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Abstract

A novel method is presented that detects the proper boundary conditions of a test
setup in a short time period by combing numerical models with experimental data. This
allows for detection and localization of possible anomalies in the assumed boundary
conditions of the system. The method works by combining a low-rank parametric model
order reduction technique with a model updating strategy, where the boundary conditions
of a numerical finite element model are updated by using frequency response function
data. This combination makes it possible to update a large amount of parameters,
because the assumed low-rank nature of the changes enables the use of non-parametric
model order reduction techniques for the calculation of the reduced basis. This is possible,
because the system can be rewritten in such a way that the parameter dependencies only
show up in the feed-forward matrix of the system, thus no a-priori sampling of the
parameter space is required. Thus, the resulting model can identify a large amount
of parameters, including the identification of local changes in the boundary conditions.
The method is validated with a test-setup in which an aluminum plate is attached to an
acoustic cavity and the boundary conditions are varied gradually, by removing the bolts
that are clamping the plate. By applying the proposed model updating scheme to the
rotational stiffness along the edge in combination with an additional damping term, it
is shown that the proposed method can detect which bolts are removed and also leads
to a good match in the frequency response functions. Moreover, it is shown that these
results are achieved in only a few minutes, in contrast to the same procedure with full
order models.

Keywords: Parametric model order reduction, Model updating, Vibro-acoustics, Finite
element method, Low-rank parametric model order reduction, Boundary conditions

1. Introduction

The advancement of computer power in the last decades has led to the increased usage
of numerical calculation software for predicting the vibro-acoustic behavior of structures,
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with schemes like the Finite Element Method (FEM) [1] and the Boundary Element Met-
hod [2]. When it is desired to use a numerical model in conjunction with measurements,
it is important that the numerical model matches the real system to a certain degree.
Since it is generally difficult to know all the parameters in the numerical model a-priori,
model updating has risen as a viable tool to iteratively update the numerical model to
a required accuracy [3], which usually means that the difference between measured data
and the numerical model is minimized. Model updating approaches can be based on
mode shapes, eigenfrequencies and frequency response functions (FRFs) [3], [4] and can
work both in the time and frequency domain [5]. The model updating procedure can
be used for a wide range of engineering problems, for example boundary detection [6],
damage detection [7] and shape identification [8]. Generally, many system evaluations
are necessary to obtain the optimal model. Since the used numerical models are usually
computationally demanding, it would be beneficial to implement Model Order Reduction
(MOR) techniques to speed up the calculations, such as modal reduction [9], balanced
truncation [10], proper orthogonal decomposition [11] and techniques based on Krylov
subspace projection [12], [13]. This paper focuses on Krylov techniques, because of their
ability to handle the large, sparse, linear systems that result from vibro-acoustic FE
models [14], [15], but the proposed method would also work with other projection based
model reduction techniques.

When MOR is used for a parameter study, it is desirable to maintain the parameter
dependency in either the reduced model, or in the reduced basis used for calculating the
Reduced Order Model (ROM). Otherwise, the reduced basis has to be recalculated for
every change in parameter values, which requires expensive full system inversions. To
avoid this, parametric model order reduction (pMOR) techniques have been developed
[16]. Most of these techniques are based on sampling the parameter space, which means
that the range of the parameters has to be known a-priori, and that the accuracy of the
reduced model cannot be guaranteed outside of the sampled parameter range. When
a large amount of parameters has to be retained, which occurs when strongly localized
or spatially distributed parameters have to be detected, and each of these parameters is
sampled at several parameter values, the construction of the reduced basis might take too
long. Thus in practice the amount of parameters in the ROM is restricted. Recently, it
was found by multiple authors [17], [18], that under certain low-rank assumptions of the
parameter dependence no a-priori sampling of the parameter space has to be performed
to calculate the projection matrix. This can be done by remodeling them as additional
localized inputs to the system with extra input vectors that indicate the positions at
which the low-rank parameter applies. This means that non-parametric multiple input
algorithms for calculating the reduced basis can be used. The result is only a single
reduced basis that can be used for all parameter variations. Since no a-priori sampling
has to be applied, a large amount of parameter dependencies can be accounted for by
simply increasing the amount of inputs. Also, as has been shown in [19], if the parameters
have any correlation in their behavior, which is often the case for dynamic systems, this
redundancy can be removed and the size of the ROM stays small, in spite of the many
inputs. This methodology has been extended to second order systems in [19].

