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SUMMARY

This paper introduces the circle fit method for the detertoneof multi-modal Rayleigh dis-
persion and attenuation curves as part of a Multi-Channalysms of Surface Waves (MASW)
experiment. The wave field is transformed to the frequenayemumber (fk) domain using a
discretized Hankel transform. In a Nyquist plot of the flespum, displaying the imaginary
part against the real part, the Rayleigh wave modes comelsfmocircles. The experimental
Rayleigh dispersion and attenuation curves are derived the angular sweep of the central
angle of these circles. The method can also be applied tornthkytecal fk-spectrum of the
Green’s function of a layered halfspace in order to compigigaiision and attenuation curves,
as an alternative to solving an eigenvalue problem.

A MASW experiment is subsequently simulated for a site witiegular velocity profile and
a site with a soft layer trapped between two stiffer layetse performance of the circle fit
method to determine the dispersion and attenuation cusvasmpared with the peak picking
method and the half-power bandwidth method. The circle fithime is found to be the most
accurate and robust method for the determination of theedsgpn curves. When determining
attenuation curves, the circle fit method and half-powedbadth method are accurate if the
mode exhibits a sharp peak in the fk-spectrum. Furthernsomgylated and theoretical atten-
uation curves determined with the circle fit method agreg wesll. A similar correspondence
is not obtained when using the half-power bandwidth method.

Finally, the circle fit method is applied to measurement datained for a MASW experiment
at a site in Heverlee, Belgium. In order to validate the smfife obtained from the inversion
procedure, force-velocity transfer functions were cored@nd found in good correspondence
with the experimental transfer functions, especially ia ftequency range between 5 Hz and
80 Hz.

Key words: Joint inversion — numerical approximation and analysisisisie attenuation —
surface waves and free oscillations - wave propagation.

1 INTRODUCTION

Determination of dynamic soil characteristics of shallawil fayers is important for the study
of different problems in civil and geophysical engineerisgch as ground borne vibrations or
site amplification (Kausel & Assimaki, 2002). Dynamic saibperties can be determined using
laboratory and in situ methods. In situ methods have therddge of not disturbing the soll
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and examining large volumes of soail, in contrast to labasataethods, which are susceptible
to local variations of soil properties. Among the most papun situ test methods are the surface
wave experiments, which are simpler to perform and lessresipe than borehole methods. Active
Multichannel Analysis of Surface Waves (MASW) methods kRral., 1999; Foti et al., 2011) are
often used to determine (multi-)modal Rayleigh dispersind attenuation curves, which can be
inverted to determine the shear wave velocity and mateaalgng ratio profile of the soil. The
solution of the inverse problem, however, is non-unique wuthe limited identified frequency
range. In order to reduce non-uniqueness, multi-modalr&ne of dispersion and attenuation
curves is preferred above single mode inversion (Xia eR@D3; Socco & Strobbia, 2004).

Many approaches have been developed to estimate multisudiace wave dispersion curves
(Socco et al., 2010). These dispersion curves are oftemndieted by transforming the measured
vibrations from the time-space domain to the frequencyamawnber (fk)-domain and picking
the maxima (Park et al., 1999; Socco & Strobbia, 2004). Hawnewost of these transformation
methods suffer from near field effects (Zywicki & Rix, 200Zywicki and Rix (2005) identify
two sources of near field effects: the presence of body wamgagation, which has a significant
effect on the near wavefield and model incompatibility duéheuse of transformation methods
which assume plane waves, while the wavefield generated byna gpurce is cylindrical. Both
near field effects distort the estimates of the Rayleigh @lvatocity. As the signal-to-noise ratio
is highest in the near field, it remains preferable to inclodar field information in the inversion
process. This can be accomplished with an appropriate waldeifansformation that accounts for
the cylindrical symmetry of the spreading wave field, sucthasylindrical beamformer (Zywicki
& Rix, 2005) or a Hankel transformation (Forbriger, 2003;dBar et al., 2010). Body waves,
however, still influence the location of the Rayleigh wavéegon the fk-spectrum. This problem
can be solved by defining the theoretical dispersion curgdbelocal maxima of the analytical
fk-spectrum of the soil's Green’s function.

Most methods for the determination of attenuation curvesdased on spatial decay measure-
ments of surface waves and assume that a single Rayleighmade is dominant. They may lead
to incorrect results if multiple modes significantly cohtrie to the wave field (Lai et al., 2002;
Foti, 2004; Xia et al., 2002). In order to account for mukiphodes, Badsar et al. (2010) pro-
posed the half-power bandwidth method, which determinesttenuation of the Rayleigh wave
modes based on the width of the Rayleigh peaks in the fk-dorrathe case of a single dominant
Rayleigh wave mode, this method is as accurate as methoed baghe spatial decay of surface
waves; it is more accurate when multiple modes contribgpeifscantly to the wave field. Misbah
& Strobbia (2014) recently proposed a method for estimatiegcomplex wavenumbers of mul-
tiple modes, which can be considered as a high resolutiospsude-based method for arbitrary
receiver layout and source shot positions (Foti et al., 20li4e estimated attenuation coefficients,
however, can still be influenced by interaction of differemddes and event identification remains
important.

In this paper, the circle fit method, originally developeddi&termine eigenfrequencies and
modal damping ratios in structural dynamics (Ewins, 19&l)sed to determine multi-modal
Rayleigh dispersion and attenuation curves. Results ampaced with the peak picking method
and the half-power bandwidth method. It is shown that theleifit method is not influenced by
near field effects and less sensitive to mode interaction.

Wave propagation in a multi-layered halfspace with dynaseit characteristics of a site in
Lincent (Belgium), which is used as a benchmark, is disaid3etermination of Rayleigh disper-
sion and attenuation curves with the peak picking methodtaadhalf-power bandwidth method
is briefly reviewed. The circle fit method is subsequentlyaduced as an alternative for the de-
termination of multi-modal dispersion and attenuatiornvesr

Next, a MASW experiment is simulated for a site with a reguiaocity profile to compare
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the results obtained with the circle fit method, the peakipgknethod and the half-power band-
width method. Leakage and aliasing effects due to the ttiorcand discretization of the Hankel
transform are discussed. This is followed by a similar asialfor a site with a soft layer trapped
between two stiffer layers, in which case the peaks in thepietrum are due to different higher
order Rayleigh wave modes corresponding to an apparene plehscity and attenuation coef-
ficient. It is investigated how the results obtained with tivele fit method are affected by this
velocity inversion.

Finally, the circle fit method, and a combination of the pei@kipg method and the half-power
bandwidth method, are applied to determine experimensgleision and attenuation curves from
a MASW experiment at a site in Heverlee, Belgium. Both prefdee used to simulate the force-
velocity transfer functions and corresponding fk-spedtrat are subsequently compared with the
experimental results.

2 METHODOLOGY
2.1 Wave propagation in layered media

Wave propagation in layered media can be studied with thectdstiffness method (Kausel &
Roésset, 1981) in the fk-domain, as implemented in thet@ysmamics Toolbox (EDT)
(Schevenels et al., 2009). The displacemé&nts,, w) are related to the tractiod3(k,., w) by:
K (kp,)U(ky,w) = Pk, w). (1)
The stiffness matri¥ (k,,w) is a function of the frequenay, the radial wavenumbétr. and the
following dynamic soil characteristics of each layer: thear wave velocity’, the dilatational
wave velocityC,,, the material damping ratigs andg, in deviatoric and volumetric deformation,
the densityp and the thicknesg. Analytical expressions for the stiffness matrices of ddpalce
and a layer element were derived by Kausel & Roésset (18&iterial damping is assumed to be
rate independent in the low frequency range and can be ammbtor by applying the correspon-
dence principle, valid for small damping ratios (Rizzo & @by, 1971). This results in the use of
complex Lamé coefficients(1 + 25:1) and (A + 2u) (1 + 25,1).

