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Abstract

The Internet of Things (IoT) bridges the physical world with the virtual world
by embedding everyday objects with computation, communication and sensing
abilities, interconnecting them with each other and the internet. As the IoT
rapidly gains in popularity, the size and complexity of deployments is also
increasing. Prime examples are smart cities and Industry 4.0, where the return
on investment of large-scale infrastructure is improved by running multiple
applications with ever changing requirements concurrently throughout the
networks lifetime. Furthermore, with IoT technology becoming ubiquitous in
our daily lives, security becomes a primary concern that is likely to grow in
complexity as we move to more dynamic environments.

Dynamism at large scale requires fundamental support for software evolution and
adaptation from the underlying software stack. State-of-the-art programming
abstractions and reconfiguration approaches partially accommodate this through
modular software development and runtime remote reconfiguration of distributed
applications. While the advantages are clear, these solutions fall short when
managing complex decentralized configurations. Incompatible configuration
causes faults and downtime, and remote inspection and reconfiguration of
applications incurs a considerable message overhead and energy cost on low
power wireless networks. Contemporary solutions to secure the IoT require
in-depth hardware modifications, raising the cost of roll-out for the millions of
devices already active in the field and preventing their adoption.

This dissertation presents three contributions towards a dynamic and safe
Internet of Things. The first contribution focuses on detecting and
avoiding inconsistent configuration of distributed IoT applications. Safe
reparametrization offers a descriptive language to developers for expressing
distributed configuration dependencies, and uses a network protocol to resolve
and enforce these dependencies at runtime. The overhead of this approach
on representative hardware platforms is minimal, while management effort is
significantly lowered when compared with exhaustive methods of ensuring safe
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and correct reconfiguration.

The second contribution reduces the overhead and complexity of inspecting
and reconfiguring distributed IoT applications through two novel approaches.
Refraction selectively augments application data flows with meta-data, which
travels to refractive pools without additional network traffic. Refractive
pools serve as natural loci of low-cost inspection and control for distributed
applications. Reactive policies deployed to these pools allow automatic
reconfiguration based on changes in application state. Tomography further
reduces overhead by recognizing that software components bound together are
often queried in groups, using probes to traverse component compositions to
collect meta-data and enact change efficiently. Prototype implementations have
been evaluated within a smart office deployment, and show notable improvements
in terms of management complexity and network traffic.

The final contribution looks at cost-effective security for the IoT. The Security
MicroVisor is a pure-software approach that provides memory isolation for
low-end IoT devices through partial virtualization of the instruction set.
Subsequently, this memory isolation is used to safeguard the integrity of critical
secure operations and secret key material while concurrently running insecure
user applications, effectively providing a Trusted Computing Base. Evaluation
shows that for typical usage patterns of IoT applications, virtualization latencies
are imperceivable, while resource overhead is small.



Beknopte samenvatting

Het Internet der Dingen (Engels: Internet of Things, afkorting: IoT) slaat een
brug tussen de fysieke wereld en de virtuele wereld door alledaagse objecten
te verrijken met ingebedde informatieverwerking, communicatiemogelijkheden
en sensoren, en ze te verbinden met elkaar en het internet. Terwijl IoT aan
populariteit wint, worden de omvang en complexiteit van netwerken ook groter.
Concrete voorbeelden zijn smart cities en Industry 4.0, waar het rendement op
investeringen van grootschalige infrastructuur verbeterd wordt door meerdere
toepassingen met continu veranderende vereisten gelijktijdig uit te rollen. Een
bijkomend probleem dat gepaard gaat met de alomtegenwoordigheid van IoT-
technologie is de beveiliging ervan, een probleem dat complexer wordt naarmate
software dynamischer moet zijn.

Dynamiek op grote schaal vereist fundamentele ondersteuning voor software-
evolutie en adaptatie van de onderliggende softwarestack. Actuele pro-
grammeerabstracties en methodologieën voor herconfiguratie vervullen deze
vereisten gedeeltelijk met behulp van modulaire softwareontwikkeling en runtime
herconfiguratie van op afstand voor gedistribueerde applicaties. Hoewel de
voordelen duidelijk zijn, schieten deze oplossingen tekort bij het beheren
van complexe gedecentraliseerde configuratie. Incompatibele configuratie
veroorzaakt fouten en uitvalling, en herconfiguratie van op afstand zorgt voor een
zware belasting van het netwerk met nefaste gevolgen voor het energieverbruik
van IoT-apparaten. Hedendaagse oplossingen om de IoT te beveiligen berusten
op diepgaande hardwaremodificaties, waardoor de kost te hoog is voor de
beveiliging van de miljoenen bestaande apparaten die al in gebruik zijn.

Dit proefschrift presenteert drie bijdragen voor een dynamisch en veilig IoT.
De eerste bijdrage focust op de detectie en vermijding van inconsistente
configuratie van gedistribueerde IoT-toepassingen. Veilige herparametrisatie
biedt een descriptieve taal aan voor ontwikkelaars om afhankelijkheden in
gedistribueerde configuratie uit te drukken en gebruikt een netwerkprotocol
om deze af te dwingen in een productieomgeving. De kost van deze aanpak op
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een representatief platform is minimaal, terwijl de beheerinspanning significant
verlaagd is ten opzichte van exhaustieve methoden die een veilige en correcte
herconfiguratie garanderen.

De tweede bijdrage reduceert de kost en complexiteit van inspectie en
herconfiguratie van gedistribueerde IoT-applicaties met twee nieuwe aanpakken.
Refraction voegt selectief meta-data toe aan bestaande applicatiestromen,
die vervolgens verzameld wordt in refractive pools zonder bijkomende
netwerktransmissies. Refractive pools dienen als natuurlijke locaties voor lage
kost inspectie en controle van gedistribueerde applicaties. Reactive policies staan
automatische herconfiguratie toe, gebaseerd op veranderingen in de toestand
van applicaties. Tomography reduceert de kosten verder door te erkennen dat
softwarecomponenten die samengebonden zijn vaak in groep beheerd worden.
Er wordt gebruikgemaakt van sondes die zich door componentcomposities
verplaatsen om efficiënt meta-data te verzamelen en veranderingen door te
voeren. Prototype implementaties werden geëvalueerd in een smart office
scenario, en illustreren een duidelijke verbetering in beheerscomplexiteit en
netwerkverkeer.

De laatste bijdrage spitst zich toe op de kosteneffectieve beveiliging van IoT-
technologie. De Security MicroVisor is een op software gebaseerde oplossing die
geheugenisolatie biedt voor low-end IoT-apparaten door middel van gedeeltelijke
virtualisatie van de instructieset. De geheugenisolatie wordt vervolgens
aangewend om de integriteit van kritische veilige operaties en geheime sleutels te
garanderen, terwijl gelijktijdig onveilige gebruikersapplicaties uitgevoerd worden.
Evaluatie laat zien dat voor normale gebruikspatronen van IoT-toepassingen
vertragingen door virtualisatie onwaarneembaar zijn, terwijl het gebruik van
systeembronnen klein is.
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Chapter 1

Introduction

The Internet of Things (IoT) can be defined as the interconnection of physical
things to existing network infrastructure to enable cyber-physical services.
Today, the IoT is moving out of the lab and into the real-world, where it is
being applied at large scale in diverse application scenarios. Common examples
include smart homes, where products such as Google Nest [70, 71] and Philips
Hue [76] automate heating and lighting, smart cities, such as the Amsterdam
Smart City initiative [4] and the SmartSantander project [86], where large-scale
networks monitor the environment, transportation systems, waste management,
and other community services, increasing efficiency and quality of life. The
IoT is also critical to Industry 4.0, where the entire value chain is optimised by
interconnecting physical processes with each other and the cloud, significantly
reducing operational costs [53].

The number of IoT devices in the field has increased exponentially over the last
few years, and projections indicate this trend will accelerate in the future. In
2017, 17.5 billion IoT devices were actively deployed [32]. By 2023, this number
is expected to further increase to 31.6 billion devices. By definition, the IoT
does not limit itself to one specific class of devices and promotes heterogeneous
networks, however, the use of tiny battery-powered devices enables embedding
processing and communication within the physical world at low cost and fine
granularity [69]. These platforms are extremely resource constrained, often
equipped with a low-power radio and run on a single battery charge for extended
periods of time.

The rapid increase in IoT scale combined with the resource constraints of
representative IoT platforms gives rise to a complex set of problems. This
dissertation provides novel solutions to efficiently manage and secure large-scale

1



2 INTRODUCTION

dynamic IoT networks built on resource constrained devices. The following
sections analyse the characteristics and requirements of IoT applications, the
key problems of the domain and the contributions made in this dissertation to
address those problems.

1.1 Context

Building applications for IoT systems is notoriously difficult. IoT deployments
have a unique properties that require special attention: i) IoT devices are
resource constrained, ii) deployments are highly distributed, iii) applications are
dynamic and require runtime reconfiguration, and lastly iv) the infrastructure
and software running on it need to be secure.

1.1.1 The IoT is resource constrained

The current landscape of IoT hardware is extremely heterogeneous, with vast
differences regarding system resources and capabilities. In the high-end of
the spectrum are devices such as smartphones and tablets, which have ample
memory in the GB range, processing power, fast 4G or WiFi network connections
and a flexible energy budget with frequent battery recharges. The low-end is
comprised by devices ranging from parking meters to thermostats, which are
embedded with sensors, actuators and a microcontroller. These devices are
extremely limited in resources: an IETF class 1 constrained device has ~10
KB of RAM, ~100 KB of flash and rudimentary low-power network capabilities
with a bandwidth of less than 250 kilobit per second [12]. One of the biggest
constraints, however, is that these devices often have to run on a single battery
charge for years while deployed at large scale and in unreachable locations,
making battery recharges or swaps unfeasible. This requires careful energy
budgeting, mainly for tasks such as radio transmissions and computation [44].

Embedded resource constrained devices form the backbone of any IoT
application, as they connect the physical world to the internet. The annual
Ericsson Mobility Report shows us that wireless embedded devices currently
account for more than half of the deployed IoT devices worldwide [32], a number
that is bound to further increase as growth in the IoT install base is almost
solely driven by them. Smartphones and tablets have an annual growth rate
that has now stagnated between 0% and 3% percent, while small pervasive IoT
devices have projected growth rates between 20% and 30% [32]. As a result, the
importance of embedded devices and the resource constrains that they imply
are an inherent part of designing any IoT platform or application.
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1.1.2 The IoT is highly distributed

The IoT paradigm is inherently highly distributed: physical objects equipped
with computational capabilities form a network together with back-end
infrastructure, running distributed applications providing added benefit. These
applications are characterized by the usual characteristics of distributed
computing: concurrency, lack of global clock and independent failure of
components. While contemporary middleware for IoT platforms has already
taken these difficulties into account, support for recovering from software or
hardware failures is still limited.

An added domain-specific difficulty is that IoT applications are often deployed at
large scale and in inaccessible locations. A prime example are smart cities [33],
where millions of devices embedded in streetlights, waste bins and parking
meters are deployed over a city. The massive scale in combination with the
impracticality to go in the field to fix problems requires that the software
running on this distributed system has to be extremely scalable as well as
robust.

1.1.3 The IoT is dynamic

Early IoT deployments consisted of simple single-purpose monitoring applica-
tions and devices deployed in the field ran a static software image with dedicated
application logic for their entire useful life [68]. Software was preinstalled on the
devices and remote reconfiguration or updating of the application after physical
deployment was not possible.

As IoT applications become more complex and dynamic with requirements that
change during their life cycle, the need for dynamic system reconfiguration
rises. A trend further increasing dynamism in IoT is the advent of shared
sensing infrastructures such as Smart Cities [33] and Smart Offices [55]. IoT
deployments are evolving to become more open and multi-purpose [83, 49]. A
single IoT infrastructure can host multiple applications at the same time that
are managed by multiple actors, improving the return on investment as the cost
of deploying and purchasing hardware can be spread over multiple applications,
each generating their own independent value.

Handling such dynamism requires fundamental support for software evolution
in the underlying operating system and middleware layers of the software stack,
enabling applications to be reconfigured and updated at runtime while sharing
the same physical devices concurrently. Furthermore, as IoT devices are often
deployed at large scale in inaccessible places, it is important reconfiguration can
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be enacted remotely. While contemporary operating systems and middleware
have made advances in promoting remote reconfiguration in IoT, they have yet
to result in commonly used platforms and paradigms [17, 96, 18, 47].

A largely untackled problem is the general practicality of managing a large IoT
deployment remotely with multiple actors. Remote reconfiguration in its current
form is a manual process, where incompatible reconfigurations or operator
error can cause breakage and down-time of the IoT network. Furthermore,
introspection and modification of configuration incur a considerable message
overhead and energy cost, impacting battery life.

1.1.4 The IoT must be secured

Malware is a critical and growing threat to the IoT. The StuxNet [54] worm was
the first high-profile example. StuxNet damaged an Iranian uranium enrichment
facility by spoofing rotation sensor data from an enriching centrifuge, causing
a motor actuator to increase its speed until the centrifuges it controlled were
destroyed. More recently, the Mirai malware used IoT devices to create a botnet
that mounted a massive scale Denial of Service (DoS) attack, which peaked at
over 1 Terabit per second (Tbps) [103].

Despite the clear danger, the vast majority of deployed IoT products provide
little or no protection against malware and even basic features such as memory
protection, are typically not available on constrained IoT devices. Ronen et al.
recently showcased these weaknesses through the creation of a rapidly spreading
worm for the Philips Hue smart light bulbs [84].

Furthermore, adding advanced reconfiguration capabilities to support dynamism
further increases attack surface for IoT devices. The ability to remotely
reconfigure and deploy software has to be effectively secured to avoid misuse.

A common way to add security to these inherently insecure devices, is by either
adding a trusted piece of hardware like a TPM to perform secure operations, or
by modifying the microcontroller to provide security primitives or the memory
isolation required to implement them in software. Both solutions rely on
extensive hardware modifications, and do not provide a solution for the millions
of devices already deployed in the field. Securing these devices through a
hardware solution is practically infeasible and extremely costly.
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1.2 Problem statement

While the added value of a far-reaching integration of IoT technology in our
society is apparent today, efficiently configuring and securing these devices is
not straightforward. This dissertation focuses on providing generally applicable
solutions and paradigms to solve these problems, while considering the extreme
resource constraints of typical IoT platforms.

More formally, this relates to the following problem statements:

• How to reconfigure distributed application logic of an IoT infrastructure
in a multi-user environment without causing configuration conflicts and
downtime?

• How to reduce the management and resource overhead associated with
runtime reconfiguration of large scale IoT networks?

• How to cost effectively secure representative constrained IoT platforms
without adding hardware?

Finding appropriate solutions for these problems can be challenging, considering
the characteristics of IoT deployments outlined in previous sections: limited
system resources, a tight energy budget, low-bandwidth radios, increasing
levels of software dynamism and large-scale networks. As a result, reusing
pre-existing solutions from traditional IT systems is suboptimal. When solving
these problems, a trade-off has to be made between functionality and resource
consumption.

1.3 Contributions

This dissertation provides three key contributions to the state-of-the-art in the
IoT, which address the challenges laid out in the previous section.

1. A methodology detecting and avoiding incompatible distributed configu-
ration of an IoT application, providing safe runtime reconfiguration in a
dynamic multi-user environment: Safe reparametrization.

2. Novel approaches that lower the cost and complexity of inspecting and
reconfiguring IoT deployments at runtime: Refraction and Tomography.

3. The Security MicroVisor (SµV), a software security architecture that
provides memory isolation and a secure execution environment on low-end
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microcontrollers. Two secure operations are showcased: remote attestation
and secure deployment.

This work builds on existing software solutions that support dynamism
in the IoT, more specifically reconfigurable component-based middleware.
Component-based middleware has proven to be a promising solution for
managing the complexity of developing IoT applications [49]. Examples
of runtime reconfigurable component middleware include OpenCOM [18],
RUNES [17], OSGi [82], REMORA [96] and LooCI [47]. These systems
provide the capabilities required to manage component life-cycle, configuration,
introspection, and assembly at runtime. An essential feature of component-
based IoT infrastructures is software reuse, where one component can
offer functionality to multiple applications which are formed by component
compositions, promoting resource sharing and code reuse.

While contemporary component-based systems offer dynamic runtime reconfig-
uration and code reuse, the problems outlined in the previous paragraph still
remain. Misconfiguration due to implicit configuration parameter dependencies
or operator error are commonplace, causing down-time and loss of data.
Introspection and reconfiguration of component compositions are still very
inefficient, causing significant network overhead and battery drain. Lastly, the
remote reconfiguration and software deployment features offered by middleware
is inherently insecure and open the IoT platform to malware. The contributions
presented in this dissertation focus on providing a solution for these problems
while building on the merits of component-based middleware.

Safe reparametrization is the first contribution, offering composition-safe
reparametrization of applications. This is accomplished by offering language
annotations that allow component developers to make dependencies explicit
and network protocols to resolve and enforce parameter constraints. As a result,
misconfiguration breaking running applications is avoided, and reconfiguration
is greatly simplified while imposing minimal runtime overhead.

Refraction lowers the runtime cost of introspection and reconfiguration by
selectively augmenting application data flows with their reflective meta-data,
which travels at low cost to refractive pools, serving as loci of inspection
and control for the distributed application. Reactive policies are introduced,
providing a mechanism to trigger reconfigurations based on incoming reflective
meta-data. Tomography further reduces the runtime overhead of reconfiguration
by reimagining the visitor design pattern for distributed component compositions.
Tomography reduces both the number of explicit queries and the volume
of network messages, significantly reducing management effort and energy
consumption.
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Figure 1.1: Contributions in the context of the IoT software stack

A last contribution is the Security MicroVisor (SµV). SµV is a software-
only solution that provides memory isolation for low-end microcontrollers by
selectively virtualizing machine instructions. The memory isolation provided
by SµV is used to implement two key security features: remote attestation and
secure deployment. These features guarantee the integrity of the operating
system, middleware and applications running on the microcontroller and
functions as an anti-malware mechanism, even when reconfigurable software
engineering techniques are applied.

1.4 Overview of the thesis

The remainder of this dissertation is structured as follows:

Chapter 2 - Background The background chapter reviews work that supports
or relates to the body of work presented in this dissertation. More specifically,
relevant software development methodologies, reconfiguration frameworks,
component-based middleware and low-level security architectures for IoT devices
are surveyed. The chapter concludes with an analysis of the barriers to adoption
of IoT technology.
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Chapter 3 - Safe reparametrization for distributed IoT applications
This chapter focuses on the first contribution of this dissertation: Safe
reparametrization for component-based IoT systems with a decentralized
configuration space. This chapter builds and expands on work presented in the
following papers:

Daniels, W., del Cid Garcia, P. J., Hughes, D., Michiels, S., Blondia,
C., and Joosen, W. Composition-safe Re-parametrization in Distributed
Component-based WSN Applications. In IEEE 12th International Symposium
on Network Computing and Applications (NCA) (aug 2013), IEEE, pp. 153–156

Daniels, W., del Cid Garcia, P. J., Joosen, W., and Hughes, D. Safe
Reparametrization of Component-Based WSNs. In Mobile and Ubiquitous
Systems: Computing, Networking, and Services (MobiQuitous) (2014), Springer
International Publishing, pp. 524–536

Chapter 4 - Refraction: lowering the cost of reflection in the IoT This
chapter presents Refraction, a solution that selectively centralizes the meta-
model of distributed IoT systems and allows for automatic reconfiguration
through a rule-based language. This system directly translates to the second
contribution of this dissertation: to reduce the costs and complexity querying
and reconfiguring running IoT applications. This work was previously presented
in the following paper:

Daniels, W., Proença, J., Clarke, D., Joosen, W., and Hughes,
D. Refraction: Low-Cost Management of Reflective Meta-Data in Pervasive
Component-Based Applications. In Proceedings of the 18th International ACM
SIGSOFT Symposium on Component-Based Software Engineering (CBSE) (New
York, New York, USA, 2015), ACM Press, pp. 27–36

Chapter 5 - Tomography: efficient regional reflection for the IoT This
chapter introduces Tomography, a novel way to efficiently query and reconfigure
distributed IoT systems by launching probe packets into a network, progressively
collecting data and enacting change when visiting devices on its path.
Tomography is part of the second contribution of reducing the runtime overhead
and complexity of managing IoT applications. Tomography was first discussed
in the following paper:

Daniels, W., Proença, J., Matthys, N., Joosen, W., and Hughes,
D. Tomography: Lowering Management Overhead for Distributed Component-
Based Applications. In Proceedings of the 2nd Workshop on Middleware for
Context-Aware Applications in the IoT (M4IoT) (New York, New York, USA,
2015), ACM Press, pp. 13–18
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Chapter 6 - Securing dynamic IoT systems This chapter describes a software
security architecture for embedded IoT devices: the Security MicroVisor (SµV).
SµV secures microcontrollers by partially virtualizing instructions, thereby
restricting unauthorized and unsafe operations. This effectively provides memory
isolation for the low-end devices that dominate IoT deployments. Two secure
operations are implemented on top of SµV: remote attestation and secure
deployment. These security primitives can be used to guarantee the integrity of
running applications. This work was initially published in the following paper:

Daniels, W., Hughes, D., Ammar, M., Crispo, B., Matthys, N.,
and Joosen, W. SµV - the Security MicroVisor: a Virtualisation-based
Security Middleware for the Internet of Things. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Industrial Track (New York, New
York, USA, 2017), ACM Press, pp. 36–42

Chapter 7 - Conclusion The final chapter concludes the dissertation, discusses
how elements of the thesis integrate with past and present academic and
industrial work, and provides an outlook on opportunities for future research.





Chapter 2

Background

Early Internet of Things deployments relied on custom firmware images, realised
as static domain-specific software that closely integrated with the deepest layers
of the software stack and required detailed knowledge of hardware platforms.
The high complexity and inflexibility of developing software like this severely
hampered early uptake of IoT technology. With modern deployments spanning
cities and devices lasting up to 10 years on a single battery charge, the IoT
is continuously pushed to be more agile and dynamic, moving from static
software to supporting multiple concurrent applications and users throughout
a network’s life cycle. This calls for appropriate programming models and
runtime reconfiguration to simplify the development of distributed applications
and to efficiently manage them in the field. Securing the IoT is an orthogonal
concern that will grow in importance as IoT technology permeates our society.
The IoT security landscape is also likely to grow more complex, as we move
from static to dynamic software. This chapter gives an overview of existing
technologies that tackle these challenges and upon which the contributions of
this dissertation are built.