In this paper model updating is used to determine the structural Boundary Conditions
(BCs) of a vibro-acoustic system. While structural BCs are usually modeled as clamped,
simply-supported or free, in practice these boundary conditions are never truly satisfied
[20]. Since the dynamic behavior of a structure is highly dependent on the BCs, it would
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be beneficial to have a numerical tool that detects whether the boundary conditions that
are assumed in the numerical model match the boundary conditions of the structure
and warn the end user about possible discrepancies between the assumed BCs and the
actual BCs. The main contribution of this paper is that it derives a methodology that
can determine discrepancies and changes in the BCs in a short time frame. The paper
is split in two parts: The first part in Secs. 2-3 describes a generic combined low rank
pMOR and model updating procedure, that can efficiently determine the BCs of several
vibro-acoustic systems. The described method can handle low-rank changes in the mass,
the damping and the stiffness matrix and includes the analytical derivatives, required for
the model updating procedure. The second part in Sec. 4 demonstrates the usage and
effectiveness of the method with a specific vibro-acoustic example that utilizes measured
FRF data of a clamped plate connected to an acoustic cavity. To establish whether the
method can find differences in BCs, one of the edges of the plate is gradually loosened
by removing the bolts that are clamping down the plate at the edges. The corresponding
rotational stiffness and possible increase in damping of the edge is determined with
model updating. It is shown that the method cannot only effectively estimate the areas
of reduced stiffness and FRFs, but also that it achieves this in a short time span, as
opposed to the same procedure with FRFs of the full model.

2. Low rank parametric model order reduction scheme

To speed-up the model updating process a pMOR scheme is used. The chosen scheme
is the second order low-rank scheme as has recently been derived in [19]. This scheme
makes it possible to reformulate the parametric system to an equivalent system that
can be reduced with non-parametric model reduction techniques. Although the scheme
has originally been derived in the time domain, a conversion to the frequency domain is
straightforward by using the Laplace transform, as is shown in Sec. 2.2.

2.1. pMOR formulation in the time domain

As described in [19], the following parametric system description is used:

M(r)ẍ(t) + C(q)ẋ(t) +K(p)x(t) = b0u(t), (1)

y0(t) = L0x(t) + d0u(t), (2)

in which M(r) ∈ Rn×n is the mass matrix, C(q) ∈ Rn×n is the damping matrix,
K(p) ∈ Rn×n is the stiffness matrix, b0 ∈ Rn×1 is the input vector, L0 ∈ Rn×n is the
output matrix, x(t) ∈ Rn×1 describes the physical state (pressure, displacement, etc...),
u(t) is the input signal and d0 ∈ Rn×1 is the feed-forward matrix, which is zero in
this case. The parameter dependency in the system matrices M(r), C(q) and K(p) is
assumed to be affine and of low rank:
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M(r) = M0 +

ξ∑
m=1

r(m)fmgTm, (3)

C(q) = C0 +

µ∑
l=1

q(l)dle
T
l , (4)

K(p) = K0 +

ν∑
k=1

p(k)bkc
T
k . (5)

The matrices M0, C0 and K0 ∈ Rn×n are the parameter independent parts of
M(r), C(q) and K(p). The low rank changes are described by a vector-vector mul-
tiplication of the unit-vectors bk, ck, dl, el, fm, gm, ∈ Rn×1, thus leading to a matrix
of rank-1. The system is rewritten by defining the following auxiliary inputs:

u
(1)
k = −p(k)cTk x(t), for k =1, . . . ν, (6)

u
(2)
l = −q(l)eTl ẋ(t), for l =1, . . . µ, (7)

u(3)m =−r(m)gTmẍ(t), for m =1, . . . ξ. (8)

This results in the extended input vector

uext(t) =


u0(t)
u(1)(t)
u(2)(t)
u(3)(t)

 ∈ R1+ν+µ+ξ, (9)

with

u(1)(t) =


u
(1)
1 (t)

...

u
(1)
ν (t)

 , u(2)(t) =


u
(2)
1 (t)

...

u
(2)
µ (t)

 , u(3)(t) =


u
(3)
1 (t)

...

u
(3)
ξ (t)

 . (10)

