
Variable projection applied to block term
decomposition of higher-order tensors

Guillaume Olikier1(�), P.-A. Absil1, and Lieven De Lathauwer2,3 ?

1 ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
guillaume.olikier@uclouvain.be

2 Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium

3 KU Leuven Campus Kortrijk, Kortrijk, Belgium

Abstract. Higher-order tensors have become popular in many areas of
applied mathematics such as statistics, scientific computing, signal pro-
cessing or machine learning, notably thanks to the many possible ways of
decomposing a tensor. In this paper, we focus on the best approximation
in the least-squares sense of a higher-order tensor by a block term decom-
position. Using variable projection, we express the tensor approximation
problem as a minimization of a cost function on a Cartesian product of
Stiefel manifolds. The effect of variable projection on the Riemannian
gradient algorithm is studied through numerical experiments.

Keywords: numerical multilinear algebra, higher-order tensor, block
term decomposition, variable projection method, Riemannian manifold,
Riemannian optimization.

1 Introduction

Higher-order tensors have found numerous applications in signal processing and
machine learning thanks to the many tensor decompositions available [1,2,3,4]. In
this paper, we focus on a recently introduced tensor decomposition called block
term decomposition (BTD) [5,6,7]. The usefulness of BTD in blind source separa-
tion was outlined in [8,9] and further examples are discussed in [10,11,12,13,14].

The BTD unifies the two most well known tensor decompositions which are
the Tucker decomposition and the canonical polyadic decomposition (CPD). It

? This work was supported by (1) “Communauté française de Belgique - Actions de
Recherche Concertées” (contract ARC 14/19-060), (2) Research Council KU Leuven:
C1 project C16/15/059-nD, (3) F.W.O.: project G.0830.14N, G.0881.14N, (4) Fonds
de la Recherche Scientifique – FNRS and the Fonds Wetenschappelijk Onderzoek
– Vlaanderen under EOS Project no. 30468160 (SeLMA), (5) EU: The research
leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC Advanced Grant: BIOTENSORS (no. 339804). This paper reflects only the
authors’ views and the Union is not liable for any use that may be made of the
contained information.

mailto:guillaume.olikier@uclouvain.be

2 Guillaume Olikier, P.-A. Absil, Lieven De Lathauwer

also gives a unified view on how the basic concept of rank can be generalized from
matrices to tensors. While in CPD, as well as in classical matrix decompositions,
the components are rank-one terms, i.e., “atoms” of data, the terms in a BTD
have “low” (multilinear) rank and can be thought of as “molecules” (consisting
of several atoms) of data. Rank-one terms can only model data components
that are proportional along columns, rows, . . . and this assumption may not be
realistic. On the other hand, block terms can model multidimensional sources,
variations around mean activity, mildly nonlinear phenomena, drifts of setting
points, frequency shifts, mildly convolutive mixtures, and so on. Such a molecular
analysis is not possible in the matrix setting. Furthermore, it turns out that, like
CPDs, BTDs are still unique under mild conditions [6,10].

In practice, it is more frequent to approximate a tensor by a BTD than to
compute an exact BTD. More precisely, the problem of interest is to compute the
best approximation in the least-squares sense of a higher-order tensor by a BTD.
Only a few algorithms are currently available for this task. The Matlab toolbox
Tensorlab [15] proposes the two following functions: (i) btd minf uses L-BFGS
with dogleg trust region (a quasi-Newton method), (ii) btd nls uses nonlinear
least squares by Gauss–Newton with dogleg trust region. Another available algo-
rithm is the alternating least squares algorithm introduced in [7]. This algorithm
is not included in Tensorlab and does not work better than btd nls in general.

