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ABSTRACT 

Modelling methods applied in predictive microbiology generally neglect the 

importance of uncertainty on the measurement of the independent variables. The 

Ordinary Least Squares (OLS) method that is commonly applied in predictive 

microbiology is only applicable if the experimental error on the inputs of the model are 

insignificant. However, this does not apply for many types of experimental 

measurements of the independent variables. Therefore, a parameter estimation method 

was adapted in this research for the estimation of the parameters of secondary models, 

taking into account uncertainty on the measurement of the influencing food 

characteristics. This parameter estimation method was based on the work of Stortelder 

(1996) and is referred to as the Weighted Total Least Squares method (WTLS). The 

method is formulised as an extension of the commonly used OLS method. 

Consequently the current WTLS method (i) is easily implemented using similar 

numerical methods, (ii) reduces to an OLS method when the measurement error on the 

model inputs is negligible and (iii) enables the evaluation of the accuracy of the model 

parameter estimates based on the same approximations.  

 

Keywords: Predictive microbiology, parameter estimation, total least squares, 

Escherichia coli.   
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NOMENCLATURE 

All symbols in bold and italics represent vectors. All symbols with a single capital letter 

represent matrices. 

𝛾(∙)  Relative reduction of the growth rate 

𝜂  Shape parameter for the pH effect 

𝜅  Shape parameter for the pH effect 

𝜇𝑚𝑎𝑥  [h-1] Maximum specific growth rate 

𝜇𝑜𝑝𝑡  [h-1] Optimum specific growth rate 

𝜈𝑚  Number of experimental measurements 

𝜈𝑝  Number of model parameters 

𝝅  Vector of model parameters and experimental errors 

𝝆  Vector of weighted residuals and experimental errors 

𝜎𝑝
2  Variance of a model parameter estimate 

𝜎𝑝𝐻  
Standard deviation on the experimental uncertainty of the pH 
measurement 

𝜎𝑈𝐴𝑐  
Standard deviation on the experimental uncertainty of the UAc 
concentration 

𝜔  Shape parameter for the UAc effect 

𝒆𝑥  Experimental errors on the independent variables 

𝐹  Fisher information matrix 

𝐽  Jacobian of the residuals 

𝑀𝑆𝐸  Mean squared error 

𝑛(𝑡)  [ln(CFU/mL)] Logarithm of the cell density as a function of time 

𝑛0  [ln(CFU/mL)] Initial logarithmic cell density 

𝒏𝑚(𝒕)  [ln(CFU/mL)] Cell density measurements 

𝑛𝑚𝑎𝑥   [ln(CFU/mL)] Logarithm of the maximum cell density 

𝒏𝑝(𝒕, 𝒑)  [ln(CFU/mL)] Model predictions of the cell density 

𝒑  Model parameters 

𝑝𝐻𝑚𝑖𝑛  Minimum pH for growth 

𝑝𝐻𝑜𝑝𝑡  Optimum pH for growth 

𝑝𝐻𝑚𝑎𝑥  Maximum pH for growth 

𝑞(𝑡)  Physiological state of the cell as a function of time 

𝑞0  Initial physiological state of the cell 

𝒓𝑛  Residuals of the cell density measurements 

𝒓𝑥  Residuals of the independent variables 
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𝑆𝑆𝐸  Sum of squared errors 

𝑈𝐴𝑐  [ppm] Concentration of undissociated acetic acid 

𝑈𝐴𝑐𝑚𝑎𝑥  [ppm] Maximum UAc concentration for growth 

𝑉  Variance-covariance matrix 

𝑊𝑀𝑆𝐸  Weighted mean squared error 
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1 INTRODUCTION  

In predictive microbiology, mathematical models are built for describing the responses 

of microorganisms in food products. The mathematical models used in this field are 

generally speaking grey box models. Therefore, experimental data is required to 

calibrate the model by estimating the unknown model parameters. In this parameter 

estimation, a measure for the distance between the model predictions and the 

experimental data is minimised by selecting the optimal set of model parameters. The 

specific method used to estimate the parameters of a mathematical model influences (i) 

the selection of the most suitable model structure, (ii) the determination of the optimal 

combination of model parameters and (iii) the determination of the accuracy of the 

model parameters and model predictions. As such, the parameter estimation method has 

a major influence on the predictions that will be made after constructing a model from 

a given dataset. Nevertheless, most research in the field of predictive microbiology pays 

little attention to the selection of appropriate methods for estimating model parameters.  

The parameter estimation method involves (i) a criterion to quantify 

the distance between the mathematical model and the experimental data and (ii) an 

algorithm to determine the combination of parameters that optimises this criterion. The 

optimisation method will mostly influence the time that is required to find a solution 

and whether the true optimum combination of parameters is found or a combination 

that is only a local optimum. The optimisation criterion determines how experimental 

uncertainty and variability is taken into account during modelling. The sources of 

variation in predictive microbiology were distinguished as follows by Van Impe et al. 

(2001): (i) the type and quantity of microorganisms in the initial contamination, (ii) the 

true intrinsic and extrinsic conditions that characterise a food product, (iii) the lack of 

observations both in the monitoring points and the number of samples, (iv) the random 
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noise which inevitably corrupts measurements. It is important to consider the effect of 

these types of variation on the modelling results.  

Parameter estimations in predictive microbiology are most often performed following 

an Ordinary Least Squares (OLS) method. In this method, the optimum combination of 

parameters is defined as the parameters that minimise the sum of the squared errors 

between the model predictions and the experimental measurements. The assumptions 

behind this criterion are that (i) the errors on the independent variables are negligible, 

(ii) the variance on the errors of all measurements follows a normal distribution, (iii) 

all measurements are independent observations and (iv) sufficient data is available to 

obtain a well-spread distribution of the sampling error (Johnson, 1992). If all these 

assumptions are met, the minimisation of the sum of squared errors is a maximum 

likelihood estimator, i.e., an objective function that leads to the combination of 

parameters with the highest likelihood of resulting in the dataset (Walter and Pronzato, 

1997). However, when looking at these assumptions in detail it is clear that they are not 

self-evident when modelling microbial responses in food. For example, data on 

microbial responses is often relatively sparse as it is labour intensive and expensive to 

obtain. In general, measurement errors also often not normally distributed. 