Also the input matrix is redefined as follows:

Bext =
[
b0 b d f

]
∈ Rn×(1+ν+µ+ξ), (11)

with

b =
[
b1 . . . bν

]
∈ Rn×ν ,

d =
[
d1 . . . dµ

]
∈ Rn×µ,

f =
[
f1 . . . f ξ

]
∈ Rn×ξ. (12)
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By shifting all the parameter dependent terms of Eq. (1) to the right-hand side, and
utilizing the extended input matrix in Eq. (11) and extended inputs in Eq. (9), the system
equation can be rewritten as follows:

M0ẍ(t) + C0ẋ(t) +K0x(t) = Bextuext(t). (13)

Correspondingly, the output equation is rewritten as follows:

yext(t) = Lextxext(t) +Dext(p, q, r)uext(t), (14)

with

yext =


y0

y1
...
yτ

 , Lext =

[
L0 0 0
cT eT gT

]
, xext(t) =

x(t)
ẋ(t)
ẍ(t)

 , (15)

Moreover

c =
[
c1 . . . cν

]
∈ Rn×ν ,

e =
[
e1 . . . eµ

]
∈ Rn×µ,

g =
[
g1 . . . gξ

]
∈ Rn×ξ. (16)

The consistency in the dimensions of Eq. (15) is guaranteed by extending the matrices
c, e and g with extra rows of zeros, so that the matrix Lext ∈ R(τ+n)×3n, in which
τ = max(ν, µ, ξ). Finally, the feed-forward matrix is extended as follows:

Dext(p, q, r) =

[
0 0 0 0
0 D(1)(p) D(2)(q) D(3)(r)f

]
, ∈ R(n+τ)×(1+ν+µ+ξ) (17)

with

D(1)(p) = diag(1/p(1), . . . , 1/p(ν)) ∈ Rν×ν ,
D(2)(q) = diag(1/q(1), . . . , 1/q(µ)) ∈ Rµ×µ,
D(3)(r) = diag(1/r(1), . . . , 1/r(ξ)) ∈ Rξ×ξ. (18)

By rewriting the system in such a form, outputs y1(t) = . . . = yν = 0, thus the re-
sulting system gives the same output as Eq. (2). Furthermore, the parameter dependency
only occurs in the feed-forward matrix (Eq. 17).

2.2. pMOR formulation in the frequency domain

By applying the Laplace transform on Eqs. (13), (14) the system can be transformed
to the frequency domain. Applying the Laplace transform on Eq. (13), with Laplace
variable s = iω, gives

M0s
2X(s) + C0sX(s) +K0X(s) = BextU ext(s), (19)
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with the following auxiliary inputs

U
(1)
k = −p(k)cTkX(s), for k =1, . . . ν, (20)

U
(2)
l = −q(l)eTl sX(s), for l =1, . . . µ, (21)

U (3)
m =−r(m)gTms

2X(s), for m =1, . . . ξ. (22)

The extended input vector U ext can be defined in a similar fashion as in the time
domain (Eqs. (9), (10), (11)). Rewriting Eq. (14) leads to

Y ext(s) = LextXext(s) +DextU ext(s), (23)

with

Xext(s) =

 X(s)
sX(s)
s2X(s)

 , Y ext(s) =


Y 0(s)
Y1(s)

...
Yν(s)

 . (24)

Filling in these expressions leads to the conclusion that all the outputs, expect for
Y0(s) are zero:

Y1(s) = . . . = Yν(s) = 0. (25)

2.3. Reduced system matrices

Since Eq. (19) and (23) only contain parameter independent matrices, except for
the feed-forward matrix, a non-parametric MOR technique, such as the Second Order
Arnoldi (SOAR) scheme [12] can be used to calculate the reduced basis. This scheme
calculates the reduced basis V ∈ Cn×r with a moment matching procedure that enables
the projection of the system matrices on a Krylov subspace of size r, as follows:

M̂0 = V TM0V, Ĉ0 = V TC0V, K̂0 = V TK0V,

B̂ext = V TBext, L̂ext = Lext

V 0 0
0 V 0
0 0 V

 . (26)

More details about Krylov subspaces and moment matching can be found in [13].
From Eq. (11) and (15), the following reduced vectors follow:

b̂k = V T bk, d̂l = V Tdl, f̂m = V Tfm,

ĉTk = cTk V, ê
T
l = eTl V, ĝ

T
m = gTmV. (27)

Since Ŷ1(s) = . . . = Ŷν(s) = 0, the following pMOR formulation can be recovered:
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(−ω2M̂(r) + iωĈ(q) + K̂(p))X̂(ω) = B̂0U(ω)

K̂dyn(p, q, r, ω)X̂(ω) = B̂0U(ω). (28)

Thus the reduced basis of the parametric system can be calculated without sampling
the parameter space, which is a significant advantage when a large amount of parameters
have to be retained in the reduced basis.