In this paper, we show that the performance of numerical methods can be
improved using variable projection. Variable projection consists in exploiting
the fact that, when the optimal value of some of the optimization variables
is easy to find when the others are fixed, this optimal value can be injected
in the objective function, yielding a new optimization problem where only the
other variables appear. This technique has already been applied to the Tucker
decomposition in [16] and exploited in [17,18]. Here we extend it to the BTD
approximation problem which is then expressed as a minimization of a cost func-
tion on a Cartesian product of Stiefel manifolds. Numerical experiments show
that variable projection modifies the performance of the Riemannian gradient
algorithm for BTDs of two terms by either increasing or decreasing its running
time and/or its reliability. Preliminary results can be found in the short con-
ference paper [19]. The present paper gives a detailed derivation of the variable
projection technique and presents numerical experiments for noised BTDs. We
focus on third-order tensors for simplicity but the generalization to tensors of
any order is straightforward.

2 Preliminaries and notation

We let RI1×I2×I3 denote the set of real third-order tensors of size (I1, I2, I3). In
order to improve readability, vectors are written in bold-face lower-case (e.g., a),
matrices in bold-face capitals (e.g., A), and higher-order tensors in calligraphic
letters (e.g., A). For n ∈ {1, 2, 3}, the mode-n vectors of A ∈ RI1×I2×I3 are
obtained by varying the nth index while keeping the other indices fixed. The
mode-n rank of A, denoted rankn(A), is the dimension of the linear space

Variable projection for block term decomposition of higher-order tensors 3

spanned by its mode-n vectors. The multilinear rank of A is the triple of the
mode-n ranks. The mode-n product of A by B ∈ RJn×In , denoted A ·nB, is
obtained by multiplying all the mode-n vectors of A by B. We endow RI1×I2×I3
with the standard inner product, defined by

〈A,B〉 :=

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

A(i1, i2, i3)B(i1, i2, i3),

and we let ‖·‖ denote the induced norm, i.e., the Frobenius norm. It is sometimes
convenient to represent a tensor as a vector (vectorization) or as a matrix (ma-
tricization). The vectorization of A ∈ RI1×I2×I3 , denoted vec(A), is the vector
of length I1I2I3 defined as follows:

(vec(A)) ((i1 − 1)I2I3 + (i2 − 1)I3 + i3) := A(i1, i2, i3).

We define the following matrix representations of A:

A(i1, i2, i3) = (A(1))(i1, I3(i2 − 1) + i3)

= (A(2))(i2, I1(i3 − 1) + i1)

= (A(3))(i3, I2(i1 − 1) + i2).

One can check that if A = S ·1 U ·2 V ·3 W, then

vec(A) = (U⊗V ⊗W) vec(S), (1)

A(1) = US(1)(V ⊗W)T, (2)

A(2) = VS(2)(W ⊗U)T, (3)

A(3) = WS(3)(U⊗V)T. (4)

Vectorization and matricization are linear mappings which preserve the norm.

3 Variable projection

Let A ∈ RI1×I2×I3 . Consider positive integers R and Ri such that Ri ≤ ranki(A)
for each i ∈ {1, 2, 3} and m := I1I2I3 ≥ RR1R2R3 =: n. The approximation
of A by a BTD of R terms of multilinear rank (R1, R2, R3) is a nonconvex
minimization problem which can be expressed using variable projection as

min
S,U,V,W

∥∥∥∥∥A−
R∑
r=1

Sr ·1 Ur ·2 Vr ·3 Wr

∥∥∥∥∥
2

︸ ︷︷ ︸
=:fA(S,U,V,W)

= min
U,V,W

min
S
fA(S,U,V,W)︸ ︷︷ ︸
=:gA(U,V,W)

for the variables S ∈ (RR1×R2×R3)R, U ∈ (RI1×R1)R, V ∈ (RI2×R2)R and
W ∈ (RI3×R3)R subject to the constraints U ∈ St(R1, I1)R, V ∈ St(R2, I2)R

4 Guillaume Olikier, P.-A. Absil, Lieven De Lathauwer

and W ∈ St(R3, I3)R, where given integers p ≥ q ≥ 1 we let St(q, p) denote the
Stiefel manifold, i.e.,

St(q, p) := {X ∈ Rp×q : XTX = Iq}.