Dilatational waves (P-waves) and vertically polarizedashgaves (SV-waves) are uncoupled
from horizontally polarized shear waves (SH-waves). Rafatl) is therefore decomposed as:

Kp_gy(kr,w)Up_sy(ky,w) = Pp_gy(ke,w), (2)
Ksu(kr, w)Usu(kr,w) = Posu(ky,w). 3)

where the stiffness matrii(’p,sv(k;r, w), displacement vectdr]‘pfsv(kh w) and traction vector
Pp_gy(k,,w) model P-SV wave propagation and the stiffness makfi; (k,,w), displacement
vectorUgy (k,, w) and traction vectoPsy (k,, w) model SH wave propagation.

If the traction vectorPy_gy (k,,w) in equation (2) corresponds to a vertical Dirac impulse in
space and time, the fundamental solution or Green’s funétiff%,, z, w) is obtained, where the
first indexz refers to the loading direction and the second indixthe displacement component.
In this paper, Green’s functions will primarily be evaluhtalong the surface = 0 and the
dependence on the vertical coordinateill be omitted.

Table 1 presents the dynamic soil characteristics of arsiténicent (Belgium) situated along
the high speed line L2 between Brussels and Koln (Badsal,e2G0). This site consists of a
silt layer, followed by a layer of fine sand on top of a sequerfc#iff layers of arenite and clay.
Dynamic soil characteristics were determined by means et®al Analysis of Surface Wave
(SASW) tests, Seismic Cone Penetration tests (SCPT) asthigerefraction tests (Schevenels



4 R. \Verachtert et al.

Table 1. Dynamic soil characteristics of the site in Lincent (Belgiu

Layer d Cs Cp, Bs=5
[-]

p p
[m] [m/s] [m/s] [kg/m?]

1 1.4 128 286 0.044 1900
2 27 176 286 0.038 1900
3 co 355 1667  0.037 1900

et al., 2008; Karl, 2005; Karl et al., 2006). This site is eg@nted as a horizontally layered half-
space with two layers on top of a halfspace; the increaseeoflilatational wave velocity in the
halfspace is most probably due to saturation of the soils bil profile is subsequently used to
illustrate the presented

Figure 1a shows the modulus of the normalized vertical Gsdanctionu® (k,, w) as a func-
tion of the frequency and the phase velocity, = w/k, along the surface of the horizontally
layered halfspace corresponding to the site in Lincentéta) The normalized simulated Green’s
functionu$S(k,,w) presented in figure 1b will be discussed in subsection 3Thé Green’s func-
tion @€ (k,,w) is normalized using the maximum modulus occuring at eacfusacy. The peaks
in this spectrum correspond to Rayleigh waves or free seiriaves with complex wavenumbers
kr;j(w) that are solutions of the following eigenvalue problem:

det Kp_sv(k’r,W) = 0. (4)

The rootstr;(w) can be determined by a search algorithm that minimizes ttegrdenant in terms
of the complex wavenumbeéy.. The surface motion of a propagating Rayleigh wave at freque
w is proportional to a zero-th order Hankel function of thesetkind (Aki & Richards, 2002):

u,.(r,t) < Re (HSZ)(kRj (w)’r’)e*i“t> . (5)
The far field approximation of this expression is (Aki & Riecta, 2002):

u..(r,t) o Re (e“(wt—’%(“”“*“/“)/ |kRj<w>r|) : (6)

The theoretical Rayleigh phase velocity of thth mode is obtained a8y, (w) = w/Re(kg;(w)).
Figures 1a and 2a show the dispersion curves of the first fades\C}, (w) varies from the
Rayleigh phase velocity of the underlying halfspace attlimgilow frequencies to the Rayleigh
phase velocity of the top layer at limiting high frequenci€be Rayleigh phase velocity of the
higher wave modes varies from the shear wave velocity of titeedying halfspace to the shear
wave velocity of the top layer at limiting high frequenci@se cut-on frequencies of the second,
third and fourth Rayleigh mode are 14 Hz, 24 Hz and 48 Hz, dspdy. The theoretical dis-
persion curveségf(w) andCg¢(w) are determined with the peak picking and circle fit method,
respectively, and will be discussed in subsection 2.2.1.

Attenuation of the Rayleigh waves is due to geometrical aatenmal damping. The geometri-
cal or radiation attenuation, due to wavefront spreadsgraportional to-—/2. Material damping
is related to the dissipation of energy. The theoreticall®gl attenuation coefficient represent-
ing material damping of modgis calculated asly;(w) = —Im(kg;(w)). Figure 2b shows the
attenuation curves of the first four modes. At low frequesicig;, (w) is mainly determined by the
material damping of the underlying halfspace. At highegfrencies A%, (w) is more influenced
by the top layers. The energy dissipation of higher Raylemides in the different soil layers is
more difficult to predict, such that attenuation is not $lyicncreasing when the material damp-
ing ratios in the top layers are higher than in the underlyaygrs. The theoretical attenuation
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Figure 1. Fk-spectrum of (a) the normalized analytical Green's fiaomctC (k,,w) with Rayleigh dis-
persion curvesﬁgj(w) (j = 1,...,4) (black lines) and (b) the normalized simulated Green'fiom

S (k,,w) with spatial aliasing limit (black line).

curvesAg!(w) and AgS(w) are determined with the half-power bandwidth and circle &ttmd,
respectively, and will be discussed in subsection 2.2.2.

2.2 Frequency-wavenumber analysis of the Green’s function

Alternatively to solving the eigenvalue problem (4), the/Ra&gh dispersion and attenuation curves
can be determined at lower computational cost by analysiedBreen’s function® (k,, w) in the
frequency-wavenumber domain, as the location and widthepeaks in figure 1a are determined
by the Rayleigh phase velocity and attenuation coefficiespectively.

2.2.1 Determination of the Rayleigh phase velocity

In order to determine the Rayleigh phase velocity, assuunptare made regarding the shape of
the Rayleigh peak. Badsar et al. (2010) determine the Reylgitenuation coefficients from the
width of the Rayleigh peaks using the half-power bandwidéthad. The underlying assumption
for this method is that, in the case of hysteretic materiaipiag, the peaks of the Green’s function
aS (k.,w) in the vicinity of each Rayleigh wavenumbge(kr;(w)) can be approximated as
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Figure 2. Rayleigh (a) dispersion curve(s‘l;{j(w) (j = 1,2,3,4) (black Iines),Cgf(w) (red lines) and
Cgi(w) (green lines) and (b) attenuation curvdg;(w) (black lines), A" (w) (red lines) andAgS (w)
(green lines).
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Figure 3. Modulus of (a) the normalized analytical Green’s functi@n (k,,w) (black line) at50 Hz

andad, (Re(kf;(w)),w) (G = 1,2,3,4) (black circles),ag; (k Tj( ),w) (red crosses) and’, (kg (w),w)

(green asterisks) and (b) the normalized simulated Gréenttion a5 (k,.,w) (black line) at50 Hz and
aSP (Re(kg, (w)),w) (black circles) uGS(k:Sp( ),w) (red crosses) and:> (k3 (w), w) (green asterisks).

follows as a function of the real wavenumber

Cyy(w)
A7 —1+iqy Cai(w). 0
wheref; = k. /Re(kg;(w)) anda; = 2Ag;(w)/Re(kg;(w)). The complex mode dependent con-
stantsC;(w) andCs;(w) are introduced to obtain a better approximation of the Gsdenction,
as will be explained in the following. The range of wavenunsider which only the first term in
equation (7) is a good approximation depends on the sepa@itihe different Rayleigh peaks and
the interaction with different wave modes. For dominant IBigjn waves(C5;(w) is small com-
pared to the peak amplitude of (k.,w) and a good estlmaﬂagp( ) of the real part ochT{j(w)
can be found by peak picking.

Figure 3a shows the modulus of the normalized analyticagsdunctioni®, (k,,w) at50 Hz
and the locations of the Rayleigh modes determined by thiepeking method. The largest peak
in figure 3a corresponds to the fundamental Rayleigh mode oftier peaks at smaller wavenum-
bers correspond to higher Rayleigh modes. The Rayleighmember estimates of the first three
modes are very accurate and the markers indicating the Wa\keaers’fgj’ (w) andkg, (w) perfectly
overlap. The fourth mode could not be identified, as there iseak corresponding to R&(, (w))
The peak ak, = 0.83 rad/m actually corresponds to the fifth mode. Peak pickirgei$ormed
for the first four Rayleigh modes for frequencies up to 100 Hze normalized simulated Green’s
function a5 (k,., w) presented in figure 3b will be discussed in subsection 3Figlire 2a com-
pares the theoretical dispersion cur@%‘?(w) = w/k:fif(w), determined with the peak picking
method, witthj(w). The first two modes are accurately identified in the consuiérequency
range. The peak picking method could only identify the timrdde for frequencies above 34 Hz
and converged to other modes below this frequency becaadeayleigh peak is too small to be
identified. Similarly, the fourth mode could only be iderdifor frequencies above 72 Hz.