The remainder of this chapter is structured as follows. Section 2.1 looks
at relevant software development abstractions and programming approaches
that facilitate building distributed IoT applications. Section 2.2 surveys
solutions that enable software evolution and dynamism through runtime
reconfiguration. Section 2.3 gives an overview of related work securing the
IoT through trusted computing. Section 2.4 showcases LooCI, a state-of-the-art
reconfigurable component model. Finally, Section 2.5 analyzes the shortcomings
of contemporary IoT technology, and identifies the research gap that this
dissertation aims to fill.

11
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2.1 Software development abstractions

Efficient development support for distributed IoT applications is essential for IoT
adoption. Many real-world IoT deployments still run software that is monolithic
and tightly coupled with low-level system software, thereby obfuscating core
application logic and increasing complexity [69]. This section discusses relevant
state-of-the-art software development abstractions that address this problem
by reducing complexity and promoting dynamism and flexibility. These
programming models can be split up in network and node-oriented abstractions.

2.1.1 Network-oriented abstractions

A first group of programming models attempt to mitigate the complexity of
distribution by treating an IoT network as a single (distributed) computer
for which the developer writes software. Network-oriented abstractions are
motivated by the notion that micromanaging each node individually is not be
feasible for large networks and that addressing them as a group reduces this
overhead.

In the most simplistic models, IoT devices sample data periodically and forward
it to a gateway. The gateway will act as a data sink for the IoT devices, and
at the same time offer APIs to query and process the data. In this model,
all application logic resides at the gateway. Examples of this approach are
Janus [29], Hourglass [92], Global Sensor Networks (GSN) [1] and the IBM edge
servers [85]. A similar group of solutions abstract the network away behind a
database interface. Applications can interact with the devices in the network by
querying the distributed database. TinyDB [61], DSWare [56] and Cougar [112]
exemplify this approach.

Macro-programming approaches such as Kairos [40] and Rulecaster [10] propose
new high-level language constructs to define applications running over groups
of IoT devices. During deployment, the application is automatically split into
tasks and assigned to the nodes.

Neighbourhood programming abstractions such as Hood [110] and Abstract
Regions [108] introduce a programming model for groups of nodes in a sensor
network. A number of general-purpose primitives are provided for node
addressing, data sharing and data reduction in local regions of the network.
The goal of this new programming model is to alleviate development overhead
for distributed sensing applications.

The main goal of contemporary network-oriented approaches is translating
high-level global goals to low-level individual goals. A core difficulty that limits
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the application of these solutions is the high level of abstraction, often to the
point of a single application objective. The result is a reduction of fine-grained
local control that may be necessary for more complex applications.

2.1.2 Node-oriented abstractions

Another category of software development methodologies focus on implementing
applications from the perspective of the individual nodes in a network. The
main goal of these approaches is to provide applications with modularity
and separation from underlaying system logic at the single node level, while
facilitating the creation and management of distributed relationships.

Contiki [30] is a modular IoT operating system that is realized in C. Contiki
introduces the notion of application ‘modules’, which are coarse-grained units
of software functionality that can be dynamically replaced at runtime, allowing
a node to host multiple independently updatable applications. Contiki reduces
the overhead of small-scale changes in comparison to monolithic programming
models. While this approach offers more efficient support for software evolution,
Contiki modules do not make their software dependencies externally visible and
therefore it is not safe to deploy them without a complete understanding of the
distributed applications in which they will be used.

Virtual machines (VMs) go one step further by adding an extra abstraction
layer. While the core runtime environment is native code, application modules
are compiled to intermediate byte-code and are interpreted at runtime. The
primary advantages of this approach are portability between platforms and
more compact modules. Byte-code is more expressive then native code and
allows for a more concise representation of application logic. Disadvantages are
that interpretation of byte-code can impose a significant performance overhead
compared to native execution.

A plethora of solutions focus on bringing the object-oriented Java programming
language to IoT platforms by implementing a Java VM (JVM). Squawk [93],
Darjeeling [14] and CerberOS [2] are examples of this. Squawk provides the full
Java Micro Edition compliant Squawk JVM running on a platform with a more
powerful and power-hungry processor (180 MHz 32bit ARM core), making it
less useful for applications requiring long battery lifetimes. JVMs for low-power
8-bit microcontrollers are more simplistic, offering a partial implementation of
Java. Darjeeling and CerberOS are prime examples, with CerberOS adding the
enforcement of resource utilization policies for application modules.

Lastly, component-based software engineering (CBSE) further refines mod-
ularization by moving from arbitrary software modules to components with
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clearly defined provided and required interfaces. A full (distributed) application
can be built by creating a composition of these components. The strengths
of CBSE are a clear separation of concerns, reduction of coupling and the
ease with which components and code can be reused in different applications.
Implementations of CBSE for general computing include the CORBA [104]
component model, focusing on interoperability and distribution as well, and
OSGi [73], a Java-based component-oriented system.

NesC [36] was the first component-based IoT programming model and was used
to build the TinyOS operating system [41]. NesC allows developers to compose
applications from generic and re-usable software building blocks. At compile
time, NesC performs whole-program optimization and produces a monolithic
binary that includes both application and OS components. As NesC code is
compiled to a single binary file, it is not possible to replace individual components
at runtime and therefore runtime adaptation requires the replacement of the
entire system image.

GridKit [46] was the first runtime reconfigurable component-based middleware
for IoT and was implemented using the OpenCOM [18] component model, to
which it adds support for building distributed relationships using the Open
Overlays [39] pattern. RUNES [17] is a component-based middleware that
supports the creation of reconfigurable application compositions on resource
constrained devices, however, it is a local component model which provides
no support for the creation of distributed relationships. REMORA [96]
provides a C-like programming language to specify component interfaces
and application compositions. At runtime these components execute on the
REMORA platform abstraction layer, providing a uniform interface to low-
level hardware functionality without requiring platform specific knowledge.
LooCI [47] is an IoT middleware which provides a reconfigurable component
model, loosely coupled binding model and a platform independent execution
environment. LooCI explicitly supports resource constrained hardware and
includes distribution support as a first class concern, making it is possible to
reify and reconfigure distributed relationships at runtime.

2.2 Runtime reconfiguration

In parallel to streamlining the development of applications through appropriate
programming abstractions, numerous developments towards optimizing runtime
management have been proposed in literature. With hardware getting more
energy-efficient, batteries holding more charge and IoT deployments growing
ever larger, large-scale sensor deployments lasting up to ten years are a reality.
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Manually reprogramming these hard-to-reach IoT devices in the field throughout
their software life cycle is unfeasible, calling for solutions that allow runtime
reconfiguration. State-of-the-art solutions in this field can be categorized by the
scope of the reconfiguration: structural reconfiguration replaces larger chunks of
functionality, while behavioural reconfiguration is more fine-grained and merely
modifies the behaviour of existing applications through parameters [8].

Reconfiguring a resource constrained IoT device comes at a certain energy cost.
Radio transceivers are the primary energy consumers on contemporary IoT
devices [44]. As a result, reconfiguration by means of a full monolithic image
update will have a much larger impact on battery life than changing a single
parameter. Another important metric is the flexibility of a reconfiguration
solution: a full image update can enact an arbitrary amount of change, while
the modification of a parameter is more limited in that regard.

2.2.1 Structural reconfiguration

The most flexible structural reconfiguration solution is the use of monolithic
images to replace all software on a device. A monolithic image is a single binary
file that contains the operating system, drivers, middleware and applications
linked together. Because of this, any aspect of the running software can be
changed. While reconfiguring devices this way is extremely flexible, the size
of monolithic images causes difficulties with distribution and has a big energy
impact. A seminal example of monolithic reconfiguration is Deluge [48]. Deluge
extends TinyOS [41] with a dissemination protocol for transmitting system
images to all nodes in a multi-hop network reliably. A more recent example is
the firmware update capability proposed for Mbed OS [51], an industry leading
IoT operating system developed by Arm and its partners. Here multicast is
used to disseminate a fragmented monolithic image. Packet loss is mitigated by
transmitting redundant fragments with error correction data. A full firmware
image can be reconstructed node-local using the extra fragments and an error-
correction algorithm.

A more fine-grained approach to structural reconfiguration is loading smaller
software modules containing native code and linking them at runtime to the
operating system and libraries present on the device. This way, only functionality
that needs to be modified will be transmitted over the network and replaced.
Contiki [30] is a prime example of modular reconfiguration. Contiki relies on
a compact version of the Executable and Linking Format (ELF) [28] object
format to provide loading, relocation and linking of new application modules at
runtime. The embedded variant of the LooCI [47] reconfigurable component
middleware is built on the Contiki OS and uses its ELF loader to dynamically
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load new components. As discussed in Section 2.1, an added advantage here is
that the updated functionality is clearly delineated by means of a component
with declared interfaces.

Virtual Machine-based approaches such as Squawk [93] and Darjeeling [14]
similarly offer reconfiguration through modular updates. The primary advantage
when compared to native software modules is that any interaction with the
preinstalled functionality is provided by the JVM. This avoids relocation and
linking of code and data, thereby drastically simplifying the loading process. In
terms of flexibility, interpreted languages tend to be more limited then their
native equivalents, as they tend to have incomplete VM implementations and
abstract away lower-level hardware control which is needed in some cases [14, 2].

2.2.2 Behavioural reconfiguration

The simplest form of reconfiguration is behavioural reconfiguration through
parameters. Behavioural reconfiguration relies on the application developers to
expose parameters that can be modified at runtime and change the behaviour
of running software. A simple example would be changing a sample rate
parameter on an IoT device measuring temperature. In this case it allows
runtime modification of the sample rate at which the sensor is sampled. From
this example it is apparent that parameter reconfiguration incurs a very low
network overhead but is extremely limited in what changes can be enacted.

Generally speaking, any IoT device with bi-directional communication is able to
perform behavioral reconfiguration through parameters as long as the software
developer explicitly exposes them. However, some platforms incorporate
support for parameters directly in their runtime environment. The LooCI [47]
reconfigurable component model allows developers to define and externalize
component parameters that can be used for runtime reconfiguration through a
dedicated API. Sensor Network Management System (SNMS) [100] similarly
extends TinyOS components with explicit support for parametrization, and has
a special focus on distribution protocols to manage parameters over a multi-hop
network.

2.2.3 Reflective component models

Component models take above reconfiguration approaches further by systemizing
them through a reflective meta-model. Reflection is the capacity of a software
system to inspect itself (i.e. introspection) and modify its structure, properties
and behaviour at runtime (i.e. reconfiguration) [94].
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The application of reflective programming techniques to distributed component-
based systems was pioneered by Blair et al. [11], who advocated for a systematic
approach to reflection based on a per-component meta-model in which selected
elements of the component implementation are reified. This meta-model
externalises elements of the component implementation, such as its incoming
and outgoing connections and its parameters. The meta-model is causally
connected to the component implementation, which allows it to support both
introspection (reading the meta-model) and reconfiguration (modifying the meta-
model). The use of a per-component meta-model ensures that the scope of
reconfiguration actions is bounded. Typical actions are adding and removing
components, changing the connections between them and modifying their
properties. Distributed applications are built by connecting components and
forming a component composition.

The meta-model provides a well-defined way of introspecting and reconfiguring
components, and is backed up by structural and behavioural reconfiguration
approaches listed above. For example, adding a new component to a device
requires the loading of a software module (structural reconfiguration), while
modifying connections between components and changing their properties is
similar to reconfiguration using parameters (behavioural reconfiguration).

OpenCOM [18] is a generic reflective component model that has been applied to
build pervasive sensing applications [46]. OpenCOM is platform and language
independent and supports runtime reconfiguration and introspection of the
component meta-model. The local OpenCOM component model can be extended
with binding model plug-ins to support distributed application composition.
RUNES [17] brings OpenCOM-like functionality to resource constrained systems.

LooCI [47], as described in detail in Section 2.4, is a language and platform
independent component model designed to support distributed IoT applications.
LooCI supports both introspection and reconfiguration at runtime. In contrast
to the models discussed above, which need extensions to support distribution,
the LooCI runtime inherently supports the creation of distributed component
bindings.

While the merits of reflective component models are apparent, when
reconfiguring distributed applications it is frequently necessary to work in
a coordinated fashion with the meta-model of multiple distributed components.
This leads to increased development complexity and message passing overhead.
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2.3 Security

Previous sections have focused on various technologies that enable dynamism
and runtime adaptation on resource constrained IoT platforms. While these
developments are a natural evolution and a necessity to drive adoption of the
IoT, the increased complexity of both middleware and underlaying operating
systems increase attack surface significantly. More specifically, platform facilities
such as remote software deployment and reconfiguration pose a threat if left
unsecured and are primary attack vectors for malware and tampering. This
section takes a look at relevant work that focuses on securing low-cost and
resource constrained embedded devices, ensuring they are uncompromised by
attackers and behave as intended.

2.3.1 Trusted Computing Base

A Trusted Computing Base (TCB) is a combination of hardware and software
that forms the foundation of any security policy on a platform [102]. The goal
of a TCB is protection against system-level attacks, and to provide a trusted
base upon which security related functionality can be built.

Early TCBs utilize a static chain of trusted integrity checks, such as secure
boot [5, 74] and Trusted Platform Modules (TPMs) [101]. Secure boot relies
on immutable bootstrap code with hard-coded public keys to establish a chain
of trust during the boot process. TPMs on the other hand are secure crypto
co-processors isolated from the main processor, embedding cryptographic keys
and providing authentication, attestation and encryption.

An important concept in trusted computing is remote attestation [34]. Remote
attestation allows an external verifier to detect unauthorized changes and
tampering to devices in the field and guarantees platform integrity at runtime.
The TPM standard for example specifies Trusted Execution Technology [101]
for this purpose.

While nowadays TCBs are quite common in more powerful commodity hardware
(smartphones, laptops), it is a relatively new technology for the embedded devices
prevalent in the IoT. Existing solutions such as the industry standard TPM
are often considered too complex, expensive and power-hungry for low-end
embedded devices.
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2.3.2 Trusted embedded computing

To cover this end of the spectrum, a new wave of solutions have been proposed
for low-end microcontrollers, some of which provide much more than just a
TCB. The most relevant are SMART [31], SANCUS [72] and TyTAN [13].

SMART [31] is a hybrid hardware-software approach. Hardware modifications
to the memory bus addressing logic of the embedded microcontroller guarantee
isolation of code and data belonging to critical secure operations. SMART
specifically focuses on providing remote attestation. A symmetric key is stored
in the isolated data memory, while the isolated instruction memory contains
routines for computing a message authentication code (MAC) of the entire state
of the device. The result is compared by an external verifier with the MAC
computed over the expected state, detecting any deviation or tampering on the
device.

SANCUS [72] is a full-featured security architecture for IoT devices, relying on
a pure hardware root of trust. SANCUS provides not only application isolation,
but also integrity, authentication, and dynamic remote attestation. SANCUS
operates by modifying the Memory Access Logic (MAL) circuit of an MSP430
processor, enforcing access rights for software modules to achieve isolation
and key protection. The result is a full TCB on a microcontroller. Similarly
to SMART, SANCUS relies on computationally less complex symmetric key
cryptography in order to minimize hardware costs.

TyTAN [13] extends the Trustlite architecture [52] with dynamic loading, and
both local and remote attestation guarantees for isolated software modules from
mutually untrusted stakeholders. It is based on an Execution-aware Memory
Protection Unit (EA-MPU), a hardware component that provides memory access
control enforcement based on the identity of code that attempts to access a
data region. Compared to SANCUS and SMART, TyTAN adds interruptibility
of the attestation process, a property that is often required in hard real-time
applications.

2.3.3 Software-only solutions

While SMART, SANCUS and TyTAN have much lower hardware requirements
than a TPM, they are still costly to implement. Millions of devices already
deployed would require hardware modification or replacement to implement
these solutions. As a result, there is a stream of research that focuses on bringing
software-based remote attestation to resource constrained devices without the
use of a full TCB.
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SWATT [89] is a time-based attestation technique that relies on response
timing to identify compromised nodes. A similar concept is used in many other
software-based solutions [57, 58, 87, 88]. These methods rely on the estimated
upper-bound time required by a given configuration of the device to freshly
compute the correct answer for the verifier. If the computation takes longer,
then the presence of an attacker can be inferred. The inherent limitation of
time-based assumptions have been discussed in the literature [90] and several
concrete attacks have also been published [15]. Therefore, these approaches are
not considered to be secure.

PoSE [75] uses the bounded amount of storage in the target platform as a means
of providing software-based remote attestation. PoSE can only remotely attest
the state of a device in conjunction with a software update. During the update
process, a stream of random data is sent along with the new software, combined
together exactly the size of the entire memory of the target device. Next, a
MAC is computed over the full memory contents of the device using a fresh
key included in the payload. The MAC is sent back to the verifier/updater,
and if correct the state of the device (i.e. every byte in the memory) is proved.
Two obvious drawbacks of this approach are: i) the lack of authentication, any
adversary with access to the network can install new software, and ii) the high
network overhead and associated battery life impact incurred by sending large
amounts of random data over a low-power wireless network.

2.4 LooCI: a reflective component model

This last section takes a closer look at a state-of-the-art component-based
middleware. Earlier in this chapter, Section 2.1 underlined the advantages
of componentization in the software development stages. Component-
based software engineering increases code-reuse and decreases coupling by
encapsulating functionality in components with clearly defined interfaces and
building applications through component composition. Section 2.2 further
highlighted how these systems can be reconfigured with reflection, which extends
component-based systems with the capability to do runtime reconfiguration and
introspection through a meta-model.

In order to better understand how all these technologies work together, this
section takes an in-depth look at an existing reflective component model: LooCI,
the Loosely-coupled Component Infrastructure [47]. First, the architectural
components that make up LooCI are explained. Next, the process of building
and managing distributed applications with LooCI is illustrated through a
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running example. Lastly, SecLooCI [62] is discussed, an extension of the LooCI
component model that focuses on security.

2.4.1 The LooCI architecture

Figure 2.1 shows the layered architecture of the LooCI middleware. LooCI
provides a platform-independent execution environment for various underlaying
platforms, such as Contiki (embedded), Squawk (embedded VM), OSGi (back-
end) and Android (smartphones). The Network Framework abstracts any
platform specific network interaction away and provides a uniform interface for
the upper layers. While the APIs are consistent between platforms, components
are still written in the language best suited for the target platform and compiled
natively to reduce runtime overhead.

The distribution of application data both locally or remotely is handled
transparently by the Event Manager, which connect all components across
nodes through a distributed event bus. LooCI utilizes an asynchronous, event-

Distributed
Event Bus

Reconf. 
Manager

Logical
event flow

Physical
event flow

Comp Comp

Reconf. 
Manager

Manager

Reflective
operations

N1 N2

C1 C2

Event Manager Event Manager

Network Stack Network Stack

Underlying PlatformUnderlying Platform

N1.activateComp(C1)
N1.wireTo(C1, N2, ev)
….

N2.getProperties(C2)
N2.setProperty(C2, p)
….

Figure 2.1: LooCI middleware architecture.
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based interaction model that requires components with matching event types
to be explicitly wired together through bindings.

The Reconfiguration Manager handles remote introspection and reconfiguration
of locally deployed components (i.e. activation, changing of properties, ...), and
manages any local or remote component bindings. Figure 2.1 shows how an
external Manager interacts with the Reconfiguration Manager module residing on
the devices, using reflective operations to introspect and reconfigure deployed
components and bindings.

2.4.2 Reconfiguring a component-based application

Figure 2.2 shows an example LooCI software composition that is used in a
real-world IoT deployment for detecting motion in a room. In this example, two
Motion Detector components —residing on N1 and N2—transmit their sensed
data to a Motion Aggregator component on N3, that aggregates motion readings
and forwards processed data to a Motion Reporter component. Motion Reporter
resides on a resource rich node N4 and pushes the data to a web platform for
viewing. Gray boxes represent computational platforms, where components are
deployed and executed. Software components are shown as white boxes with
solid black lines, which publish values via their provided interfaces ( ), and
receive values from via their required interfaces ( ). Components also have
key-value pairs of properties that can be used to parametrize their behaviour.

The application is controlled by an external Manager entity, which issues
reflective operations to the component model kernel running on each node
in order to introspect the software system, perform structural reconfiguration
by connecting or disconnecting interfaces, and behavioural reconfiguration by
modifying component properties. The interaction between the Manager and the
reflective middleware is depicted with thicker arrows in Figure 2.2. Examples of
reflective operations that can be used by the Manager are shown in Listing 2.1.

Reflective
operations

Motion Detector
- sampleRate
- listenPin C₁

N₁

Motion Detector
- sampleRate
- listenPin C₁

N₂

N₃

Motion Agg.
- interval
- timeout C₁

N₄

Motion 
Reporter
- webservice C₁

Manager

Figure 2.2: Example distributed component composition.
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1 // introspection operations
2 N1.getProperties(C1)
3 N1.getProperty(C1,sampleRate)
4 N3.getWiresFrom(C1)
5 // reconfiguration operations
6 N3.setProperty(C1,timeout=30s)
7 N4.activateComponent(C1)
8 N3.wireTo(C1,N4,motionEvent)
9 N4.wireFrom(N3,C1,C1,motionEvent)

Listing 2.1: Example of reflective operations on the example.

2.4.3 SecLooCI

SecLooCI [62] extends the LooCI middleware with security features aimed at
multi-user and multi-application environments. SecLooCI augments reflective
operations with role-based access control, provides secure deployment of new
components and encrypts application data. SecLooCI makes use of well-known
cryptographic primitives relying on symmetric pre-shared keys to enforce access
control.

The primary weakness of this approach is the lack of a Trusted Computing Base.
Among other hardware platforms, SecLooCI also targets an 8-bit microcontroller
without memory isolation. Crucial security routines and secret key-material
reside in the main memory alongside remotely deployed components. Any
compromised component executing on the platform is able to read or modify
keys and routines, hereby bypassing the security features offered by SecLooCI.
As discussed in Section 2.3, by isolating security-critical functionality and data
inside a TCB, these problems can be avoided.