A schematic representation of the BTD approximation problem is given in Fig. 1.
Each term in a BTD is a Tucker term. The tensors Sr ∈ RR1×R2×R3 are called
the core tensors while the matrices Ur,Vr,Wr, which can be assumed to be
in the Stiefel manifold without loss of generality, are referred to as the factor
matrices.

A ≈
S1

U1

V1

W1

+ · · ·+
SR

UR

VR

WR

Fig. 1. Schematic representation of the BTD approximation problem.

Computing gA(U,V,W) is a least squares problem. Indeed, using (1), if we

define a := vec(A) ∈ Rm, P(U,V,W) := [Uj ⊗ Vj ⊗Wj]
1,R
i,j=1 ∈ Rm×n and

s := [vec(Si)]R,1i,j=1 ∈ Rn, then

gA(U,V,W) = min
s∈Rn

‖a−P(U,V,W)s‖2 .

We let S∗(U,V,W) denote the minimizer of this least squares problem.1 Thus,

gA(U,V,W) = fA(S∗(U,V,W),U,V,W).

Computing the partial derivatives of gA reduces to the computation of partial
derivatives of fA. Indeed, using the first-order optimality condition

∂fA(S,U,V,W)

∂S

∣∣∣∣
S=S∗(U,V,W)

= 0 (5)

and the chain rule yields

∂gA(U,V,W)

∂(U,V,W)
=
∂fA(S,U,V,W)

∂(U,V,W)

∣∣∣∣
S=S∗(U,V,W)

. (6)

It remains to compute those partial derivatives of fA. In order to make the
derivation convenient, we first recall some basic facts on differentiation. Given
two vector spaces X and Y over a same field, we let Lin(X,Y) denote the vector
space of linear mappings from X to Y .

1 The minimizer is unique if and only if the matrix P(U,V,W) has full column rank
which is the case almost everywhere (with respect to the Lebesgue measure) since
m ≥ n.

Variable projection for block term decomposition of higher-order tensors 5

Total derivative and gradient. Let (X, 〈·, ·〉) be a pre-Hilbert space and let ‖·‖
denote the norm induced by the inner product 〈·, ·〉. A function f : X → R is
differentiable at x ∈ X if and only if there is L ∈ Lin(X,R) such that

lim
h→0

f(x+ h)− f(x)− L(h)

‖h‖
= 0,

which means that for every ε > 0, there is δ > 0 such that for any h ∈ X,
‖h‖ ≤ δ implies

|f(x+ h)− f(x)− L(h)|
‖h‖

≤ ε.

If such a L exists, it is unique, denoted by D f(x), and called the total derivative
of f at x. The gradient of f at x is the only g ∈ X such that

D f(x)[h] = 〈g, h〉

for all h ∈ X; it is denoted by grad f(x). If f is differentiable at x ∈ X, then

D f(x)[h] = lim
t→0

f(x+ th)− f(x)

t
.

for every h ∈ X.

Gradient of the squared norm. Let f : X → R : x 7→ f(x) := ‖x‖2. For any
x, h ∈ X and any real t 6= 0,

f(x+ th)− f(x)

t
=

2t〈x, h〉+ t2 ‖h‖2

t
= 2〈x, h〉+ t ‖h‖2 .

It follows that D f(x)[h] = 2〈x, h〉 and so that grad f(x) = 2x.

Affine transformation. Let (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y) be two pre-Hilbert spaces,
g : Y → R be differentiable, L ∈ Lin(X,Y), b ∈ Y , A : X → Y : x 7→ A(x) :=
L(x) + b, and f := g ◦A. For any x, h ∈ X,

〈grad f(x), h〉X = lim
t→0

f(x+ th)− f(x)

t

= lim
t→0

g(L(x) + b+ tL(h))− g(L(x) + b)

t

= 〈grad g(L(x) + b), L(h)〉Y .