Moreover, the independent variables that are assumed to be known with high accuracy 

are also characterised with experimental uncertainty. In the case of measurements such 

as the environmental temperature, it is indeed a reasonable assumption that the error on 

the measurement of the influencing factor is negligible compared to the experimental 

error on the measurement of the microbial response. However, when building 

mathematical models for microbial responses as a function of, e.g., concentrations of 

antimicrobials, the experimental error on the measurement of the model inputs will be 

significant. Uncertainty and/or variability of the input measurements may be overcome 
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by repeated measurement and calculation of an average when the data has a 

symmetrical probability distribution. However, this is often impossible or unfeasible 

because measurements are (i) time consuming, (ii) expensive or (iii) the data was 

already available and further measurements are no longer possible. For such cases, the 

parameter estimation procedure should take into account the experimental error on the 

independent variables and minimise the errors on both the independent and dependent 

variables taking into account their respective accuracies. This is done by using 

Weighted Total Least Squares (WTLS). However, such methods are mostly absent from 

the field of predictive microbiology. 

The main exception to the use of basic OLS in predictive microbiology, is the use of 

Weighted Least Squares (WLS). When using WLS as the optimisation criterion, errors 

between the model and the measurements are assigned a weight according to estimated 

accuracy of the measurement. Such a weighted least squares procedure was used, e.g., 

in Augustin et al. (2000). This publication contained the study of the effect of inoculum 

size on the lag phase duration of Listeria monocytogenes. A weighted least squares 

fitting criterion was implemented to estimate primary model parameters based on the 

logarithm of the microbial concentrations. The weights assigned to each measurement 

were the reciprocal of the variance of the logarithmic concentration. Each variance was 

determined either from the available replicates or was calculated theoretically based on 

the various errors occurring during the sampling protocol. Even though such a method 

takes into account the different errors on the dependent variable, no error on the 

independent variable is taken into account during the model building.  

An exceptional implementation of WTLS in predictive microbiology is found in the 

research of Baka et al. 2014. In this research, a calibration curve was constructed to 

relate optical density measurements of cell suspensions to the cell densities in colony 
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forming units per volume. This calibration curve served as part of the time-to-detection 

method. As the researchers realised that both the cell density (dependent variable) and 

the optical density (independent variable) measurements were susceptible to significant 

experimental uncertainty, they chose to minimise the errors of the model with respect 

to both the independent and dependent variable. As a way of weighting the different 

errors, the squared errors were divided by the variance on the measurements. The 

researchers concluded that the WTLS procedure provided more realistic parameter 

estimates, compared to the OLS method. The implementation of the WTLS procedure 

was however limited to a simple linear regression. No other applications of a WTLS 

procedure were found by the authors in the field of predictive microbiology. 

When building mathematical models to describe the effect of environmental conditions 

on microbial dynamics (growth or survival), a more complex WTLS method is required 

to take into account the variation on the independent measurements that serve as model 

inputs. To the author’s knowledge, a WTLS has never before been implemented in 

predictive microbiology research for the purpose of estimating the parameters of a 

nonlinear model, let alone a model described by algebraic differential equations. As 

such, the current research deals with the introduction of a WTLS method in the field of 

predictive microbiology for estimating parameters of nonlinear models. The method is 

presented in such a way that it is easily compared with the OLS method, and even 

reduces to OLS under appropriate circumstances. As a case study, the effect of pH in 

combination with the concentration of undissociated acetic acid (UAc) on the microbial 

growth rate of Escherichia coli K12 was modelled.  

This research is aimed at improving the selection of a suitable objective function for 

parameter estimations in predictive microbiology, while allowing for the same 
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evaluation methods of the modelling results that are available with conventional 

methods.  
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2 MATERIALS AND METHODS 

This section discusses the methods used for the experimental case study in which the 

effect of pH and acetic acid on the microbial growth rate of Escherichia coli K12 was 

modelled. The effect of organic acids on the microbial growth rate is mainly contributed 

to the concentration of undissociated acid (Beales, 2006). Therefore, the growth rate 

was modelled as a function of the pH and UAc concentration. The mathematical models 

used to this end are discussed in Section 2.3.  

 

2.1 Experimental methods 

2.1.1 Microorganisms and inoculum preparation 

E. coli K12 MG1655 (CGSC#6300) was obtained from the E. coli Genetic Stock Center 

at Yale University. A stock culture was stored at -80°C in Brain Hearth Infusion broth 

(BHI, Oxoid), supplemented with 20% (w/v) glycerol (Acros Organics). The inoculum 

was prepared in a three step procedure: (i) a loopful of stock culture was spread onto a 

BHI agar plate (BHIA, BHI supplemented with 14 g/L technical agar nr. 3, Oxoid) and 

incubated overnight at 37°C. (ii) Then, a single colony was transferred into a 50 mL 

Erlenmeyer containing 20 mL BHI and stored at 37°C for 9 h. (iii) Finally, 20 µL of 

the stationary phase culture was inoculated into 20 mL fresh BHI and incubated at 37°C 

for 15 h before further inoculation. 