2.5 Barriers to adoption

Previous sections surveyed a range of state-of-the-art solutions focusing on
solving challenges associated with building, managing and securing distributed
software for the IoT.

This section takes a critical look at their strengths and weaknesses, and identifies
gaps that must be addressed to ensure their adoption.
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2.5.1 Review of the state-of-the-art

The analysis starts with reviewing how the state-of-the-art caters to simplifying
development, life-cycle management and security in the IoT.

Simplifying development and runtime configuration

While previous sections introduced software development abstractions and
reconfiguration systems separately, it is clear that often these go hand in hand
to create holistic solutions in the shape of operating systems, virtual machines
and component models.

Two prominent operating systems for the IoT are Contiki [30], and TinyOS [41].
Both support run-time reconfiguration, but do so in different ways. TinyOS is
more limited: while it is modular in the development phase, it specializes the
effective dissemination of full-image updates to devices in the field. Contiki on
the other hand allows developers to create arbitrary modules which are over-the-
air deployable. Both provide no inherent support for additional reconfiguration
or distributed interactions, requiring the application developer to implement
their own non-standard solutions.

Solutions based on a JVM like Squawk [93] offer similar functionality by
compiling application modules to intermediary Java-byte code. Application
modules can then be remotely deployed and executed. Support is provided
for local interaction between modules, yet remote interaction and finer-grained
remote reconfiguration needs to be provided by the developer.

The biggest limitation of both OS and VM solutions is that while they
allow modular software development, they do not offer software paradigms
to enable the specification of meta-data that defines and bounds reconfiguration.
Reflective component models improve on this by providing developers with the
means to explicitly declare required and provided interfaces, as well as the type
and properties of a component through a meta-model. By externalizing these
aspects during development, introspection and reconfiguration is well-defined
and standardized.

Representative reflective component models include RUNES [17], REMORA [96]
and LooCI [47]. Reflective component models have introduced unprecedented
flexibility for developing and managing IoT applications, certainly when
compared to the earliest systems that were built and deployed statically without
reconfiguration in mind. Advantages are low coupling and high code-reuse due to
the componentization of applications, and fine-grained runtime reconfiguration
through reflection. All three approaches use dynamically loadable modules
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to remotely deploy new components. Explicitly defined interfaces allow the
composition of components to build applications. LooCI differentiates itself in
this regard by allowing remote bindings through a distributed event bus, while
RUNES and REMORA only support local bindings.

While the advantages are clear, contemporary component models come with
a new set of problems. Considering the example shown in Figure 2.2, two
shortcomings of reflection quickly become evident. Firstly, reflection requires
the transmission of many messages to query and reconfigure remote components.
This is very problematic, as research [44] has shown that radio transmissions are
the primary source of energy consumption for IoT devices. Secondly, writing
reflective code for distributed management, as shown in Listing 4.1 is complex
and error-prone. Errors in the configuration of a single component can make the
distributed application malfunction and are extremely difficult to track down.
This issue becomes more severe if multiple users manage a large-scale shared
deployment and therefore use reflective APIs in parallel.

Security in the IoT

As the IoT takes a prominent place in our society, we rely more and more on
the correct and secure functioning of embedded devices. The developments
discussed in the paragraph above indicate a future of open and dynamic systems,
however, features such as in-depth remote reconfiguration provide larger attack
surfaces for adversaries.

In order to secure critical secure operations such as encryption of application
data and authentication of reconfiguration, it is essential to utilise a Trusted
Computing Base as a root of trust.

For resource constrained devices, the most relevant solutions are SMART [31],
SANCUS [72] and TyTAN [13]. All these solutions rely on modifying 8-bit
microcontrollers on a hardware level to provide functionality like isolation and
memory protection. These hardware-based solutions have a proven track record,
but securing the millions of devices out in the field today would require expensive
modification or replacement of hardware.

This problem has long been discussed in literature, and solutions attempting to
provide secure primitives such as Remote attestation without a hardware TCB
have been proposed. The most prominent ones are SWATT [89] and PoSE [75],
which attempt to provide attestation by relying on physical deterministic
properties of the microcontroller, such as time required for execution and
storage space. Not only are these approaches extremely limited due to the lack
of a TCB, they also are insecure [15] or impractical [90].
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2.5.2 Research opportunities

From the in-depth analysis of the state-of-the-art in the previous section,
four barriers to adoption are apparent. The first three specifically focus on
reconfiguration and management of component-based models, as these provide
the basic dynamism and flexibility contemporary deployments need. The last
point focuses on security for resource constrained devices in general.

Achieving consistent reconfiguration is too complex While reflective
component-models offer flexible and well-defined reconfiguration, the amount
of configuration parameters in larger compositions in conjunction with the
distributed nature of the meta-model in a multi-user environment causes
inconsistencies in configuration, which are hard to track down and cause
downtime.

The overhead of control is too high When reconfiguring distributed
applications, it is frequently necessary to work in a coordinated fashion with
the meta-model of multiple distributed components. This significantly increases
overhead in terms of configuration messages passed, energy spent and the time
required to enact change.

The overhead of inspection is too high Introspection of a distributed
component-composition is often required to gather a full overview of an IoT
application. Because the meta-model is distributed over all participating devices,
the network overhead and energy spent to carry out introspection is substantial.

Security is expensive and cannot be retrofitted onto existing devices All
current methods of securing the IoT rely on extensive hardware modifications to
provide memory isolation and a secure execution environment. While research
has been conducted towards cost-effective software-only solutions, no viable
alternatives have been developed.
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2.6 Summary

This chapter gave an overview of work presented in literature related to the
focus of this dissertation: promoting dynamism, flexibility and security in the
IoT. First, existing solutions were surveyed focusing on software development
paradigms, dynamic reconfiguration and security for low-power IoT devices.
Next, LooCI was presented as a case study of a reflective component model,
combining the principle of component-based software development with powerful
runtime reconfiguration and introspection. The chapter concluded with an in-
depth analysis of the presented solutions. While reflective component models
and hardware-based security fill an important gap in the evolution towards a
dynamic and safe IoT, four areas of improvement were identified.

The following chapters present contributions specifically focusing on these
challenges. Chapter 3 introduces Safe reparametrization, a methodology that
lowers the complexity of achieving consistent reconfiguration by automatically
resolving implicit configuration dependencies in distributed component-based
applications. Chapter 4 and Chapter 5 aim to reduce the overhead and
complexity of reflection in component models by introducing Refraction and
Tomography respectively. Refraction augments existing application data with
reflective data, thereby reducing the amount of explicit messages required for
introspection, while reconfiguration is simplified through policies. Tomography
introduces the concept of regions of components in a composition, and provides
a way to inspect and control them efficiently. Lastly, Chapter 6 focuses on cost-
effective security for the IoT, and proposes MicroVisor, the first software-only
Trusted Computing Base for low-end IoT devices.





Chapter 3

Safe reparametrization for
distributed IoT applications

This chapter introduces the first contribution of this work: Safe reparametriza-
tion of distributed IoT applications. A common challenge with large-scale
IoT infrastructures running network-wide applications is maintaining correct
configuration. Chapter 2 introduced reflective component models as an effective
way to manage the complexity of developing IoT applications. Distributed
applications can be configured and inspected at runtime through a per-
component meta-model. While the advantages of component models are clear,
misconfiguration of a single component in an application is difficult to track
down and causes malfunctions and downtime.

Safe reparametrization extends reflective component-based middleware in two
key ways: i) by offering a descriptive language for component developers to
express implicit configuration dependencies between components, and ii) by
providing a network protocol that efficiently resolves, monitors and enforces these
dependencies over a distributed component composition, effectively minimizing
misconfiguration, downtime and management overhead.

In this chapter, Section 3.1 describes the problem, and provides a general
overview of the solution. Next, Section 3.2 delves deeper into the real-world
problem that motivated this research. Section 3.3 provides a taxonomy of
component roles, dependencies and constraints. Section 3.4 presents the
descriptive language used along with the mechanisms behind the resolution
and enforcement of dependencies. Section 3.5 discusses the proof of concept
implementation on a representative IoT platform, alongside a real-world
evaluation. Lastly, Section 3.6 concludes this chapter.

29
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3.1 Introduction

Reconfigurable component models have proven to be a promising solution for
managing the complexity of developing IoT applications. Examples of runtime
reconfigurable component systems have been thoroughly discussed in Chapter 2,
and include OpenCOM [18], RUNES [17], REMORA [96] and LooCI [47].
These systems provide the capabilities required to manage component life-cycle,
configuration, introspection, and assembly at runtime. An essential feature
of component-based middleware is component reuse, where one component
can offer functionality to multiple application compositions. This way, both
platform resources (i.e. flash, RAM) and code are shared between applications.

Contemporary component-based systems have some drawbacks when sharing
component instances. Configuration conflicts can arise due to resource
contention. While component binding dependencies are explicit in the form of
interfaces and receptacles, implicit dependencies between component parameters
emerge in a composition due to application level constraints. Consider a
software composition that detects vehicle motion, using a composition formed
from a magnetometer component and a motion detection component. The
magnetometer component must sample at 2 Hz in order for the motion
detection component to function properly. This configuration generates an
implicit parameter dependency between the magnetometer and motion detection
components that is not expressible with state-of-the-art component models.

Manually resolving these implicit dependencies is difficult and error-prone. In a
multi-purpose IoT infrastructure where multiple actors reuse and reconfigure
components, no single actor has an accurate understanding of all existing
compositions and parameter dependencies. Existing compositions have to be
introspected remotely, which incurs developer overhead and message passing
overhead. Failure to resolve an implicit parameter dependency will cause
disruption due to erroneous reconfigurations of existing applications.

Before investigating solutions, the problem is first motivated more through an
in-depth case-study conducted on a real-world testbed.

3.2 Reparametrization in component compositions

Over the years multiple component-based IoT testbeds have been built in
the DistriNet research group. Most notably a smart office and a smart lab
environment, running multiple applications concurrently. Within this testbed,
state-of-the-art component-based middleware is thoroughly tested running
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various dynamic applications. Examples are: facility management, workforce
management, security and workplace safety, each of which is managed by a
different stakeholder. For these applications, data was logged continuously and
analyzed for reconfiguration effort and latency. Analysis revealed the previously
unknown problem of implicit dependencies between parametrized components
in a composition. To further investigate, a series of informal experiments were
conducted that were designed to better understand the impact that implicit
dependencies have on reconfiguration effort and latency.

3.2.1 Experiment description

During the experiments, seven experienced component developers were tasked
with a series of reconfiguration exercises to be conducted on the smart office.
In each exercise the component assembler had to plan and enact an extension
to one of the running applications. Throughout the experiment, reconfiguration
effort (commands issued), latency (time required) and disruption (configuration
errors made) were tracked.

No inter-stakeholder coordination of reconfiguration plans is assumed, and there
is no up to date global view of the system. The assemblers all started out having
limited information regarding the configuration and state of all the running
component instances and the applications.

The reconfiguration typically happens in 4 steps:

1. Interpretation: Reading and understanding the required changes.

2. Introspection: Identifying and remotely inspecting the components of
interest to check if and how they are reusable.

3. Analysis: Checking if the desired reconfiguration adversely affects any
of the running applications.

4. Reconfiguration: Creating and executing a reconfiguration plan.

Analysis revealed that reconfiguration involving the deployment of components
or the modification of bindings between them did not create any disruption
and only required moderate reconfiguration effort and latencies. Modifying
component parameters, on the other hand, caused high reconfiguration effort,
latency and in most cases disruption of existing applications. The reason for
this is implicit parameter dependencies that arise every time the consumer
component has application requirements that constrain the possible values used
to configure the functionality implemented by the producer component.
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3.2.2 Classes of component compositions

Three classes of component compositions were identified in the smart office
environment where implicit dependencies are generated, see Figure 3.1.

• Producer-Consumer: Figure 3.1a depicts a Producer-Consumer
composition. This is the implementation of the scenario previously
explained in the introduction, where a Motion Sensing component requires
a Magnetometer to sample at 2 Hz. In this case, the Motion Sensing
component has an implicit dependency with the sample interval of the
Magnetometer. Therefore the application requirements reified in the
Motion Sensing component constrain the valid values for configuration
property in the Magnetometer.

• Producer-Processor-Consumer (simple): Figure 3.1b exemplifies a
Producer-Processor-Consumer composition where the implicit dependency
is propagated from producer to consumer through a data processing
component without any configurable parameters, thus only relaying
implicit dependencies. A Temp. Sensor component sample rate is 10
Sa/h (samples per hour), the reading’s units are converted and consumed
by a Climate Control actuator component.

• Producer-Processor-Consumer (parametrized): In Figure 3.1c, a
Producer-Processor-Consumer composition is shown with a parametrized
processing component. The Methane Sensor component samples at a
rate of 6 Sa/h, then an Averager component aggregates the data of 3
samples, which is consumed by an Air Quality component. Averager is a
data processing component which has a configurable parameter that is
constrained by the consumer, i.e. Air Quality. Both the Methane Sensor
and Averager have implicit parameter dependencies with the consumer
component because Air Quality has requirements on the temporal resolution
of the readings. This constrains the valid parameter values for both
Averager and Methane Sensor.

The software compositions classified above can be arbitrarily long, for instance
having multiple Processors interconnected in a composition.

3.3 Prerequisites

This section discusses the requirements of safe reparametrization on component-
based middleware. Next, the roles that a component can play during
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Figure 3.1: Classes of compositions with implicit parameter dependencies.

composition-safe reparametrization are enumerated. Finally, a classification of
constraint types is provided.

3.3.1 Component model requirements

Safe reparametrization requires a component model that at least has the
following characteristics: i) explicitly defined interfaces and receptacles, ii) typed
interface and receptacles through e.g. a unique identifier (UID), and iii) support
for reparametrization of running components.

These requirements are met by all reflective components models previously
discussed in Chapter 2: RUNES [17], REMORA [96], OpenCOM [18] and
LooCI [47].

3.3.2 Component roles

Analysis revealed three component roles, each of which must be considered
when resolving distributed parametrization dependencies. An overview of each
of these roles is given, with reference to the example smart office compositions
shown in Figure 3.1.

1. Constrained components: These are components which produce events
differently based upon their parametrization. A concrete example of such
a component is the Temp. Sensor component shown in Figure 3.1b. The
Sampling Rate parameter (SR) influences how often temperature data
is sensed and transmitted. which is constrained by the Climate Control
component.
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2. Relaying components: Relay components do not have constrained
parameters, or constrain the parametrization of other components. They
do however serve as a relay of parameter constraints along the chain of
components in a composition. In Figure 3.1b, the ◦C to ◦F converter is an
example of a relaying component. It relays data between a constrained
component Temp. Sensor and the constraining component Climate Control.

3. Constraining components: Constraining components consume data
that is produced and processed by other components in the composition.
Constraining components require a specific parametrization of components
producing and processing the data. The Climate Control component shown
in Figure 3.1b is an example of a constraining component. It requires that
the sampling rate of the Temp. Sensor component has a fixed value.

A component can play multiple roles at the same time. For example, the
Averager component in Figure 3.1c relays a parameter dependency from
the Methane Sensor (Sampling Rate) and also has a constrained parameter
(Averaging Interval). Both of these parameters are constrained by the Air
Quality component.

3.3.3 Constraints

Constraining components impose two categories of parameter constraints:
Locking and Synchronizing.

1. Locking constraints lock constrained parameters to a specific value
or range. An example of this is the constraint imposed by the Climate
Control component in Figure 3.2a. This constraint locks the Sampling Rate
parameter of Temp. Sensor to 10 Sa/h. Another possibility is constraining
the range of acceptable parametrization, e.g. 8 to 14 Sa/h.

2. Synchronizing constraints require the synchronization of multiple
parameters in the composition. This is illustrated in Figure 3.2b, where
the sampling rate of the Temp. Sensor and CO Sensor components has
to be time synchronized in order for the Comfort Level component to
aggregate the data and function properly.

3.4 Design

Safe reparametrization is comprised of 3 elements: language annotations used
by component developers, a constraint propagation protocol and a constraint
enforcement protocol. This section takes a closer look at the role they fulfill.
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Figure 3.2: Component roles and constraint types.

3.4.1 Language annotations

In order to offer composition-safe reparametrization, component developers
must specify parameter dependencies, relaying behaviour and constraints. To
achieve this, a set of language annotations is introduced.

For constrained components, developers use the syntax shown in Listing 3.1
to identify constrained parameters. Constrained parameters are assigned an id,
which is used by the constraint resolution protocol to reference the parameter.
The component developer must specify both the id of the constrained parameter
and the UID of associated the outgoing interface. Figure 3.2a shows an annotated
version of the composition visualized in Figure 3.1b. In this scenario, the Temp.
Sensor component specifies ConstrainedParameter(sr_id, uid1) to define the
constrained parameter.

For relaying components, developers must specify the UID of the incoming
receptacle and the outgoing interface over which the dependencies have to be
relayed. Listing 3.1 shows the syntax that is used by relaying components. For
example, the ◦C to ◦F component in Figure 3.2a specifies DependencyRelay(uid1,
uid2).

For constraining components, developers use the syntax shown in Listing 3.1.
Constrained parameters are designated by their parameter id together with
the UID of the incoming receptacle. The tuple formed by this pair of values
uniquely specifies a constrained parameter. Lock constraints are specified by
appending the parameter identifying tuple with the constraint itself, which
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1 ConstrainedParameter(
2 parameter-id, //Reference to constrained parameter
3 interface-uid //Outgoing interface uid
4 );
5
6 DependencyRelay(
7 receptacle-uid, //Incoming receptacle uid
8 interface-uid //Outgoing interface uid
9 );

10
11 ParameterLock(
12 parameter-id, //Reference to constrained parameter
13 receptacle-uid, //Incoming receptacle uid
14 constraint //Open/closed interval or value
15 );
16
17 ParameterSync(
18 {
19 parameter-id, //Reference to constrained parameter
20 receptacle-uid //Incoming receptacle uid
21 },
22 {paramter-id, receptacle-uid},
23 ...
24 );

Listing 3.1: Language annotations defining implicit parameter dependencies.

is either a range or a single value. Synchronizing constraints are specified by
providing a number of parameter-identifying tuples, the values of which must
remain the same. The example lock constraint of the Climate Control component
shown in Figure 3.2a is expressed as follows ParameterLock(sr_id, uid2, 10).
The example synchronizing constraint of the Comfort Level component shown
in Figure 3.2b is expressed as ParameterSync({sr_id, uid1}, {sr_id, uid2}).

3.4.2 Constraint propagation

Constraint propagation happens through a network protocol that efficiently
relays appropriate constraints from constraining components to constrained
components. Bindings can be local or can cross node boundaries, requiring the
transmission of a radio message. The constraint propagation protocol has two
phases. In phase one, descriptions of constrained parameters are propagated
along the chain of components as bindings are made. A caching mechanism
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Figure 3.3: Step-by-step constraint resolution of compositions from Fig. 3.2.

is used at every component along the chain from the constrained component
to the constraining component. Every time a new binding is made between
two components, the local cache of the component with the providing interface
is checked for constrained parameters that should be forwarded. These cache
entries are then forwarded along the chain as far as existing bindings allow.
Using local caching by intermediate components as opposed to a stateless
method serves two purposes: i) network traffic is reduced, as constraints do
not have to travel all the way through a composition whenever a single binding
is modified, and ii) it allows the bindings of an application to be made in any
sequence, with messaging overhead remaining the same regardless of the order.
In phase two, any downstream constraining component sends its constraints
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back directly to the constrained components. Looped component compositions
should generally not occur, but duplicate constrained parameter propagations
due to loops can easily be detected and filtered out.

The process of locking constraint propagation for the composition shown in
Figure 3.2a is shown in Figure 3.3a. When the first binding is made, Temp.
Sensor forwards its constrained parameter to the ◦C to ◦F component, which
caches it. Next, when the last binding is made, ◦C to ◦F forwards this constrained
parameter to Climate Control, which matches it with a lock constraint and sends
this constraint back directly. This mechanism would similarly work if the
components were bound together in the opposite order: when ◦C to ◦F and
Climate Control are bound together, the cache is still empty and nothing is
forwarded. Next, when Temp. Sensor is bound to ◦C to ◦F, its constrained
parameter is forwarded as far as possible, first passing by ◦C to ◦F where it is
cached, and next to Climate Control, which replies immediately with a constraint.

A synchronizing constraint must be propagated to all synchronized components
and thus the constraining components must store references to each synchronized
parameter and its associated component. Figure 3.3b illustrates how
synchronizing constraints are propagated when building the composition of
Figure 3.2b. When the first binding is made, Temp. Sensor forwards its
constrained parameter to Comfort Level, where it is matched with a synchronizing
constraint. As there are currently no other synchronized parameters, none are
sent back with the reply containing the synchronizing constraint. When CO
Sensor is bound, the same happens except this time a reference to sr_id on Temp.
Sensor is sent back with the synchronizing constraint to CO Sensor. Lastly, an
update with a reference to sr_id on CO Sensor is sent to Temp. Sensor.

3.4.3 Constraint enforcement

The constraint enforcement protocol ensures parameter constraints are
maintained during reparametrization. This is accomplished by checking the
constraints specified in the constraining component every time a parameter on
a constrained component is set.

This requires 3 steps: i) check all lock constraints on the parameter, and return
a Constraint not met error message if one is broken, ii) if no lock constraints are
broken, tentatively store the new value for the parameter (NPV ), iii) enforce
all synchronizing constraints by setting all synchronized parameters on remote
components to NPV. This recursively triggers the same 3 step constraint check
on the remote component. If any remote component returns a Constraint not
met error message, the local change is rolled back and the same error is returned.
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If all parametrizations succeed, set the local parameter to NPV and return a
Success message to the parametrizing entity.

3.5 Implementation and evaluation

A prototype was implemented on the LooCI [47] middleware, previously
discussed in-depth in Chapter 2. LooCI is a middleware for building distributed
component-based IoT applications. It complies with all of the requirements listed
in section 3.3. LooCI supports a number of platforms. Safe reparametrization
was implemented on the Contiki [30] based AVR Raven [6] port of LooCI. The
Raven mote offers a 16 MHz Atmel microcontroller, 16 KB of RAM and 128
KB of flash memory. All of the functionality necessary was implemented using
LooCI components, requiring no modifications to the middleware.