3. Model updating procedure

Starting from a model that adheres to the assumptions made in Sec. 2, the goal of
the model updating procedure is to find the values of the local parameters that minimize
the following cost function:

arg min
log10(p)

log10

(nfreq∑
l=1

(T ln − T le)2 +
ν∑
k=1

η(p(k) − p(k)init)
2

)
, (29)

with

T le = 20 log10

(∣∣∣Xe(ωl)
Fe(ωl)

∣∣∣) , (30)

T ln = 20 log10

(∣∣∣Xn(ωl,log10(p))
Fn(ωl,log10(p))

∣∣∣) . (31)

In these equations T le represents the experimentally measured FRF at frequency ωl
and T ln the FRF from the numerical model, and the force is defined as F (ωl) = B0U(ωl).
For ease of notation, the cost function has only been described as a function of parameter
vector p, but an extension to the full parameter space is straightforward. The first term
in Eq. (29) minimizes the differences between the measured FRF and the FRF from
the numerical model for a number of selected frequency points. These frequency points
should be chosen around the resonances, so that the influence of noise is minimized.
The second term is a Tikhonov regularization term [21] that reduces the effect of ill-
conditioning and can be adjusted with parameter η. As can be seen in Eq. (29), also

an extra parameter p
(k)
init is introduced: This parameter represents the initial values of

the parameters that are estimated. Furthermore, as can be observed in Eq. (31), the
logarithm of the parameters is used, because it allows for modeling variables with a large
dynamic range.

The used model updating procedure is similar to the one described in [22] and [23]:
It consists of an inverse method using quasi-Newton optimization to obtain the para-
meter values that minimize the cost function in Eq. (29). The quasi Newton method
that is applied here is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [24], that
approximates the Hessian matrix in an efficient way. Since the BFGS method requires a
positive definite approximation of the Hessian matrix, a steepest descent method is used
when this condition is not met. For the required line search algorithm a scheme based
on the Armijo-Goldstein condition is used [25].
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Figure 1: The SoundBox.

3.1. Calculation of the gradient

Besides the pMOR procedure, an additional speed-up of the calculation time is obtai-
ned by calculating the analytical expressions of the gradient of the cost function to the
parameters, instead of using finite differences to approximate them. To calculate the
gradient of the cost function to the parameters, the derivative of the field variables to
the parameter values has to be known first. This derivative is given by

∂X(p, ω)

∂pj
= −K−1

dyn(p, ω)
∂Kdyn(p, ω)

∂pj
K−1
dyn(p, ω)F (ω). (32)

This expression can be substituted in the derivative of the cost function to the para-
meter, which is shown in Appendix A. The resulting matrix inverses, that are described
in more detail in Sec. 4.1, have to be calculated only once per frequency line for every
optimization step, in contrast to the numerical approach with finite differences. For an
additional speedup in the gradient calculations, an adjoint formulation can be considered,
such as described in [26].
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Microphone number x [m] y [m] z [m]
1 0.6 0.5 0.05
2 0.4 0.5 0.05
3 0.2 0.5 0.05
4 0.55 0.29 0.535
5 0.35 0.29 0.535
6 0.15 0.29 0.535
7 0.5 0.607 0.82
8 0.3 0.607 0.82
9 0.783 0.848 1.082
10 0 0.849 1.082

Table 1: Microphone locations. The microphones that are used for model updating are indicated in a
bold font.

Figure 2: Microphone placement inside the acoustic cavity.
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Figure 3: The order in which the bolts were removed from the left hand edge.

