreased epithelial barrier

integrity in vitro, we next investigated whether the cytokine-
mediated barrier disruption could be confirmed in vivo and
whether it was associated with altered expression of occludin

http://www.jacionline.org
http://www.jacionline.org


FIG 5. Effect of TH1 and TH2 cytokines on epithelial barrier function of Calu-3 cells and pNECs. A and

B, Calu-3 cells and pNECs were stimulated with SN of activated TH1 cells, TH1 cytokines, and their receptor

antagonists for 72 hours. C and D, Calu-3 cells and pNECs were stimulated with SN of activated TH2 cells,

TH2 cytokines, and their receptor antagonists for 72 hours. n 5 5 for Calu-3 cells and n 5 4 for pNECs.

Data presented as means 6 SD. *P < .05, **P < .01, and ***P < .001.
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FIG 6. Effect of IL-4, IFN-g, and TNF-a on the mucosal barrier in naive BALB/c mice. A, Study protocol. On

day 1, mice received 3 nasal instillations at 1-hour intervals with IL-4, IL-13, IFN-g, TNF-a (all 250 ng), or

sham. One day after the last instillation, 20 mL FD4 (50 mg/mL) was applied endonasally (en) for evaluation

of mucosal permeability. One hour later, mice were sacrificed for further analysis with an intraperitoneal

injection of Nembutal. B, Mucosal permeability for FD4. C, mRNA expression for occludin. D, mRNA

expression for ZO-1. mRNA expression is relative to the housekeeping genes b-actin and b2 microglobulin.

n 5 5/group. *P < .05, **P < .01, and ***P < .001.
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and ZO-1 in vivo. Wild-type BALB/c mice were endonasally
instilled with TNF-a, IFN-g, IL-4, or IL-13 (all 250 ng per instil-
lation) and mucosal permeability was evaluated by using FD4
(Fig 6, A). Instillation with IL-4, IFN-g, and TNF-a, compared
with instillation of saline in control mice, significantly increased
FD4 permeability (Fig 6, B). The increased FD4 mucosal
permeability in IL-4-, IFN-g-, and TNF-a-instilled mice,
compared with saline instilled mice, was associated with
decreased expression of occludin and ZO-1 (Fig 6, C and D).
IL-13 had a modest, though nonsignificant effect on FD4
permeability and expression of occludin (Fig 6, B and C).
Anti-IL-4 prevents induction of transmucosal FD4

permeability in a mouse model of HDM-induced

airway inflammation
Given that our findings implicate a direct effect of IL-4 and

TNF-a on mucosal barrier integrity, we speculated that either
treatment with anti-IL-4 or anti-TNF-a monoclonal antibodies
would prevent mucosal permeability disturbances in a mouse
model of HDM-induced allergic airway inflammation (Fig 7, A).
BAL fluid concentrations of IL-4 and to a lesser extent TNF-a
were significantly increased in HDM-challenged mice compared
with in saline-challenged mice (Fig 7, B). Assessment of mucosal
permeability by nasal application of FD4 showed elevated serum
levels of FD4 in HDM-challenged mice compared with saline-
challenged mice (Fig 7, C). Anti-IL-4 pretreatment of HDM-
challengedmice significantly decreased BAL IL-4 levels, without
affecting BAL TNF-a levels and completely normalized the
HDM-induced increase in FD4 permeability (Fig 7, B and C).
Moreover, albumin leakage to BAL fluid was significantly
increased in HDM-challenged mice, while pretreatment with
anti-IL-4 prevented albumin leakage (Fig 7, D). Anti-IL-4
pretreatment of HDM-challenged mice, compared with
HDM-challenged mice receiving vehicle, prevented loss of
occludin and ZO-1 mRNA expression (Fig 7, E and F). Blocking
TNF-a in HDM-challenged mice with anti-TNF-a only partially
prevented loss of nasal mucosal barrier integrity and
albumin leakage to BAL fluid in the lungs (see Fig E5 in this
article’s Online Repository at www.jacionline.org). Anti-TNF-a
pretreatment did not restore ZO-1 expression in
HDM-challenged mice (see Fig E5). Taken together, blocking
IL-4 inHDM-challengedmice protectedmucosal barrier integrity
by sustaining the expression of occludin and ZO-1.

http://www.jacionline.org
http://www.jacionline.org


FIG 7. Effect of anti-IL-4 in mouse model of HDM-induced allergic airway inflammation. A, Mouse model.