From now on, let us assume that X and Y have finite dimension so that L has
an adjoint, which means that there is a (unique) L∗ ∈ Lin(Y,X) such that

〈y, L(x)〉Y = 〈L∗(y), x〉X

for any x ∈ X and y ∈ Y . This allows us to conclude that for any x ∈ X,

grad f(x) = L∗(grad g(L(x) + b)).

6 Guillaume Olikier, P.-A. Absil, Lieven De Lathauwer

Adjoint of the matrix product. Let A ∈ Rm×p and B ∈ Rq×n. The adjoint of

L : Rp×q → Rm×n : X 7→ AXB

is
L∗ : Rm×n → Rp×q : Y 7→ ATYBT.

Partial derivatives of fA. Using the matricization formulas (2)-(4) yields

fA(S,U,V,W) =

∥∥∥∥∥
R∑
r=1

Ur(Sr)(1)(Vr ⊗Wr)
T −A(1)

∥∥∥∥∥
2

=

∥∥∥∥∥
R∑
r=1

Vr(Sr)(2)(Wr ⊗Ur)
T −A(2)

∥∥∥∥∥
2

=

∥∥∥∥∥
R∑
r=1

Wr(Sr)(3)(Ur ⊗Vr)
T −A(3)

∥∥∥∥∥
2

.

Applying the results of the preceding paragraphs to these three equations gives
the three following ones for every i ∈ {1, . . . , R}:

∂fA(S,U,V,W)

∂Ui
= 2

 R∑
j=1

Uj(Sj)(1)(Vj ⊗Wj)
T −A(1)

 (Vi ⊗Wi)(Si)
T
(1),

∂fA(S,U,V,W)

∂Vi
= 2

 R∑
j=1

Vj(Sj)(2)(Wj ⊗Uj)
T −A(2)

 (Wi ⊗Ui)(Si)
T
(2),

∂fA(S,U,V,W)

∂Wi
= 2

 R∑
j=1

Wj(Sj)(3)(Uj ⊗Vj)
T −A(3)

 (Ui ⊗Vi)(Si)
T
(3).

4 Riemannian gradient algorithm

We have shown in the preceding section that the approximation of A by a BTD
reduces to the minimization of a real-valued function defined on a Riemannian
manifold, namely, the restriction of gA on

∏3
i=1 St(Ri, Ii)

R. In this section, we
briefly introduce the Riemannian gradient algorithm which we shall use to solve
our problem; our reference is [20].

Line-search methods to minimize a real-valued function F defined on a Rie-
mannian manifold M are based on the update formula

xk+1 = Rxk(tkηk),

where ηk is selected in the tangent space to M at xk, denoted TxkM, Rxk is a
retraction on M at xk, and tk ∈ R. The algorithm is defined by the choice of
three ingredients: the retraction Rxk , the search direction ηk and the step size tk.

Variable projection for block term decomposition of higher-order tensors 7

The gradient method consists of choosing ηk := − gradF (xk) where gradF is
the Riemannian gradient of F . In the case whereM is an embedded submanifold
of a linear space E and F is the restriction on M of some function F̄ : E → R,
gradF (x) is simply the projection of the usual gradient of F̄ at x on TxM.
For instance, St(q, p) is an embedded submanifold of Rp×q and the projection of
Y ∈ Rp×q on TXSt(q, p) is given by [20, equation (3.35)]

(Ip −XXT)Y + X skew(XTY) (7)

where skew(A) := 1
2 (A−AT) is the skew-symmetric part of A. Our cost func-

tion, the restriction of gA on
∏3
i=1 St(Ri, Ii)

R, is defined on a Cartesian product
of Stiefel manifolds; this is not an issue since the tangent space of a Cartesian
product is the Cartesian product of the tangent spaces and the projection can
be performed componentwise. We are now able to compute the Riemannian gra-
dient of the restriction of gA. Starting from the first-order optimality condition
(5) written in matrix forms (2)-(4), we can show that for each i ∈ {1, . . . , R},

UT
i

∂gA(U,V,W)

∂Ui
= VT

i

∂gA(U,V,W)

∂Vi
= WT

i

∂gA(U,V,W)

∂Wi
= 0.