 

2.1.2 Bioreactor experiments 

Experiments were performed in a set of bioreactors (BioStat B, Sartorius Stedim 

GmbH). The reactor vessels were filled with 3.5 L of BHI. Temperature was measured 

with a PT100 resistance temperature detector. A circulation chiller enabled temperature 

control below room temperature. pH measurement was performed with a gel-filled pH 
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electrode (Hamilton Company) and the measurement was corrected for temperature 

variations. pH was controlled by addition of acid (1 N H2SO4, Sigma-Aldrich) or base 

(1 N KOH, Thermo Fisher Scientific) by a PID controller. The bioreactor was aerated 

at 0.2 L/min after autoclaving and the oxygen concentration was controlled at the 

stabilised oxygen level during the experiment. The reactor content was stirred at 75 rpm 

with Rushton impellers. To avoid foaming, 500 µL of an antifoaming agent (Y-30 

emulsion, Sigma-Aldrich) was added prior to every experiment. Acetic acid (>99.5%, 

J.T.Baker) was added to the growth medium prior to autoclaving the bioreactor vessel. 

The pH of the medium was verified externally on a Mettler Toledo SevenCompact pH 

meter with InLab Routine sensor.  

 

2.1.3 Sampling and microbiological analysis 

Depending on the specific experimental conditions, a sample was taken from the 

bioreactor with a frequency between twice every hour and once every two hours during 

daytime. The appropriate dilutions were made in BHI and 49.2 µL of sample was plated 

onto BHIA plates, in triplicate, using a spiral plater (Eddy Jet, IUL Instruments s.a.). 

These plates were incubated at 37°C for about 15 h and colonies were counted to obtain 

viable cell numbers (CFU/mL). The average over the three plates was used as the 

measured cell density of a sample. Experiments lasted between 12 and 35 h, depending 

on the growth rate.  

 

2.1.4 Determination of acetic acid concentrations 

Acetic acid concentrations of the autoclaved medium were determined using HPLC-RI. 

Determination was performed using HPLC Waters system (Waters, Milford, USA) 

consisting of a Waters 600 controller, a Waters 2414 refractive index detector (HPLC-
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RI), a Waters 616 pump, a  Waters 717 autosampler and a Waters 600 column oven. 

Solvent was degassed in line using a Waters AF degasser. Separations were carried out 

on an Agilent Hi-plex H (7.7 × 300 mm Ø, particle size 8 μm) column (Agilent 

Technologies, USA) at a temperature of 65°C and a flow rate of 0.6 mL/min. The 

detector was set at 50°C. The mobile phase was 100% 0.003 M H2SO4 (Sigma-Aldrich). 

Calibration has been performed using acetic acid (>99.5%, J.T.Baker) at concentration 

levels of 50, 100, 200, 500, 1 000, 2 000 and 5 000 ppm. Data reprocessing was done 

using Empower 2 software. Prior to HPLC analysis, proteins were removed using 

Nanosep 3K Omega centrifugal devices (Pall Life Sciences, USA). After centrifugation 

at 11 000 × g for 5 min, the samples were ready for injection into the HPLC system. 

 

2.1.5 Experimental measurement uncertainty 

For the purpose of the WTLS method, the standard deviation of the error on the 

experimental measurement has to be known to assign a proper weight to the different 

measurements. The first measurement error that has to be known is the error on the 

quantification of the microbial population in colony forming units per millilitre. As 

reported by Van Derlinden et al. (2008), the variance of the error of this measurement 

was experimentally determined as 3.27 ∙ 10−2. The square root of this value was used 

in this research as the standard deviation of the measurement error (σn).  

In this paper, the effect of the pH and UAc concentration is modelled on the growth rate 

of E. coli K12. The uncertainty on the measurements of both of these independent 

variables is considered. With respect to the acetic acid concentration, a sample of 500 

ppm was measured 20 times to determine the standard deviation of the measured total 

acetic acid concentration at this mean. The standard deviation of the HPLC 

measurement was assumed to be linearly proportional to its mean to allow calculation 
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of the standard deviation over the full range of measurements. Using the well-known 

Henderson-Hasselbalch equation, the concentration of UAc is calculated at a given pH 

and total acetic acid concentration. Combining this calculation with a Monte Carlo 

method enabled the calculation of the standard deviation of the UAc concentration 

(𝜎𝑈𝐴𝑐) over a wide range of mean values and pH values. The variation of the pH 

measurement was taken into account during this simulation as well. The obtained 

relationship was modelled with a polynomial response surface model for ease of use 

during further parameter estimations: 

σUAc = −21.0 + 11.2 ∙ pH − 0.295 ∙ UAc − 1.97 ∙ pH2 + 0.108 ∙ pH ∙ UAc + 0.115 ∙

pH3 − 8.21 ∙ 10−3 ∙ pH2 ∙ UAc  (1) 

The values of σUAc  range until about 8 ppm for the experimental conditions used in 

this study. The variance on the pH measurement was investigated by measuring 6 BHI 

solutions with different pH values (adapted with 3 M H2SO4 addition) spread over the 

range of tested conditions. The pH of each solution was measured 20 times. The error 

on the pH measurement appeared to be independent of the mean pH value. As such, the 

standard deviation on the error of the pH measurement (σpH) was determined to be 

1.65 ∙ 10−2, independent of the nominal value of the pH.   

 

2.2 Experimental design 

A total of 25 bioreactor experiments was performed at distinct combinations of pH and 

UAc concentration. As this corresponds to the number of experiments present in a 5-

level full factorial design, it is a reasonable number of experiments in this type of study. 

An overview of the selected experimental conditions is presented in Fig. 1. The 

conditions are represented with respect to the calculated UAc concentration instead of 
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the total acetic acid concentration as the UAc concentration served as the input for the 

mathematical model.  