Mice were sensitized with 1 mg HDM extract or saline control at day 1. One week later (days 7-11), mice

were challenged endonasally (en) with 10 mg HDM extract or saline. One hour before each challenge,

anti-IL-4 monoclonal antibody or vehicle was given intraperitoneally (ip). One hour after the last challenge,

20 mL FD4 (50 mg/mL) was applied, followed 1 hour later with the sacrifice of the mice. B, IL-4 levels in BAL

fluid. C and D, Effect of anti-IL-4 treatment on FD4 permeability and albumin leakage in the lungs. E and

F, mRNA expression of occludin and ZO-1. Relative expression versus the housekeeping b-actin and b2

microglobulin. n 5 5/group. *P < .05, **P < .01, and ***P < .001.
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DISCUSSION
A defective epithelial barrier has been associated with chronic

inflammatory diseases such as asthma4 and AR,6 though evidence
about the underlying mechanism is lacking. We here provide a
link between inflammation and mucosal integrity. Mucosal
permeability was increased in mucosal explants from AR pa-
tients, whichwas associated with a decreased expression of occlu-
din and ZO-1. In patients with IR, however, no defective epithelial
barrier or decreased TJ expression was found (Figs 1 and 2). IR is
a subclassification of rhinitis characterized by symptoms such as
nasal obstruction, rhinorrhea, and nasal hyperreactivity, though in
the absence of mucosal inflammation.18,24 Interestingly, claudin-
1 and claudin-4 expression was elevated in IR patients compared
with in AR patients. Claudins can be divided into 2 broad cate-
gories: sealing and pore-forming claudins.25 Claudin-1 and
claudin-4 are classified as sealing claudins,26,27 which might
explain why patients with IR have a tight mucosal barrier. The
fact that no disrupted barrier is present in IR, emphasizes that
other mechanisms are responsible for nasal symptoms. Hence,
local release of neuropeptides such as substance P by afferent
nerves are assumed to induce symptoms in IR.28

Because AR patients show a defective epithelial barrier, we
searched for the responsible mediators in nasal secretions from
AR and IR patients and control subjects (Fig 3). Only nasal secre-
tions of AR patients rapidly decreased TER, which was ascribed
to increased mast cell activity. Histamine levels in nasal secre-
tions from AR patients were increased, suggesting a potential
role for mast cell in modulating epithelial integrity during the
early phase allergic immune response. Indeed, histamine tran-
siently and rapidly decreases TER, which builds further on
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previous reports showing that histamine modulates epithelial
permeability by interfering with expression of TJs29-31 and/or
adherence junctions.32 Histamine exerts its effect via the
histamine-1 receptor,33 which is upregulated in AR.34,35 Blocking
this receptor with azelastine prevented the decline in TER medi-
ated by AR nasal secretions pointing toward a crucial role for his-
tamine in rapidly decreasing epithelial barrier function during the
early phase allergic immune response. Besides increased hista-
mine levels, TH2 cytokines IL-4 and IL-13 were elevated in nasal
secretions of AR patients but did not manifest a rapid effect on
epithelial integrity. This is also supported by the finding that pre-
treatment of Calu-3 cells with anti-IL-4Ra antagonist did not pre-
vent the decrease in TER mediated by nasal secretions of AR
patients. Lastly, substance P was only elevated in nasal secretions
of IR patients as shown by others.18,36 Interestingly, stimulation of
Calu-3 cells with substance P modestly increased TER of Calu-
3 cells, presumably by stimulating the expression of ZO-1 as
shown by Ko et al.37 in corneal epithelial cells. This findingmight
also support the assumption that IR patients have no defective
epithelial barrier because of the barrier-promoting effect of
substance P.
Histamine, released during the early phase allergic immune