If only the modulus of the Green'’s function is consideredyahle information related to the
phase is lost. Following theoretical developments of EWAr#84) in structural dynamics to deter-
mine eigenfrequencies and modal damping ratios, the ditateethod is presented to determine
the Rayleigh wavenumber. Figure 4 shows a Nyquist plot ofGheen’s functioni® (k,,w) at
50 Hz for 500 equidistant wavenumbers frdgn= 0.01 rad/m tok, = 5 rad/m, mapping its imag-
inary part against its real part in the frame of refereRee- Im. It is observed that the different
Rayleigh peaks correspond to circles. If the original frasheeferenceke — Im is translated (sub-

kr,w) o~

zz(
J
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Figure 4. Nyquist plot of the Green’s functioa$. (k,,w) at 50 Hz (blue dots), fitted circle for the first
Rayleigh wave mode (green line), anfl, (Re(k}, (w)),w) (black circle),ag, (kg (w),w) (red cross) and
%, (kLS (w),w) (green asterisk).

tractingC;(w) in equation (7)) and rotated (dividing kg, ,;(w) in equation (7)) to the frame of
referenceRe’ — Im’, the approximation of the Green’s functiafy; (., w) in the vicinity of the
Rayleigh wavenumbdre(kr;(w)) can be written as:

1
ﬂsz/(kT7 CU) = (8)
J 57 —1+iay
which is equivalent to introducing complex paramet€fg(w) = 1 andCy;(w) = 0 in equation
(7). It can be demonstrated that the real and imaginary paif/o(%,, w) are related as:

1 2 1 2
Re(ad?, (kr,w))* + (Im(ﬂfz'j(k:r, w)) + E) = (2—%) : (9)
which is the equation of a circle with centf®, —i/(2«;)) on the imaginary axis and radius
1/(2e;), hence the name of the method.

It is observed in figure 4 that the spacing between the diftgueints is largest in the vicinity
of aS (Re(ki, (w)),w). This is equivalent to stating that the angular swéep ok, of the central
angled;, subtending the arc betweéﬁz’j(kr, w) and the negativém’-axis, attains a maximum at
Re (k;gl(w)). This property is proven in the following. In order to ex@és as a function of the
wavenumbek,., the phas%g,z/i of the Green’s function is related to the central artgléigure 4):

0.

bagr, = 5

(10)

D1
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It follows that:

0; Re(a% (k,,w)) B2 -1
tan —J) = —cot(pza | = — — = -1 , (11)
( 2 ( ZZJ) Im(u?zj(kr, w)) Q;
so that:
21
¢, = 2arctan <ﬁj ) . (12)
Q

Differentiation with respect t@; results in:

90; 45, (13)

5—53‘ 2_1 ?
Oéj 1—|—<ﬁ]a )
J

which attains a maximum at; = 1.001 for a realistic valuey; = 0.1. For a relatively large value
a; = 0.4, the maximum is obtained at; = 1.02, which is still relatively close to 1. Ag; is
defined ask, /Re(kg;(w)), the angular sweefd; /Ok, attains a maximum &t, = Re(kg;(w)).
The bias introduced by the circle fit method is very small aoidmfluenced by the transformation
from ag;(k,,w) to af’;(k.,w), or independent of the complex constafts(w) andCy;(w), as
opposed to the peak picking method. Therefore, the circhadihod is proposed in this paper to
estimate the real part éf;(w), without prior knowledge ot ;(w) andCs; (w).

In appendix A, a search algorithm is described to deterntiaecircle fit estimaté:g:(w) and
the corresponding theoretical Rayleigh phase velcrdﬁy(w) = w/ka{;:(w). Computation of the
complex constants';(w) andC,;(w) gives no benefit when calculating the dispersion curves and
is therefore not performed. As can be noticed on figuréS4(kLs(w), w) perfectly corresponds
with 7% (kE, (w),w).

The fitted circles in figure 5a correspond to the Rayleigh peaKigure 3a of the first, sec-
ond and third mode. There is no circle corresponding to thetfiomode. The smaller circles,
corresponding to higher Rayleigh wave modes, are shiftetiduaway from the origin than the
circle corresponding to the first mode, relatively to thadtius, resulting in less accurate estimates
kFT{f(w) obtained with the peak picking method. The estima{$w) obtained with the circle fit
method are not affected by the shifting of the circles andntiaekers indicating the wavenum-
bersky(w) andkg;(w) perfectly overlap in figures 3a and 5a. The normalized sitedi&reen’s
functionu®®(k,, w) presented in figure 5b will be discussed in subsection 3.1.1.

Figure 2a shows the estimaké‘”ﬁ";(w) of the Rayleigh phase velocity obtained with the circle
fit method, for the first four Rayleigh modes, for frequenaiesto 100 Hz. The first two modes
are completely identified and the circle fit method is sligintiore accurate than the peak picking
method. The third and fourth mode are identified for freqieshabove 48 Hz and 72 Hz, respec-
tively. For these modes, the peak picking method is sligmitye accurate. This indicates that the
Rayleigh peaks of these modes are influenced by other wavesnbi@vertheless, it is shown in
the next section that the circle fit method is more robust wapglied to a simulated surface wave
experiment.

2.2.2 Determination of the Rayleigh attenuation coefficien

Badsar et al. (2010) propose a generalized formulation ehtdf-power bandwidth method to
determine the Rayleigh attenuation coefficielﬁ?(w) of different modes for the case of weak



Determination of Rayleigh dispersion and attenuation esrv 9

0.4 ; ‘ ‘ 0.4

Imaginary part [-]
S
N
Imaginary part [-]
S
N

PR S
-
o .
,
o v
",

— A — | LN
0.8 . y 0.8 . A
g e
-1.2 ‘ : ‘ -1.2 ‘ s ‘
-0.8 -0.4 0 0.4 0.8 -0.8 -0.4 0 0.4 0.8
(a) Real part [-] (b) Real part [-]

Figure 5. Nyquist plot and fitted circles (green lines) of (a) the ndireal analytical Green’s function
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damping:

Agj (w) (14)

wherek,, andk,, are wavenumbers smaller and larger th@p(w), such that:

| @S (krayw) | = | @S (K w) | = 7 | @5 (kb (@), w) |- (15)

For the classical choice of = 1/\/5, k., andk,, are the so-called half-power bandwidth points.
Badsar et al. (2010) suggest to use- 0.99 in order to avoid influence of neighbouring Rayleigh
wave peaks. The method assumes thg{w) in equation (7) equals zero, but also gives good
estimates for small values 6k, (w).

Figure 2b shows the estimate of the attenuation coefficidisw) obtained with the half-
power bandwidth method, at the frequencies for which theesponding modes were identified
with the peak picking method. The attenuation coefﬁcLéﬁ? ) of the first mode is accurately
quantified in the frequency range considerégl (w) is accurate up to 60 HZ ! (w) is accurate
between 38 Hz and 60 Hz, ant (w) is not accurate at all. At frequencies hlgher than 60 Hz, the
Rayleigh peaks corresponding to the higher modes are |lessate, as they are not sufficiently
separated. In order to reduce the influence of interactindeRgn modes on the estimation of the
attenuation coefficients, the circle fit method is altenedyi proposed (Ewins, 1984).

