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Abstract

Mobile eye-tracking systems have been available for about a decade now and
are becoming increasingly popular in different fields of application, including
marketing, sociology, usability studies and linguistics. While the user-friendliness
and ergonomics of the hardware are developing at a rapid pace, the software for
the analysis of mobile eye-tracking data in some points still lacks robustness and
functionality. With this paper, we investigate which state-of-the-art computer
vision algorithms may be used to automate the post-analysis of mobile eye-
tracking data. For the case study in this paper, we focus on mobile eye-tracker
recordings made during human-human face-to-face interactions. We compared
two recent publicly available frameworks (YOLOv2 and OpenPose) to relate
the gaze location generated by the eye-tracker to the head and hands visible in
the scene camera data. In this paper we will show that the use of this single-
pipeline framework provides robust results, which are both more accurate and
faster than previous work in the field. Moreover, our approach does not rely on
manual interventions during this process.
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1 Introduction

A growing field of application for mobile eye-trackers is the recording of human-
human interactions, enabling researchers in the fields of linguistics and conver-
sation analysis to analyse the role of eye gaze in non-verbal communication and
interaction management. This research, among others, focuses on the distribu-
tion of gaze of each interlocutor during face-to-face interactions, answering basic
research questions such as: “How long does a person spend looking at the face
or hands of an interlocutor during a conversation?”, “Does the distribution of
visual attention differ depending on the type of interaction, the role or status
of the participants, or other factors?” Mobile eye-trackers contain the neces-
sary hardware to simultaneously record the scene from the wearer’s perspective
and track the gaze of the wearer during this recording, providing an insider’s
perspective on the interaction.
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Fig. 1: Frame from a three-persons-conversation processed by the pose estimator
(coloured skeletons) with the gaze (red circle)

Most software currently provided with mobile eye-trackers comes with a basic
Area-of-Interest (AOI) analysis method that allows the user to select a bounding
box as AOI, for example for determining specific objects of interest for an analysis
of visual attention. Afterwards the software matches the chosen AOI to the cur-
rent gaze location using the matching technique discussed in [1]. This technique
provides an automatic annotation of rigid objects containing similar features as
the model. During human-human interactions, however, the main AOI would be
faces of co-participants or hands performing gestures, but unfortunately both are
non-rigid and impossible to recognize based on simple appearance-based tech-
niques, such as in [1]. The lack of an automatic annotation tool will leave most
research in this field resorting to manual annotation of these types of ’objects’.
Depending on the amount of people taking part in the study, the amount of data
grows, resulting in a cumbersome time-consuming annotation task.

In this paper we investigate if state-of-the-art computer vision techniques can
perform accurate detection of hands and heads as the most relevant non-rigid
objects for human interaction analysis, without making use of artificial markers.
These detections will, in a second step, be combined with the gaze coordinates of
the eye-tracking camera, producing a fully automatic annotation tool which will
eliminate a significant part of the manual annotation work. As an illustration,
Figure 1 shows a frame from a three-person-conversation (from the perspective
of one of the co-participants wearing eye-tracking glasses) with (a) the output
of a pose estimation algorithm [2] and (b) a red circle representing the wearer’s
current gaze fixation.

The remainder of this paper is organized as follows. In section 2 we discuss
related work on previous post-analysis techniques with mobile eye-trackers, fol-
lowed by three sections explaining our approach on detecting the torso in section
3. Based on the results of this initial detection step, we will advance to section 4,
limiting the detection area to the head. Section 5 focuses on the hands using the
same techniques as explained in the previous sections. In section 6 we discuss
the results comparing previous work with both the YOLOv2 detector and pose
estimation based detections. The paper closes off with a general conclusion and
suggestions for future work in section 7.
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2 Related Work

Most eye-tracking systems are shipped with manufacturer software assisting the
user in automated annotation and data aggregation, next to providing a man-
ual annotation tool for more fine-grained analysis. Mobile eye-trackers, while
providing an advantage in mobility, come with the disadvantage of a dynamic
spontaneous scene. The most advanced manufacturerers ship software based on
appearance-based image features (SIFT [3], SURF [4]) providing a rudimentary
single-image-model annotation applicable for studies focussing on rigid objects ,
but not be able to deal with non-rigid three-dimensional objects like hands and
heads that change during the course of time and vary from person to person.