 

2.3 Mathematical models 

2.3.1 Primary model 

To describe the evolution of the logarithm of the cell density n [ln (CFU/mL)] with time 

t [h], the widely used primary model of Baranyi and Roberts (1994) was implemented 

in the following form:  

dn(t)

dt
=

1

1+exp(−q(t)) 
∙ μmax(pH,UAc) ∙ [1 − exp(n(t) − nmax(pH, UAc))]  (2) 

dq(t)

dt
= μmax(pH,UAc)  

with μmax(pH,UAc) [h−1] the maximum specific growth rate and nmax(pH,UAc) 

[ln (CFU/mL)] the maximum cell density for a given pH [– ] and UAc concentration 

(UAc [ppm]). q(t) [−] is a measure for the physiological state of the cells and serves 

to describe the lag phase of the growth curve. The initial values of n(t) and q(t) are 

respectively n0 and q0.  

 

2.3.2 Secondary models 

The combined effect of pH and UAc concentration on the microbial growth rate was 

described using a gamma model: 

μmax(pH,UAc) = μopt ∙ γ(pH) ∙ γ(UAc)  (3) 

with μopt [h
−1]  the optimum microbial growth rate, which is only achieved at optimum 

environmental conditions. γ(pH) and γ(UAc) represent respectively the relative 

decrease of the microbial growth rate due to a non-optimal pH and UAc concentration. 
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Based on the results of Akkermans et al. (2017), the adapted Cardinal pH Model 

(aCPM) model was chosen to describe the effect of pH on the microbial growth rate:  

𝛾(pH) = (
(pH−pHmin)η∙(pH−pHmax)

(pH−pHmin)η∙(pH−pHmax)−(pH−pHopt)
2)

1/κ

  (4) 

In this model, the minimum pH, pHmin[−], and the maximum pH, pHmax[−], are the 

growth boundaries. pHopt [−] is the pH at which the gamma factor becomes equal to 

1. The aCPM contains two shape parameters 𝜅 and 𝜂 that take values equal to or larger 

than 1. The value of 𝜅 is higher for microorganisms that show an increased tolerance 

with respect to changes of the pH from its optimum value. 𝜂 has a value larger than 1 

for microorganisms with a higher tolerance to suboptimal than to superoptimal 

conditions.  

Following the findings of Presser et al. (1997), a mathematical model for the effect of 

the UAc concentration on the microbial growth rate was formulated as: 

γ(UAc) = (1 −
UAc

UAcmax
)
ω

  (5) 

with UAcmax [ppm] the maximum concentration of UAc that permits microbial growth 

and ω a shape parameter. This mathematical model is generalised with respect to the 

original model by the addition of ω. 

 

2.4 Computing environment 

All parameter estimations are performed using the lsqnonlin routine of the Optimisation 

Toolbox of MATLAB version 7.14 (The Mathworks Inc.). This routine was always 

combined with a multi-start method with 50 iterations that generated multiple sets of 

uniformly distributed random initial values of the parameters to be optimised. The 

lower and upper bounds that were used for these distributions are listed in Table 1.  
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3 RESULTS AND DISCUSSION 

This section starts with the explanation of the commonly used Ordinary Least Squares 

(OLS) method to estimate the parameters of a mathematical model that describes the 

evolution of a microbial population. This method only considers the variance on the 

measurements of the modelled response. Consequently, the Weighted Total Least 

Squares (WTLS) method is explained for the application of the same type of 

mathematical models, taking into account the variance on the model inputs as well. This 

method was applied to an experimental case study in which the microbial growth rate 

was modelled as a function of measured pH values and UAc concentrations 

(independent variables). For this case study, the variance on these two measurements 

was investigated as well. With both methods, a one-step parameter estimation was 

performed, i.e., the parameters of the primary and secondary model are estimated 

simultaneously on the dataset of microbial growth curves (dependent variable) at 

various experimental conditions. The implementation of the one-step parameter 

estimation method is discussed in more detail in Akkermans et al. (2016).  

 

3.1 The OLS method 

The explanation of the OLS method is based on the description found in Walter and 

Pronzato (1997). The discussion of this method is limited as it is already commonly 

applied in predictive microbiology and serves as a benchmark for the WTLS method 

presented in this research. The objective function of a parameter estimation that follows 

the OLS method is the minimisation of the sum of squared errors (SSE): 

SSE =  𝒓𝒏′ ∙ 𝒓𝒏 (6) 

with 𝒓𝒏 the residual vector. This vector contains the differences between the measured 

and predicted cell densities at the sampling times in the vector 𝒕: 
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𝒓𝒏 = 𝒏m,(𝒕) − 𝒏p(𝒕, 𝒑)  (7) 

with 𝒏m(𝒕) the vector with the logarithm of the measured cell densities and 𝒏p(𝒕, 𝒑) 

the vector with the logarithm of the predicted cell densities for a set of parameters 𝒑. 

As a measure for the quality of the obtained parameter estimation results, the Mean 

Squared Error (MSE) is often calculated as: 

MSE =  
SSE

νm−νp
  (8) 

with νm the number of measurements and νp the number of model parameters. This 

MSE provides an unbiased estimate of the variance on the measurement errors.  Solving 

the parameter estimation problem and finding the confidence bounds of the parameter 

estimates commonly requires the calculation of the Jacobian matrix J of the residuals. 

Every column of this matrix contains the partial derivative of the elements of the 

residual vector to one of the model parameters. As the measurements in the residual 

vector are constants, the Jacobian can be written as: 

J =
∂𝒓

∂𝒑
=

[
 
 
 
 

∂r1

∂p1
⋯

∂r1

∂pνp

⋮ ⋱ ⋮
∂rνm

∂p1
⋯

∂rνm

∂pνp]
 
 
 
 

        (9) 

Based on J, the information obtained on each model parameter is quantified in the Fisher 

Information Matrix F, which is calculated as: 

F =
1

MSE
∙ JT ∙ J  (10) 

The variance of each parameter estimate is found on the main diagonal of the variance-

covariance matrix V. V is approximated by the inverse of F:  

V ≥  F−1   (11) 

The 95% confidence interval of every parameter pi is calculated based on the Student’s 

t-distribution (Van Impe et al., 2001): 
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[pi ± t0.975,νm−νp
∙ √σpi

2 ]  (12) 

where νm − νp is the number of degrees of freedom. σpi

2  is the variance on the model 

parameter. 