Therefore, in view of the projection formula (7), the Riemannian gradient of the
restriction of gA is equal to the (usual) gradient of gA given by (6).

A popular retraction on St(q, p), which we shall use in our problem, is the qf
retraction [20, equation (4.8)]:

RX(Y) := qf(X + Y)

where qf(A) is the Q factor of the decomposition of A ∈ Rp×q with rank(A) = q
as A = QR where Q ∈ St(q, p) and R is an upper triangular q × q matrix with
positive diagonal elements. Again, the manifold in our problem is a Cartesian
product of Stiefel manifolds and in this case the retraction can be performed
componentwise.

At this point, it remains to specify the step size tk. For that purpose, we will
use the backtracking strategy presented in [20, section 4.2]. Assume we are at
the kth iteration. We want to find tk > 0 such that F (Rxk(−tk gradF (xk))) is
sufficiently small compared to F (xk). This can be achieved by the Armijo rule:
given ᾱ > 0, β, σ ∈ (0, 1) and τ0 := ᾱ, we iterate τi := βτi−1 until

F (Rxk(−τi gradF (xk))) ≤ F (xk)− στi ‖gradF (xk)‖2

and then set tk := τi. In our implementation, we set ᾱ := 0.2, σ := 10−3, β := 0.2
and we perform at most 10 iterations in the backtracking loop.

The procedure described in the preceding paragraph corresponds to [20, Al-
gorithm 1] with c := 1 and equality in [20, equation (4.12)], except that the
number of iterations in the backtracking loop is limited. In our problem, the
domain of the cost function is compact since it is a Cartesian product of Stiefel
manifolds. Therefore, [20, Corollary 4.3.2] applies and ensures that

lim
k→∞

‖gradF (xk)‖ = 0,

8 Guillaume Olikier, P.-A. Absil, Lieven De Lathauwer

except if at some iteration the backtracking loop needs more than 10 iterations.
In view of this result, it seems natural to stop the algorithm as soon as the norm
of the Riemannian gradient becomes smaller than a given quantity ε > 0.

5 Numerical results

In this section, we perform numerical experiments to study the effect of variable
projection on the Riemannian gradient algorithm applied to the BTD problem.
To this end, we evaluate the ability of this algorithm, both with and without
variable projection, to recover known BTDs possibly corrupted by some noise.
Thus, in this experiment, we try to recover a structure that is really present.

First, we explain how we build BTDs for this test. We set R := 2 and we select
the parameters (I1, I2, I3) and (R1, R2, R3). Then, for each r ∈ {1, . . . , R}, we
select Sr ∈ RR1×R2×R3 , Ur ∈ St(R1, I1), Vr ∈ St(R2, I2) and Wr ∈ St(R3, I3)
according to the standard normal distribution, i.e., Sr := randn(R1,R2,R3)

and Ur := qf(randn(I1,R1)) in Matlab. Then, we set

A :=

R∑
r=1

Sr ·1 Ur ·2 Vr ·3 Wr. (8)

Finally, we select N ∈ RI1×I2×I3 according to the standard normal distribution,
i.e., N := randn(I1,I2,I3) in Matlab, and define

Aσ :=
A
‖A‖

+ σ
N
‖N‖

(9)

for some real value of the parameter σ which controls the noise level on the BTD.
Now, we describe the test itself. For 100 different Aσ as in (9), we ran the