response, is likely not the sole factor altering epithelial integrity.
Other inflammatory cells may also interferewith epithelial barrier
homeostasis, presumably during the secondary phase allergic
immune response. The supernatants of activated TH1 and TH2
cells, mast cells, eosinophils, and murine TGNs were collected
and tested on Calu-3 and pNEC cultures (Fig 4). IgE-activated
mast cells and capsaicin-activated murine TGN had no effect on
TER during the delayed allergic immune response. Of note,
TGN increased TER of Calu-3 cells at 24 and 48 hours, which
was not found on pNECs. This disparity might be explained by
morphological differences between cell lines and pNECs, though
this needs further confirmation. Eosinophils are found in close
proximity with epithelial cells in chronic rhinosinusitis38 and
are implicated in disease development and progression by
increasing epithelial permeability.39 We did not find any effect
of eosinophils on epithelial integrity, which might be due to dif-
ferences in activation methods of eosinophils and the subse-
quently released mediators. In agreement with previous
publications, the supernatants of activated TH1 and TH2 cells
significantly decreased TER in function of time of Calu-3 and
pNEC cultures.40,41

The secondary decline in TER during the secondary phase
allergic immune response, mediated by activated TH1 cells is
linked to TNF-a. TNF-a is an important cytokine in the pathology
of inflammatory bowel disease42 and rheumatoid arthritis,43

though its role in AR is not yet extensively explored. TNF-a is
increased in the airways of corticosteroid-refractory asthmatic pa-
tients44-46 and patients with chronic rhinosinusitis (unpublished
data). TNF-a decreases epithelial integrity of Calu-3 and pNEC
cultures as demonstrated previously on airway epithelial cells47

and intestinal epithelial cells48-50 (Fig 5). Antagonizing TNF-a
prevented loss-of-epithelial barrier function in vitro. The observa-
tion that blocking TNF-a protects epithelial barriersmight help us
understand why patients with Crohn disease,51 rheumatoid
disease,43 or inflammatory bowel disease52 treated with
antagonizing TNF-a have improved disease activity scores.
IL-4 and IL-13 are the main cytokines linked with decreased

epithelial barrier integrity mediated by activated TH2
cells.6,40,53,54 Blocking IL-4 and IL-13 signaling with anti-IL-
4Ra antibodies restored epithelial barrier function during the
secondary phase allergic immune response (Fig 5). Interfering
with IL-4/IL-13 is a novel biological treatment for asthma55

and is currently being evaluated in phase III clinical trials for
chronic rhinosinusitis with nasal polyps.56 Anti-IL-4Ra antibody
treatment ameliorates symptom control in patients with asthma57

and in patients with chronic rhinosinusitis.56 Our data add a new
mode of action for anti-IL4Ra treatment because this molecule
not only inhibits type 2 inflammatory pathways but also prevents
cytokine-mediated barrier disruption. The barrier modulating
capacity of TH1- and TH2-derived cytokines is also demonstrated
in vivo (Fig 6). Endonasal instillation of IL-4, IL-13, IFN-g, or
TNF-a increased mucosal barrier permeability, which was
associated with decreased expression of occludin and ZO-1.
Importantly, we could confirm the crucial role of IL-4 on
epithelial barrier homeostasis in a mouse model of
HDM-induced allergic airway inflammation (Fig 7).
HDM-challenged mice had an increased mucosal permeability
as demonstrated with increased FD4 levels and BAL
albumin levels, whereas pretreatment with anti-IL4 prevented
mucosal barrier dysfunction. On the other hand, blocking
TNF-a only partially restored mucosal barrier integrity in
HDM-challenged mice because the expression of ZO-1 was not
fully restored. We hypothesize that IL-4 is the major driver of
mucosal barrier dysfunction and therefore overcomes the
antagonistic effect on TNF-a. Indeed, HDM-challenged mice
pretreated with anti-TNF-a still showed elevated levels of IL-4
in BAL fluid, which might explain the increased mucosal
permeability.
In summary, we have identified a pathogenic role for histamine