For wavenumbers,, andk, in the vicinity of kxS (w) andk,, < kg(w) < k., the following
expressions can be derived from equation (11):

0; (k I —( i )2
tan (‘ ]( ;a,CU) |) _ k (UJ) (16)

2
s ) —1
tan <| W |) — M (17)
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where j3; is replaced by the circle fit estimate/kg5. Summing both equations and replacing
aj = 2A%5(w)/kiS(w) results in the theoretical Rayleigh attenuation coefficteiermined with
the circle fit method:

k:?b B kvga
2]%‘%;(00) |:tan <|'9j(k;bvw)|) + tan <|'9j(k;a7w)‘>:|

If k., andk,, are chosen such that,(k,,,w) |=| 0;(k.,w) |= /2, equation (18) reduces to
ARS(w) = (k2 — k7,)/ (4kg$(w)); for weak damping, this can be further simplifiedAQS(w) =
(kb — kra)/2. This is equivalent to equation (14) for= 1/\/5, in which case,, andk,;, are the
half-power bandwidth points. The circle fit method is only®alent to the half-power bandwidth
method if the complex constant,;(w) equals 0. As the central angle does not depend upon
(s (w), the circle fit method is more robust than the half-power badth method.

In order to fit a circle through the points corresponding ®Rayleigh peak, the width of the
Rayleigh peak needs to be known. Sufficient points on thedRgltykcircle must be chosen in order
to obtain an accurate fit, but the wavenumber range of theséspmannot be too large in order to
avoid influence of other wave modes. A bandwidth, = A}T{?(w) is proposed. For a Rayleigh
circle which passes through the origin, this bandwidth sg@0% of the circle, which is found
to be adequate. Equation (14) can therefore be used to deeetine width of the Rayleigh peak.
Appendix B describes an algorithm to obtain the Rayleighratation curves based on equation
(18).

Figure 2b shows the estimates of the attenuation coefficlght.) obtained with the circle
fit method, at the same frequencies for which the Rayleigls@halocities were identified. The
attenuation coefficient$ (w) of the first mode is accurately determinetds(w) is accurate up to
35 Hz, andALS(w) and A%S (w) are not accurate. The attenuation coefficient determinéu tve
half-power bandwidth method corresponds better to therétieal attenuation coefficient for all
modes. The attenuation coefficient determined with théecfitomethod, however, is an unambigu-
ously determined characteristic of the Rayleigh mode, Wwhken be used in an inversion process
to determine the material damping ratio profile of a site. &bwer, it is shown in the next section
that the attenuation coefficient determined with the cifitlenethod is more robust and easier to
identify than the attenuation coefficient determined wité half-power bandwidth method, espe-
cially for non-dominant Rayleigh waves. The attenuatioefftaent determined with the circle fit
method is thus more adequate for the multi-modal inversi@xperimental attenuation curves.

ATC-(w) =

Ry

(18)

3 SIMULATED MASW EXPERIMENTS

In an active MASW experiment, the soil is excited by a hammmapact, a drop weight or a
shaker on a surface foundation, and the velocity or acdedereesponse is measured with differ-
ent receivers (geophones or accelerometers) along a neeasuoirline in the free field. From this
response, an experimental fk-spectrum is obtained, whaohsabsequently be used to determine
experimental estimates of Rayleigh dispersion and atteruaurves. In this section, MASW
experiments are simulated considering impact loading eyeréd halfspace with a regular veloc-
ity profile, corresponding to the site in Lincent introdugadhe previous section, and a layered
halfspace with an irregular velocity profile where a sofeaig trapped between two stiffer layers.
The computed response allows to compare Rayleigh dispessid attenuation curves determined
by the circle fit method, the peak picking method and the palfrer bandwidth method.
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Figure 6. Amplitude of the simulated Green’s functia@}™> (r, w) for the site in Lincent.

3.1 Site with a regular velocity profile
3.1.1 Simulated free field vibration

A surface wave experiment is simulated by calculating theation response of a horizontally
layered halfspace, corresponding to the site in LincenlgiBm), due to a vertical impact at the
surface. This impact is simulated by a Dirac impulse in sawktime that is directly applied to
the soil as it can be demonstrated that the effect of dynamuicdation-soil interaction is limited
if the wavelengths in the soil are large compared to the dgioers of the foundation (Schevenels,
2007). The free field vibrations therefore correspond toGhneen’s functions. As demonstrated
in the previous section, the Green’s function (k,,w) can be calculated analytically in the fk-
domain. An inverse Hankel transform from the wavenumbehnécspatial domain accounts for the
cylindrical symmetry of the wavefronts:
s (r,w) = / aZ (ky,w)Jo(kor)k, dk,. (19)

0
This inverse Hankel transformation is performed by mearnbkeElastoDynamics Toolbox (EDT)
for MATLAB (Schevenels et al., 2009). The Green’s function (k,,w) exhibits a first order
singularity and is therefore decomposed into a singuldy pduich is transformed analytically, and
aregular part, which is transformed numerically with 50@¥@numbers, logarithmically sampled
betweenl0~8w and 10*w [rad/m] for each frequency. Figure 6 shows the resulting simulated
vertical displacementSS(r, w) at the soil's surface, calculated for an array of 100 eqtadis
receivers located from,;, = 1m tor,., = 100m from the source with a receiver spacing
Ar = 1 m. The effect of material damping is larger at high freques@r decreasing Rayleigh
wavelength.

These samples are subsequently used in a truncated forvearkeHransform to obtain the
simulated fk-spectrum$S(k,., w). The simulated fk-spectrumt’>(k,., w) differs from the analyt-
ical fk-spectrumz$ (k,, w), as it is affected by the spatial sampling related to theivecesetup.
Following Forbriger (2003), Badsar et al. (2010) replaceBlessel functio,(k,r) by the zero-

th order Hankel function of the first kinH((]l)(k:rr)/2 to reduce aliasing by accounting for the fact
that the wave field consists of outgoing waves only. The falhg transformation is obtained:

1 Tmax
S8 (ky,w) = 5 / aSS (r, w) HSY (kpr)r dr-. (20)

0
This integral is evaluated using a generalized Filon quadeausing linear interpolation (Frazer
& Gettrust, 1984). Due to the spatial samplingf®(r, w) with receiver spacing\r, the fk-
spectrum suffers from spatial aliasing for wavenumlders = /Ar. The simulated Green’s func-
tion uS5(k,,w) is normalized so that the maximum modulus equals 1 at eagudrey and is
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shown in figure 1b as a function of the frequency and the pheleeity C,. = w/k,.. The equiv-
alent spatial aliasing limit becomeég!i*ns — wAr /7. At 62 Hz, this aliasing limit crosses the
dispersion curve of the fundamental mode, resulting indapgeaks for the higher modes, when
compared with the analytical fk-spectrum.

Truncation of the Hankel transformationitg., in equation (20) results in leakage and widen-
ing of the Rayleigh peaks, and thus an overestimation of ttenaation coefficient. Leakage
mostly affects low frequencies were the attenuation caefftas small. In order to reduce leakage,
an exponentially decaying window(r, w) = e~4=(“)" is applied to the frequency-space domain
data when calculating the attenuation coefficient (Badsal.,€2010). A similar windowing tech-
nique is commonly used in structural dynamics to deterntieedamping ratio of weakly damped
systems from a free vibration signal with limited duratiétadung & Rost, 1997). The application
of an exponential window can be considered as the introolucti artificial damping, resulting in a
stronger spatial decay of the surface waves. The decaysrdetermined by,,(w), the smallest
positive value that satisfies the following inequality:

| w(rmaxu w>aszS(Tmax7 w) |

0t ) i) | &
The application of the window ensures that the amplitude @tthe response at the farthest and
the nearest receiver does not exceed a valuEhe optimal value of; depends on the receiver
setup. Badsar et al. (2010) recommend a valae10~* for the setup used here.

The simulated fk-spectrum can subsequently be used tolatdcthe simulated Rayleigh
phase velocitie€'}’(w) = w/kp’(w) and CF5(w) = w/kS(w) with the peak picking method
and the circle fit method, respectively. Similarly, the slated attenuation coefficienté%}(w)
and Af;(w) are determined with the half-power bandwidth method anctitege fit method, re-

spectively, from the simulated fk-spectrum. Due to the usi® exponential WindO\NAart(W)
should be subtracted from the obtained attenuation caafticNo window function is used when
determining the Rayleigh phase velocity.