Riemannian gradient algorithm with variable projection (i.e., on the cost func-
tion gAσ) and without variable projection (i.e., on the cost function fAσ) using
for each Aσ a randomly selected starting iterate. Representative results are given
in Table 1 for σ := 0 and σ := 0.3, which corresponds to a signal-to-noise ratio
of about 10 dB, both for (I1, I2, I3) := (5, 5, 5) and (R1, R2, R3) := (2, 2, 2).2

The success ratios are not equal to one because the number of iterations
that can be performed by the algorithm was (arbitrarily) limited to 104. When
variable projection is used, on one hand, the mean running time is multiplied by
about 0.86 for σ := 0 and 0.78 for σ := 0.3, and on the other hand, the success
ratio is multiplied by about 0.89 for both σ := 0 and σ := 0.3.

The same test with (I1, I2, I3) := (10, 10, 10) and (R1, R2, R3) := (2, 2, 3),
still with σ := 0 and σ := 0.3, has been conducted.3 For both values of σ, we
observed that variable projection multiplies the running time by about 1.1 on
one hand, and multiplies the success ratio by about 1.4 on the other hand.

2 The Matlab code that produced the results is available at https://sites.

uclouvain.be/absil/2018.01.
3 With these parameters, the BTD A in (8) is essentially unique by [6, Theorem 5.3].

https://sites.uclouvain.be/absil/2018.01
https://sites.uclouvain.be/absil/2018.01

Variable projection for block term decomposition of higher-order tensors 9

σ := 0 σ := 0.3
with VP without VP with VP without VP

successes 39 44 41 46

min(iter) 2047 2069 995 891
mean(iter) 5644 5966 4119 4740
max(iter) 9509 9960 9498 9958

mean(backtracking iter) 1 1 1.004 1

min(time) 2.11 2.36 1.05 1.02
mean(time) 5.85 6.83 4.25 5.44
max(time) 9.79 11.35 9.77 11.35

Table 1. By “success”, we mean for σ = 0 that the norm of the (Riemannian) gradient
is brought below 5·10−14 and that the objective function is brought below 10−25 within
104 iterations; for σ = 0.3, we mean that the norm of the gradient is brought below 10−7

still within 104 iterations; the algorithm was not able to bring the norm of the gradient
as low as in the noise-free case. Notation: “iter” refers to the number of iterations
performed by the gradient algorithm while “backtracking iter” refers to the number
of iterations performed in the backtracking loops. Running times are given in seconds.
The information in each column is computed based only on the successful runs.

6 Conclusion

In this paper, we applied variable projection to the BTD problem and discussed
its effect on the Riemannian gradient algorithm. Our numerical experiments
showed that variable projection may either increase or decrease the running
time and/or the reliability of the algorithm depending on the particular data
tensor considered.

References

1. A. Cichocki, D. Mandic, A. H. Phan, C. Caiafa, G. Zhou, Q. Zhao, and L. De Lath-
auwer. Tensor decompositions for signal processing applications: From two-way to
multiway component analysis. IEEE Signal Processing Magazine, 32(2):145–163,
March 2015.

2. N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and
C. Faloutsos. Tensor decomposition for signal processing and machine learning.
IEEE Transactions on Signal Processing, 65(13):3551–3582, July 2017.

3. A. Cichocki, N. Lee, I. Oseledets, A. H. Phan, Q. Zhao, D. Mandic, et al. Tensor
networks for dimensionality reduction and large-scale optimization: Part 1 low-
rank tensor decompositions. Foundations and Trends R© in Machine Learning, 9(4-
5):249–429, 2016.

4. A. Cichocki, A. H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, D. Mandic,
et al. Tensor networks for dimensionality reduction and large-scale optimization:
Part 2 applications and future perspectives. Foundations and Trends R© in Machine
Learning, 9(6):431–673, 2017.

10 Guillaume Olikier, P.-A. Absil, Lieven De Lathauwer

5. L. De Lathauwer. Decompositions of a higher-order tensor in block terms—Part I:
Lemmas for partitioned matrices. SIAM J. Matrix Anal. Appl., 30(3):1022–1032,
2008.