The work of De Beugher et al. [5] tries to answer the need for an auto-
mated annotation tool capable of annotating non-rigid objects by using a ma-
chine learned model on multiple images. They use two techniques, one to train
a more generalised model of a person’s upper-body based on a deformable part
model (DPM) [6], while the second is trained to detect faces based on HAAR-
features [7]. Both of these techniques are evaluated separately and combined in
[5] on an annotated dataset. For the purpose of this paper we will focus on the
performance of the detector, leading to better results during gaze classification.
Furthermore, the upper-body comprises not only of the head location, offering
no guarantee that the gaze placed upon the upper-body can be classified as the
head due to its larger AOI.

Apart from the head we want to automate the annotation process for hands
that appear in the scene camera images generated by the eye-tracker, providing a
first basic coding layer for e.g. gesture studies. A hand detector combining a two-
stage hypothesis and classification method by [8] shows that a single model can
be improved by taking other properties of our hands into account. De Beugher
et al. improved this work further in [9] by adding their previous upper-body
model as a preprocessing step. Additionally, they implemented a rotating hand
model and allowed manual interventions to further improve accuracy. Yet, this
model still suffers from the different orientations of the hand opposed to the
orientation of the trained model. Furthermore, they only achieve good results
when sufficient manual interventions are given (1.61% gives an F1-score above
85.17%). In our research we develop fully-automatic detectors with no obtrusive
elements and no need for manual interventions.

Previously mentioned techniques involving machine learning seem insuffi-
cient to yield high accuracy in detecting a difficult object like the human hand.
These techniques are recently being overtaken by state-of-the-art neural network
object detectors capable of extracting high levels of features that comprise an
object. Although deep learning solutions have been kept in the background for
quite a while, recent advancements in General Purpose Graphics Processing Unit
(GPGPU) hardware and an increase in available training data (e.g. ImageNet
[10]) have allowed their emergence. The current deep learning techniques greatly
outperform previous hand-crafted and simple machine learning techniques. In
this paper we compare two state-of-the-art deep learning techniques and test
their accuracy for the automatic annotation of mobile eye-tracking data.
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3 Torso detection

One of the baselines of human face-to-face interaction is the simple fact that
interlocutors tend to gaze at the face of the other while interacting (with ad-
dressees typically gazing at the current speaker more and longer than the other
way around [11,12]). This makes the head one of the prime objects to be detected
as part of an automated annotation procedure.

Previous techniques tried to detect the head location by using the upper body
or torso including the head [5]. This allows the detector to use more information,
leading to a better result. In this paper we compare two state-of-the-art deep
learning based techniques with traditional upper-body detectors. In our research
we have focussed on using the state-of-the-art YOLOv2 detector [13] based on
the Darknet framework for retraining purposes. We first annotated the torsos
of 4000 images from the dataset provided by [8]. We then used this data by
including pre-trained weights on the VOC-dataset [14] to calculate new weights
to detect the torso.

The second technique that we included, which is also based on deep learning,
is called pose estimation. Pose estimators, compared to a conventional detector,
will not only produce a bounding box around the person or detection in general.
They try to estimate the separate key-points of body-part-joints that together
compose the pose of that person. Using the key-points that are part of the torso,
we can use the pose estimator as a torso detector, by returning a bounding box
around them. In this paper we have implemented the OpenPose framework [15]
bundling three components. The first part is capable of detecting the separate
anatomic body joint points (e.g. shoulder, elbows, wrists, ...). When only one
person is visible all the found points will belong to that person. When there
are multiple people in the image, however, the body joint points will have to
be grouped according to the person they belong to. The second part includes
a network capable of detecting the part affinity fields (PAF) between joints [2].
These PAF will assist the previous network in combining the joint points to the
corresponding person. The last part consists of detecting a more detailed pose
of the hands, which will be discussed further in section 5.

4 Head detection

In the previous section we used two state-of-the-art techniques in order to detect
the torso. As in [5], this can be used to acquire context information on where to
find the head. Moreover, if one is only interested in the question whether the test
person looks at another person, a torso detector suffices. However, as mentioned
above, researchers are generally interested in the question if the gaze is directed
towards the face or head of the interlocutor.

In section 3, we described how we retrained the YOLOv2 detector on a
specific dataset in order to train a torso detector. The retraining was based
on around 1800 annotations from the manually annotated dataset used in [16],
containing both the head location and the hand key-points. We have followed
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(a) YOLOv2 based head/hand de-
tection

(b) OpenPose based head detec-
tion

Fig. 2: Both techniques detecting the head

the same approach as with the torso-model to train a YOLOv2 model on this
data, but included both the head and hand into a single detector.