4. Example: Structural boundary condition detection with acoustic measu-
rements

The methodology described in Sec. 2 is validated with a vibro-acoustic setup at the
KU Leuven, called the SoundBox, which is shown in Fig. 1. Details of this setup can be
found in [27]. The setup comprises an aluminum plate of 3 mm thickness attached to an
acoustic cavity that is slightly asymmetric. The aluminum plate is clamped between the
main frame of the box and the clamping plate by bolts that are all tightened with the
same torque of 60 Nm. The goal of the experiment is to detect changes in the structural
boundary conditions. This is achieved by progressively removing bolts on the left hand
edge, starting from the fully clamped edge until the full edge is free of bolts. The order
in which the bolts are removed is indicated in Fig. 3.

Every time a bolt is removed, a new set of FRFs is measured by applying an excita-
tion with an impact hammer. The FRFs are measured at several microphone locations
throughout the box, which can be seen in Fig. 2. Also, the microphone locations are
given in Table 1.

4.1. Details of the finite element model

For the numerical experiments an FE model is used of which the mesh is shown
in Fig. 4. The structural domain is modeled with quadratic triangular shell elements
and the acoustic domain is modeled with quadratic tetrahedral elements, leading to a
model with 23537 Degrees Of Freedom (DOF). The mesh size is chosen such that the
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Figure 4: The used Finite Element mesh of the SoundBox, with the excitation point indicated in red.

model is valid until 400 Hz, using the rule of thumb of 10 elements per wavelength. A
structural excitation is applied as a point force on x = 0.2735 m, y = 0.3440 m, z =
−0.035 m, in the z-direction, which corresponds to the point indicated in red in Fig. 4. To
determine the scaling of the structural stiffness matrix, the acoustic mass matrix and the
proportional damping coefficients of the plate and the air, a model updating procedure
was performed on the reference model, assuming perfectly clamped structural BCs. The
details of this procedure can be found in [28] and the resulting parameters that are used
in all of the following examples can be found in Table 2. Notice that the plate is modeled
with a slightly orthotropic behavior, since it followed from the model updating procedure
that this is necessary for an accurate reference model. After identification of the material
parameters under nominal conditions, a second model was made in which the left hand
edge is supported with a varying rotational stiffness that simulates a simply supported
edge (stiffness is zero), a clamped BC (stiffness is infinite) or a BC that is somewhere in
between the two. The main assumption here is that the change in the dynamic behavior
of the plate due to the removal of the bolts, can be accurately modeled by locally changing
the boundary conditions of the numerical model. The varying rotational stiffness of the
edge appears on the diagonal of the stiffness matrix and are introduced by summing
the nominal (simply supported) stiffness matrix with the local change of the parameter,
which is can be modeled with the low-rank affine pMOR approach, shown in Sec. 2. The
other edges are modeled with clamped BCs. The acoustic domain is modeled with sound
hard boundaries.

The system matrices are extracted from the finite element model and the parameter
set that is used in the model updating procedure consists of the rotational edge stiffness
of every node along the edge, plus a scaling factor p(damp) for the proportional damping
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Figure 5: The rotational stiffness is distributed along multiple nodes, to smoothen the stiffness values.

term that works on the whole edge simultaneously, as follows:

C(p) = C0 + 10p
(damp)

β

ν∑
i=0

10p
(i)

bic
T
i , (33)

C0 = αM0, (34)

under the assumption that the edge contains ν nodes, and with proportional damping
parameters α and β. The scaling factor is introduced to account for the extra damping
that occurs due to the imperfect clamped when a few bolts are removed and is multiplied
by the change stiffness matrix due to the change in p(i). The proportional damping in the
rest of the plate does not change during the optimization procedure. Note that K0 does
not appear in Eq. (34), because this term is zero for the simply supported edge. By using
Eq. (19) and (28), and under the assumption of proportional damping, the derivatives of
the dynamic stiffness matrix to the parameters become

∂Kdyn(p, ω)

∂pj
= (ln(10)iω10p

(damp)

β + ln(10))

ν∑
i=0

10p
(i)

bic
T
i . (35)

Furthermore, one extra derivative term that describes the derivative of the dynamic
stiffness matrix to the damping scaling parameter p(damp) is given as follows:

∂Kdyn(p, ω)

∂p(damp)
= iωln(10)10p

(damp)

β

ν∑
i=0

10p
(i)

bic
T
i . (36)