 

3.2 Adaptation of a WTLS method 

The Weighted Total Least Squares (WTLS) method introduced in this research was 

based on the method elaborated in Stortelder (1996). In their method, the time points 

that served as model inputs were assumed to have significant variance and the 

uncertainty on the time points was therefore taken into account. Based on the authors’ 

experience, time points can be determined sufficiently accurate during predictive 

microbiology studies. On the other hand, measurements of the extrinsic and intrinsic 

food factors influencing microbial responses are often characterised by significant 

experimental uncertainty. Measurements with significant experimental uncertainty are, 

e.g., pH, concentrations of antimicrobials or atmosphere composition. As such, the 

WTLS method explained below is aimed at taking into account errors on such 

measurements as well. 

The idea of the WTLS method is that apart from minimising the errors between the 

measurements and the model of the dependent variable, which are listed in 𝒓, also the 

errors between the model and one or more dependent variables are considered. Assume 

that a set of independent variables 𝒙 is taken into account and that the errors on these 

measurement are 𝒆x. The independent variable is measured once for every experiment 

but the error of this measurement is obviously unknown. Consequently, in this WTLS 

method, all errors on the measurements of the independent variables are estimated as 

model parameters. Consequently, a new parameter vector 𝝅 is defined as: 
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𝝅 = [
𝒑
𝒆x

] (13) 

As such, the errors on the measurements of the independent variables are estimated, 

just like the model parameters. However, any deviation of the values of 𝒆x from zero 

has to be penalised as well, same as any deviation between the model predictions and 

measurements of the dependent variable. For this purpose, 𝒆x is implemented in a new 

residual vector 𝝆. In 𝝆, the errors are weighted inversely proportional to the standard 

deviations of the measurement errors σn and σx: 

𝝆 = [

1

σn
𝒓n 

1

σx
𝒆x

]  (14) 

The residual vector for the model outputs 𝒓n is calculated at the corrected model inputs 

𝒙 + 𝒆x (see Figure 2). The weighting is needed to take into account the difference in 

accuracy between different types of experimental measuring techniques. The objective 

function of the WTLS method is consequently written as follows: 

min
𝝅

𝝆T ∙ 𝝆  (15) 

Using the newly define parameter vector 𝝅 and residual vector 𝝆, the calculation of the 

confidence bounds is performed similarly to the OLS method. The Jacobian matrix is 

calculated as: 

J =
∂𝝆

∂𝝅
  (16) 

Due to the inclusion of the standard deviations in the residual vector 𝝆, the calculation 

of F is simplified. It can be demonstrated that the division by the MSE, which is a 

measure for the variance on the measurement error, needs to be omitted as it is already 

included in J (see Appendix A). The calculation of F becomes: 

F = J𝑇 ∙ J  (17) 
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The remainder of the calculation of the variance-covariance matrix and the confidence 

bounds of the model parameters and the measurement errors is completely analogous 

to the explanation in Section 3.1. The advantage of using the WTLS method as defined 

in this section is that, through its analogy to the OLS method, it can easily be solved by 

already available methods such as the lsqnonlin function of MATLAB.  

The evaluation of the quality of the fit for the OLS method is commonly done using the 

value of the MSE, as this value takes into account both the overall error between the 

model and the measurements and the number of parameters with respect to the number 

of measurements (degrees of freedom). The MSE is extended to the WTLS method as 

well. However, in this case, the squared error is not only calculated between the model 

output and the experimental measurements but also between the estimated model inputs 

𝒙m + 𝒆x and the model inputs that correspond to the measurement of the dependent 

variable 𝒙′. This error is called the residual of the independent variable 𝒓x, analogous 

to 𝒓n. These calculation of both residuals is illustrated in Fig. 2. For the OLS method, 

the same calculation of the residuals as presented in this figure holds but the estimated 

error on the model input (𝒆x) is always equal to zero. The Weighted Mean Squared 

Errors (WMSE) of measured cell densities (WMSEn) and independent variables 

(WMSEx) are calculated as follows: 

WMSEn = 
1

σn
2

∙
𝒓n

T ∙ 𝒓n

νm − νp
;  WMSEx =

1

σx
2
∙

𝒓x
T ∙ 𝒓x

νm − νp
 

The WMSE expresses the error between the model and the measurements relative to 

the experimentally determined uncertainty on the measurement. Compared to the OLS 

method, both νm and νp increase with the number of measurements of the independent 

variable. As such, the degrees of freedom of the parameter estimation problem remains 

unchanged. The WMSEs can be calculated for the OLS method as well. In some cases, 
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data points may have a higher measured value than any model output. This means that 

there is no model prediction that corresponds to the measurement of the independent 

variable. As such, it is impossible to calculate the distance between the data point and 

the model for the residual of the independent variable. In such cases, the distance to the 

optimum value of the model can be taken.  

With respect to the case study used in this research to demonstrate the use of the WTLS 

method, 𝝅 and 𝝆 are defined as: 

𝜋 = [

𝒑
𝒆pH

𝒆UAc

] ; 𝜌 =

[
 
 
 
 

1

σn
𝒓𝒏

1

σpH
𝒆pH

1

σUAc
𝒆UAc]

 
 
 
 

  (18) 

with 𝒆pH and 𝒆UAc the estimated errors on the measurements of the pH and UAc 

concentration and σpH and σUAc the standard deviations of these measurement errors.  