The performance of safe reparametrization was evaluated against the original
version of LooCI in terms of both middleware overhead and commands issued.
Performance was assessed in 3 specific scenarios inspired by the smart office
deployment introduced previously. The scenarios build on top of each other,
and Figure 3.4 shows the final complete distributed application composition.
In every scenario, functionality is added by deploying new components and
binding them to existing ones.

Light
Parameter:

Sample Rate (SR)

Averager
Parameter:

Avg. Interval (AI)

Light Control
Lock Constraint:

SR > 2 Sa/h

Temp
Parameter:

Sample Rate (SR)

Averager
Parameter:

Avg. Interval (AI)

CO
Parameter:

Sample Rate (SR)

Averager
Parameter:

Avg. Interval (AI)

Methane
Parameter:

Sample Rate (SR)

Averager
Parameter:

Avg. Interval (AI)

Temp Control
Lock Constraint:

SR > 2 Sa/h

Comfort Level
Constraint:

Sync. All SR
All AI = 2 Sa 

Air Quality
Lock Constraint:
All SR = 12 Sa/h

Figure 3.4: Evaluation scenario: parameter dependencies in a smart office
deployment.
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In scenario 1, an automatic light/climate control system is deployed over 2
nodes. A first node collects the light and temperature readings and averages
them. The controller components are deployed on a separate node and constrain
the sensor sampling rates. Scenario 2 expands upon the first scenario by
introducing a node which samples and averages CO and Methane readings. All
4 sensor readings are aggregated in a Comfort Level component deployed on a
separate node, which evaluates the level of comfort in an office. Comfort Level
imposes a synchronizing constraint on all sensors, together with a lock constraint
on the averaging window of all averager components. Scenario 3 adds the
Air Quality component, which uses the existing CO and Methane sensors. This
component imposes additional constraints on the sampling rate of the sensors.

3.5.1 Component size overhead

Component sizes in reconfigurable component models are significant because
they largely determine energy expenditure during deployment due to radio
usage, and as a result impact node lifetime [44]. Safe reparametrization requires
components to be annotated with meta-data. The storage of this meta-data
incurs overhead on the size of the deployable components. On average, scenario
1 incurs a component size overhead of 18.3 bytes, scenario 2 incurs an extra
18.4 bytes and scenario 3 incurs an extra 19 bytes. These increases in size are
insignificant when compared to an average unannotated component size of 790
bytes (worst case overhead of 2.4%).

3.5.2 Static middleware overhead

Without any components deployed, LooCI still needs space in both flash and
RAM memory in order to provide functionality. The additional components
required to implement safe reparametrization increase this static overhead. Both
flash and RAM usage are evaluated. Considering the 128 KB of flash and 16
KB of RAM available, the modified version uses respectively 5.3% (65130 bytes
vs. 58162 bytes) and 2% (9351 bytes vs. 9030 bytes) more of the total flash
and RAM than the original LooCI middleware. In conclusion, the overhead
imposed by the modifications is minimal.

3.5.3 Dynamic middleware overhead

The execution of components results in the dynamic allocation of RAM on
top of the base consumption discussed in the previous subsection. Figure 3.5
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Figure 3.5: Breakdown of average dynamic RAM overhead for each scenario.

shows a detailed breakdown of the average allocated memory per node. The
allocations can be split in three categories: memory used by component instance
bookkeeping, memory used for storing component bindings and dependency
and constraint caches. Note that scenario 2 and scenario 3 have a higher
average overhead then the first scenario. This is due to the introduction of
the synchronizing constraint in the second scenario, which requires more cache
space on each node. Taking into account the 16 KB RAM available, in the
worst case (scenario 2) this means on average 0.83% more RAM used on each
node (213 bytes vs. 76.3 bytes).

3.5.4 Network overhead

Network overhead is an important performance indicator for any distributed
software running on resource constrained IoT devices. Sending and receiving
messages over the network causes high energy consumption, and increased
network traffic directly impacts battery lifetime. The amount of messages
sent over the network when reparametrizing and binding is measured, and the
overhead with and without safe reparametrization is compared. When binding,
component dependencies are propagated, generating some message overhead.
In case of scenario 2 and scenario 3, only the messages sent when expanding
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the previous scenario are counted. For scenario 1, an increase from 6 to 12
messages is measured, scenario 2 increases from 10 to 62 messages and in
scenario 3 message overhead increases from 4 to 10.

It is clear that the modified version has more overhead due to the constraint
propagation protocol, which runs at bind time. This is most apparent in
scenario 2, where a non-trivial amount of network traffic is generated keeping
the synchronization caches consistent over all nodes. It is important to note
that binding is less frequent than reparametrization, where the constraint
enforcement protocol gives significant savings.

Table 3.1 gives an overview of the amount of messages sent when reparametrizing
either one of the sampling rate parameters of the sensors, or the interval of one
of the averagers. In the original version, the running component composition has
to be remotely inspected to ensure that all constraints are met. This generates
significant network usage. A worst case example is the reparametrization of
the sampling rate in scenario 3, where 33 extra messages have to be sent for
a full reparametrization. As a result, safe reparametrization is a significant
improvement.

Parameter Scenario 1 Scenario 2 Scenario 3
Without With Without With Without With

Sample rate 8 pkts 1 pkts 31 pkts 4 pkts 32 pkts 4 pkts
Avg. interval 4 pkts 1 pkts 6 pkts 1 pkts 6 pkts 1 pkts

Total gain 10 pkts 32 pkts 33 pkts

Table 3.1: Number of messages sent over the network during reparametrization.

3.5.5 Management overhead

The advantages of safe reparametrization are also most apparent when comparing
the amount of commands an actor has to issue and the associated network traffic
generated during reparametrization. Table 3.2 shows this data for each scenario
when reparametrizing the sampling rates and the averager intervals. Because
the original version has no automatic constraint enforcement, the actor has
to introspect the composition manually to ensure that all constraints are met
and that the reparametrization is composition-safe. In all cases this generates
significantly more commands and messages (on average 24 times more).
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Parameter Scenario 1 Scenario 2 Scenario 3
Without With Without With Without With

Sample rate 8 cmds 1 cmds 31 cmds 1 cmds 32 cmds 1 cmds
Avg. interval 4 cmds 1 cmds 6 cmds 1 cmds 6 cmds 1 cmds

Total gain 10 cmds 35 cmds 36 cmds

Table 3.2: Number of commands issued by the user during reparametrization.

3.6 Summary

This chapter presented the first technical contribution of this dissertation: Safe
reparametrization. Implicit configuration dependencies within distributed IoT
applications can cause inconsistent reconfiguration, resulting in down time and
faulty behaviour. This chapter first investigated this problem for component-
based systems through an experiment with experienced component developers.
Analysis showed that while bindings between component are explicitly typed and
cause no issues, implicit dependencies between the parameters of components
introduce complexity.

Safe reparametrization solves this problem by leveraging annotated components
to externalize implicit dependencies, which thereupon are enforced at runtime
by a specialized network protocol. By automatically resolving and enforcing
distributed parameter dependencies over a component composition, safe
reparametrization avoids configuration conflicts and greatly improves the
manageability of reflective component models. A prototype implementation
for a representative resource constrained hardware platform was evaluated
and showed that the overhead is acceptable, with minimal messaging over
the network and acceptable memory costs. Furthermore, when compared to
exhaustive introspection to ensure safe and correct reconfiguration, this approach
greatly lowers messaging and management costs.

While the methodology presented in this chapter shows promising results, it
is important to take a step back and reflect on how it can be enhanced to be
more versatile. A possible improvement is to provide systematic support for
more constraints besides the two proposed in this chapter. To accommodate
for this, the solution can be extended with facilities that allow developers to
define new types of constraints as well as how they should be enforced. When
moving towards more complex constraints or even higher-order constraints (i.e.
constraints on a set of constraints), the scalability of the in-network resolution
and enforcement of constraints can be improved through a layered resolution of
dependencies combined with a partial centralization of configuration data, a
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concept which is further explored in the next chapter.

This concludes the first contribution of this dissertation. The next two chapters
embody the second contribution of this thesis and aim to reduce the general
overhead and complexity of reflection by introducing two novel approaches:
Refraction and Tomography.



Chapter 4

Refraction: lowering the cost
of reflection in the IoT

This chapter introduces the concept of Refraction, a principled means to lower
the cost of managing reflective meta-data for the Internet of Things. The benefits
of reflective component-based middleware for building open and reconfigurable
applications, as argued in Chapter 2, are clear, but the cost of using remote
reflective operations remains high. Refractive components address this problem
by selectively augmenting application data flows with their reflective meta-data,
which travels at low cost to refractive pools, serving as loci of inspection and
control for distributed applications running in the network. Reconfiguration
is further simplified by reactive policies, providing a mechanism to trigger
reconfigurations based on incoming reflective meta-data.

The remainder of this chapter is structured as follows. Section 4.1 reviews
the problems present in state-of-the-art component models and provides a
high-level overview of how refraction solves them. Section 4.2 introduces a
real-world running example that showcases standard reflective operations and
their shortcomings. Section 4.3 outlines the principles of refraction. Section 4.4
applies these principles to realize a refractive component framework. Section 4.5
evaluates this framework in a real-world case-study scenario. Finally, Section 4.6
concludes.

45
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4.1 Introduction

Building applications for IoT systems is notoriously difficult. In addition to
the usual complexities of creating distributed applications, IoT systems are
resource constrained, require a high degree of flexibility and dynamism, and often
deployed at large scale and in inaccessible locations, such as flood plains [46]
and volcanoes [109]. This requires that all configuration and management must
be performed remotely.

Reflective component models [47, 18, 96] have a strong track record of realising
adaptable and evolvable applications for IoT systems. As discussed in detail
in Chapter 2, the advantages of such component models are numerous: the
complexity of embedded software development is mitigated by the reuse of
generic software components, customisable middleware [46] conserves system
resources through the removal of redundant software functionality, and finally,
reflection enables runtime reconfiguration and adaptation [39] after system
deployment. A per-component meta-model structures what configuration can
be read (i.e. introspection) and modified (i.e. reconfiguration), and bounds
reflective operations. While reflective component models help in building open
and reconfigurable distributed systems, reconfiguration can be complex. When
reconfiguring distributed applications it is frequently necessary to work in a
coordinated fashion with the meta-model of multiple distributed components.
This leads to increased development complexity and message passing overhead.

This chapter proposes refraction, a principled means to lower the cost of reflection
for IoT applications. Refraction minimises the need to inspect and reconfigure
individual components by incorporating an efficient meta-data distribution
mechanism in the component model kernel. Refractive components use this
mechanism to selectively augment the application data that they process with
elements of their own meta-model. When refractive components are bound
together they naturally form refractive streams along which component meta-
data can flow. These streams terminate at refractive pools, a network location
where all components that contributed to the stream can be inspected and
reconfigured. Reconfiguration is facilitated by the introduction of reactive
policies which can be deployed on any node in the reactive stream or pool.
These policies offer a mechanism to trigger reconfiguration based on incoming
meta-data. The benefits of refraction are evaluated in a real-world IoT case-
study: configuration monitoring and automated repair. The evaluation shows
that refraction significantly reduces message transmissions while not increasing
development overhead.
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4.2 Reflection and its shortcomings in IoT systems

Before delving deeper into the mechanisms of refraction, the problem is first
motivated with a running example that is used throughout this chapter. The
attentive reader may recognize this example from Chapter 2, where it was used
to introduce LooCI [47], a state-of-the-art reflective component model. This
chapter builds its ideas and proof-of-concept on top of LooCI, although they
are applicable to any contemporary reflective component model.

Figure 4.1 shows an example LooCI software composition, that is used in
a real-world IoT deployment to detect motion in a room. In this example,
two Motion Detector components —residing on N1 and N2—transmit sensor
data to a Motion Aggregator component on N3. Here the motion readings are
processed, aggregated and forwarded to a Motion Reporter component residing
on a resource rich back-end node N4. Motion Reporter exposes the data to a
web platform for storage and viewing. Gray boxes represent computational
platforms, where components are deployed and executed. Software components
are shown as white boxes with solid black lines, which publish values via their
provided interfaces ( ), and receive values from via their required interfaces
( ). Components also have key-value pairs of properties that can be used to
parametrize their behaviour.

The application is controlled by an external Manager entity, which issues
reflective operations to the component middleware running on each node in
order to introspect the software system, perform structural reconfiguration by
connecting or disconnecting required and provided interfaces and behavioural
reconfiguration by modifying component properties. The interaction between
the Manager and the reflective middleware is depicted with thicker blue arrows
in Figure 4.1. Examples of the reflective operations that can be used by the
Manager are shown in Listing 4.1.

Reflective
operations

Motion Detector
- sampleRate
- listenPin C₁

N₁

Motion Detector
- sampleRate
- listenPin C₁

N₂

N₃

Motion Agg.
- interval
- timeout C₁

N₄

Motion 
Reporter
- webservice C₁

Manager

Figure 4.1: Running example illustrating reflection.
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1 // introspection operations
2 N1.getProperties(C1)
3 N1.getProperty(C1,sampleRate)
4 N3.getWiresFrom(C1)
5 // reconfiguration operations
6 N3.setProperty(C1,timeout=30s)
7 N4.activateComponent(C1)
8 N3.wireTo(C1,N4,motionEvent)
9 N4.wireFrom(N3,C1,C1,motionEvent)

Listing 4.1: Reflective operations on the running example.

Considering the example shown in Figure 4.1, two shortcomings of reflection
quickly become evident. Firstly, reflection requires the transmission of many
messages to query and reconfigure remote components. This is very problematic,
as research [44] has shown that radio transmissions are the primary source of
energy consumption for IoT devices. Secondly, writing reflective code for
distributed management, as shown in Listing 4.1 is complex. These problems
could be mitigated by transmitting all meta-data to the managers, however, the
memory and network resources consumed by storing reflective meta-data must
also be minimised. This gives rise to three requirements that should be tackled
by refraction:

• Requirement 1: The number of messages that are required to perform
reflection should be minimised.

• Requirement 2: The subset of meta-information that is distributed
should be customisable.

• Requirement 3: Mechanisms are required to specify in-network
reconfiguration behaviour, that operates close to the point of action.

4.3 Refraction in principle

As described in Section 4.2, reflective software processes are empowered to
reflect upon and modify their implementation. Inspired by the power of this
metaphor, this chapter introduces the complementary metaphor of refraction.
In the same way that characteristics of a material can be inferred from the
light that traverses it, the characteristics of a refractive software component
can be inferred from application data that it processes. Refracted meta-data
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N₁

N₂

N₃ N₄

Manager

Reflective
operations
Refractive

pool

Motion 
Reporter
- webservice C₁

Motion Detector
- sampleRate
- listenPin C₁

Motion Detector
- sampleRate
- listenPin C₁

Motion Agg.
- interval
- timeout C₁

Non-critical
refraction

Critical
refraction

Figure 4.2: Replacing reflective with refractive operations on the running
example.

travels together with application data across the distributed component graph,
allowing the components that receive it to perform reflection at reduced cost.

Figure 4.2 shows how refraction distributes component meta-data across the
network. Each node is extended with a refraction engine, which keeps relevant
elements of the meta-model synchronised between nodes. A selected node,
in this case N4, collects all relevant meta-data and acts as a single-point
of introspection for the 3 upstream nodes. This node is referred to as a
refractive pool, surrounded by a blue dashed line in the figure. Two types of
refractive streams are offered: non-critical streams, shown in green and critical
streams, shown in red. Non-critical refractive streams transport meta-data in
an opportunistic way by augmenting application data, while critical refractive
streams transport important meta-data directly to the refractive pool. Critical
streams are offered as an alternative when the rate of application data is too low
or unpredictable and a minimum latency should be guaranteed. This extended
version of LooCI with refraction support is called RxCom.

RxCom provides mechanisms to selectively aggregate reflective meta-data
updates that describe component properties and bindings and transmit them
using either critical or non-critical refractive streams. Refractive policies provide
a mechanism to specify what meta-data should be refracted using which type
of refractive stream and where it should be stored. Reactive policies provide a
mechanism to trigger reconfigurations based on incoming refracted meta-data.
This new architecture minimises message passing through the use of aggregation,
while not increasing development overhead. The following subsections address
three key questions for RxCom:



50 REFRACTION: LOWERING THE COST OF REFLECTION IN THE IOT

What does the basic meta-model describe? The basic meta-model of a
software component allows for the introspection and reconfiguration of software
functionality, structure and behaviour. RxCom extends the basic LooCI
component model, which is described in Section 4.3.1.

How should the meta-model be refracted? To minimise memory footprint,
only a subset of the meta-model should be refracted. Yet it is not possible to
know a-priori which meta-data should be distributed to support introspection
and reconfiguration. Therefore, customisable refractive policies are introduced,
which determine which subset of the meta-data is distributed, and how it is
distributed. This is described in Section 4.3.2.

How to react to incoming refracted data? Reconfiguration behaviour is
frequently triggered by changing application context. To support this behaviour,
nodes are equipped with reactive policies specifying how to store, forward and
react to refracted meta-data. This is described in Section 4.3.3.

4.3.1 The refractive meta-model of RxCom

RxCom’s basic meta-model is based on the LooCI meta-model, which is shown
more formally in Figure 4.3. The meta-model defines the concepts of node,
component and binding, and determines what can be inspected and modified
using reflection. RxCom then extends this meta-model with refractive concepts.

Node ::= address× Comp∗ × Binding
::::::

∗

Comp ::= c-id× c-type× Property∗×
Interface∗ × Status

:::::

Property ::= p-name× p-val
::::

× p-type
Interface ::= required× e-type | provided× e-type

Status ::= active | inactive

Binding ::= Local | RemoteIn | RemoteOut
Local ::= e-type× c-id× c-id

RemoteOut ::= e-type× c-id× address
RemoteIn ::= e-type× address× c-id× c-id

Figure 4.3: Formal specification of the basic RxCom meta-model.
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1 // get components of type "Motion Detector" from N1
2 n1Compnts = N1.getComponents("Motion Detector")
3 // update components to sample every 120s
4 forall (n ∈ n1Compnts) {
5 N1.setProperty(n,sampleRate,120s)
6 }

Listing 4.2: Querying and modifying the basic meta-model with reflective
operations.

While the LooCI meta-model is used as a foundation, the refractive extensions
themselves are generic and can be added to any component model.

The following notation is used in the meta-model specifications: keywords
written in a Sans font are terms defined by the grammar; italic keywords denote
terms defined outside of the grammar, such as strings and numbers; underlined
keywords denote constant symbols; the star operator · ∗ · denotes a set of a
given attribute and the times operator · × · creates tuples of elements. All
elements of the meta-model can be introspected.

::::::::::::::
Wave-underlined keywords

denote parts of the meta-model that can also be reconfigured using reflection.

As shown in Figure 4.3, a node consists of an address, a set of components,
and a set of bindings. Each component has a local instance identifier c-id,
an identifying type c-type, a set of properties, a set of required and provided
interfaces, and a status indicating whether it is active or not. Each property
associates a name p-name to a value p-val of a given type p-type. A binding
connects one or more provided interfaces to required interfaces, and has a
type e-type corresponding to the type of the events sent and received by both
interfaces. This binding is said to be local when it connects two components
running on the same node, and remote if it connects a components hosted
on different nodes. Outgoing bindings specify the local component and the
address of the remote node, while incoming bindings specify the originating
node address, source component and the destination component.

The meta-model of a node can be queried by reflective operations, represented
using a simplified Java-like notation. The bold keywords in the code listings
denote operations over the meta-model. For example, given a node N , the
statement N.getProperties(C) retrieves the set of properties of the component
C deployed on N , and N.setProperty(C, property=value) modifies the value
of a property of a component C deployed on node N . Listing 4.2 shows more
advanced reflective operations, where a node is queried for a specific type of
components, after which the sample rate of those components is adjusted.
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4.3.2 Specifying refractive policies

A refractive policy determines what subset of the reflective meta-model is
refracted (i.e. transmitted with application data) and when. Refractive policies
are specified by RefPolicy in Figure 4.4, which extends the basic meta-model of
RxCom (Figure 4.3). A refractive policy consists of:

• SComp – specifies which component instance’s meta-model to refract

• SelectElem – identifies a collection of elements from the component’s
meta-model, such as the state, properties or bindings.

• Frequency – specifies when the selected meta-data elements should be
refracted. The options are: always, which appends the selected refracted
data to every outgoing component message, on-change, which appends the
selected refracted data only when it differs to the previously sent refracted
data, and never, which causes the meta-data of the selected element not
to be refracted.

• Target – specifies which mechanism should be used for transmitting the
meta-data. The options are: non-critical, which augments outgoing
events with meta-data, or address, which dispatches meta-data directly to
the refractive pool located at the node with the given address.

Refractive policies are set on a per node basis and do not change the underlying
component meta-model, rather they specify a systematic and customisable way

Node ::= address× Comp∗ × Binding
::::::

∗×RefPolicy
:::::::

∗

RefPolicy ::= SComp× SelectElem∗ × Frequency × Target

SComp ::= allComps | c-id | c-type

SelectElem ::= SProps | SBindings | SStatus
SProps ::= allProps | p-name | p-type
SStatus ::= status

SBindings ::= allBindings | localBindings
| inBindings | outBindings

Frequency ::= on-change | always | never

Target ::= non-critical | address

Figure 4.4: Extension of RxCom’s meta-model with refractive policies.
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1 // refract the properties of every component on N1
2 N1.refract(allComps,allProps,on-change,non-critical)
3 // continuously refract status of C1 on N3
4 N3.refract(C1,status,always,non-critical)
5 // critical refraction of C1 on N2 to node N4
6 N2.refract(C1,status,on-change,N4)

Listing 4.3: Updating a refractive policy on the running example.

to selectively distribute that model. The API for configuring refractive policies
is exemplified in Listing 4.3, which shows how it is applied to the running
example of Figure 4.2.

It should be noted that multiple policies can refer to the same element of the
component meta-model with different frequency values. For example, there can
be a general policy for allComps and a more specific one for a given component
ID. In this case, the most specific policy takes precedence.