and TH2 cells in decreasing mucosal barrier function in AR. Our
findings suggest that histamine initiates loss-of-epithelial
barrier function during the early phase allergic immune response,
which during the secondary phase allergic immune response is
maintained by T-cell inflammation. Targeting histamine via
antagonizing H1-receptors or antagonizing TH1 cell-derived
TNF-a and/or TH2 cell-derived IL-4 and IL-13 prevented the
defective mucosal barrier dysfunction in vitro and in vivo.
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Key messages

d Histamine initiates and T-cell inflammation maintains
defective epithelial barrier in AR

d Impaired barrier function is not found in IR
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METHODS

Isolation of naive CD41 T cells and TH1/TH2

polarization in vitro
PBMCs were purified using Lymphoprep density centrifugation

(STEMCELLTechnologies, Cambridge, Mass). The cells were washed twice

with PBS. Human naive CD41 T cells (CD41) were isolated using the

MagniSort Human CD41 naive T-cell enrichment kit (eBioscience, Thermo

Fisher Scientific, Waltham, Mass) according to the manufacturer’s

instructions. Purity of CD41CD45RO2CD45RA1 T cells was > 97%. The

purified CD41 T cells, were cultured at a density of 500.000 cells/mL at

378C in precoated anti-CD3 (1 mg/mL, UCTH1) 48-well plates in RPMI

1640, supplemented with 100 U/mL penicillin and 100 mg/mL streptomycin,

1 mmol/L L-glutamine and 10% FCS. For TH1 polarization in vitro, CD41

T cells were cultured in the presence of IL-12 (10 ng/mL), IL-2 (50 U/mL),

anti-IL-4 (5mg/mL), and anti-CD28 (1mg/mL, CD28.2). For TH2 polarization

in vitro, IL-4 (25 ng/mL), IL-2 (50 U/mL), anti-IFN-g (5 mg/mL), anti-IL-12

(5 mg/mL), and anti-CD28 (1 mg/mL, CD28.2) were added. TH1/TH2

differentiation was evaluated by measuring the cytokine profile with ELISA.

T-cell cultures were stimulated with phorbol 12-myristate 13-acetate

(25 ng/mL) and ionomycin (1 mg/mL) for 6 hours. Afterward, IL-4, IL-5,

IL-6, IL-10, IL-13, IFN-g, and TNF-a release by TH1 and TH2 cells was

measured with ELISA (Fig E4). In parallel, for epithelial stimulation

experiments, the SNs of TH1 and TH2 cell cultures were collected and stored

at 2808C for further analysis.

TER measurements
TER of epithelial cell monolayers was measured using an EVOM/EndOhm

(World Precision Instruments). To eliminate the influence of temperature

changes, TERmeasurements were performedwithin 5minutes after taking the

culture plates out of the incubator. Within this time frame, a relatively stable

TERwas present. Before each measurement, electrodes were equilibrated and

sterilized according to the manufacturer’s recommendations. Two hundred

microliters of culture medium was added in the upper compartment of the

Transwell insert. The electrical resistance of a blank (Transwell insert without

cells) was measured in parallel. To obtain the sample resistance, the blank

valuewas subtracted from the total resistance of the sample. The final unit area

resistance (V3 cm2) was calculated by multiplying the sample resistance by

the effective area of the membrane (0.33 cm2 for 24-well Transwell inserts).