 

3.3 Modelling the effect of acetic acid 

To build a mathematical model for the effect of UAc on the growth rate of E. coli, all 

experiments at pH 6.00 were selected from the dataset described in Section 2.2. As 

such, five experiments at different acetic acid concentrations were selected at a constant 

pH. The parameters of the model in Eq. (5) were estimated on this dataset according to 

both the OLS and WTLS method. With each method, two alternatives for this model 

were tested. In the first, the parameter ω was fixed at a value of 1, to obtain a linear 

relationship between the concentration of UAc and the microbial growth rate. In the 

second model, the value of ω was estimated. The parameter estimation results are 

presented in Table 2. Parameter estimates are presented with 95% confidence bounds 

as determined according to the methods explained in Sections 3.1 and 3.2. During the 

parameter estimation, values of n0 and q0 were estimated for every growth curve. Since 
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these have little effect on the determination of the secondary model parameters, they 

were omitted from the results shown here. For both parameter estimation methods the 

WMSEs of the logarithmic cell densities (model output, WMSEn) and the UAc 

concentration (model input, WMSEUAc) are calculated. When calculating the WMSEn 

for the OLS method, this comes down to dividing the regular MSE by the 

experimentally determined variance on the measurement error. The WMSEUAc for the 

OLS method is calculated in exactly the same manner as for the WTLS method, but the 

estimated measurement errors on the UAc concentrations are equal to zero. The outputs 

of the four models are compared with each other and with the experimental data in Fig. 

3. The comparison is based on the logarithm of the growth rate predicted by the model 

and estimated from each growth curve using the primary model of Eq. (2). 

Fig. 3 illustrates the difference between (i) the models with fixed and estimated value 

ω and (ii) the OLS and WTLS method. The predictions of the two models with a value 

of ω equal to 1 diverge for high UAc concentrations. From this figure, it appears as if 

the OLS method approximates the data points of the microbial growth rate more closely. 

However, by assigning an estimated measurement error to the different UAc 

concentrations, the WTLS method shifts data points in the horizontal direction. 

Changing the model inputs for the UAc concentrations by means of the addition of an 

experimental error is penalised in the objective function as explained in Section 3.2. 

Fig. 4 illustrates the fit of the two models on the measured cell densities. This figure 

clarifies that both methods make a very good and almost the same approximation of the 

growth as a function of time for various UAc concentrations. As seen from the 

WMSEUAc and WMSEn in Table 2, the WTLS method is able to estimate experimental 

errors on the UAc concentrations in such a way that the error between the measured 

and predicted cell densities is further decreased. Naturally, also the error between the 
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model and the measurements of the UAc concentration is decreased significantly in the 

WTLS method. There is a small difference in the estimated values of the model 

parameters. However, it is not possible to say that these are significantly different 

considering that the 95% confidence bounds of both methods overlap. The uncertainty 

on the parameter estimates is higher with the WTLS method, as this method takes into 

account uncertainty on the model inputs as well. It is expected that this higher 

uncertainty is more realistic than the estimated uncertainty of the OLS method that 

assumes the measurements of the UAc concentrations to be exact. After all, the 

estimated uncertainty on the model parameters is an approximation under the 

assumption that no errors exist on the model input, an assumption that does not hold in 

this case. 

The difference between the models that result from the two methods when estimating 

the value of ω as well is less clear in Fig. 3. Based on the WMSEs in Table 2, it is clear 

that the models from both methods approximate the dataset very closely. The parameter 

estimation results in the same table show that, both for the OLS and WTLS method, the 

introduction of ω as a model parameter leads to very high uncertainty on the parameter 

estimate. This high uncertainty is found despite the good approximation of the 

experimental measurements. As such, this high uncertainty on the estimated values of 

the model parameters is due to a case of over fitting. The model is very closely related 

to the experimental data but the model parameters can no longer be estimated accurately 

as the data provides too little information on their exact value. The reason that there is 

so little difference between the estimated models from both methods is that the WTLS 

method reduces to an OLS method if the errors on the measurements of the independent 

variables are considered negligible. In any case, both methods demonstrate that the 

model with a value of ω to be estimated is too complex for the given dataset. 

https://doi.org/10.1016/j.mimet.2018.04.018


Post-print version of paper published in https://doi.org/10.1016/j.mimet.2018.04.018. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

25 

For the model with ω fixed to 1, a leave-one-out cross-validation was performed. In 

this validation, the model parameters were estimated with both methods on all but one 

of the experiments. Then, the predicted growth rate was compared with the remaining 

experiment. The mean squared prediction error was found to be 0.056 for the OLS 

method and 0.079 for the WTLS method. However, when correcting the measured 

concentration of undissociated acetic acid for that which was determined in the full 

WTLS method, the errors changed to 0.037 and 0.030 respectively. Consequently, 

whether or not the WTLS method is more accurate than the OLS method is really 

dependent on the errors that exist on the measurement of the independent variables. 

Based on the findings of this section, the model of Eq. (5) for the effect of the UAc 

concentration on the microbial growth rate was simplified by fixing ω to a value of 1. 

Both the graphical representations (Fig. 3 and 4) and the quantitative results (Table 3) 

demonstrated the fitting quality of this model. This simplified model was used in the 

next part of this research paper to model the combined effect of pH and UAc 

concentration.  

 

3.4 Modelling the effect of pH and acetic acid 

In this section, three different models for the combined effect of pH and UAc 

concentration were tested on a dataset containing 25 distinct experimental conditions. 