3.1.2 Rayleigh dispersion curves

Figure 3b shows the modulus of the normalized simulated i@&édenction aS5(k,,w) at 50
Hz. The value of the Green’s function at the real pae(ky,(w)) of the theoretical Rayleigh

wavenumber and at the real wavenumtiea%(w) and k3 (w), estimated by means of the peak
picking method and the circle fit method, respectively, atidated with markers. These mark-
ers perfectly overlap for the first Rayleigh mode. Due to tiserétization and truncation of the
wavenumber transformation (20), the Rayleigh peaks inithalated Green’s functionS (k,., w)
are no longer perfectly located Hb(kgj(w)). The shift is negligible for the first Rayleigh mode,
but becomes more apparent for the higher modes, resultiagdifference betweehls)fj(w) and
Re(kf;(w)). This is explained by examining the Nyquist plot@f® (k,,w) at 50 Hz (figure 5b).
When compared to figure 5a, the fitted circles are shifted kgpect to the origin. For the higher
modes, this shift is large compared to the radius of theeifitherefore, the modulus af* (., w)
is affected significantly. As a result, the Rayleigh peake&gponding to the third mode is located
betweerRe(kg;(w)) andRe(kg,(w)), as can be seen in figure 3b. There is no Rayleigh peak that
corresponds to the fourth mode at 50 Hz.

Comparing figures 5b and figure 5a, it is noticed that the dismation and truncation of the
wavenumber transformation (20) only has a small influendademngular sweep of the central an-
gle of the Rayleigh circles. The estimaﬂ% (w) obtained with the circle fit method are therefore

less influenced by this transformation than the estimbﬁ@@w) obtained with the peak picking
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method. As a resuls (w) andksS (w) perfectly matchRe(kg, (w)) andRe(kg,(w)). The differ-
ence betweeh?s (w) andRe(kt,(w)) is noticeable, buks(w) still remains more accurate than
Fry(w).

Figure 7a compares the estima@%(w) of the dispersion curves obtained by applying the
peak picking method to the simulated fk-spectrum, with theotetical dispersion curve?s[{j (w)
and the curveé?gf(w) obtained by applying the peak picking method to the anaticspectrum,
in the frequency range Whe@;{]}?(w) were accurately identified. Figure 7b similarly compares
the estimates?ﬁj.(w) of the dispersion curves obtained by applying the circle gthod to the
simulated fk-spectrum, with the theoretical dispersiorvesCy;(w) and the curve€;§(w) ob-
tained by applying the circle fit method to the analyticasfsectrum, in the frequency range where
C}{;(w) was accurately identified. Both figures show that the dispersurves of the first mode
obtained with the peak picking method and the circle fit methoth matchC}}, (w) for frequen-
cies above 10 Hz. At frequencies below 10 Hz, leakage makepdssible to trace the dispersion
curve. For the second mode, baiti;(w) andC55(w) matchCi, (w) in the considered frequency
range, but the circle fit method is more accurate. The sandstHot the fourth Rayleigh mode.
With the circle fit method, an almost perfect match is fountileenCR¢ (w) and C$(w) for all
modes at all identified frequencies above 10 Hz. Althoughais wossible to accurately identify
the third Rayleigh mode by applying the peak picking methwthe analytical Green'’s function
a$ (k,,w) at frequencies above 34 Hz, this is not possible by applyiegoeak picking method
to the simulated Green’s functiaif’>(k,,w) at frequencies below 60 Hz. The estimates of the
Rayleigh phase velocitg's(w) by means of the circle fit method are accurate for frequencies
above 50 Hz.

These results show that the circle fit method allows to detesrthe dispersion curves of
multiple modes in a larger frequency range and with higheugxy than the peak picking method.
It is possible to determine accurate dispersion curvesréaguencies above the spatial aliasing
limit. It was shown in this section that the dispersion cgrebtained by applying the circle fit
method to a simulated fk-spectrum correspond better tadberétical dispersion curves obtained
by applying the circle fit method to the analytical fk-spaatrthan to the theoretical dispersion
curves obtained from the solution of an eigenvalue probiEmerefore, it is beneficial to use the
circle fit method for the determination of both the theortiand the experimental dispersion
curves in an inversion procedure where the misfit betweesetberves is minimized to determine
the shear wave velocity profile of a site.
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Figure 7. Theoretical Rayleigh dispersion curv@éfj(w) (j = 1,2,3,4) (black lines) and approximations
(@) Cgf(w) (green lines) and?ﬁ?(w) (red lines) obtained by applying the peak picking method @md
ng‘?(w) (green lines) and‘%‘;(w) (red lines) obtained by applying the circle fit method to thelgtical and
simulated fk-spectrum.
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3.1.3 Rayleigh attenuation curves

Comparison of figures 3a and 3b shows that the wavenumbeafdramation results in a widening
of the second Rayleigh peak and, consequently, an oveaggtimof the attenuation coefficient.
This overestimation is visible at 50 Hz in figure 8a, comp@mﬁ} (w) obtained by applying the
half-power bandwidth method to the simulated fk-spectruith Ag;(w) obtained analytically,
andA%?(w) obtained by applying the half-power bandwidth method tcathalytical fk-spectrum,
in the same frequency range as the corresponding dispersigas. A good correspondence be-
tweenAR’ (w) and Ag;(w) or Ag"(w) is obtained only for the first mode, in the frequency range
from 15 to 90 Hz. The Rayleigh attenuation is overestimatdadveer frequencies due to leakage
and at higher frequencies due to aliasing. For the higheresiatb sufficient match is obtained
between the estimated and theoretical curves.

Figure 8b shows a similar comparison betwe@}}(w) obtained by applying the circle fit
method to the simulated fk-spectrumy;(w), obtained analytically, andi}$(w), obtained by
applying the circle fit method to the analytical fk-spectiumthe same frequency range where
the dispersion curves were obtained. For frequencies leetd® and 70 Hz, there is a very good
fit betweenAy’ (w) and A% (w) for all four modes, even if the correspondence betwégf(w)
and Aﬁj(w) is not good. For the first mode, there is a good fit for all comd frequencies
above 15 Hz. These results demonstrate that it is possihledal;$(w) as an inversion target
for a multi-modal inversion of Rayleigh attenuation curaesl that the circle fit method is more
robust than the half-power bandwidth method, which onlyltesn a good fit for the first mode.
The determination of attenuation curves is less accuratiedquencies above the spatial aliasing
limit.

The circle fit method allows to determine the Rayleigh atégiaun curves in a larger frequency
range and for more modes than the half-power bandwidth rdeffmr non-dominant modes, the
estimates of the attenuation coefficients obtained witltitote fit method are more accurate than
those obtained with the half-power bandwidth method. Ferftindamental mode, the estimates
are slightly less accurate. The circle fit method can alsodeel tio determine the theoretical at-
tenuation curves of a layered halfspace with known propedt a lower computational cost than
required for the solution of the eigenvalue problem (4).hAaligh these alternative attenuation
curves do not fit the "true” attenuation curves that are swhstof this eigenvalue problem, they
match very well with the attenuation curves estimated frosinaulated wavefield experiment.
Therefore, it is beneficial to use the circle fit method for deéermination of both the theoretical
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Figure 8. Theoretical Rayleigh attenuation curmgj(w) (j = 1,2,3,4) (black lines) and approximations
(@) A (w) (green lines) andlR; (w) (red lines) obtained by applying the half-power bandwidgtimod and
(b) A}Tg(w) (green lines) and&%‘}(w) (red lines) obtained by applying the circle fit method to thalgtical
and simulated fk-spectrum.
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and the experimental attenuation curves in an inversioogatare were the misfit between these
curves is minimized to determine the material damping natadile of a site.



16 R. Verachtert et al.

3.2 Site with an irregular velocity profile
3.2.1 Simulated free field vibration

The peaks in the analytical and simulated fk-spectrum ofGheen’s function of a regular
soil profile with increasing shear wave velocity with deptually correspond to well separated
Rayleigh modes. In the case of an irregular soil profile wkeftlayers are trapped between stiffer
layers, however, higher Rayleigh modes may significanfycathe fk-spectrum and the dominant
Rayleigh wave (Gucunski & Woods, 1992).