4.3.3 Specifying reactive policies

A node in RxCom can react in four different ways upon receiving refracted
meta-data, it can: i) discard it; ii) forward it through a specific interface; iii)
store it to the local meta-data registry; or iv) trigger reconfigurations based
on the received meta-data update. The extension to the RxCom meta-model
to accommodate these changes is presented in Figure 4.5, and exemplified in
Listing 4.4.

Reactive policies can either be component marks or conditional reconfigurations.

Node ::= address× Comp∗ × Binding
::::::

∗×

RefPolicy
:::::::

∗×RctPolicy
:::::::

∗

RctPolicy ::= SComp×Mark
| Reconf

Mark ::= forward | store | discard

Reconf ::= guard× reconfiguration

Figure 4.5: Extension of RxCom’s meta-model with reactive policies.
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The former mark local components as being forward or store, and the latter
associate a triggering condition to reconfiguration instructions. Upon receiving
a remote message over the interface of a component C, RxCom searches for
refracted data aggregated to it. If refracted data is found, its mark is checked.
If C is marked as discard, it the data is thrown away, otherwise, it is processed
as follows:

1. If C is marked as forward then the refracted data is queued to be
aggregated to the next outgoing message from each provided interface of
C and of all local components that are connected to C.

2. If C is marked as store then the refracted data is added to a refraction
table, which is indexed by the component IDs and network addresses that
provided the refracted data. If the data overrides a previous entry, then
the old value is temporarily saved until the next step completes. All nodes
which store data become refractive pools.

3. Each reconfiguration R with a guard G that evaluates to true is executed.
G is a boolean expression over the local meta-model and the refraction
table, both before and after the store operations. R describes modifications
to the meta-model of local or remote components using the standard
reflection API.

The example in Listing 4.4 showcases how reactive policies apply to the
composition of the running example depicted in Figure 4.2. First, the Motion

1 // configure intermediate node N3 to unconditionally forward all
2 // upstream meta-data
3 N3.forward(allComps)
4 // configure N4 to act as a refractive pool for upstream components
5 // of type "Motion Detector"
6 N4.store("Motion Detector")
7 // add reactive policies to N4, actively monitoring and reconfiguring
8 // the "sampleRate" property of the "Motion Detector" components
9 N4.addReconfiguration("sync.pol")

10
11 // contents of the "sync.pol" file
12 if ( N1.C1(sampleRate) != N1.C1(sampleRate)’ ) {
13 N2.C1(sampleRate) = N1.C1(sampleRate);
14 }

Listing 4.4: Specification of reactive policies on the running example.
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1 // get components of type "Motion Detector" from all refracted nodes
2 // refracted into node N4
3 rxCompnts = N4.getRefComponents("Motion Detector")
4
5 // update component properties
6 forall (c ∈ rxCompnts) {
7 c.getNode().setProperty(c,sampleRate,120s)
8 }
9

10 // add policy to all nodes known by N4
11 forall (n ∈ N4.getRefNodes()) {
12 n.refract(allComps,allProps,on-change)
13 }

Listing 4.5: Example queries on the refractive pool of the running example.

Aggregator component on N3 is set to forward any refractive meta-data
downstream. Next, the Motion Reporter component on N4 is set to store
all upstream refractive data coming from Motion Detector components. A
reconfiguration is then added to N4, which sets the rate parameter of the Motion
Detector component on N1 to the Motion Detector component on N2 whenever it
is updated. The reconfiguration and its associated guard are written in a domain
specific language, which includes traditional arithmetic and logical operators.
This language supports reading and the modification of meta-data, and uses
the prime (’) as a suffix to represent the value prior to the store operations.

A refractive pool can be queried by a remote manager for the meta-model of
both the node itself as well as for the refracted meta-data from all upstream
nodes. Hence the API of nodes that are refractive pools is extended to satisfy
queries over a group of nodes, rather than over a single node. Examples of such
queries for the running example are listed in Listing 4.5.

4.4 Refraction in practice

The principles of refraction in RxCom are realised by extending LooCI [47]
with support for refractive policies and reactive policies. Chapter 2 gives an
in-depth description of the basic LooCI architecture upon which RxCom is built.
The rest of this section describes the extensions made to LooCI, visualized in
Figure 4.6 by red boxes.
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Figure 4.6: The LooCI architecture extended with RxCom modules (red boxes).

Components A component definition in RxCom preserves the same infor-
mation as a component in the original LooCI meta-model. However, the
refraction engine stores a mapping between refractive or reactive policies and
their associated components. The former maps components to a list of tuples
({e}, f, t) with the elements {e} being refracted, f the frequency of refraction
and t the target. The latter maps components to the flag forward or store.
References to refracted meta-data and to the reconfigurations that are triggered
by refracted data are maintained in separate tables. Reactive policies are
evaluated and executed whenever matching meta-data is received via refraction.

Architecture The architecture illustrated in Figure 4.6 includes two refractive
extensions: the Refraction Engine and Aggregator modules. These additional
modules are isolated from existing functionality and use hooks available in
LooCI to modify behaviour.
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Refraction Engine The Refraction Engine module maintains the refractive
policy table and the reactive reconfiguration policy table as described above,
which specify how data should be refracted and used in reconfiguration
respectively. The Refraction Engine module receives new policies and policy
modifications from manager nodes; receives updates to the refractive meta-model
from the Reconfiguration module; executes local reconfiguration instructions
when triggered by refracted data and exchanges meta-data either through non-
critical or critical refraction. Non-critical refractive meta-data is relayed to the
Aggregator module, while critical refractive meta-data is sent directly as a single
event over the distributed event bus.

Aggregator The Aggregator operates on the level of the distributed event
bus, intercepting incoming and outgoing application events, and is responsible
for aggregating and deaggregating the refracted data to and from the main
application traffic. It uses a queue of outgoing refracted data for each output
interfaces, to cache the data to be aggregated in the next outgoing message.

Manager The standard LooCI network manager is extended with refraction-
related calls. This extended API allows, for example, the querying of the
refraction tables (stored refracted data in the node), to update or add refraction
and reactive policies, as illustrated in Listings 4.4 and 4.5.

In addition to adding refraction-related calls, the manager was extended to
parse and recognize the reactive policies shown in Listing 4.4. These policies are
first parsed locally by the manager, and then serialized for transmission over
the network. The target node will deserialize the policy and enforce it when
relevant meta-data is received via a refractive stream.

4.5 Evaluation

The evaluation starts with an analysis of the performance overhead associated
with evaluating policies and aggregating meta-data. Next, a configuration repair
scenario is presented that showcases the benefits of using refraction to inspect
and reconfigure IoT applications. This scenario is based on a real-world IoT
application. In the original approach, application configuration is periodically
introspected and, when faults are discovered, repaired using remote reflective
operations. The case study compares the original reflection based approach to
a refraction based approach. These results are presented in Section 4.5.2.
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All the results presented in this section are benchmarked on an extended version
of the Java/OSGi port of LooCI. All tests were conducted on a standard
computer, with an Intel Core i5-2400 CPU and 8 GB of RAM. The OSGi
version of LooCI is targeted at more powerful back-end devices where refractive
pools will reside. For the performance and overhead analysis, this is appropriate
as nodes with refractive pools will be the most policy-heavy and have to deal
with massive deaggregation of meta-data. The rest of the evaluation is agnostic
to which platform is used for prototyping.

4.5.1 Performance and overhead analysis

Refraction introduces some performance overhead when sending and receiving
application data due to i) the aggregation of refractive meta-data with outgoing
application traffic and ii) the deaggregation of refractive meta-data from
incoming application traffic and the evaluation of reactive reconfiguration policies
pertaining to the new meta-data. Table 4.1 shows minimum, maximum and
average performance timings for all case study policies described in the following
two sections. The mechanisms that underlie refraction perform well in terms of
both the time required to aggregate reflective meta-data and to deaggregate it
and evaluate policies.

Operation Min. Max. Avg.

Data aggregation 0.29 ms 0.51 ms 0.36 ms
Deaggregation & Policy eval. 0.35 ms 0.48 ms 0.42 ms

Table 4.1: Performance overhead of aggregation and policy evaluation.

4.5.2 Configuration repair case-study

This case-study looks at a common problem with IoT systems [63]: repairing
faulty system configurations that arise due to faults, damage or power-loss. For
example, configuration elements can be lost due to memory corruption after
a node reboots. A classical solution to this is a monitoring service running
on a reliable back-end. The monitor periodically queries the nodes for their
configuration and checks if it matches with a desired state. If not, reconfiguration
is carried out.

Refraction offers a more efficient alternative. First refractive policies are used to
specify which configuration parameters from the meta-model should be refracted.
Next, a refractive pool is created on the reliable back-end. Finally, reactive
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Figure 4.7: Evaluation scenario: configuration repair in a real-world smart lab.

policies are installed on the back-end to check the current configuration against
the desired configuration, and where necessary carry out repair operations.

Scenario Both approaches are benchmarked by implementing a common
scenario, depicted in Figure 4.7, which is a subset of a real world smart lab
deployment in our research facility. More specifically, 3 services are offered by
this composition: i) a Motion detection service using data from 6 embedded
nodes equipped with motion sensors spread around the lab, ii) a Screen control
service, which allows users to either remotely or locally turn on or off screens
used for presentations, and iii) a Coffee control service, which authorizes access
to a coffee machine through RFID authorization.

N1 is a reliable always-on back-end, and runs components with more complex
functionality. Furthermore, this node is connected to a database for logging
purposes, and all back-end components have configurable webservice interfaces
to allow integration with a web platform. All other nodes in the network are
embedded nodes with volatile configuration parameters.

While it is possible with both approaches to monitor a subset of the configuration
parameters, this scenario considers a complete monitoring approach. The
configuration of 15 components spread over 10 nodes is monitored, amounting
to 71 configuration parameters that have to be consistent for this deployment
to correctly operate.
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Development effort A first point of comparison is the amount of development
effort spent implementing a purely reflective solution versus using one that
leverages refraction.

In the case of a reflective monitoring solution, introspection commands are
scripted in the back-end to query all the parameters of the component
composition spanning the network. When a specific parameter deviates from
the desired value, a reconfiguration command is sent to rectify the problem.
An example of reflective code used for monitoring is shown in Listing 4.6. In
this example, the parameters of one of the Motion Detector components are
monitored.

Listing 4.7 on the other hand shows the reactive policies that can be used when
using refraction to monitor the same configuration parameters. It can be seen
that the reactive policies closely match reflective operations from the point of
view of the developer. The primary difference is that the execution of reflective
code is statically scheduled, while reflective policies pertaining to a parameter
are automatically evaluated when an updated parameter value is available.

The general development effort is quantified in the form of LoC (Lines of Code)
for both approaches. When implementing configuration repair for Figure 4.7,
142 lines of reactive policies are required versus 146 lines of reflective code.

1 while(True) {
2 // Component has to be active
3 if(N5.getStatus(C1) == deactivated)
4 N5.activateComponent(C1)
5 // Guarantee a sampleRate >= 60
6 if(N5.getProperty(C1, sampleRate) < 60)
7 N5.setProperty(C1, sampleRate, 60)
8 // Motion detector is connected to pin 2 on C1
9 if(N5.getProperty(C1, listenPin) != 2)

10 N5.setProperty(C1, listenPin, 2)
11 // Wire motion events to aggregator on N4
12 if(N5.hasWireTo(C1, N4, motionEvent))
13 N5.wireTo(C1, N4, motionEvent)
14 ...
15 // Monitoring rate: hourly
16 sleep(1h);
17 }

Listing 4.6: Reflective code for monitoring the Motion Detector’s parameters
on N5.
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1 if(N5.C1.Status == deactivated)
2 N5.Status = activated
3
4 if(N5.C1(sampleRate) < 60)
5 N5.C1(sampleRate) = 60
6
7 if(N5.C1(listenPin) != 2)
8 N5.C1(listenPin) = 2
9

10 if(! hasWireTo(N5.C1,N4,motionEvent)
11 wireTo(N5.C1,N4,motionEvent)
12
13 ...

Listing 4.7: Refractive code for monitoring the Motion Detector’s
parameters on N5.

In conclusion, reflection imposes no development overhead when implementing
a configuration repair system. On the contrary, the absence of scheduling code
is expected to lead to development savings in more complex reconfiguration
scenarios.

Average latency A second point of comparison is the average latency of
configuration repair. This metric indicates how long it takes before a fault is
repaired. Figure 4.8 breaks this down for each component in the compositions
and every monitoring method.

As can be seen from Figure 4.8, repair latency based on non-critical refraction
varies for each component. This is caused by delays imposed by application data.
RFID Reader and Button Sensor are very ill-suited for non-critical refraction,
because their application data is sent unpredictably. Only when somebody
pushes the button or swipes an RFID card is application data generated. In
the data shown in Figure 4.8, it is assumed that on average every 30 minutes
an event is sent. However, in reality application events are unpredictable and
there are no hard guarantees in terms of average repair latency.

Both critical refraction and classic monitoring at two different rates give
the same average repair latency for every single parameter in the network.
When comparing all approaches, both critical and non-critical refraction clearly
give significant latency advantages when compared to classic monitoring with
reflective operations. When dealing with stochastic application data, critical
refraction performs best.
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Figure 4.8: Average latency of configuration repair for the evaluation scenario.

Network overhead Lastly, the amount of explicit network messages per hour
required for repairing one remote configuration fault in the same time span
is compared. Table 4.2 shows the results. A classic monitoring approach
almost always causes more explicit network traffic than either critical or non-
critical refraction when using reasonable checking intervals. Comparing nominal
scheduled monitoring checking configuration once per hour with non-critical
refraction shows a reduction of 85.7% in network traffic. This number is still
quite conservative, in reality scheduled monitoring can incur a higher overhead
due to configuration of a single node exceeding packet size. Furthermore, explicit
messaging overhead of monitoring will increase linearly with the scale of the
network, while critical and non-critical refraction will scale gracefully.

Method Overhead Relative reduction
Mon. 10m Mon. 1h Crit. refr.

Scheduled monitoring (10m) 37 msgs/h - - -
Scheduled monitoring (1h) 7 msgs/h 81.1% - -
Critical refraction 2 msgs/h 94.6% 72.2% -
Non-critical refraction 1 msg/h 97.3% 85.7% 50%

Table 4.2: Network-wide messages per hour for 1 repair in the evaluation
scenario.
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4.6 Summary

This chapter presented Refraction, a principled means to lower the cost
and complexity of reflection in IoT deployments, and introduced RxCom, a
component model that realises this concept. Refraction provides a concise
and low-overhead mechanism to manage reflective meta-data across distributed
IoT applications. Refraction provides the developer with: i) refractive policies
to control meta-data distribution, ii) reactive policies to automatically react
to updates of meta-data from remote neighbours and iii) runtime support
for efficient meta-data distribution through existing data flows and reactive
reconfiguration enactment.

Evaluation of RxCom shows that policy evaluation in refractive pools has low
overhead. Refraction was further evaluated through a configuration repair case-
study, where scheduled configuration monitoring was compared with a refractive
solution developed using RxCom. In comparison to monitoring purely through
reflection, the refractive solution developed using RxCom and drastically reduces
network traffic in all cases, and shows faster repair latencies for IoT applications
with steady data flows. For applications with intermittent traffic, a variant
called critical refraction that does not rely on existing network traffic shows
near-instant repair latencies with minimal extra messaging.

Refraction is part of the second contribution of this dissertation: reducing
the cost and complexity associated with reflection. Refraction minimizes the
overhead of introspection by efficiently distributing it to central locations.
While network messaging related to reconfiguration is not directly reduced,
refractive policies significantly lower complexity and management effort. Looking
ahead, the next chapter introduces a methodology that lowers the cost of both
introspection and reconfiguration without relying on existing application traffic,
thereby making it more useful in scenarios with low network activity.





Chapter 5

Tomography: efficient
regional reflection for the IoT

This chapter describes the concept of Tomography. As discussed in Chapter 2,
componentization of distributed IoT deployments offers numerous advantages
such as code-reuse and runtime reconfiguration, however, the introspection and
reconfiguration of distributed applications is cumbersome and inefficient. The
previous chapter introduced refraction, which lowers the cost of inspection by
augmenting application data with meta-data. Tomography further improves
on this by recognizing that components are often queried in groups, and
reduces overhead by reimagining the visitor design pattern from object-oriented
programming for distributed component based compositions. Tomography is
applied on a real-world application and the performance of this approach is
evaluated when discovering, introspecting and reconfiguring. In comparison to
classic management operations, tomography is shown to reduce both the number
of explicit queries and the volume of network messages. This significantly reduces
management effort and energy consumption.

Within this chapter, Section 5.1 introduces the problem, and outlines how
tomography tackles it. Section 5.2 introduces a running example which illustrates
the shortcomings of reflection when querying groups of components. Section 5.3
introduces the principles of tomography. Section 5.4 evaluates this framework
in a real-world case-study scenario. Section 5.5 concludes this chapter.

65



66 TOMOGRAPHY: EFFICIENT REGIONAL REFLECTION FOR THE IOT

5.1 Introduction

IoT applications are known to be hard to build and maintain. Typical IoT
applications are run on a large scale infrastructure of extremely resource
constrained embedded systems, demand high software flexibility and dynamism,
and are often deployed in hard to reach locations. Because of this, IoT systems
demand comprehensive support for remote management and reconfiguration.
As discussed in detail in Chapter 2, a promising solution for this is reflective
component-based middleware [47, 18, 96]. Components are small units of
functionality with clearly defined interfaces and parameters, which can be
independently deployed and managed remotely. Applications are built by
binding components together in a composition, minimizing developer effort
and maximizing reuse. These mechanisms allow for software evolution [44] and
adaptation [39] after deployment through reconfiguration.

Reflective component models introduce a per component meta-model, which is
causally connected to the implementation of the component. The meta-model
exposes elements of the component —such as interfaces and parameters that
influence component behaviour— that can either be introspected (querying of
meta-model) or reconfigured (modifying the meta-model). The introspection
and reconfiguration of the meta-model is an important tool to monitor and
enact change in a component composition. However, the distributed nature of
the meta-model implies a large message passing overhead and high management
complexity when introspecting or reconfiguring a component composition, which
can span many nodes. In the preceding chapter, refraction was introduced as a
means to reduce the costs of introspection. While this approach showed good
results, two shortcomings can be identified: i) refraction only works optimally
when application data is flowing, low data rates can cause stale meta-data, and
ii) reactive policies simplify reconfiguration but do not reduce runtime costs.
This chapter further improves on this and aims to have an efficient solution
even in those cases.

This chapter proposes the concept of tomography1, a new approach to efficiently
introspect and reconfigure component compositions. Tomography is inspired by
the visitor design pattern from object-oriented programming. The visitor pattern
is a structured way of performing an operation on an object hierarchy by having
a visiting object traverse the hierarchy [35]. Tomography applies this concept to
distributed component compositions, exploiting existing communication flows
for efficiency. Tomography is based on the notion of probes that can be injected
into a component composition, flowing along the same path (i.e. a set of
bindings) as the application data. While traversing the component composition,

1This contribution is aptly named after the tomography imaging technique, which builds
up a full image from sliced sections.
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the probe can either query or modify the meta-model of individual components
as it visits them. The added notion of a region of components in a composition
allows for more fine-grained targeting of queries.

The benefits of tomography are evaluated in the same real-world IoT case-study
used for refraction: a smart lab composed of 12 sensor nodes. The evaluation
shows that tomography greatly reduces the number of commands that developers
must issue and also the number of messages that are transmitted when compared
to classic reflection.

5.2 Reflection on regions of compositions

Reflective component models have been discussed in depth in Chapter 2, and
are intensively used throughout this dissertation. Tomography extends reflective
component models further by allowing cost-effective reflection on a region of
a component composition. This section introduces a running example, used
as a guideline when explaining the intricacies of tomography. This example
and the concepts introduced in this chapter are built on top of LooCI [47], a
reflective middleware for the IoT, although this approach can be applied to
other reflective component-based systems as well.

Figure 5.1 shows a component composition used in a real-world IoT smart
lab deployment. This example application authorises users to operate a coffee
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Figure 5.1: Running example illustrating reflection on regions of component
compositions.
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machine through an RFID tag. In the distributed component composition
shown, node N2 is equipped with RFID hardware, and is running an RFID
Reader software component. This component transmits swiped IDs to a remote
RFID Checker component residing on resource rich back-end node N1, which
authorises or denies access based on an access control list (ACL). Additionally,
access attempts are logged and viewable on a web platform. The coffee machine
is physically connected to node N3, where the Coffee Control component controls
its state. The Coffee Control component is connected to the back-end Coffee
Manager component, which exposes control over it on a web page. Lastly, RFID
Checker and Coffee Manager are bound in the back-end, so an authorised RFID
swipe enables the coffee machine. Deployed components have a node-local
identifier, denoted in Figure 5.1 with Ci.

Each component has a local meta-model that is causally connected to the
underlying implementation. Reflection allows the per-component meta-model
of components to be remotely introspected and reconfigured by an external
Manager entity. These interactions are visualised in Figure 5.1 by the thicker
blue arrows. The same reflective operation often has to be performed over
a group of connected components in an application. In the IoT application
shown in Figure 5.1, for example, three regions are distinguished that group
distributed components that are often queried together. Listing 5.1 highlights
reflective operations made to groups of components in the smart lab deployment:
collecting the properties of all components of a region, and deactivating the
components of another region.

This example exposes the two main shortcomings of reflection on regions of
component compositions. Firstly, remote reflection requires that many messages
are sent over the network in order to introspect or reconfigure sets of components.
In the context of IoT applications, these networks are typically extremely low
power and every packet sent imposes a large energy overhead [44]. Secondly,
the scope of a typical reflective operation is limited to a single component’s

1 // introspection: properties of RFID coffee control region
2 N2.getProperties(C1)
3 N1.getProperties(C1)
4 N1.getProperties(C2)
5 N3.getProperties(C1)
6 // reconfiguration: deactivate RFID check region
7 N2.deactivateComponent(C1)
8 N1.deactivateComponent(C1)

Listing 5.1: Reflective operations on the regions of the running example.
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meta-model. Due to this, the manager has too many responsibilities: keeping
track of every component in each region, and querying every component of a
region individually for every region-wide query. This becomes impractical with
large and dynamic regions, and does not scale well.