These three models only differ in their complexity with respect to the description of the 

effect of pH on the relative reduction of the microbial growth rate. In the most complex 

model, the shape parameters κ and η are both estimated. A first simplification is made 

by fixing the parameter η to a value of 1. In this model, the equation is symmetrical for 

both the suboptimal and superoptimal effect of pH on the growth rate. A further 

simplification is made by fixing both κ and η to 1. In this case, the pH model is exactly 
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the same as the model published by Rosso et al. (1995). The aim of this modelling study 

is to evaluate the applicability of the WTLS method to more complex model building 

exercises that contain multiple measurements of dependent variables, each with a 

characterised experimental uncertainty. 

The results of the parameter estimations with both the OLS and WTLS method are 

presented in Table 3. Looking first at the three different models, it is clear that some 

identification problems arise when estimating the value of both κ and η. Irrespective of 

the parameter estimation method used, the confidence bounds on the estimated values 

of all model parameters related to the pH effect are excessive. The reason behind this 

high uncertainty lies in the scope of the experimental conditions that were used during 

the parameter estimation. No information is available on the microbial response for pH 

values above 7.00, i.e., above the approximate optimum pH. As such, the data does not 

allow the determination of the asymmetry between the suboptimal and superoptimal 

effect of pH, which is characterised by the value of η. Consequently, it is not possible 

to accurately determine the optimum combination of model parameters. The origin of 

this problem is endorsed by the parameter estimation results of the model in which η 

was fixed to a value of 1. For this model equation, all model parameters were estimated 

with high accuracy for both methods. These findings demonstrate that the WTLS 

method, as discussed in Section 3.2, allows the study of the accuracy of the model 

parameter estimates in the same way as the basic OLS method. The same conclusions 

should be drawn with respect to the suitability of the model structure (complexity) when 

using the WTLS method instead of the OLS method. The very large WMSEpH values 

are a consequence of the plateau shape of the pH model close to the optimal conditions. 

This shape leads to large differences between the experimentally measured pH and the 

pH of the model at the same growth rate. As such, it is clear that the WMSE of the 
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independent variables is only useful for comparison between competing models, but 

not as a measure for the quality of fit on its own. 

For both methods, the cell density measurements were approximated slightly better by 

the model with an estimated value of κ than by the model with a fixed parameter, as 

seen from the value of the WMSEn. The model with κ = 1 has a much larger error 

between the UAc concentrations of the measurements and those of the model but a 

smaller error between the pH measurements and model. It is clear that the OLS method 

does not take this error into account during the parameter estimation procedure. 

However, even though the WTLS method has additional possibilities to affect the error 

between the model and the measurements of the pH and UAc concentrations, the 

minimisation of this error is not part of the objective function. Adding an estimated 

error to the measurement of one of the independent variables may improve the overall 

value of the objective function, but only if the decrease of the error on the measured 

cell density is larger than the increase of the estimated error on the measured pH or UAc 

concentration (considering their respective weights). It is clear that the discrepancy 

between the model and the input variables is much smaller for the WTLS method than 

for the OLS method. But the existence of slightly higher differences between the model 

and input variables in the WTLS method should not be given too much importance 

because the fact that these errors remain means that the model output already closely 

approximates the measurements of the cell density. The estimated errors are up to about 

20 ppm for the UAc measurements and up to 0.02 for the pH measurement. These 

estimated experimental errors are plausible taking into account the experimentally 

determined measurement uncertainty. These results show that the WTLS method allows 

for comparison of the quality of fit of different models through the WMSE, similarly 

as with the MSE when working with the OLS method. In this case study, it is the WMSE 

https://doi.org/10.1016/j.mimet.2018.04.018


Post-print version of paper published in https://doi.org/10.1016/j.mimet.2018.04.018. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

28 

of the cell densities that is most important for the comparison of the model fits. 

Generally speaking, the WMSE on the output of the model is of most relevance to 

evaluate the model fit.  
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4 CONCLUSION 

In this work, a WTLS method was introduced in predictive microbiology and adapted 

for the specific application of estimating the parameters of secondary models. The 

WTLS method that was obtained is formulated as an extension of the more commonly 

used OLS method. Consequently, the method can also reduce automatically to an OLS 

method when there is no need to take errors on the independent measurements into 

account. This was seen in the results when the experimental dataset was very closely 

approximated by the mathematical model. Also the calculation of the confidence 

bounds on the model parameter estimates is an extension of the commonly used OLS 

method. The main difference here is that the uncertainty on the measurements of the 

model inputs is neglected in the OLS method but taken into account in the WTLS 

method. Even though the number of measurements increases in the WTLS method, the 

number of model parameters increases with the same amount. As such, the predicted 

uncertainty on the model parameter estimates will generally be larger for the WTLS 

method but may better reflect reality.  

The evaluation of the fit of the mathematical model to the experimental dataset was 

done using the WMSE of the different dependent and independent variables. However, 

it was concluded that it is mainly important to consider the WMSE of the output of the 

model, which was the logarithm of the cell density is this research. The WMSE of this 

model output is analogous to the MSE used in the more basic OLS method. The 

WMSEs of the independent variables give an indication of the difference between the 

model and the experimental measurements as well, but this is not taken into account 

during the parameter estimation.  

With respect to the implementation of the parameter estimation problem, the main 

difficulty lies in solving the one-step parameter estimation but there was no real 
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difference as opposed to solving a one-step parameter estimation according to an OLS 

method. By formulating the WTLS method analogous to the OLS method, it was 

implemented easily in MATLAB using the lsqnonlin function. Even though a multi-

start procedure was applied, in most cases the same optimum solution was found.  