Figure 9a shows the normalized analytical Green’s functifinik,,w) and the dispersion
curvesC;{j(w) of the first ten Rayleigh modes of the soil profile describethbie 2, used in sev-
eral benchmark studies on irregular soil profiles (Lai, Z9@&imatsu et al., 1992; Zomorodian &
Hunaidi, 2006); the shear wave velocity of the second lag/lwer than in the first and third layer.
As a result, the dominant Rayleigh peak in the fk-spectrunsists of multiple Rayleigh modes.
At frequencies below 100 Hz, the mode jumps can be clearlgtified. At higher frequencies,
however, it is not possible to distinguish different moded the Rayleigh peak should be treated
as an apparent or effective Rayleigh mode (Lai, 1998), wisielffected by mode interaction. Fig-
ure 9b shows the fk-spectrum of the normalized simulate@@sdunctioni®® (k,, w), computed
for a receiver setup withhr = 1 m andr,,,, = 80 m, as well as the spatial aliasing limit. This fig-
ure clearly shows that it is possible to identify the Rayhedtispersion curve at frequencies above
the spatial aliasing limit.

3.2.2 Rayleigh dispersion curves

Figure 10a compares the estimét%ﬁ(w) of the first effective dispersion curve, obtained by
applying the peak picking method to the simulated fk-spewtrwith the theoretical dispersion
curvngf(w) obtained by applying the peak picking method to the ana/flcspectrum. Figure
10b similarly compares the estimatg$ (w) of the dominant effective dispersion curve, obtained
by applying the circle fit method to the simulated fk-speatywith the theoretical dispersion
curve C¢(w) obtained by applying the circle fit method to the analytiéabpectrum. Around
5 Hz, the Rayleigh dispersion curve descends steeply dueettatge velocity contrast between
the third layer and the underlying halfspace. Both figuresash very good match between the
theoretical and simulated curve.

From the simulated fk-spectrum of the normalized analyt@aen’s functiona$ (k,,w) in
figure 9a, other higher order effective Rayleigh modes caadbermined from different Rayleigh
peaks. Figure 11a compares the estimﬁi@(w) of the sixth effective dispersion curve, obtained
by applying the peak picking method to the simulated fk-sp@e, with the theoretical dispersion

300 300

N
o
o

100

Phase velocity [m/s]
Phase velocity [m/s]

0 50 100 150 0 50 100 150
(a) Frequency [Hz] (b) Frequency [Hz]
Figure 9. Fk-spectrum of (a) the normalized analytical Green’s fiomc@i&, (k,.,w) with Rayleigh dis-
persion curvesS'FT{j(w) (j = 1,...,10) (black lines) and (b) the normalized simulated Green'<fiom

aSS (k,., w) with spatial aliasing limit (black line), for the irregulaoil profile.
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Table 2. Dynamic soil characteristics of the irregular soil profile.

Layer d Cs Co Bs=0b p
[m] [m/s] [m/s]  []  [kg/m?]

20 180 300 0.03 1800
40 120 200 0.03 1800
8.0 180 1286 0.03 1800
co 700 1323 0.03 1800

ArWNPF

curvecgg(w), obtained by applying the peak picking method to the anadytk-spectrum. This
apparent Rayleigh mode consists of 2 Rayleigh modes withadl smode jump from the sixth to
the fifth mode at 63 Hz. The fit between the two curves is shglass good than was the case
for the first effective dispersion curve. Figure 11b simjlaompares the estimate$(w) of the
sixth effective dispersion curve, obtained by applying ¢irele fit method to the simulated fk-
spectrum, with the theoretical dispersion cuéig (w) obtained by applying the circle fit method
to the analytical fk-spectrum. A perfect match between Hemtetical and simulated dispersion
curve is obtained.

3.2.3 Rayleigh attenuation curves

Figure 12a compares the estimaté’i (w) of the first effective attenuation curve, obtained
by applying the half-power bandwidth method to the simuldiespectrum, with the theoretical
attenuation curvel:h(w), obtained by applying the half-power bandwidth method ecethalytical
fk-spectrum. Good agreement is obtained for frequencitvgdsn 10 Hz and 120 Hz, except in the
neighbourhood of the Rayleigh mode jumps. The interactemvben two close Rayleigh peaks
results in an increased effective Rayleigh attenuatioffficant at frequencies close to the mode
jumps.

Figure 12b shows a similar comparison between the estimdgféw) of the first effective
attenuation curve, obtained by applying the circle fit mdttathe simulated fk-spectrum, with the
theoretical attenuation curvél$(w), obtained by applying the circle fit method to the analytical
fk-spectrum. A slightly better match is obtained at frequiea between 10 Hz and 140 Hz. A
good match is also obtained at frequencies close to the modps above 50 Hz. Because the
mode jumps result in an increased apparent Rayleigh atienwefficient, inversion of apparent
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Figure 10. First effective Rayleigh dispersion curves @;{f(w) (green line) and?PS{‘{(w) (red line) ob-

tained by applying the peak picking method and@);(w) (green line) and’sS (w) (red line) obtained by
applying the circle fit method to the analytical and simudatespectrum for the irregular soil profile.
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Figure 11. Sixth effective Rayleigh dispersion curve (@gg(w) (green line) andﬁﬁ‘g(w) (red line) ob-

tained by applying the peak picking method and@gf (w) (green line) and’:% (w) (red line) obtained by
applying the circle fit method to the analytical and simuddtespectrum for the irregular soil profile.

attenuation curves can help identifying the location of mmmps. This information cannot be
obtained from the Rayleigh dispersion curves.

Figure 13a compares the estimatg}(w) of the sixth effective attenuation curve, obtained
by applying the half-power bandwidth method to the simuldiespectrum, with the theoretical
attenuation curvel}!(w), obtained by applying the half-power bandwidth method ahalyt-
ical fk-spectrum. The agreement between the theoretichlsanulated attenuation curve is not
sufficient to be exploited in an inversion process.

Figure 13b similarly compares the estimatg,(w) of the sixth effective attenuation curve,
obtained by applying the circle fit method to the simulatedlectrum, with the theoretical at-
tenuation curvedté(w), obtained by applying the circle fit method to the analytfaspectrum.
The agreement between the effective Rayleigh attenuatieficients obtained with the circle fit
method is good. This example shows that the circle fit metasopposed to the half-power band-
width method, is also robust for the determination of theote&cal and experimental Rayleigh
dispersion and attenuation curves in the case of an irregaibgprofile.

4 APPLICATION TO MEASUREMENT DATA

4.1 Experimental data

All methods discussed in section 2 are applied to data delleat a site in Heverlee, Belgium.
Based on geological information and CPT tests, it is coredittiat the site consists of a quaternary
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Figure 12. First effective Rayleigh attenuation curves (&} (w) (green line) and43t (w) (red line) ob-

tained by applying the half-power bandwidth method and/(@ (w) (green line) and4§§1 (w) (red line)
obtained by applying the circle fit method to the analyticad aimulated fk-spectrum for the irregular soil
profile.
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Figure 13. Sixth effective Rayleigh attenuation curves @} (w) (green line) anddf (w) (red line) ob-

tained by applying the half-power bandwidth method and/@g(w) (green line) and4§c6(w) (red line)
obtained by applying the circle fit method to the analytioad aimulated fk-spectrum for the irregular soil
profile.

layer with a thickness betweénn and15 m consisting of loose to densely packed sand, followed
by a tertiary layer, consisting of medium dense to dense séiidsand stone concretions in the
upper meters.