6. L. De Lathauwer. Decompositions of a higher-order tensor in block terms—Part II:
Definitions and uniqueness. SIAM J. Matrix Anal. Appl., 30(3):1033–1066, 2008.

7. L. De Lathauwer and D. Nion. Decompositions of a higher-order tensor in block
terms—Part III: Alternating least squares algorithms. SIAM J. Matrix Anal. Appl.,
30(3):1067–1083, 2008.

8. L. De Lathauwer. Block component analysis, a new concept for blind source sep-
aration. In F. Theis, A. Cichocki, A. Yeredor, and M. Zibulevsky, editors, Latent
Variable Analysis and Signal Separation: 10th International Conference, LVA/ICA
2012, Tel Aviv, Israel, March 12-15, 2012. Proceedings, pages 1–8. Springer Berlin
Heidelberg, 2012.

9. M. Yang, Z. Kang, C. Peng, W. Liu, and Q. Cheng. On block term ten-
sor decompositions and its applications in blind signal separation. URL: http:
//archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20160105102343471889031.

10. L. De Lathauwer. Blind separation of exponential polynomials and the decompo-
sition of a tensor in rank-(Lr, Lr, 1) terms. SIAM Journal on Matrix Analysis and
Applications, 32(4):1451–1474, December 2011.

11. O. Debals, M. Van Barel, and L. De Lathauwer. Löwner-based blind signal sepa-
ration of rational functions with applications. IEEE Transactions on Signal Pro-
cessing, 64(8):1909–1918, April 2016.

12. B. Hunyadi, D. Camps, L. Sorber, W. Van Paesschen, M. De Vos, S. Van Huffel,
and L. De Lathauwer. Block term decomposition for modelling epileptic seizures.
EURASIP Journal on Advances in Signal Processing, 2014(1):139, September 2014.

13. C. Chatzichristos, E. Kofidis, Y. Kopsinis, M. M. Moreno, and S. Theodor-
idis. Higher-order block term decomposition for spatially folded fMRI data. In
P. Tichavský, M. Babaie-Zadeh, O. J. J. Michel, and N. Thirion-Moreau, editors,
Latent Variable Analysis and Signal Separation, pages 3–15, Cham, 2017. Springer
International Publishing.

14. C. Chatzichristos, E. Kofidis, and S. Theodoridis. PARAFAC2 and its block term
decomposition analog for blind fMRI source unmixing. In 2017 25th European
Signal Processing Conference (EUSIPCO), pages 2081–2085, Aug 2017.

15. N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer. Tensorlab
3.0, Mar. 2016. Available online. URL: https://www.tensorlab.net.

16. L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-
(R1, R2, . . . , RN) approximation of higher-order tensors. SIAM J. Matrix Anal.
Appl., 21(4):1324–1342, 2000.

17. M. Ishteva, P.-A. Absil, S. Van Huffel, and L. De Lathauwer. Best low multilinear
rank approximation of higher-order tensors, based on the Riemannian trust-region
scheme. SIAM J. Matrix Anal. Appl., 32(1):115–135, 2011.

18. B. Savas and L.-H. Lim. Quasi-Newton Methods on Grassmannians and Multilinear
Approximations of Tensors. SIAM J. on Scientific Computing, 32(6):3352–3393,
2010.

19. G. Olikier, P.-A. Absil, and L. De Lathauwer. A variable projection method for
block term decomposition of higher-order tensors. Accepted for ESANN 2018.

20. P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix
Manifolds. Princeton University Press, Princeton, NJ, USA, 2008.

http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20160105102343471889031
http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20160105102343471889031
https://www.tensorlab.net

	Block term decomposition
	Introduction
	Preliminaries and notation
	Variable projection
	Riemannian gradient algorithm
	Numerical results
	Conclusion