ELISA
Cytokines IL-4 and IL-13 were measured in nasal secretions of AR and IR

patients and healthy control subjects by sandwich ELISA. Capture

monoclonal antibodies used were rat anti-human IL-4 (554515), rat

anti-human IL-13 (554570). Biotinylated detection antibodies were

anti-IL-4 (554483) and anti-IL-13 (555054). rhIL-4 and rhIL-13 were used

as standard. All products were purchased from BD Pharmingen (BD

Bioscience, San Diego, Calif). Histamine and substance P were measured in

the nasal fluids according to the manufacturers’ protocols (LSBio, Seattle,

Wash; and Cayman Chemical, Ann Arbor, Mich, respectively). The SNs of

activated TH1 and TH2 cells were assessed for IL-4, IL-5, IL-6, IL-10, IL-13,

IFN-g, and TNF-a.

Inmurine experiments, IL-4 and TNF-awere determined in BALfluidwith

sandwich ELISA. Levels of BAL albumin were determined according to the

manufacturer’s protocol (ab108792; Abcam).

RT-quantitative PCR for the different genes
The primer and probe sequences for the specific genes were developed in

the laboratory of Clinical Immunology using Primer Express (Applied

Biosystems, Thermo-Fisher Scientific). RT-quantitative PCR was performed

in a CFX Connect (Bio-Rad Laboratories, Hercules, Calif) for all genes with

specific TaqMan probes and primers and using Platinum Quantitative PCR

SuperMix-UDGw/ROX (Invitrogen, Thermo Fisher Scientific). Moreover, all

probes are 59FAM39TAMRA-labeled. Sequences for the probes and primers

can be found in Table E2 .

Immunofluorescence staining of TJs
Nasal biopsy specimens of healthy control subjects and AR and IR patients

were stored in 4% paraformaldehyde (Fluka, Sigma Aldrich, Buch,

Switzerland). Paraffin-embedded tissue slides (5 mm) were subjected to

antigen retrieval in citrate buffer, pH 6 (Fluka). Antibodies used for

immunofluorescence: anti-occludin (rabbit, polyclonal, 1/100, 31721; Ab-

cam), anti-ZO-1 (rabbit, polyclonal, 1/100, 31721; Invitrogen), secondary

antibody goat antirabbit AF488 (1/2000; Invitrogen). After staining, tissues

were mounted with 49-6-diamidino-2-phenylindole, dihydrochloride contain-

ing mounting media. Stained slides were stored at -208C in the dark. Confocal

images were taken using a Leica TCS SPE confocal microscope (Leica

Microsystems, Heerbrugg, Switzerland).

Reuse of previously published material
Parts of Fig 1 have already been published previously.E1 The data obtained

in control subjects and AR patients in Fig 1 are reused to demonstrate the role

of the epithelial barrier in IR patients. All the other data in this manuscript are

uniquely for this study and are not presented somewhere else.
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FIG E1. Effect of AR nasal secretions on TER of Calu-3 epithelial cell

cultures at ALI. TER was measured of Calu-3 epithelial cell cultures after

stimulation with nasal secretions from AR patients. n 5 5. Paired t-test,
*P < .05; **P < .01.
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FIG E2. Histamine did not decrease TER after 24-hour stimulation of Calu-3

epithelial cell cultures at ALI. Data presented as means 6 SDs. M, Mol/L.
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FIG E3. Effect of pretreatment with anti-IL-4Ramonoclonal antibody on the

decrease of Calu-3 epithelial cell integrity induced by AR nasal secretions.

Calu-3 epithelial cell cultures were pretreated for 2 hours with 2 mg/mL

anti-IL-4Ra monoclonal antibody before stimulation with nasal secretions

of AR patients. n 5 5/group. Data presented as means 6 SDs. Two-way

ANOVA with post-hoc analysis, ***P < .001.
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FIG E4. Cytokines secretion by polarized TH1 and TH2 cell cultures in vitro.
Naive CD41 T cells were polarized in vitro for 3 weeks into TH1 or TH2 cells.

T-cell cultures were stimulated for 6 hours with phorbol 12-myristate

13-acetate (25 ng/mL) and ionomycin (1 mg/mL). SN was collected and

cytokine profile was measured with ELISA. Data are presented from 3

independent experiments, using cells from the same donor. Data are

shown as means 6 SEMs.
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FIG E5. Effect of anti-TNF-a treatment in a mouse model of HDM-induced allergic airway inflammation.