A MASW test was performed in September 2016 (Verachtert &rBede, 2017). Surface
waves were generated by means of more than 100 hammer ingpeats4 m x 0.4 m x 0.08 m
aluminum foundation. The acceleration at the soil's swfaas measured at 79 receiver positions
between 1 m and 80 m. The force-velocity transfer funcfii(r, w) is shown in figure 14a. It is
multiplied with the frequency spectrum of a hammer impaotéofollowed by an inverse Fourier
transformation from the circular frequencyto the timet, to obtain the free field accelerations
af (r,t) (figure 14b). The seismic traces are scaled individuallghat the effect of geometrical
and material damping cannot be observed. The coherencedetsuccessive receivers and the
signal to noise ratio are very good. The Rayleigh wave andis{sersive behaviour can clearly be
observed. The dominant Rayleigh wave has an average wetddiB5 m/s. These time signals are

used to determine the normalized experimental fk-specfilink, , w) (figure 14c), following the
procedure explained in subsection 3.1.1. The fk-specthows a clear peak with constant phase
velocity for frequencies up té8 Hz, indicating that the surface response in this frequencyeas
dominated by the fundamental Rayleigh mode and that theaiteébe represented as a homoge-

neous halfspace. At frequencies below 5 Hz, the accurad:)edktspectrunﬁfz(kr, w) is too low
for a reliable estimation of the dispersion cug(w). Consequently, the largest Rayleigh wave-
length\L  that can be measured is abd0tm. At frequencies above 78 Hz, the fk-spectrum is

Rmax

influence by spatial aliasing; the spatial aliasing wavglerequals\t . = 2Ar = 2m. Higher

Rmin

modes affected by spatial aliasing can be observed in figdog ISince the phase velocity of the
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Figure 14. (a) Modulus of the force-velocity transfer functidd’” (r,w), (b) acceleratioru” (r,t) and

(c) normalized experimental fk-spectruﬁfz(kr,w) and spatial aliasing limit (black line) for the site in
Heverlee.
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fundamental Rayleigh wave is predominantly determinedheygdroperties of the soil at depths
smaller than one third to one half of the Rayleigh wavelengtity the top 1 m of the soil has an

influence on the dispersion curve. It is, however, likelyt i@ soil near the surface is heteroge-
neous and local variations may have a significant influenda@high frequency response. Higher
frequencies are, therefore, not taken into account.

The experimental dispersion curé&;(w) and attenuation curvels (w) are determined by
means of the methods discussed in section 2. Figures 15&arsthaw the experimental dispersion
curvesCEe(w) determined with the circle fit method agtf” (w) determined with the peak picking
method, respectively’t(w) is slightly larger thangp(w), with a relative difference of less than
10%. The theoretical curves of soil profiles 2 and 3 are deterchinghe next subsection as the
solution of an inverse problem.

Figures 15b and 16b show the attenuation coeffici€fftw) determined with the circle fit
method and4k! (w) determined with the half-power bandwidth method, respelyti Due to leak-
age, the attenuation curves could only be identified fonfeagies above 17 HAER (w) is signif-
icantly larger thamE¢(w) in the whole frequency range.

It is not possible to determine which method is the most ateuby solely considering the
experimental dispersion and attenuation curves. Bothodeisrves are therefore used in an inver-
sion procedure to determine the shear wave velocity andriademping ratio. The resulting soil
profiles are used to simulate the force-velocity transfacfions. It will be shown in the following
subsection that the soil profile obtained by inversion of Ragleigh dispersion and attenuation
curves determined by means of the circle fit method resulteermost accurate force-velocity
transfer functions.

In order to constrain the inverse problem, the first arrivaks of the P-waves are also identi-
fied from the free field accelerations. A Short Term Averadibhgng Term Averaging (STA/LTA)
procedure is followed in order to detect the first arrivalstfidts et al., 1998). The STA/LTA ratio
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Figure 16. Experimental (black line) (a) dispersion curve, (b) ategian curve and (c) first arrival time
compared with the theoretical curves (red line) correspantb soil profile 3. The experimental and the-
oretical dispersion and attenuation curves are deterniiyecheans of the peak picking and half-power
bandwidth method, respectively.
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Figure 17.STA/LTAratio R(r, t) of the free field accelerationt’, (r, ¢) and first arrival of the P-waves (blue
line).

R(r,t) shown in figure 17 is computed as follows:
Ni Sty al (.t — KAL)
o T B 2 (r t — kAL)

ZZ

R(r,t) = (22)

Ns = 4 and N}, = 60 are used in the present analysis. Only time samples aftgrétagger of

t = 0.2 s are taken into account. The first arrival times are detexthby fitting a bilinear curve
through the local maxima which are assumed to corresporuetéirst arrival of the P-wave. The
first arrival times are shown in figure 15c; this bilinear auoorresponds to a layered halfspace
with a layer with a thickness of 5.5 m and a low P-wave velooft280 m/s on top of a halfspace
with a P-wave velocity o1 700 m/s.

4.2 Inverse problem

In order to determine the dynamic soil characteristics efglte, an inverse problem is solved.
The design variables in the optimization scheme are the thyeknessi, the shear wave velocity
Cs, the ratioCy/C,, of the shear and dilatational wave velocity and the mateiaahping ratiaj;
(assumed to be identical for shear and dilatational wavés).densityp is kept fixed. The layer
thicknessd is allowed to vary between 0.10 m and 10 m, the shear wave i%elog between
50 m/s and 1000 m/s, the rati@,/C,, between 0.05 and 0.7, and the material damping ratio
between 0.01 and 0.15.

The objective functiory is formulated as follows:

:“’CZ< cEwS) ) AZ<ATWZ%§>EW)2

S e

whereCf (w;) and At (wy,) are the theoretical surface wave velocity and attenuatefficient
at a frequencyw, and 7 (1) is the theoretical first arrival time of the P-wave at diseang
The dispersion and attenuation curves are computedvfor= 151 and N, = 126 equidistant
frequencies in the range shown in figures 15a and 15b, resplgctThe first arrival times are
computed atV+ = 79 receiver locations. Weighting factots: = wa = 1 andwy = 0.25 are
used.

This optimization problem is a non-linear least-square®iam, which is solved by means of
the MATLAB function1sqnonlin (mat, 2011). This algorithm is a subspace trust-region oeeth
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and based on the interior-reflective Newton method. Theitbatiss of the dispersion and at-
tenuation curves with respect to the layer parameters dealated analytically with the method
described by Verachtert & Degrande (2016).

First, an initial soil profile 1 is determined using ruleslofiinb (Foti et al., 2014). This profile
is subsequently used as starting profile of an optimizationgss, based on experimental disper-
sion and attenuation curves determined with the circle fitiwa, in order to obtain soil profile 2.
Finally, soil profile 3 is determined by solving an optimipat problem based on the experimen-
tal dispersion and attenuation curves determined with #ad picking and half-power bandwidth
method, respectively. The transfer functions computedstk profiles 2 and 3 will finally be
compared with the experimental transfer functions.

The shear wave velocity is estimated@s= 1.1CE° and the material damping ratio &s =
ARCARS /27, while the corresponding depth is estimatedtas A\;°/2.5 with AF© = Cg</f the
Rayleigh wavelength (Foti et al., 2014). The resulting sheave velocity and material damping
profile are indicated with dots on figures 18a and 18b, res#¢t Based on these values, an
initial soil profile 1 is proposed, consisting of two iderdidayers with a thickness of 2.75 m, a
shear wave velocitg’s = 190 m/s and a material damping ratip = 0.038, on top of a halfspace
with a shear wave velocit¢;, = 207 m/s and a material damping ratih = 0.038 (table 3). The
total thickness of both layers equals the depth 5.5 m of Yerihalfspace interface in the P-wave
velocity profile that results from the first arrival times betP-waves (figure 18c).

During a first optimization, the misfit between the theo@tand experimental dispersion and
attenuation curves determined with the circle fit method iisirmized. The resulting soil profile
2 is shown on figure 18 and tabulated in table 3. The shear waleeity profile and material
damping ratio of the first layer of soil profile 1 and 2 are veiyikr. The material damping
ratio of the second layer of soil profile 2 is significantly uedd. As the attenuation curve could

Table 3. Dynamic soil characteristics of soil profiles 1, 2 and 3.

Profile Layer Thickness Cj o Bs=58 p
] [my/s] [m/s] ] [kg/m?]

1 1 2.75 190 280 0.038 1900
2 2.75 190 280 0.038 1900
3 00 207 1700 0.038 1900
2 1 3.1 195 280 0.041 1900
2 4.7 203 514 0.010 1900
3 00 220 1743  0.047 1900
3 1 3.0 186 280 0.054 1900
2 5.2 204 543 0.010 1900
3 00 222 1773  0.091 1900
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Figure 19. (a) Modulus of the simulated force-velocity transfer fLinnthzz(r,w) and (b) normalized
simulated fk-spectruntf . (k,, w) for soil profile 2.

not be obtained at low frequencies, the material damping dditthe halfspace is very uncertain.
The dilatational wave velocity of the second layer is betwdee values of the first layer and the
halfspace, which in turn remain both close to their initialues. The theoretical dispersion curve,
attenuation curve and first arrival time corresponding tbpofile 2 show a very good fit with the
experimental curves in figure 15. It should be noted thatratbi profiles could also result in an
acceptable fit between the theoretical and experimentaésuAs the low frequency information
is limited, the inverse problem is not sensitive to dynanait sharacteristics at larger depths;
therefore, the depth and characteristics of the halfspaoain uncertain, especially the material
damping ratio.