The system matrices resulting from the finite element model, including the parame-
terization, are reduced according to the pMOR method described in Sec. 2. By applying
the automatic reduction scheme that has been explained in [29] and which chooses the
expansion points and the order of the moment matching procedure, a model of 180 DOF
was obtained with a relative error below 0.1 % for all frequencies below 400 Hz. The va-
lues of the rotational stiffness were initialized at p(i) = 4, which approximates a clamped
edge, and the damping scaling parameter at p(damp) = 0. This value is chosen, because
the resulting FRFs are close to the reference (clamped) FRF, which is required to match
the FRFs in the optimization procedure. It was found that even higher values of p(i)

leads to ill-conditioned matrices, while not significantly changing the FRFs.
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Properties Symbol Value
Young’s moduli Ex, Ey, Ez 66e9, 81e9, 69E9 Pa
Poisson’s ratios νx, νy, νz 0.33, 0.33, 0.33
Density plate ρ 2700 kg/m3

Thickness t 0.003 m
Structural damping parameters αs, βs 5.1357, 2.554e− 6
Acoustic damping parameters αa, βa 3.7755, 5.199e− 7

Density air ρ 1.225 kg/m3

Acoustic mass scaling factor δ 0.98179
Structural stiffness scaling factor γ 0.85361

Table 2: Properties of the updated numerical reference model.

Number of removed bolts Damping multiplication factor
0 bolts 0.0092
4 bolts 0.2606
6 bolts 1.8705
10 bolts 2.0591
12 bolts 2.5127
15 bolts 3.2690
17 bolts 3.0573

Table 3: Damping multiplication factor p(damp) of the proportional damping term along the edge.

4.2. Results

To improve the conditioning of the system, a Tikhonov regularization term of η = 0.04
was added to the cost function, as described in Sec. 3. This value was determined by
performing an L-curve analysis [21]. Furthermore, because a relatively smooth transition
between the stiffness values among neighboring nodes is expected, an additional weighting
scheme was applied to the optimization parameters, as shown in Fig. 5. This weighting

scheme influences 3 consecutive nodes of the edge, by multiplying 10p
(i)

to 3 weighting
factors: The middle node (i) is weighted by 2/3 and the neighboring nodes, (i − 1)
and (i + 1), are weighted by 1/3. The optimization procedure is terminated when the
difference between the cost function of two subsequent iterations is less than 1e− 3. The
microphones that are used in the optimization procedure are microphone 1, 3, 4, 5, 9,
and 10.

4.3. Rotational stiffness estimation

Although no reference stiffness is available to compare the result that follows, it is
expected that around the region where the bolts are removed a stiffness decrease will
be observed after the model updating procedure is completed. The identified rotational
stiffness as function of the amount of bolts removed is shown in Fig. 6. The number of
removed bolts are indicated on top of each figure and their locations are indicated with
the gray crosses at the bottom of each sub-figure. As can be observed in Fig. 3, these
bolts can lie outside of the outer dimensions of the edge. Furthermore, the retrieved
damping scaling factor is given in Table 3.
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Figure 6: Identified rotational edge stiffness. The tightened bolts are indicated with the black crosses
and the removed bolts are indicated in gray.

14



Process Full model Reduced model
One frequency line 0.206 s 0.00239 s

Calculation reduced basis N/A 417.82 s
Projection reduced model N/A 100.95 s

Total time 4.90e4 s 575.58 s

Table 4: Time spent on system inversions for full and reduced model, with frequency line 23762 evalua-
tions (needed to converge for 4 removed bolts) and to reduce the model.

The stiffness has been plotted on a logarithmic scale. It can be seen that the location
of the removed bolts can be found from the estimated data: The rotational stiffness
drops significantly around the region where the bolts are removed. Furthermore, it is
observed that the estimated damping scaling factor grows when more bolts are removed,
which is expected because of the reduced clamping. The estimation becomes less accurate
around the corners of the edge, which can be explained by the influence of the other (still
clamped) edges around the corners. There are some fluctuations in the initially identified
stiffness (Fig. 6, top left), which has two possible explanations. Firstly, although all bolts
are tightened with the same torque, there is no guarantee that the distribution of the
resulting clamp is equal across the edge. Secondly, also the change in the dynamic
behavior of the plate does not change as much for high stiffness values.