Using the pose key-points we were able to find the torso. However, these
points are also usable to estimate the head position. Yet the pose estimator only
provides the eyes, ears and nose point. We therefore determined a bounding box
around the head based on these points by first looking at the head direction
with respect to the camera. When the head is frontal we return a bounding box
based on the ear-by-ear distance and nose point. However, when the head is in
profile this is not possible. Not only the centre will shift away from the nose,
but some points will be self-occluded by the head. By detecting the orientation
of the head beforehand (e.g. frontal, right profile, left profile), we can provide a
more accurate bounding box around the head.

Due to the margin of error presented by current mobile eye-trackers it is
possible that the gaze cursor is focussed on the head, yet is not within the strict
boundaries of the head. This error margin may increase over time, especially with
longer recordings with a single calibration step before the start. During manual
annotation, the final decision will depend on experience with the eye-tracker and
general offset present on the eye-tracker. Figure 2 illustrates both the pose-based
and YOLOv2-model based detections of the head with the gaze near the head,
but not within the boundaries. In our model we have included the option to
increase the margins. This allows for a bigger head boundary and a consistent
annotation decision process. However, in this paper during the evaluation of our
detections in section 6 we used stricter boundaries to not influence our detection
results.

5 Hand pose estimation

Apart from the head, the hands also play a central role in non-verbal commu-
nication as prime articulators of visible bodily action. We therefore compare
different state-of-the-art detectors that may be useful as part of the annotation
of eye-tracking data. A particular challenge here is that fast motion of both the
hands to be detected, as well as movements of the head by the person wearing
the eye-tracking glasses may result in the hands being blurred and unclear in
the images to be processed. This contributes to the difficulty level of detecting
them in an accurate way. In section 4 we trained a combined YOLOv2 model,
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(a) Hand pose based detec-
tion

(b) YOLOv2 Hand detec-
tion

(c) Hand estimated based
on the elbow-wrist

Fig. 3: Three methods compared for hand detection

hands and head, on a limited dataset. Because of these challenges we decided to
train a second dense hands-only model on around 18000 hand annotations taken
from the [8] dataset. In the remainder of this paper, this detector is referred to
as ”YOLOv2 Dense”.

Another hand pose estimator was presented by [16]. They use the wrist lo-
cation from the complete pose as a basis during the hand-pose estimation. This
model is capable of estimating each separate hand joint separately.

In order for the hand pose estimator to work, enough detail of the hand must
be visible. When the image is unclear or blurred we notice that the estimator
fails. We therefore developed an additional pose-based hand detector by using
pose points of the arm. A bounding box is estimated around the hand based on
the length and direction of the vector between the wrist and elbow.

Figure 3 illustrates the pose estimated hand, the hand pose detection and the
YOLOv2 hand-head model detection. Our initial intention was to combine the
pose estimated hand detection with the hand pose detection, yet they seemed
to contradict each other. The estimated detection will be present even if the
hands are occluded, as illustrated in figure 3c, while figures 3a and 3b show no
detection or a very low detection confidence. Both situations can be favourable
depending on the aspect of the study and thus are complementary.

6 Results

6.1 Torso

Our first technique concerns the torso detections compared to non deep learning
techniques. In the work of De Beugher et al. [17], two state-of-the-art upper-
body models were tested on the INRIA person dataset [18] containing person
annotations. The dataset only contained full person detections, which was com-
pensated for in [17] by only taking into account the top 66% of the person as
upper body. We evaluated our torso YOLOv2 model and pose-based torso de-
tector on the same data. Our results in the form of PR-curves are illustrated in
figure 4a together with the UpperBody aggregated channel features (ACF) [19]
and UpperBody DPM [6] models from [17]. These precision and recall curves
were generated by varying a threshold over the detection confidence scores. For
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Mittal [8] Yang [20] De Beugher [9] Ours
incl. tracking Pose Estimated Sparse Dense

D1 85% 24.2% 83.4% 88.2% 98.4% 97.6% 92% 99.4%

D2 48.9% 46.5% 52.9% 65.3% 91.1% 84.8% 48.2% 61.9%

5-Signers 77.6% n.a. 81.1% n.a. 97.6% 88.3% 84% 92.2%

Table 1: F1-scores on the Insightout [9] and 5-Signers [21] datasets

the pose-based technique we have calculated the mean of all separate joint con-
fidence scores. Both the pose-based and YOLOv2 technique show an increased
average precision opposed to the ACF and DPM model.