A,Mouse model. Mice were sensitized with 1 mg HDM extract or saline at day 1. One week later (days 7-11),

mice were challenged endonasally with 10 mg HDM extract or saline. One hour before each challenge,

anti-TNF-a monoclonal antibody or vehicle was given intraperitoneally. One hour after the last challenge,

20 mL FD4 (50 mg/mL) was applied followed 1 hour later with the sacrifice of the mice. B, TNF-a and IL-4

levels in BAL fluid. C and D, Effect of anti-TNF-a treatment on FD4 permeability and albumin leakage to

BAL fluid in the lungs. E and F,mRNA expression of occludin and ZO-1 in nasal mucosa. Relative expression

versus the housekeeping b-actin and b2 microglobulin. n 5 5 mice/group. Data presented as medians and

interquartile ranges. One-Way ANOVA with post-hoc analysis; *P < .05, **P < .01.
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TABLE E1. Patient characteristics

Control AR IR

N 10 9 6

Age (y), median (IQR) 32 (28-36) 25 (24-30) 43 (35-48)

Male, n 3 2 3

Smoking, n 0 0 0

INS usage, n 0 0 0

Asthma, n 0 0 0

HDM allergic, n 0 9 0

Monosensitized, n 3

Polysensitized, n 6

INS, Intranasal steroids; IQR, interquartile range.
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TABLE E2. Primer and probe sequences used for RT-quantitative PCR

Forward primer Reverse primer Probe

Human

b-actin GGA CAT CCG CAA AGA CCT GT CTC AGG AGG AGC AAT GAT CTT GAT CTG GCG GCA CCA CCA TGT ACC CT

b2 microglobulin CTG AAG CTG ACA GCA TTC GG CTT TGG AGT ACG CTG GAT AGC C AGA TGT CTC GCT CCG TGG CCT TAG C

Claudin-1 CCA GTC AAT GCC AGG TAC GAA T ATA GGG CCT TGG TGT TGG GT TCA GGC TCT CTT CAC TGG CTG GGC

Claudin-4 GGT CTG CTC ACA CTT GCT GG GAC GGA CTT AAC GTT CGC AGA G TGG CTT TAT CTC CTG ACT CAC GGT GCA

Occludin CCA ATG TCG AGG AGT GGG TTA A TTG CCA TTG GAA GAG TAT GCC CTG CAG GCA CAC AGG ACG TGC C

ZO-1 GTG CCT AAA GCT ATT CCT GTG AGT C CTA TGG AAC TCA GCA CGC CC TGG CCA CAG CCC GAG GCA TAT T

Murine

b-actin AGA GGG AAA TCG TGC GTG AC CAA TAG TGA CCT GCG CGT CAC TGC CGC ATC CTC TTC CTC CC

b2 microglobulin CCA CTG AGA CTG ATA CAT ACG CCT GAT CAC ATG TCT CGA TCC CAG TAG TAA GCA TGC CAG TAT GGC CGA GCC

PPIA GCC GCG TCT CCT TCG AG GTA AAG TCA CCA CCC TGG CAC ATG CAG ACA AAG TTC CAA AGA CAG CAG AAA

GAPDH TCA CCA CCA TGG AGA AGG C GCT AAG CAG TTG GTG GTG CA ATG CCC CCA TGT TTG TGA TGG GTG T

Occludin ACA AGA GAA ATT TTG ATG CAG GTC T CAT CAG CAG CAG CCA TGT ACT C AAG AGC TTA CAG GCA GAA CTA GAC GAC GTC AA

ZO-1 TTC GAG AAG CTG GAT TCC TAA GAC CAG TCC CAG CAT CTC GTG G CAT CTT TGG ACC AAT AGC TGA TGT TGT TGC CA

All probes are labeled with 59FAM39TAMRA.

GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; PPIA, peptidyl prolyl isomerase A.
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