4.4. Comparison of the FRFs

The match between the measured FRFs and the numerical FRF after model updating
is shown in Fig. 7 for microphone 1. For the FRFs measured with the other microphone
locations similar results are obtained. It can be seen that a good match is obtained for all
cases. The importance of adjusting the damping for different boundary conditions can be
clearly observed, since for a high number of removed bolts, several resonance peaks are
damped out more strongly and this behavior is caught accurately by the model updating
procedure.

4.5. Calculation speed of the method

As indicated before, the main reason to use a pMOR model is to speedup the opti-
mization process, such that a detection of anomalies in the BCs can be achieved while
performing a measurement campaign. Therefore, the speed of the method is assessed in
more detail. In practice, most time is spent on calculating the reduced basis, calculating
the FRFs and the subspace projection of the full model to the reduced model. To get
an estimate of the amount of time that is required to obtain the same results with the
full model, the amount of FRF evaluations were counted for the reduced model and mul-
tiplied by the time that is required to calculate one FRF for the full model, see Table
4. The results that are shown here are obtained for the data set with 4 bolts removed.
All these calculations were done on a laptop PC with a 2.70 GHz quad-core processor
and 16GB of RAM memory. Here, the huge benefit of using parametric reduced order
models is clearly visible: While the optimization with the ROM is finished in only a few
minutes, the optimization with the full model would take several days.
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Figure 7: Comparison between the measured FRFs (black) and the estimated FRFs after model updating
of the boundary conditions (gray) for microphone 1. The FRF under starting conditions p(init) is shown
with the dashed line.
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5. Conclusions

A method has been derived that makes it possible to efficiently detect the boun-
dary conditions for linear vibro-acoustic systems. The method works by simulating the
parametrized BCs as low-rank changes in the mass, damping and stiffness matrix. By
making use of the low-rank characteristics of the model, the system is rewritten so that
non-parametric model order reduction techniques can be used to obtain a reduced ba-
sis that includes the parametric dependency. This means that, in contrast to pMOR
techniques that do not use this low-rank property, the reduction basis is independent of
any parameter space sampling, thus a small model is obtained that can be used for fast
model updating. Moreover, it is shown that the derivatives of the resulting model can
be derived analytically, leading to an additional reduction in the calculation time.

The method is applied on a vibro-acoustic problem, consisting of an aluminum plate
that is connected to an acoustic cavity. The plate is clamped to a very thick steel frame by
several bolts and these bolts are removed progressively on the left hand edge, to emulate
variations in the BCs. The FRFs under the different clamping conditions are measured.
Then model updating is applied by updating the rotational stiffness along the edge, plus
a scaling factor on the proportional damping in the numerical model. The resulting
estimated stiffness clearly indicates possible problem regions and the resulting numerical
FRFs match the measurements well. Therefore, it is concluded that this method can be
used effectively to determine discrepancies in the BCs between the numerical model and
the measurements. Furthermore, the proposed method does this in only a few minutes.
This makes it possible to do this assessment for a wide variety of applications: For
example, to check the boundary conditions while performing a measurement campaign
or quality control of components during assembly.
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Appendix A.

Starting with the cost function itself:

C = log10

(nfreq∑
l=1

(T ln − T le)2 +

ν∑
k=1

η(p(k) − p(k)init)
2

)
. (A.1)

Using the definition of the FRFs as given in Eq. (30) and Eq. (31), and using H• = X•
F•
,

this is rewritten to
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C = log10(

nfreq∑
l=1

(20 log10(|H l
n(p)|)− 20 log10(|H l

e|))2 +

ν∑
k=1

η(p(k) − p(k)init)
2)

= log10(A). (A.2)

Here the variable A is used for ease of notation. By making use of the following
definition:

|H l
n(p)| =

√
[R(H l

n(p))]2 + [I(H l
n(p)]2, (A.3)

it is possible to get the derivative by applying the chain rule several times:

∂C

∂p(k)
=

20(T ln − T le)
ln(10)2(A)|Hn(p)|2

(2R(Hn(p))R[
∂Hn(p)

∂p(k)
] + 2I(Hn(p))I[

∂Hn(p)

∂p(k)
])

+
2η(p(k) − p(k)init)

ln(10)(A)
. (A.4)

Because the force is assumed to be parameter independent, the derivatives in Eq. (32)
can directly be substituted in Eq. (A.4) to get the full analytical derivative expression.
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