6.2 Head

Because only detecting the torso does not suffice as a basis for annotation, as
mentioned above, we evaluated our head approach on the same INRIA dataset.
The INRIA dataset contained the head location and the person bounding box.
We used 66% of the person annotation width as a reference for the head an-
notation size. Figure 4b illustrates the precision and recall of the YOLOv2 and
pose-based model. The recall drops faster compared to the results in figure 4a,
which is to be expected since the head opposed to the full torso has a smaller
area, increasing the detection challenge with a high confidence score. Here the
pose-based detection clearly outperforms the YOLOv2 model, mainly because
the pose-based detections have the full yet hidden pose as decision support. The
YOLOv2 model has no such support and has to rely on the head only.

6.3 Hands

To evaluate the hand approaches we used the InsightOut dataset (D1 and D2)
[9] and the 5-Signers dataset [21]. Table 1 compares the F1-scores of the different

Mittal [8] Yang [20] De Beugher [9] Ours
Pose Estimated YOLOv2 models

Avg time/frame 293.33 s 113 s 36.67 s 0.5 s 0.125 s 0.0099 s

Avg fps 0.00341 0.00885 0.02750 2 8 100

Table 2: Execution time comparison
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approaches with our work. Our results show that our proposed approaches all
show an increase in F1-score opposed to existing models. Only the YOLOv2
(Sparse, Dense) models show a slight decrease in accuracy on the D2-dataset
compared to the work of [9].

Besides the accuracy, we also compared the processing times of our techniques
(Table 2). Previous techniques only used the CPU to process the data, whereas
our approaches require a mid-end GPU (NVIDIA GTX 1080 Ti) capable of run-
ning the used algorithms. We conclude that only the YOLOv2-based approach
is able to run in real-time, although the proposed pose-based techniques are at
least 70 times faster than the competitors.

To compare these techniques against each other we plotted the PR-curve for
each approach on each dataset, illustrated in figures 5a, 5b and 5c. Comparing
YOLOv2 against the pose-based techniques shows that both YOLOv2 models
are less accurate on the D2 dataset. We see that training a denser model on
more hand data increases the mAP of the model compared to the sparse two-
class model.

As expected we observe that the pose-based techniques produce good results.
The estimated hand location based on the elbow and wrist shows a decreased
precision, which is expected due to the static direction on which we estimate
the hand. In reality the hand does not necessarily follow the arm movement
explaining the performance drop compared to the hand pose estimator.
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Fig. 5: Results on three hand datasets

6.4 Automated Annotations

The main goal of our work, providing automatic annotations during human-
human interactions, will produce labels on the recordings, depending on overlap
between the detections and the gaze. When the gaze falls within the boundaries
of a detection, the detection label will be the coded for that frame. To evalu-
ate the head gaze labels, we manually annotated 2500 frames of a face-to-face
spontaneous conversation between three people wearing mobile eye-trackers. On
this segment we used both the OpenPose head detector and YOLOv2 sparse
head model to generate automatic labels for each frame. In case of manual an-
notation of recordings it may occur that opinions differ between annotators.
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To overcome this source of discussion the annotations are commonly compared
by different measures to obtain a score of resemblance (referred to as an inter-
coder agreement test or ICA-test) In order to compare our automated labels
with the ground truth we use the same tests to obtain scores evaluating our
techniques. These results are visible in table 3. The annotated video of this
sequence, using the Pose based head and hand detection can be viewed on
https://youtu.be/eEVXIfY99O0.

OpenPose Level YOLOv2 Level

Agreement [22] 91.1% 92.6%

Scott’s Pi [23] 82.2% 85.3%

Cohen’s Kappa [24] 82.3% 85.3%

Krippendorf’s Alpha [25] 82.2% 85.3%

Table 3: Reliability levels of the automated head annotation

7 Conclusion

This paper focussed on comparing the current state-of-the-art techniques on
automated mobile eye-tracking analysis. This involves detecting the hands and
heads appearing in the scene images generated by the eye-tracker, which may
be obvious foci of attention during face-to-face human interactions. The output
of this automatic detection step provides a solid basis for further annotation
of relevant non-verbal behaviour, including hand gestures, head movements and
so on. We compared two main techniques, a pose estimator and the YOLOv2
detector against more traditionally used techniques showing an overall higher
accuracy. Despite the fact that these deep learning techniques require a mid-
end GPU, they easily achieve faster than real-time performance. By providing
multiple techniques and allowing adjustable bounding boxes margins, the gaze
annotations are customizable according to the requirements of the specific study
at hand without any need for manual intervention.
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