5.3 Tomography

Tomography is used to inspect or modify a region of a component-based
application, i.e. a set of connected components. This is achieved by a
generalisation of the visitor pattern for object-oriented programming. A probe
is broadcasted to a set of start components, which search for the desired region
by traversing the components using the dataflow order. It is also possible to
traverse the components in the opposite direction, called upstream tomography,
but the remainder of this chapter will use the direction of the dataflow.

This section begins by defining regions of IoT applications and explaining how
they are specified by a manager. Next, the queries that can be performed
to inspect and modify connectors are described, along with how they are
propagated throughout the network.

5.3.1 Regions of component compositions

Formally, a region is a set of connected components. It is specified by: i) a set
of start components, and ii) a (possibly empty) set of end components. Start
components mark the beginning of the region, which includes all components
traversed by following the dataflow direction until either an end component or
a component without outgoing interfaces.

The example in Figure 5.1 contains 3 different regions, represented by dashed
rectangles. The RFID Check region, for example, consists of the two components
on the left side, and it is specified by indicating that RFID Reader is a start
point and RFID Checker is an end point of this region. For both of the other
two regions in the figure it is enough to specify only the start point.

5.3.2 Specifying regions

The externalManager is responsible for specifying regions. It starts by identifying
the boundaries of a region (start and end components) and assigning a unique
ID to that region. It then sends a reconfiguration request to the nodes with the
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selected boundary components to mark them as start and/or end components
of the region with the assigned ID. Finally, the Manager stores the region ID
and the nodes where the start components are deployed. The region ID and
start nodes are sufficient for the Manager to inspect and reconfigure the full
region.

Marking boundaries of regions instead of marking components belonging to
regions has two main advantages: i) compactness, as less data is needed to
specify a region; and ii) flexibility, as it becomes easier to adapt regions to
newly added components or removed components without large changes to the
marking data.

There are no restrictions regarding the amount of regions that can be active
within a network, the amount of components they contain or whether or not
they overlap. Which components should ideally be grouped together in a
region depends on the maintainer of the distributed application, any group
of components that is frequently queried together will benefit from being
contained in a region. Ideal candidates are groups of components forming
a single distributed application, or a coherent subgroup thereof providing
supporting functionality that should be configured together.

5.3.3 Using tomography

The specification of regions allows the precise definition of scope for inspection
or modification of components. Listing 5.2 shows how to use tomography to
perform the same operations on the running example as previously shown in
Listing 5.1. The reduction in management complexity is clear: tomography
requires a single interaction per region, while classic reflection needs multiple
interactions per region.

Under the hood, tomography only sends commands to the nodes with start
components, in this case node N2. This process is illustrated in more detail in
Figure 5.2, which shows querying the RFID coffee control region in the running
example. The manager wraps the desired query in a probe that is sent to the

1 // introspection: get properties of RFID coffee control region
2 rfidCoffeeControl.getComponentProperties()
3 // reconfiguration: deactivate RFID check region
4 rfidCheck.deactivateComponents()

Listing 5.2: Using tomography on the regions of the running example.
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Figure 5.2: Querying the RFID coffee control region of the running example
using tomography.

start component RFID Reader. This probe initially contains only the query and
the return address of the manager, and is forwarded by each component in
the region until it reaches a dead-end, which is either a component explicitly
marked as end component, or a component without provided interfaces. At this
point the probe is sent back to the manager using the return address. While
traversing the composition, each component executes the query on its local
meta-model, and the results are appended to the probe. A more general case
with multiple start points and splits during traversal exists and is explained in
detail in the following subsections.

5.3.4 Probe propagation

This subsection provides more technical details on how the probes are propagated
in advanced component compositions. The probes have to be split when
traversing a component with multiple provided interfaces and when multiple
start points exist, and the probes must stop the traversal when reaching a
component already traversed by a probe with the same query (merge of probes).
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Splitting probes When a probe is split into n probes, its header is extended
with a new pair containing: i) the identifier of the component that created
the split (or Root if it was the manager), and ii) the number n of splits. A
concrete example is visualized in Figure 5.3, where probes get injected into 2 root
components, one of which gets split twice again as it traverses the composition.
Upon collection of the probes, the extra header describing where and how many
times the probe was split allows the manager to conclude if all probes have
been collected or if there is any split probe missing.
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Comp 5 Manager

Comp 2 Comp 2Comp 1

Comp 4Comp 3
Probe 1 Probe 2

Probe 1

Probe 2

Probe
injection
Probe
collection

Probe
forwarding Visited

component

Unvisited
component

Figure 5.4: Merging probes - marking components as visited.
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Merging probes Each probe also includes an unique transaction ID. During
the traversal of a composition, each component is marked as being visited by
that ID. Hence, if a visited component receives a probe with the same ID, it
will simply send it back to the manager without executing its query. Figure 5.4
illustrates this process. In Step 1 the manager sends split probes to the 2
entry points Comp 1 and Comp 2, who execute its query, are marked as visited,
and forward it to Comp3 and Comp4. In Step 2 the probes are propagated
further, and component Comp3 receives the same probe again from Comp4,
consequently returning the probe to the manager without any action.

5.4 Evaluation

Tomography is evaluated by comparing classic reflective operations with
tomography when inspecting and reconfiguring a region of components. The cost
of querying a region is measured by counting the number of messages sent over
the low-power network (Section 5.4.1), the cost of setting up a region is measured
by the number of messages sent to create a region (Section 5.4.2), and the cost of
managing a region is based on how easy it is for the manager to perform queries
and to maintain the required knowledge about regions (Section 5.4.3). These
measurements are applied to a real-world smart lab deployment in Section 5.4.4.

5.4.1 Querying a region

In general, the number of messages required to query a region defined by its
start and end points is smaller than when the manager contains a list of all
components. For example, the query illustrated in Figure 5.2 uses 4 messages
between nodes: a message from the manager to node N2, 2 messages between the
3 nodes, and a message from N3 to the manager. A purely reflective approach
where the manager queries all 3 nodes independently would use 8 messages: 4
to perform the query and 4 to collect the result.

This can be defined more precisely by analysing 3 regions with different topologies
in Figure 5.5: a chain of n components, a split of n components, and a merge
of n components. Without tomography, querying all components in all these
scenarios requires around n ∗ 2 messages ((n + 1) ∗ 2 for the split and merge
cases). Using tomography, the chain scenario reduces this number to n + 1
messages, the split scenario uses a similar number of messages ((n ∗ 2) + 1),
and the merge scenario increases this number to n ∗ 3 messages. Summarising,
the number of messages is reduced by half with chaining, is not affected with
splitting, and is increased by n with merging.
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Figure 5.5: The effect of component topology on tomography message overhead.

Chaining is more commonly found in IoT applications than splitting or merging.
Indeed, all the examples presented so far exchange a smaller number of messages
with tomography than without it. A larger deployment, described later in
Section 5.4.4, has a region that benefits from tomography only when using
upstream tomography, i.e., when traversing components in the opposite direction
of dataflow. Furthermore, simple optimisations can avoid the increased number
of messages in the merge case. For example, one could allow nodes to wait for
probes that could be merged, sending the combined probe to the rest of the
chain instead of replying to the manager. This would require extra annotations
to nodes and probes, increasing the complexity of modifying bindings within
regions without breaking the traversal process of regions.

5.4.2 Setting up a region

Setting up a region involves updating the nodes with information that describes
the region. For tomography this means marking start and end components of
a region by sending request over the low-power network to their deployment
nodes to mark them as such. This is a fixed cost that has to be paid before a
region can be queried. Without tomography, no components have to be marked
and the setup consists of storing a list of all the components of the region and
the nodes where they reside locally on the manager. In this case, there is no
overhead on the network.

With tomography, the number of messages required to setup a region highly
depend on the region itself. More specifically, it depends on its number of
boundary nodes. In the best case it is enough to mark a single component as
a start component to define a whole region; this is the case for 2 out of the 3
regions in the example in Figure 5.1, and for the chain and split scenarios in
Figure 5.5. In the worse case, all components have to be tagged as start and/or
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end components, producing as many messages as there are components in the
region.

5.4.3 Management overhead

The biggest advantage of tomography is that, after setting up the regions,
complexity from the point of view of the Manager is greatly reduced. This claim
is supported by 2 performance indicators: i) the complexity to query regions,
and ii) the amount of data stored by the manager.

Querying regions As illustrated in Listing 5.1 (example without tomography)
and Listing 5.2 (example with tomography), explicitly querying a region with
tomography requires less instructions than querying each component individually.
The exception for this scenario is when the manager only needs to query part
of a region—e.g., all RFID readers in the coffee application—, in which cases it
is more performant to query the desired components individually.

Recalling regions In order to query a region the manager must know how
to reach it. Using tomography, the manager needs to store information about
every node with a start component for each region. This means N regions times
ns node addresses with start components (in average) per region. Without
tomography, the manager needs to store information about every node and
component in each region. This means N regions times nc pairs of components
and node addresses (in average) per region. The size of this management
information is always strictly smaller with tomography, since it does not store
component information (only nodes), and only nodes with start components.

5.4.4 Smart lab case-study

This case-study looks at how tomography performs in comparison to classic
reflection in a real world case-study, using the 3 previously discussed metrics
as performance indicators. Both approaches are benchmarked by introspecting
and reconfiguring the component composition shown in Figure 5.6, which is
a subset of a smart lab deployment in our research facility. This component
composition was used before in Chapter 4 to evaluate refraction, and offers
3 services: i) a Motion detection service using data from 6 embedded nodes
equipped with motion sensors around the lab, ii) a Screen control service, which
allows either remote or local control of screens used for presentations, and
iii) a Coffee control service, which was used as a running example throughout
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Figure 5.6: Evaluation scenario: smart lab component composition with regions.

this chapter and authorises access to a coffee machine through RFID. The
component composition has 3 regions grouping the components each of the 3
applications are composed of, denoted by dashed lines in Figure 5.6.

Message overhead The number of messages used to introspect and reconfigure
regions in the 3 defined regions and the whole composition are presented in
Table 5.1. In most cases tomography requires less messages to be sent over
the low-power network when compared to classic reflection. The exception is
the Motion detect region, which is less efficient because of the 6-way merge,
following the discussion in Section 5.4.1. One way to avoid this problem is to
traverse the region upstream, which is listed as Motion Detect up in the table,
turning the merge into a split. This effectively makes the tomography approach
more efficient again. The automatic detection of the most efficient traversal
direction is a possible optimisation.

Setup A next point of comparison is the region set-up cost outlined in
Section 5.4.2. For tomography, only the start points need to be tagged at
setup time. Assuming upstream tomography for Motion detect, setting up
all regions in this scenario would cost 3 messages. In case Motion detect is
traversed downstream, the set-up cost is 8 messages due to the multiple start
points of that region.
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Region Tomography Reflection GainIntr. Recf. Intr. Recf.

RFID Coffee 4 3 8 4 42%
Motion Detect 19 13 16 8 -33%
Motion Detect up 14 8 16 8 9%
Screen Control 3 2 6 3 44%
All components 20 12 30 15 29%

Table 5.1: Message overhead when querying the regions of the smart lab.

Management overhead Lastly, the management overhead is evaluated. As
discussed in Section 5.4.3, tomography greatly simplifies the specification of
queries over groups of components. This is also the case in this case-study.
Where 15 queries are required when using standard per-component reflection
to query all components, tomography only requires 1 query.

Summarising, tomography imposes a minimal set-up cost and outperforms
classic reflective operations both in terms of message passing overhead and
management overhead.

5.5 Summary
This chapter introduced Tomography, an approach to lower the overhead of
reflection for component-based IoT applications. Tomography provides a way
to specify regions of connected components and to introspect and reconfigure
these using a distributed variant of the visitor design pattern. Tomography is
based on the notion of probes, which when injected into a region of components
flow along the bindings connecting them, collecting meta-data and enacting
reconfiguration in individual components as they are visited.

Tomography was evaluated using a real-world smart lab scenario, and has shown
promising results. When querying representative component compositions and
regions, tomography outperforms classic reflection both in terms of network
messaging and management overhead, while imposing only a minimal set-up
cost prior to use. As a result, tomography significantly reduces management
effort and energy consumption of reflection.

Together with refraction, tomography embodies the second contribution of this
dissertation, which aims to reduce the overhead and complexity of introspection
and reconfiguration for component-based middleware. The contributions
discussed up until this point all focus on enabling dynamism through effective
remote management. As the software on IoT devices grows more open and
dynamic, the need for securing them increases. The next chapter looks at a
cost-effective way to secure the IoT.





Chapter 6

Securing dynamic IoT
systems

This chapter presents the final contribution of this dissertation: the Security
MicroVisor, a software-based security architecture for constrained IoT devices.
SµV provides memory isolation through selective virtualization of machine
instructions and assembly-level code verification. This memory isolation is used
to safeguard the integrity of critical operations and secret key material while
concurrently running insecure user applications, providing a Trusted Computing
Base. SµV is used to implement two key security features: remote attestation
and secure deployment.

Within this chapter, Section 6.1 introduces the problem SµV tries to solve
and provides a general overview of the solution. Section 6.2 describes the
design rationale and key mechanisms of SµV. An overview of remote attestation
and secure deployment protocols is provided in Section 6.3 and Section 6.4
respectively. Implementation details are discussed in Section 6.5. Section 6.6
reports on the evaluation of SµV. Section 6.7 looks at applications beyond what
is discussed in this chapter, and finally, Section 6.8 concludes.

6.1 Introduction

Security is a vital element to the success of the Internet of Things. IoT is
becoming more predominant in everyday life, being applied at large scale in the
industry, at home and in the public domain. Millions of sensors and actuators
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connect critical industrial processes and our everyday lives to the internet. At
the same time, as discussed in previous chapters, the software on IoT devices is
evolving to become more complex and dynamic. While the added benefits are
clear, allowing dynamic reconfiguration and deployment of software can be a
security hazard. The omnipresence and quantity of IoT devices in the field in
combination with an increase in software dynamism makes IoT platforms an
interesting target for malware and hackers.

Malware is a critical and growing threat to the IoT. The StuxNet [54] worm was
the first high-profile example. StuxNet damaged an Iranian uranium enrichment
facility by spoofing rotation sensor data from an enriching centrifuge, causing
a motor actuator to increase its speed until the centrifuges it controlled were
destroyed. More recently, the Mirai malware used IoT devices to create a botnet
that mounted a massive scale Denial of Service (DoS) attack, which peaked at
over 1 Terabit per second (Tbps) [103].

Despite the clear danger, the vast majority of deployed IoT products provide
little or no protection against malware and even basic features such as memory
protection, are typically not available on resource constrained IoT devices.
Ronen et al. recently showcased these weaknesses through the creation of a
rapidly spreading worm for the Philips Hue smart light bulbs [84].

There are a range of well-known security techniques that could be used to address
the problem of IoT malware, such as secure software deployment [97] and remote
attestation [31, 13], where the state of a device can be remotely attested at all
times and any tampering can be detected. However, the application of these
techniques is complicated by the limited security features of contemporary IoT
microcontrollers, and typically require costly hardware add-ons or a complete
platform redesign. The lack of memory protection is particularly problematic,
as it allows malware full access to all device resources.

This chapter addresses the problem of IoT malware by introducing the concept of
a Security MicroVisor, which uses selective software virtualization and assembly-
level code verification to isolate a software-based Trusted Computing Base
(TCB) from untrusted application software. SµV works with all standard
microcontrollers that support global interrupt disabling, are single threaded and
have sufficient flash to support the preinstalled SµV module. These features
are offered by all microcontrollers used in contemporary IoT products.

The software-based TCB created by SµV provides the isolation required for
secure software deployment and remote attestation. This chapter showcases
how these secure operations leverage the memory isolation that SµV provides
to run on unmodified resource constrained IoT devices.
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6.2 Design of SµV, the Security MicroVisor

This section provides an overview of the software mechanisms that SµV uses to
provide memory isolation, remote attestation and secure deployment.

The design of SµV shares similarities with the Software-based Fault Isolation
(SFI) approach proposed by Wahbe et al. [105]. SFI prevents faults in untrusted
software modules from corrupting other software on processors with a single
shared address space and no memory protection. For each software module,
SFI reserves a logically separate portion of the application’s address space.
The isolation of module address spaces is maintained at runtime by rewriting
unsafe instructions to verify target addresses. SµV also uses selective software
virtualization and assembly-level code verification to ensure full isolation of the
trusted software module (SµV) from untrusted application software.

Attacker model The adversary is assumed to have full access to the network,
but cannot physically tamper with the IoT device. The attacker can
communicate with the IoT device over the network or prevent legitimate
communication from occurring. In other words, SµV only guarantees that
secure operations like remote attestation occur securely, it cannot prevent an
attacker from blocking the attestation process or otherwise rendering the IoT
device unavailable. Furthermore, the trusted SµV is assumed to be bug and
exploit free and is pre-deployed on the device by a trusted party.

6.2.1 The platform requirements of SµV

The vast majority of IoT devices are based on off-the-shelf Micro Controller Units
(MCUs), that are optimized for low cost and low power operation. Hardware
security features and Memory Protection Units (MPUs) are uncommon on these
devices and millions of IoT devices are already deployed without these features.
This essentially means that a piece of software running on such a device can
execute arbitrary instructions and read or modify both data and instruction
memory.

SµV is a pure software solution which allows additional security features to be
added to conventional microcontrollers. SµV will be used to provide MPU-like
memory protection and support for remote attestation and secure deployment.
These basic MCUs are found in the majority of low-end IoT devices on the
market, and have the following characteristics:
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1. No memory protection: The MCU is not required to provide any form
of memory protection. Nor is it required that the MCU provides ROM
memory. The MCU must, at a minimum provide sufficient flash memory
to store the SµV MicroVisor (under 4 KB for typical MCU architectures).

2. Single thread of execution: The MCU should only support a single
thread of execution. This is to guarantee atomic execution of critical code
without preemption by other threads. This is typical for conventional
microcontrollers.

3. Interrupts: The MCU must support the disabling of global interrupts
to ensure the atomic execution of code without preemption by interrupt
handlers. This feature is offered by all major families of MCUs.

6.2.2 Architecture of SµV

SµV reserves part of the memory for a Trusted Computing Base (TCB) called
the MicroVisor. This software is installed prior to the deployment of the IoT
device using a physical programming device (e.g. SPI or JTAG). The MicroVisor
code is considered immutable and resides in virtual ROM memory, which is
enforced by the MicroVisor itself. The remainder of the device memory, from
now on referred to as Application Memory, is available to untrusted applications.
Application memory is further subdivided into Instruction Memory, which
applications can execute but not read or write to and Data Memory. This is
visualised in Figure 6.1.

The trusted MicroVisor code is subject to no restrictions. Untrusted applications
on the other hand are strongly restricted in the following ways:

1. Control transfer: branch and jump operations can only address the
application instruction memory or the select entry points of the MicroVisor
instruction memory which expose virtual operations. This allows for
controlled interaction with the MicroVisor.

2. Data memory access: read and write operations can only address
application data memory or Memory Mapped IO (MMIO) locations.

3. Instruction memory access: read and write operations can not address
the application instruction memory or the MicroVisor memory.

4. Deployment of new applications can only occur through the MicroVisor.
This property is enforced by preventing applications by the previous
restriction that disallows an application to write in its own instruction
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Figure 6.1: Standard (left) and SµV (right) memory map. In the standard case,
memory is monolithic and operations are unrestricted. SµV splits application
memory into instruction and data memory and restricts sensitive operations.

memory, only the MicroVisor is allowed to do so. As a result, all new
applications pass through the MicroVisor during loading.

Restrictions on application code are enforced at the instruction level through
two basic mechanisms: i) incoming applications are verified by the MicroVisor
at load-time to ensure that they adhere to the rules listed above, and ii)
certain inherently unsafe instructions which are nonetheless essential for normal
operation are replaced by safe virtualized instructions.

Verifier and loader

As described above, application deployment can only occur through the
MicroVisor, which subjects the application code to assembly-level verification
at load time on the embedded IoT device. Only safe instructions are allowed,
i.e. instructions that do not violate the above memory restrictions. Two types
of illegal instructions can be distinguished: i) instructions that statically jump
to or access restricted memory, and ii) instructions that jump to or access any
memory dynamically and cannot be checked statically.

Most control transfer instructions, such as program-counter relative branches
and calls, have their target address encoded in the instruction and can be checked
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1 app_function:
2 ...
3 // Load pointer register r30 with address 0xF512
4 load r30, 0xF512
5 // Calls the function r30 is pointing to
6 icall
7 ...
8 ret

Listing 6.1: Unsafe indirect call through pointer register. The icall
instruction is inherently unsafe and will be rejected by SµV during
verification.

statically by the verifier at load time. Store operations to static variables also
use an immediate addressing mode and can be checked by the verifier. Any
instruction of this type that has an illegal memory address as static argument
is detected and this results in the application being rejected by the verifier,
canceling its deployment.

Applications that contain instructions which cannot be statically checked are
rejected outright. Instructions using indirect addressing belong to this category,
such as jumps and stores that use a pointer register to hold their target address.
These are common when using pointer logic or arrays in C. An example of such
an illegal instruction is shown in Listing 6.1, where a function is called through a
pointer register. As supporting these operations is essential to normal operation
of any processor, they must be replaced prior to deployment with calls to
secure virtualized instructions provided in the MicroVisor that perform runtime
checking of their arguments. SµV offers toolchain support that transparently
replaces these operations for the developer.

Secure virtual instructions

The MicroVisor offers replacements for all unsafe dynamic instructions, which
can be accessed via a call to a subroutine in the MicroVisor. These virtual
instructions check their arguments and will perform the matching operation,
only where it does not break memory access or control transfer rules. Following
the execution of the virtual instruction, the MicroVisor returns control to the
application. Any operation which attempts to access an illegal memory addresses
is trapped and causes the microcontroller to reset. Using this approach, the
security features of the MCU are enhanced, without sacrificing functionality.
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1 app_function:
2 ...
3 // Load pointer register r30 with address 0xF512
4 load r30, 0xF512
5 // Call suv_safe_icall residing in SuV, checking
6 // the contents of r30 before jumping
7 call suv_safe_icall
8 ...
9 ret

Listing 6.2: Safe indirect call with at runtime checking of the dynamic
argument by a subroutine in SµV.