Soil profile 2 is used as a starting profile for a second inversblem where the misfit between
the theoretical and experimental dispersion and attepnatirves determined with the peak pick-
ing and half-power bandwidth method is minimized. The rsgisoil profile 3 is shown on figure
18 and tabulated in table 3. The main difference with soifif@@ is the significantly higher ma-
terial damping ratio in the first layer and the halfspace. ¢tieesponding theoretical dispersion
curve, attenuation curve and first arrival times are showfigure 16. The correspondence be-
tween the theoretical and experimental dispersion currdsfiest arrival times is similar as for
soil profile 2. The fit between the experimental and theoaétittenuation curves of soil profile 3
is better above 50 Hz, but less good below 50 Hz. R

Figure 19a shows that the simulated force-velocity trarfsfiection /., (r, w) of soil profile
2 is similar to the experimental transfer function (figureLl4=igure 19b shows the normalized

simulated fk-spectrunﬁzz(kr,w) of soil profile 2. The location and width of the peak in the
simulated (figure 19b) and experimental (figure 14c) fk-gp@e correspond well. The higher
modes appearing in the experimental fk-spectrum (figurg ddcnot present in the simulated fk-
spectrum. Figure 19a hence indicates that the identifidghsafile 2 can reasonably well be used
to predict vibrations below 80 Hz. The modulus and fk-speutof the simulated force-velocity
transfer function of soil profile 3 are very similar and tifere not shown.

In order to assess the correspondance between the exptairfueoe-velocity transfer func-
tion HE (r,w) and the simulated transfer functioRs, (r, w) for soil profile 2 and 3 in more detalil,
results are presented for four receiver locations in figireThe 95% confidence region of the
experimental transfer function is also indicated and shthas the measurement uncertainty is
very large at frequencies below 15 Hz. In the frequency rémegeveens Hz and 80 Hz, in the
near field as well as in the far field, the simulated transfaction for soil profile 2 corresponds
well with the experimental transfer function. At higherdtencies, the experimental and simu-
lated transfer function also correspond reasonably widtipagh no information aboves Hz was
taken into account during the inversion procedure. Dueédribreased material damping in soil
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Figure 20. Modulus of the experimental force-velocity transfer fuaotHE (r,w) (black line) and simu-

lated transfer functiod?f’z(r, w) for soil profile 2 (green line) and 3 (red line) for a sourceeiger distance
of (@) 5m, (b) 20 m, (c) 40 m and (d)60 m. The light grey area delimits tH& % confidence region of the
experimental transfer function.

profile 3, the response is underestimated in the whole fregyueange when compared to the ex-
perimental transfer function. In the frequency range beldiv, there is no agreement between
the experimental and the simulated transfer functionsalee the experimental force-velocity
transfer functions are heavily affected by ambient noigeesk results confirm that the circle fit
method (used for the determination of soil profile 2) is matequate for the determination and
inversion of experimental dispersion and attenuationesitiian the peak picking and half-power
bandwidth methods (used for soil profile 3), because theadtgon curve determined with the
half-power bandwidth method is overestimated in this expent.

5 CONCLUSION

This paper introduces the circle fit method as a valuable odgett determine both multi-modal
experimental dispersion and attenuation curves as partMA8W experiment. The proposed
method employs the properties of the Nyquist plot of the &setunction in the fk-domain to
determine the Rayleigh phase velocities and attenuatiefficents of multiple modes.

Two MASW experiments have been simulated in order to compeselts obtained with the
different methods for multi-modal determination of Ragleidispersion and attenuation curves.
Both the peak picking and circle fit methods allow the deteation of multi-modal (effective)
dispersion curves, even at frequencies above the spaaalrg limit. The simulated dispersion
curves obtained with the circle fit method, however, are tlstrnobust and agree better and
in a wider frequency range with the theoretical dispersiorves, especially in the case of non-
dominant modes. Simulated (effective) attenuation cudetermined with the half-power band-
width method only agree with theoretical attenuation csreerresponding to dominant modes.
Simulated (effective) attenuation curves determined withcircle fit method, on the other hand,
agree well with theoretical attenuation curves of all idfesd modes. These results suggest that the
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circle fit method is more robust. The Rayleigh attenuatiosfftments obtained with the circle fit
method consequently are the most adequate target for amadtal inversion. Furthermore, it is
observed that effective attenuation curves contain in&ion on the mode jumps in the apparent
Rayleigh dispersion curves.

Available methods as well as the proposed circle fit methedadso applied to experimental
data collected at a site in Heverlee, Belgium. The simulédeck-velocity transfer function cal-
culated for the soil profile based on the peak picking methatlealf-power bandwidth method
underestimates the experimental transfer function, wimdicates that the material damping ra-
tio and Rayleigh attenuation coefficients are overestithatbe simulated force-velocity transfer
function calculated for the soil profile based on the cirdlenethod shows a better agreement with
the observed transfer functions, confirming that the ciiici@ethod is more robust when applied
on experimental data.
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APPENDIX A: CIRCLE FIT ALGORITHM FOR THE DETERMINATION OF
RAYLEIGH DISPERSION CURVES

The algorithm is a local search algorithm with fixed step ,sideich finds the nearest local maxi-
mum close to an initial guess of the Rayleigh wavenumbeerAfte local maximum is found, the
search step size is refined for better accuracy.

1. Choose an initial guess;°(w) and a step siz&k,.

2. Choose a number of stepd’ for the search region.

3. Calculate theo-norm Ly(n) =| 4 (kg (w) + nAk,, w) — g (k4" (w) + (n — 1) Ak, w) |
forn=-N+1,-N+2,...,N.

4. Determineu,,, for which Ly (n,.,) IS maximum.

5. If ninax = =N + 1, thenk 0 (w) = 4 (kg$’(w) — NAk,,w) and return to step 3.
If Nmax = N, thenkg®(w) = ag (kg (w) + NAk,,w) and return to step 3.
Else,kg % (w) = kgS*(w) + (Mmax — 1/2) Ak,

6. If Ak, < ¢, wheree is the desired wavenumber resolution, go step 7,
else refine the step sizek, and return to step 2.

7. Obtain the circle fit estimate of the Rayleigh wavenumiggtw) = kz5°(w) and the phase
velocity C§ (w) = w/kg5(w).

This algorithm is simple and efficient if a good initial estita is chosen. In this papég°(w) =

kFT{;?’(w), which is usually close to the circle fit estimate and theref good starting point. The

initial step sizeAk, is chosen so that/ kg5’ (w) — w/(kgS’(w) + Ak,) = 0.5 m/s.N = 10 is kept
fixed throughout the algorithm. The search step size is éfomee with a factob.
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APPENDIX B: CIRCLE FIT ALGORITHM FOR THE DETERMINATION OF
RAYLEIGH ATTENUATION CURVES

1. Determineig$(w) and AR (w).

2. Choose a number of wavenumbers for the circle fitting.

3. Determine the location of the cen(@J, yr;) Of the circle to be determined as a linear least
squares fit through the poing§’ (k3S(w) + nAgh(w) /2N, w), forn = —N,-N +1,..., N.

4. Use equation (18) to calculate a mean estimate of theusttiem coefficient as follows:

(ks + mARY/2N)? — (kg5 — nAgy/2N)?

Tc __
ARJ’ - Z Z 10; (kTC+nAT}‘/2N)\ 16 (kS (w)—nALE /2N
an (% ) +tan (25 )|

Tc
m=1 n= 12]{?Rj 3 3

(B.1)

The range of wavenumbers selected to fit the circle corredgptmabout 3% of a full circle
and is chosen large enough to obtain a good circle fit, butawolarge, in order to avoid interfer-
ence with other Rayleigh wave modes. In this papér 20 is used.