This research demonstrated the possibility of taking into account experimental 

uncertainty on the measurement of independent variables to estimate the parameters of 

secondary models in predictive microbiology. In all cases where the measurement 

uncertainty is easily characterised, the commonly applied OLS method is easily 

extended to a more realistic WTLS method. Moreover, such a WTLS method is indeed 

recommended to take errors on the measurements of independent variables into account 

when they are significant compared to the errors on the dependent variables. As such, 

the WTLS method can contribute to more accurate models for predicting microbial 

dynamics as a function of intrinsic and extrinsic characteristics of food products.   
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APPENDIX A 

This section demonstrates that the Fisher information matrix for the parameter estimates 

of the WTLS method is calculated as follows: 

F = JT ∙ J  (19) 

Substitution of the Jacobian as defined in Eq. (16) results in the expression: 

F =
∂𝝆

∂𝝅

T
∙
∂𝝆

∂𝝅
  (20) 

Assuming that the distribution of the measurement error is equal for all measurements, 

the residual vector 𝝆 can be simplified to 𝒓/σ with 𝒓 the residual vector of all 

considered measurements and σ the standard deviation of the errors. This simplification 

is substituted into Eq. (20). 

F = (
1

𝜎

∂𝒓

∂𝝅
)
T

∙
1

𝜎

∂𝒓

∂𝝅
=

1

𝜎2

∂𝒓

∂𝝅

T
∙

∂𝒓

∂𝝅
  (21) 

This above expression for the Fisher information is equivalent to Eq. (10), for the OLS 

method because (i) ∂𝒓/ ∂𝝅 corresponds to the Jacobian matrix as defined in a standard 

OLS parameter estimation and (ii) 𝜎2 is the variance on the measurement error that is 

approximated by the MSE. As such, Eq. (19) can be used to calculate the Fisher 

information matrix for the WTLS method.  
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FIGURES 

 

Fig. 1. Experimental dataset as a function of the pH and concentration of undissociated 

acetic acid (UAc). 

 

Fig. 2. Illustration of the calculation of the residual on the independent and dependent 

variable (𝐫𝐱 and 𝐫𝐧) according to the WTLS method. 𝐱𝐦 and 𝐧𝐦 are the measurements of 

the independent and dependent variable. 𝐱𝐦 + 𝐞𝐱 is the measurement of the independent 

variable that is corrected for the estimated measurement error and 𝐧𝐞 is the model output 

corresponding to this input. 𝐱′ is the value of the independent variable that results in the 

measured dependent variable according to the model equation.  
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Fig. 3. Comparison of two different models for the effect of undissociated acetic acid on 

the microbial growth rate estimated with both the OLS and WTLS method and comparison 

with the experimental growth rates (X). The curves are the (i) model with 𝛚 = 𝟏 and OLS 

method (---), (ii) model with 𝛚 estimated and OLS method (⋅-⋅), (iii) model with 𝛚 = 𝟏 

and WTLS method (—) and (iv) model with 𝛚 estimated and WTLS method (⋅⋅⋅). 

 

Fig. 4. Comparison of the model with 𝛋 = 𝟏 according to the OLS (---) and WTLS (—) 

method with the experimentally measured cell densities (X).  
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TABLES 

Parameter Lower bound Upper bound 

pHmin [-] 4.00 5.00 

pHopt [-] 7.00 8.00 

𝛋 [-] 1.00 10.00 

𝛈 [-] 1.00 10.00 

UAcmax [ppm] 100.0 1000.0 

𝛚 [-] 0.00 50.00 

µopt [h-1] 0.500 3.000 

 

Table 1. A list of the lower and upper bounds that were used during the parameter 

estimation for the different model parameters. These bounds also defined the uniform 

distributions that were used for the multi-start method. 

Method OLS OLS WTLS WTLS 

UAcmax [ppm] 148.7 ± 3.7 327.5 ± 254.6 138.9 ± 12.0 398.9 ± 877.6 

𝛚 [-] 11  3.23 ± 3.06 1 1 4.05 ± 10.1 

µopt [h-1] 2.102 ± 0.057 2.227 ± 0.083 2.163 ± 0.066 2.260 ± 0.098 

WMSEn 1.958 1.630 1.607 1.592 

WMSEUAc 3.409 0.002 0.936 0.128 

 

 Table 2. Parameter estimation results for the model of the effect of UAc concentration on 

the microbial growth rate as estimated with the OLS and WTLS method.  
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Method OLS OLS OLS WTLS WTLS WTLS 

pHmin [-] 4.06 ± 0.20 4.49 ± 0.53  4.13 ± 8.83 3.85 ± 0.28 4.49 ± 0.51 4.26 ± 4.06 

pHopt [-] 6.50 ± 0.14 6.61 ± 0.28 8.90 ± 64.00 6.47 ± 0.12 6.50 ± 0.20 8.89 ± 28.11  

𝛋 [-] 11 1.81 ± 1.62 4.86 ± 32.97 11 2.01 ± 1.72 8.04 ± 36.00 

𝛈 [-] 11  11 5.13 ±  37.35 11 11 5.48 ± 17.01 

UAcmax [ppm] 170.7 ± 5.1 170.3 ± 5.05 167.6 ± 4.7 150.3 ± 6.9 150.0 ± 6.8 149.5 ± 5.5 

µopt [h-1] 2.140 ± 0.047 2.119 ± 0.052 2.083 ± 0.124 2.232 ± 0.040 2.207 ± 0.047 2.177 ± 0.060  

WMSEn 3.119 3.043 2.933 1.288 1.269 1.253 

WMSEUAc 44.225 26.005 33.612 12.752 5.755 1.087 

WMSEpH 64.616 71.111 640.908 10.686 12.118 118.346 
1For these parameter estimations, the value of κ or η was fixed to 1. As such the model for the effect of pH on the microbial growth rate is simplified 

as explained in Akkermans et al. (2017). The value of ω of the UAc model is fixed to 1 for all parameter estimations. 

 

Table 3. Parameter estimation results for the model of the combined effect of pH and UAc concentration on the microbial growth rate resulting 

from both the OLS and WTLS method. Three models with a different level of complexity were considered by fixing the values of κ and η to 1. 
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