1 suv_safe_icall:
2 // Clear global interrupt flag
3 cli
4 // Check validity of target address in r30
5 comp r30, 0xF000
6 branch_gt icall_failure
7 icall_success:
8 // Success, re-set global interrupt flag and jump to target
9 sei

10 ijmp
11 icall_failure
12 // In case of failure, soft reset the MCU
13 jmp 0x0000

Listing 6.3: Example virtualized indirect call subroutine in SµV. In this
case targets above 0xF000 are refused.

Listing 6.2 shows how the unsafe indirect call instruction from the running
example is replaced by a safe virtualized alternative in the form of a subroutine
call to the SµV which is known to be safe and is therefore not rejected by the
verifier. Listing 6.3 shows an example implementation for the secure virtualized
indirect call operation residing in the SµV. The virtualized alternative will first
disable global interrupts to ensure atomic verification of the target address. This
is essential, as the adversary could schedule an interrupt in order to interfere
with the outcome of the check. The check in this example deliberately trivial:
any address under 0xF000 is considered a valid target. Next, if the target
address is valid, global interrupts are re-enabled and a jump to the target is
carried out.
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6.2.3 SµV toolchain modifications

SµV provides a modified toolchain which allows the application developer
to write software for the SµV architecture transparently and with the same
ease-of-use as the underlying MCU architecture.

In a standard toolchain, application code passes through multiple tools: first
the compiler produces human readable assembly files. These are processed by
the assembler resulting in binary object files. Lastly, the linker combines all
object files together with relevant libraries in a single binary image that can be
deployed on the microcontroller.

The changes required to this pipeline for SµV are minimal, and are visualized in
Figure 6.2. Firstly, between the compiler and assembler stages, a post-processor
is added which substitutes all unsafe dynamic instructions with calls to their
secure virtualized equivalents. Since this is performed when the application is
in text ASM form rather than binary, simple regular expressions will suffice and
no custom tools are required. Secondly, in the linker stage the addresses of the
functions residing in the SµV are injected in the form of a symbol table. The
SµV is preinstalled on the microcontroller, and the application must be linked
against these functions at their given addresses.

It should be noted that all libraries must be recompiled with the previously
mentioned substitutions carried out. Failing to do so will create an image
where unsafe instructions appearing in library functions. These functions will
be rejected by the load-time SµV verifier.

IoT device

Source 
files

Verifier Loader

Developer toolchain

Compiler Instrumenter Assembler Linker Image 
builder

Binary 
OTA 

image Execution of 
ApplicationOver-the-air

transmission

Figure 6.2: The modified toolchain for SµV contains two extra components:
an Instrumenter in the developer toolchain, and a Verifier running on the IoT
device.
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Additionally, the security properties of SµV are maintained even when an
adversary uses their own tool-chain or writes hand-crafted assembly because the
load-time verification of applications occurs in the MicroVisor on the embedded
device itself.

6.3 Remote attestation

Remote attestation is described as a protocol that allows a Challenger to check
the internal state of an untrusted Prover remotely over the network. The purpose
of this protocol is to allow an uncompromised Prover to create a token that
proves to the Challenger that it is indeed uncompromised and in an expected
internal state. Conversely, if the Prover is compromised, the token should reflect
this. A more formal definition is given by Francillon et al. [34]:

Definition of remote attestation A protocol P is comprised of the following
components:

• Setup(1κ): A probabilistic algorithm that, given a security parameter 1κ,
outputs a long-term key k. This key is shared between both parties, and
is preinstalled on the Prover during commissioning.

• Attest(k, n, s): A deterministic algorithm used by the Prover that, given
a pre-shared key k, a nonce n (provided by the Challenger) and internal
state s, outputs an attestation token α.

• Verify(k, n, s, α): A deterministic algorithm used by the Challenger that,
given a pre-shared key k, a nonce n, an internal state s, and an attestation
token α, outputs 1 iff α reflects state s in the Prover (i.e. Attest(k, n, s) =
α), and outputs 0 otherwise.

These components are used in the protocol P between Challenger and Prover
as follows: i) both Prover and Challenger possess a pre-shared long-term key
k generated by Setup(1κ) prior to deployment, ii) Challenger requests proof of
the state of Prover and generates a nonce n, iii) Prover runs Attest(k, n, s) with
s its current state, returning the resulting attestation token α to Challenger,
iv) Challenger runs Verify(k, n, s, α), with s the expected state. The output of
Verify proves state s of Prover.

Applying SµV to support secure remote attestation Francillon et al. [34]
further analyze protocol P and its security characteristics, and define a list of
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minimal properties that are required to support remote attestation, for which
they argue that specialized hardware is necessary. To prove that SµV can
provide equivalent support in software, each property is listed below with an
explanation on how MicroVisor accomplishes it.

1. Invocation from Start: The Attest routine should only be invoked from
its first instruction. This is accomplished by placing it in the SµV ROM
and allowing it to be called from the application when attestation is
required. As with all other routines residing in the SµV, only a call to
the entry point is allowed, forcing Attest to be run from the very first
instruction.

2. Exclusive access to secret k: The secret k should only be accessible
by the trusted remote attestation code. This is achieved by placing it in
the SµV ROM alongside the attestation code. The untrusted application
cannot read from this memory area.

3. Uninterruptibility: Even on a single threaded platform, the untrusted
application can regain control after invoking Attest using interrupts (e.g.
a timer expiring). This can cause unintended side effects such as the
leaking of k and false positives. All major microcontroller families allow
global interrupts to be temporarily turned off. This functionality is used
to ensure atomic execution of Attest.

4. Immutability: The Attest code cannot be modified by untrusted code
before invocation. This is guaranteed by placing the code in the SµV
virtual ROM and executing it in-place. Untrusted application code is not
allowed to modify this memory area.

5. No leaks: Under no circumstance should invoking Attest leak the secret k
or any by-products except for the final return value α. This is guaranteed
by above properties and additionally implementing the Attest routine in a
way that erases these sensitive values from memory before returning.

From a practical point of view, Attest and Verify depend on computing a Message
Authentication Code (MAC) of the state to be attested. The contents of flash,
RAM memory, registers and any other volatile or non volatile memory can be
considered state. When the Prover receives a request from the Challenger to
attest a region of memory containing state s with nonce n, Attest is called to
compute the MAC α of (s||n) using pre-shared key k. The nonce n should be
used only once and is essential to avoid replay attacks. The computed token α
is sent back to the Challenger, where Verify computes the MAC of (s||n) once
again, this time with s the expected state of the segment of memory. If the
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computed MAC matches token α, the Prover has the expected state. If the
MAC differs, the Prover’s memory is compromised and necessary measures
should be taken such as performing secure erasure.

6.4 Secure deployment

Due to changing application requirements and emerging security threats, the
remote updating of deployed IoT devices is a necessity. While remote updates
offer flexibility, they also increase attack surface as attackers can misuse this
mechanism to install unsanctioned software remotely.

Secure deployment refers to the process of setting up new software on a device,
without compromising the security of the device. Texas Instruments [97]
identified four security threats that can affect the software deployment process:
i) firmware alteration, ii) firmware reverse engineering, iii) loading unauthorized
firmware, and iv) loading authorized firmware onto unauthorized devices.
Accordingly, three security attributes are specified that must be fulfilled in
order to secure the deployment process and overcome these threats: i) data
confidentiality, ii) authenticity, and iii) integrity.

The solution presented in this work, defines an initial version of secure
deployment that does not provide protection against firmware reverse engineering
and consequently does not fulfill the confidentiality requirement. Since SµV
targets resource constrained IoT devices, the overhead of encrypting the
deployment process is high. As such, confidentiality should be added as an extra
feature depending on the sensitivity of the application domain (e.g. military),
and the primary focus is to avoid tampering through the software update
mechanism. Confidential software deployment can be one direction of future
work. This initial version of secure deployment allows an Updater to verify that
a software image received over the network is uncompromised and issued by an
authorized Issuer. More formally, secure deployment is defined as follows:

Definition of secure deployment A protocol Q is comprised of the following
components:

• Setup(1κ): A probabilistic algorithm that, given a security parameter 1κ,
outputs a long-term key k. This key is shared between both parties, and
is preinstalled on the Updater during commissioning.

• Sign(k, i): A deterministic algorithm used by the Issuer that, given a
pre-shared key k and an image i, outputs a token β.
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• Verify(k, i, β): A deterministic algorithm used by the Updater that, given
a pre-shared key k, an image i, and a token β, outputs 1 iff β reflects
image i in the Issuer (i.e. Sign(k, i) = β), and outputs 0 otherwise.

These components are used in the protocol Q between Issuer and Updater in
this manner: i) both Issuer and Updater possess a pre-shared long-term key k
generated by Setup(1κ) prior to deployment, ii) Issuer issues an updated image i,
and generates token β using Sign(k,i), iii) Updater receives image i and token β,
and runs Verify(k, i, β). The output of Verify determines if Updater will install
the software update or not.

Applying SµV to support secure deployment The minimal set of properties
required to run Verify on the Updater uncompromised and without leaking
the secret k, coincides with the properties discussed previously in section 6.3,
namely: invocation from start, exclusive access to secret k, uninterruptibility,
immutability and no leaks. As argued above, SµV can guarantee these properties
without any specialized hardware support.

Sign and Verify rely once again on calculating a MAC of the entire update
image and its meta-data (i). The Issuer uses Sign to compute the MAC (β)
of the image using a pre-shared key (k). The complete image along with β is
transmitted to the Updater, where Verify computes the MAC once more using
k. If this newly computed MAC does not match β, the image or its meta-data
has been tampered with in transit (integrity), or the Issuer did not posses the
correct key k (authenticity).

In addition to verifying the above security attributes, the instructions in the
target binary image should not violate SµV rules discussed in section 6.2. This
is ensured by the SµV verifier.

6.5 Implementation

A prototype of SµV has been implemented for the MicroPnP IoT platform [111],
which offers an IEEE 802.15.4e [107] radio and an 8-bit AVR ATmega 1284p [7]
microcontroller running at 10 MHz, with 16 KB of SRAM and 128 KB of flash.
The AVR ATmega family of microcontrollers have a long track record of being
used in IoT platforms, including the Zigduino [59], the AVR Raven [6] and
Berkeley Mica Mote [42]. The previous section discussed the design and general
operation of SµV. Figure 6.3 shows an overview of how SµV is implemented
on the AVR architecture, which necessitated several adjustments as outlined
below.
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Figure 6.3: SµV memory map for modified Harvard architectures. Data memory
is left unprotected, as code can not be executed from there. The SµV is placed
in the bootloader segment at the end of the instruction memory, otherwise the
Loader/Verifier can not write to instruction memory when loading code.

6.5.1 Modified Harvard architecture

Section 6.2 assumed microcontrollers with the generic von Neumann architecture,
where flash, RAM and any MMIO peripherals are mapped on to a single address
space. The AVR family of microcontrollers use a modified Harvard architecture,
where instruction and data memory are physically separate. In the case of
the AVR, this means that the flash memory holding the instructions and the
volatile RAM containing the data have an isolated address space. In a strict
Harvard architecture, the instruction memory cannot be read from or written
to, and instructions cannot be executed from data memory. However, the AVR
uses a modified Harvard architecture, which relaxes this restriction by offering
special instructions to read and modify instruction memory. This allows self
programming and storage of data constants in flash.

Implications for SµV Due to the modified Harvard architecture of the AVR,
the approach can be simplified to only protect instruction memory, while data
memory operations remain unmodified and unrestricted. In order for this to
work, SµV data is placed alongside SµV code in instruction memory, which
is permitted by the modified Harvard architecture. The application is not
allowed to read the SµV code or data from the instruction memory, and is only
permitted to jump to itself or select SµV entry points. These restrictions on the
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instruction memory, in addition to the fact that data memory is not executable
are sufficient to offer the same security guarantees previously mentioned. The
techniques used to restrict these instructions are identical to those used on
a von Neumann architecture. Leaving the data memory unprotected has the
additional advantage that operations dealing with data memory do not incur
any runtime overhead due to SµV. Figure 6.3 shows the general memory map
of both instruction and data memory, together with the class of operations that
are allowed by application code. If code contains disallowed operations, it is
rejected by either load-time verification or runtime virtualized operations.

6.5.2 Bootloader

Instruction memory in the AVR is further subdivided into an application and
a bootloader section. Code residing in the bootloader section has special
privileges over application code. The application can only read from instruction
memory, while the bootloader code can read and write instruction memory.
Any self-programming code has to be located in the bootloader. The size of the
bootloader section is configurable before deployment of the IoT device using a
physical programmer, but can not be modified at runtime.

Implications for SµV The Loader/Verifier component of SµV requires write
privileges to instruction memory. Therefore the natural place of the SµV Trusted
Computing Base is in the bootloader section of the instruction memory. The
application is loaded in the application section, and as a result has no write
privileges. This is convenient, as this does not need to be enforced through
virtualized instructions. The read behaviour of the application still needs to be
monitored, however, applications should not be able to read SµV instructions
or data from the bootloader section. Figure 6.3 shows the placement of the SµV
core in flash memory.

6.5.3 Initialization of data memory

At boot time, the volatile data memory is empty. In order to comply with
the C standard, variables with an initializer should have their value assigned
before any code execution. In order to do this, the instruction memory will
hold all initial data memory values in addition to the application instructions.
Immediately before the application executes, bootstrapping code will copy the
initial values from instruction memory to data memory.
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Implications for SµV Special care should be taken that no jumps from the
application code to the initial data stored in instruction memory are made. The
data stored in instruction memory can include illegal instructions that could
be misused by an adversary to attack SµV. As the compiler always places the
initial data in instruction memory straight after the application’s instructions,
only the address of the last valid instruction should be transmitted as extra
meta-data at load time. Any jump after that address is either invalid or a
bootloader entry point. This is also visualized in Figure 6.3.

6.5.4 Two word instructions

The AVR has a variable length instruction set. A standard AVR instruction is
2 bytes (1 word) long. As a result, the program counter and all jumps can only
point to even bytes in the flash. Some instructions however require 2 words,
with the 2nd word being a target address in either data or instruction memory.

Implications for SµV There is a possibility that the 2nd word of an two word
instruction unintentionally forms an unsafe normal length instruction. While
these unsafe 2nd words appear inside the application’s instructions, they should
not be jumped to. This is accomplished by maintaining a list of unsafe 2nd words,
which is enforced by both the load-time verification for static branches and
jumps, and by the run-time virtualized instructions for dynamic jumps. While
it is possible for SµV to generate a list locally on the node when the application
is updated, an extra step is added to the tool-chain to pre-generate this list at
compile-time. The list is added to the meta-data shipped within the application
image, and is checked by the SµV for validity at load-time. Applications with
an incomplete list of unsafe 2nd words are rejected. Pre-generating the list
reduces the overhead of loading and verifying a new application and moves it
from the device to the machine generating the application image.

6.5.5 Remote attestation and secure deployment

As discussed previously, remote attestation and secure deployment require the
computation of a Message Authentication Code (MAC) over either state or
an update image. In this implementation, a highly optimized HMAC-SHA1
implementation in AVR assembly is used to optimize performance and reduce
space required in the SµV ROM. HMAC-SHA1 returns a 160 bit keyed hash,
and the pre-shared cryptographic key is also 160 bits long.
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The selection of HMAC-SHA1 deserves extra clarification after the recent
publication of SHAttered, a first real-world SHA1 collision resulting from joint
work of Google and CWI Amsterdam [38]. Theoretical attacks on SHA1 have
been known since 2005, but SHAttered is the first practical attack on the hashing
algorithm. While SHA1 is no longer collision free, HMAC is significantly less
sensitive to collisions of the underlying hash algorithm. Until today, HMAC-
SHA1 is still secure and not breakable. Another prime example of HMAC’s
added resistance to collisions is HMAC-MD5. MD5 has known flaws since 1996,
but HMAC-MD5 is still collision free today. Taking this in consideration, this
work has no strong dependency on HMAC-SHA1 specifically and can easily
switch to other hashing algorithms like HMAC-SHA265 in the future, albeit
with a slight decrease in performance.

HMAC relies on a pre-shared key. While a solution with public-key crypto
using digital signatures can give better security guarantees and facilitate key
management, overhead in computation time and binary code size has proven to
make this approach unfeasible for the low-power devices SµV targets.

On the AVR platform, state can be stored in flash, SRAM, CPU registers and
EEPROM. While remote attestation can be used on any of these memory types,
this implementation specifically focuses on attesting the flash memory. The
reasons for this are twofold: i) flash is the only memory from where code can be
executed on a Harvard architecture, and as a result poses the biggest security
risk when compromised, and ii) the flash memory on the ATmega 1284p is the
largest and slowest memory, and thus provides a good benchmark for worst-case
performance.

6.6 Evaluation

SµV is evaluated by implementing reference applications and measuring the
overhead imposed by the Security MicroVisor as well as the remote attestation
and secure deployment techniques that are implemented on top of it. More
specifically, 3 key performance indicators are used: i) development overhead, ii)
application deployment overhead, and iii) runtime overhead: execution time,
battery life, and memory footprint. For every performance metric, the overhead
imposed by SµV itself is first considered, before analyzing overhead created by
secure deployment or remote attestation.

Four reference applications were selected to benchmark performance: i) a
cryptographic application which encrypts and decrypts a random 8 byte cleartext
with a 128-bit key, using a software implementation of the lightweight SPECK
block cipher [9], ii) the same crypto application, but implemented in a modular
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fashion by introducing indirect calls through pointers, iii) sampling temperature
readings from a SHT25 Sensirion sensor over the I2C bus, and lastly iv) writing
and reading a block of 256 bytes to the built-in EEPROM. These reference
applications provide a good balance between the more computationally intensive
and the more IO intensive tasks that are typical for an IoT device. The pointer
version of cryptographic application is included to provide the worst case
overhead for SµV.

6.6.1 Development overhead

From the application developer’s point of view, no development overhead will
be perceived after the installation of the SµV toolchain. The modified toolchain
will transparently replace unsafe instructions with secure virtual alternatives,
link to the pre-installed Security MicroVisor and generate a binary image with
the correct meta-data. Any security features embedded in the SµV (i.e. remote
attestation and secure deployment) will be available transparently.

The time required to port SµV to a different architecture can also be considered
development overhead. As of now, SµV is implemented and evaluated solely on
AVR microcontrollers. The implementation of SµV took about 120 man-hours.
This includes the software running on the microcontroller itself as well as all
additions to the toolchain. The time to port to a different architecture is likely
to depend upon its inherent characteristics. For example, the variable length of
the AVR instruction set causes more overhead than a fixed length instruction set
due to the extra bookkeeping mechanisms required. Furthermore, architectures
similar to AVR can borrow parts of this initial version of SµV, reducing porting
overhead.

6.6.2 Deployment overhead

The deployment of an application to a wireless IoT device occurs in two phases.
First, the binary image of the application is wirelessly transferred as a stream
of packets. Secondly, the device will go offline to load, and in the case of SµV,
verify the image. During wireless transmission of the application image, the size
of the binary image is of critical importance for energy consumption and network
overhead. During application loading, the time required to load and verify the
image determines the total down-time of the wireless device. Secure deployment
incurs an additional overhead on top of the basic deployment overhead of SµV.
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Over-the-air binary image size Previous research has shown that for battery
powered, low-energy wireless devices, remote software updates have a significant
impact on battery life [44]. This is not surprising, as sending and receiving
data over the radio is typically the most energy consuming activity for any
wireless device. The size of the application image is linearly correlated to the
total energy spent during the software update, as it determines the time spent
actively receiving data over the radio.

For this benchmark, the size of the image for a microcontroller without SµV is
compared with the size of an image of the same application for a microcontroller
with SµV. Table 6.1 shows the results for each of the reference applications
previously introduced. The size overhead for the SµV-enabled images is relatively
small and averages at 1.61%. This overhead is caused by two different effects:
i) on the AVR, unsafe single word instructions are replaced with a 2 word long
instruction that calls a safe virtualized version residing in the MicroVisor, and
ii) the SµV-enabled image carries a small amount of extra meta-data, such as a
list of unsafe 2nd words and the address of the last valid application instruction.
Secure deployment adds 20 bytes additional meta-data to the image in the
form of an HMAC-SHA1 digest, and raises the average overhead to 3.58%. The
overhead specific to each application is listed in Table 6.1 as well.

Application Without With SµV + Secure
SµV SµV Deployment

Crypto 1414 B 1428 B (+0.99%) 1448 B (+2.40%)
Crypto ptr 1438 B 1458 B (+1.39%) 1478 B (+2.78%)
Sense temp 1012 B 1034 B (+2.17%) 1054 B (+4.15%)
Storage R/W 640 B 652 B (+1.88%) 672 B (+5.00%)

Avg overhead 1.61% 3.58%

Table 6.1: Overhead of SµV on over-the-air binary image sizes.

Loading and verification time During the transmission of the binary image
over the wireless network, the device will remain online and operational,
executing the existing application. Once the application is transmitted, the
device will go offline for the duration of the verification and installation of
the new application. It is important that this time is minimized in order to
maximize device up-time. For a microcontroller without SµV, verification is a
simple routine that checks if all parts were transmitted, and in case of unreliable
network communication all chunks will be check-summed to rule out a corrupted
image. On a SµV-enabled microcontroller, verification additionally includes a
static check of all instructions of the application, and a validity check of the
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meta-data transmitted with the image (i.e. the address of last valid instruction
and a list of unsafe 2nd words).

Secure deployment adds additional overhead caused by the calculation of a
HMAC-SHA1 keyed hash of the entire image and its meta-data, which is
compared to the digest included with the transmitted application image. This
further increases the load time of the image.

Table 6.2 shows local verification and load times for all reference applications,
both with and without the Security MicroVisor. Additionally, the load overhead
of secure deployment with SµV is shown. The relative overhead introduced by
the extra verification of SµV for the test applications averages at 4.16%, which
is minimal. When adding secure deployment, the relative overhead rises to
80.42% due to the computationally intensive calculation of the HMAC-SHA1.

Application Without With SµV + Secure
SµV SµV Deployment

Crypto 128.2 ms 133.8 ms (+4.3%) 231.2 ms (+80.3%)
Crypto ptr 128.6 ms 134.3 ms (+4.4%) 231.7 ms (+80.2%)
Sense temp 91.8 ms 96.0 ms (+4.6%) 171.0 ms (+86.2%)
Storage R/W 73.5 ms 75.9 ms (+3.3%) 128.6 ms (+75.0%)

Avg overhead 4.16% 80.42%

Table 6.2: Overhead of SµV on node-local load times.

While the local verification and load time overhead of secure deployment is high,
end-to-end deployment overhead including the transmission of the image over a
low energy duty cycled network is significantly lower due to the time required to
transmit the application image over the wireless network. To quantify the effect
of network throughput on remote software updates, a simulation was run on the
IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) [107] network used by
MicroPnP. In TSCH-based networks, time is divided into time slots long enough
for a packet to be transmitted. These time slots avoid packet collisions and are
assigned to links between devices. Bandwidth is configurable by assigning more
or less time slots to a link.

Figure 6.4 shows the total end-to-end deployment time and the overhead
imposed by secure deployment through a standard1TSCH network with various
bandwidth assignments. Overhead is typically smaller than 2.5%, except for
the Crypto pointer application, where overhead is closer to 8% due to an extra
packet transmission.

110 ms slot length, 90 bytes MTU, 101 slots/slotframe
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Figure 6.4: End-to-end secure deployment overhead for different bandwidth
allocations in a TSCH network.

6.6.3 Runtime overhead

Finally, the runtime overhead in terms of execution time, RAM overhead and
flash is evaluated.

Execution time Execution time is directly correlated with the battery life of
low power microcontrollers. Typically, after the application is done with its
tasks, the microcontroller is put into a sleep mode to minimize current draw.
The execution time of the application determines how much time is spent in
the high current active state.

Once again the execution times of all reference applications with and without
SµV are compared, with the results shown in Table 6.3. On average, the relative
execution time overhead amounts to 2.67%. However, there is a difference
between the more computationally intensive tasks (i.e. Crypto), and the more
IO intensive tasks (i.e. temperature sensing and storage read/write). The
IO intensive tasks spend a relatively large amount of time busy waiting for
operations to complete, while the computationally intensive tasks are continually
executing instructions. Due to this, the relative overhead for computational
tasks is higher than for IO intensive tasks.
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Application Without With Relative
SµV SµV overhead

Crypto 3.9460 ms 4.1695 ms 5.66%
Crypto ptr 3.9469 ms 4.1706 ms 5.67%
Sense temp 65.9048 ms 65.9364 ms 0.05%
Storage Write 859.6278 ms 859.6897 ms 0.01%
Storage Read 0.4382 ms 0.4468 ms 1.96%

Avg overhead 2.67%

Table 6.3: Overhead of SµV on the execution times of the sample applications.

As previously argued, the execution time of tasks is directly correlated with
energy consumption. Longer execution times cause the microcontroller to remain
in a higher power state for a longer amount of time, draining the batteries faster.
The MicroPnP platform on which the benchmarks are conducted consumes
3.54 mA when executing a task and 54.5 µA when idle. Every MicroPnP device
is powered by a standard 3000 mAh battery pack. Based upon these values,
an estimation of the device battery lifetime is plotted for each task relative to
the rate at which it is scheduled. Note that the network is a constant in this
benchmark as no data is transmitted and only the energy consumed by the
node-local code execution is considered.

Figure 6.5 shows the impact of SµV for the worst-case CPU intensive Crypto
pointer application, and the more IO intensive Sense temperature application.
The baseline battery lifetime if the application is sleeping constantly is 6.5
years. In general, the Sense temperature application has worse battery life
and produces a more S-shaped curve. This is due to the busy waiting that is
associated with IO intensive tasks, keeping the microcontroller in an active state
for a longer time. When comparing identical applications with and without SµV,
a marginal overhead (<1%) is measured for the CPU intensive Crypto pointer
application at high scheduling rates, which disappears when the application is
only scheduled once every 10 seconds. For the IO intensive Sense temperature
application, SµV overhead is imperceivable on the graph whether the application
is scheduled every 100ms or every 100s. In most real world IoT applications,
long IO intensive tasks will dominate over brief CPU intensive tasks, making
any measurable reduction of battery life caused by SµV unlikely.

Remote attestation causes additional active CPU time, and as a result an
increase in energy consumption. Remote attestation execution times depend
on the amount of flash memory attested. Attesting the entire 128 KB of flash
memory takes 7.6 seconds, attesting just the untrusted application (62 KB)
takes 3.7 seconds. The impact on battery life largely depends on the frequency
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Figure 6.5: Graph showing estimated battery life for a computationally intensive
application (Crypto) and an IO intensive application (Sense temperature),
relative to the period at which they perform their tasks (X-axis). Different
curves represent battery life without and with SµV, and of increasing rates of
remote attestation.
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of remote attestation. Figure 6.5 shows the battery lifetime of our reference
applications when remotely attested at rates ranging from once every minute to
once every hour. For both applications, an attestation rate of once every hour
incurs a worst-case reduction in battery lifetime of 6.2%. The effect of a higher
attestation rate is less prominent for applications with a higher sampling rate,
where the energy consumption of the primary task overshadows attestation
energy consumption.

RAM memory SµV incurs no static RAM overhead as all constants are stored
in flash. The stack is used for short term data storage when calling any
subroutine in the SµV (i.e. any virtual instruction, remote attestation or
secure deployment). In order for these subroutines to properly function, the
application can not use all available stack space. For correct basic operation
of the microcontroller, a minimum amount of 13 bytes of free stack space is
required at all time for the virtual instructions. Remote attestation and secure
deployment inherently need more stack space to temporary store full pages
of flash and maintain intermediate states of the cryptographic functions, and
require 511 bytes and 807 bytes respectively. This is a compromise where
memory usage is traded for speed. Loading pages in smaller chunks is possible,
but more time consuming.

Flash memory When evaluating deployment overhead, the extra size of the
application to be installed in flash is measured. Additionally, less total space
will be available in flash due to space reserved for the preinstalled SµV.

The reduction of available space is shown in Table 6.4. The total space occupied
by the SµV can be broken down in its components. The SµV core contains
everything required to ensure memory isolation: the verifier, the loader, secure
virtualized operations and any required data constants, and amounts to 1070
bytes or a marginal 0.82% of the total flash memory available. The Remote
attestation and Secure deployment anti-malware modules contained in the SµV
consume an additional 242 bytes and 462 bytes, respectively. Lastly, the crypto
library containing the HMAC-SHA1 algorithm used by both remote attestation
and secure deployment uses 1296 bytes of flash. Total flash used amounts to
3070 bytes or 2.34% of the total 128 KB flash available on the platform.

As explained previously, on the AVR architecture the SµV has to be installed in a
special bootloader section of flash memory. The bootloader’s size is configurable.
The Security MicroVisor comfortably fits in the 3rd smallest size of 4096 bytes,
occupying 74.95% of bootloader space.
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Component Size % of flash
(128 KB)

SµV core 1070 B 0.82%
HMAC-SHA1 1296 B 0.99%
Remote attestation 242 B 0.18%
Secure deployment 462 B 0.35%

Total 3070 B 2.34%

Table 6.4: Flash memory utilization

6.7 Discussion

The techniques embodied by SµV can be used to implement a wide range of
security features on conventional microcontrollers. This section first discusses
the role of SµV in the development of an IoT platform and then highlight high
priority security features that can be realized using the SµV approach.

6.7.1 Promoting the adoption of MicroVisors

The security techniques contributed by this dissertation demand simple and
reliable toolchain support across a range of processor architectures to facilitate
the use of SµV by third parties. Applying SµV should be as simple for the
developer as modifying the compile target and flashing a Trusted Computing
Base (TCB) to their IoT device.

Looking beyond the current implementation, SµV is built in a way that promotes
third-party researchers developing new MicroVisors which offer novel security
properties that go beyond the features provided by SµV today. To foster this
activity, the SµV core implementation is subdivided into a generic and reusable
set of libraries and tools for building new forms of MicroVisor (i.e. a MicroVisor
development kit).

Systematic support for the formal verification of MicroVisor properties provides
vital assurance of security properties. In this regard, formal verification tools
such as VeriFast [50] hold great potential. A current working point is applying
this approach to verify the security properties of the SµV TCB, and also including
this in a MicroVisor development kit to ensure that third-party extensions are
also secure.
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6.7.2 SµV and component-based middleware

This chapter introduced the Security MicroVisor as a generic technique for
enhancing the security features offered by conventional microcontrollers. The
MicroVisor technique was showcased by demonstrating that it is capable of
providing the properties that are required to support remote attestation and
secure deployment. However, the MicroVisor can also be used to support a
wide range of security features.

Consider for example, protected module architectures such as SANCUS [72],
which provide support for modular and extensible remote attestation of
individual software modules. Each SANCUS module securely maintains its local
state, while securely interacting with trusted software modules. In its current
form, SANCUS achieves these features using a minimal hardware extension
to conventional microcontroller architectures. It is also possible however, to
use the MicroVisor to implement SANCUS in pure software. The memory and
performance overhead of implementing SANCUS using a Security MicroVisor
should be reasonable, though higher than remote attestation due to: i) the
increased complexity of checking multiple regions of memory with different
access rights and ii) the necessity of storing per-module key material.

As discussed in Chapter 2, modularization of software with component-based
middleware is indispensable for remote management of large IoT deployments
during their full lifecycle. During the lifetime of a device, software components
can be added, removed, reconfigured and bound together. The primary drawback
of adding this kind of flexibility to constrained IoT devices without any memory
protection, paging or privileged/protected execution modes is that they become
more susceptible to both malware and buggy components. Any component can
access and modify the memory other components or the underlying middleware
and operating system.

By combining a pure-software version of the SANCUS protected module
architecture with component-based middleware, the inherent risks of memory
corruption and security that go along with a component-based middleware are
reduced. Every component will be sand-boxed from other components and
critical system memory. The realisation of a pure-software secure component-
based middleware requires the techniques laid out in this chapter.
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6.8 Summary

This chapter introduced the final contribution of this thesis: SµV, the Security
MicroVisor. As IoT systems become more open and dynamic, securing them
becomes a primary concern. SµV tackles the problem of a lack of hardware
memory isolation that is common to most resource constrained IoT devices.
SµV isolates a trusted software module from untrusted application software, and
uses it to contribute the first pure software approach to remote attestation and
secure software deployment. The SµV approach rests on three pillars: i) selective
software virtualization of the microcontroller architecture, ii) deployment-time
verification of incoming code at the assembly level and iii) toolchain modifications
which allow developers to transparently compile their software for the virtual
SµV architecture.

SµV is compatible with all standard IoT microcontrollers that are single threaded
and support the disabling of interrupts and, crucially, as SµV does not require
additional hardware security features, the approach can be applied to improve
the security of millions of IoT devices that are already in the field in a cost-
effective way.

The overhead of SµV is reasonable. Evaluation on the ATmega 1284p shows a
modest increase in the size of deployable code at 3.58%. The execution time of
application code also increases minimally at 2.67%, and has little effect (<1%)
on battery life. Code verification overhead during software updates is likewise
feasible for embedded IoT devices, adding an average local overhead of just
4.16%. Secure deployment adds additional verification overhead, but end-to-end
impact on over-the-air software load times including network transmissions is
acceptable at 8%. SµV-based remote attestation was shown to be feasible when
scheduled hourly, with a maximum reduction in battery life of 6.2%.

SµV has useful applications beyond remote attestation and secure deployment.
Combining the techniques outlined in this chapter can extend a component-based
middleware with component-level isolation, heightening security and lowering
the risk of down-time due to software faults in badly written components.



Chapter 7

Conclusion

This last chapter concludes the dissertation. Section 7.1, first reviews the
contributions in light of the problem statement. Section 7.2 reflects on how
concepts from this dissertation interact with past and present work within the
research group, and how parts have made their way into an industrial product.
Lastly, Section 7.3 situates the presented work in the big picture and looks
ahead into the future of the Internet of Things.

7.1 Contributions in review

The research presented in this thesis focuses on bringing dynamism and security
to large-scale IoT infrastructures. As the IoT achieves widespread adoption, the
technology is continuously being applied in larger and more dynamic scenarios.
To increase return on investment, deployments such as smart cities and Industry
4.0 factories are often required to last up to 10 years on a single battery and
run multiple applications with changing requirements throughout their lifetime.
Another effect of the increasing presence of IoT technology in our daily lives
and within crucial industrial processes, is the growing importance of security.

Contemporary programming abstractions and reconfiguration approaches offer
some support for increasing levels of dynamism, but are impractical to use on a
large scale due to management complexity and network overhead. Solutions
aiming to secure IoT devices require in-depth hardware modifications, which
is expensive to implement on the millions of devices currently in the field.
The contributions presented in this dissertation improve on the state-of-the-art
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by: i) detecting and avoiding inconsistent configuration of distributed IoT
applications, ii) reducing the runtime cost and complexity of inspecting and
modifying decentralized configuration, and iii) creating a software-only security
architecture for representative IoT devices. Special care was taken to maximize
the impact of these solutions, while at the same time taking into account the
resource constraints of IoT devices.

Chapter 2 presented an in-depth study of state-of-the-art solutions that promote
dynamism and security in the IoT. More specifically, programming abstractions,
runtime reconfiguration approaches and security through trusted computing were
surveyed. LooCI was presented as a case-study of a reflective component model,
demonstrating both the merits and shortcomings of component-based software
development and reconfiguration. The chapter concluded with a gap analysis of
the presented solutions. This analysis revealed that, while the reported solutions
are an important step towards a dynamic and secure IoT, they do not provide
cost effective and appropriate support for managing distributed applications
and securing existing IoT deployments.

Chapter 3 focused on managing misconfiguration in distributed IoT applications.
The problem of incompatible decentralized configuration and the mechanisms
behind it were first studied in a real-world experiment. To counteract this issue,
Safe reparametrization was proposed as an extension to reflective component
models. Safe reparametrization offers a descriptive language to component
developers for expressing implicit configuration dependencies, and uses a network
protocol to resolve and enforce these dependencies over a component composition,
thereby reducing complexity and avoiding downtime or malfunctions. The
runtime overhead of safe reparametrization was shown to be acceptable, while
management effort is significantly reduced when compared to exhaustive
methods of ensuring safe and correct reparametrization.

Chapter 4 introduced Refraction, a solution that significantly lowers the cost
and complexity of introspecting and reconfiguring reflective component models
in two key ways. Firstly, existing streams of application data are selectively
augmented with meta-data, traveling to centralized refractive pools. Refractive
pools maintain a partial copy of the state of distributed applications running
in the network and allow for low-cost introspection. Reconfiguration is further
simplified through reactive policies, which when deployed to a refractive pool
automatically trigger reconfiguration based on incoming meta-data. A research
prototype, RxCom, was implemented and shows that policy evaluation creates no
significant performance hit. Further evaluation through a case-study indicates a
great reduction of network and development overhead when comparing reflection
with refraction.

Chapter 5 presented Tomography, which takes the idea of cost-effective reflection



FUTURE RESEARCH AND INDUSTRIALISATION 107

further by recognizing that oftentimes components are queried or reconfigured
in groups. Tomography improves upon regular reflection by reimagining the
visitor design pattern from object-oriented programming: a probe packet is fired
into a distributed component composition, collecting meta-data and enacting
change as it visits components. Tomography was validated using a real-world
scenario, showing significantly reduced network and management overhead when
maintaining applications built from distributed components.

Chapter 6 focused on securing dynamic IoT systems and introduced the
Security MicroVisor (SµV), a software-only trusted computing base for resource
constrained IoT devices, the first one of its kind. SµV partially virtualizes
the microcontroller’s instructions, effectively providing memory isolation.
Subsequently, this memory isolation is used to safeguard the integrity of critical
operations and secret key material while concurrently running insecure user
applications. While securing resource constrained devices in such a way does
cause runtime overhead, evaluation has shown that for typical usage patterns
of IoT applications it is minimal.

Together, these contributions provide a middleware that is fit for purpose
in a dynamic and safe Internet of Things. While these contributions were
not evaluated concurrently, it is important to consider the effect they will
have when used in tandem. The complexity and network overhead of remote
management will be significantly reduced by Safe reparametrization, Refraction
and Tomography. These solutions do require a setup cost involving additional
network traffic, but as shown in their individual evaluations, the benefits far
outweigh the costs and, in general less network traffic will be generated. This
effect will be further amplified as distributed applications grow in scale. Other
costs associated with system resources like processing speed (SµV), flash, RAM
and the size of over-the-air deployable software components are acceptable when
added up, and have a minimal impact relative to the total resources available
on representative hardware platforms.

7.2 Future research and industrialisation

This section looks at how the concepts discussed in this dissertation relate to
past and present work, either in the context of research or as as an integral part
of an industrial product.

Research The ideas developed within the first two contributions of this
dissertation closely integrate and build on past research conducted in my
research group, DistriNet. More specifically, the Networked Embedded Systems
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(NES) taskforce has a long track record of research promoting software dynamism
and flexibility for IoT applications. While the presented concepts are applicable
to any existing component model, the LooCI component-based middleware, as
initially presented in Chapter 2, was used for prototype implementations and
evaluation throughout this thesis. LooCI was initially developed by colleagues
Nelson Matthys [64], Wouter Horré [43] and Klaas Thoelen [98], but was quickly
adopted by the entire taskforce. In a later phase, I became the lead developer
and maintainer of the embedded variant of LooCI, and contributed back to the
middleware I previously used as a foundation for my research. Any extensions
made to LooCI within the context of this thesis were realized as modular add-
ons, which future researchers can use or extend if they are valuable for their
work.

The last contribution, the Security MicroVisor, was built from the ground
up, but has given rise to an interesting new line of research within our group.
SµV provides an architecture upon which secure functionality can be built, not
only for the IoT, but also for automotive applications, as colleague Mahmoud
Ammar [3] is currently doing in his research. Furthermore, with the help from
prof. Bart Jacobs and his team, efforts to formally verify core functionality
within SµV are showing promising results, and provide a way to formally prove
the security properties that SµV provides.

Industry During the final years of my PhD trajectory, I had the opportunity to
collaborate with my colleagues on the industrialisation of MicroPnP [111, 27, 65],
which incorporates many ideas discussed in this dissertation to create a truly
flexible industrial IoT platform. MicroPnP takes the idea of software dynamism
and extrapolates it to include hardware in the form of pluggable peripherals.
When a peripheral is added or removed, driver components are dynamically
loaded, configured and the peripheral is made accessible using standard protocols
such as CoAP [91].

MicroPnP was submitted to the IPSO (IP for Smart Objects) challenge in 2015.
The IPSO Challenge is a global competition that focuses on innovation and
entrepreneurship, inviting submissions from both academia and industry. After
pitching the MicroPnP research prototype to a panel of industry leaders, our
team was awarded third place. The idea of MicroPnP formed the technological
foundation of VersaSense, a DistriNet spin-off founded in 2016 focusing on
solutions for the Industrial IoT. VersaSense has since proven its expertise in
many fields, with industrial applications such as production line monitoring,
smart farming and building monitoring. This success story highlights the
importance of synergy between academia and industry in this relatively young
research field.
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7.3 Outlook

This dissertation presented three contributions towards promoting dynamism
and security in the IoT. Naturally, these contributions do not fully resolve all
challenges the IoT is facing. This section looks to the road ahead and what
is required to achieve widespread adoption of the technology, and how the
contributions made in this thesis fit in.

Integrated configuration management The benefits of configuration manage-
ment have long been recognized in mainstream computing. Industry standard
tools like Chef [16] and Puppet [77] are ubiquitous for managing large-scale
enterprise and cloud infrastructures, using high-level declarative languages to
specify configuration. In the IoT space such solutions are currently non-existent,
while at the same time more and more configuration is exposed locally to cope
with dynamism. In order to support future large-scale deployments such as
smart cities, integration with configuration frameworks such as Puppet and
Chef is imperative. Although in their current form the way these tools inspect
and configure systems is too heavy weight, contributions from this dissertation
like Refraction, Tomography and Safe reparametrization are first steps to lower
overhead and to provide a holistic configuration management framework for the
IoT.

Security as a primary design objective As the IoT is moving out of the lab
and into the real world, security becomes a main attention point. While most
devices out in the field have some form of security, it is often severely lacking.
This is illustrated by the many exploits published for IoT devices [54, 103,
84]. A general change of mentality is required when designing IoT hardware
and software to make security a primary design objective, and to harden
these devices for attackers. The Security MicroVisor, the last contribution
presented in this dissertation, aids in this by providing memory protection and
isolation for existing IoT devices with inherently insecure processors. While a
permanent solution would involve designing systems with secure hardware from
the ground up, SµV provides a reliable solution for legacy devices. Physical
tamper resistance and countermeasures against hardware side-channel attacks
are other research tracks that should be explored to provide full stack security
in the IoT.

Interoperability and standardization Efforts have been made in recent years
to standardize the IoT in several ways. Examples include radio technologies,
like Zigbee [113] and LoRa [60] standardized by their respective alliances, and
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application protocols like CoAP (IETF) [91] and MQTT-SN (ISO) [95]. The
ultimate goal is interoperability between different hardware and software, but
in practice this is often not the case due to multiple competing standards
or manufacturer specific variations. A prime example of the proliferation of
standards is the large amount of Zigbee-like radio protocols, such as Thread [99],
SmartMeshIP [106] and recently Bluetooth Mesh [37], all providing similar
features within the same frequency band. When looking at the upper layers of
the software stack, application protocol standards remain limited to harmonizing
data ingestion and control from a back-end perspective. As a result, currently
available IoT products often only operate within their own ecosystem. Looking
into the future, it is expected that market demand will drive the IoT to be more
flexible and open. It is therefore essential that there is an evolution towards
unified standards with a renewed focus on in-network interaction, security and
uniform management interfaces.

Fully realizing these points will go a long way towards fulfilling the vision of the
Internet of Things, closing the gap between the virtual and physical world. The
contributions made in this dissertation are enabling technologies for achieving
this goal in a safe, manageable way.
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