
> TEM-16-0254.R3 < 1

Abstract—Proactive scheduling aims at the generation of robust

baseline schedules, which has been studied for many years with the

assumption that activity splitting is not allowed. In this paper, we

focus on the proactive resource-constrained project scheduling

problem in which each activity can be split at discrete time instants

under the constraints of a maximum number of splitting and a

minimum period of continuous execution. Besides, in this problem

setup times are considered. Two properties of the established

model and one lemma are proposed and applied in the developed

genetic algorithm. After linearizing the proposed model, we use a

commercial mathematical programming solver as a benchmark to

solve the problem. From the computational results, we find that

the developed genetic algorithm is effective and efficient in solving

the defined problem, and activity splitting improves robustness.

With the growth of the maximum number of splitting, the decline

in the minimum execution time, the decrease in the setup times,

and the extension of the project due date, robustness increases.

Index Terms—Activity splitting, setup time, genetic algorithm,

proactive project scheduling, solution robustness

Managerial Relevance Statement—In consideration of the fact

that some project activities can be split, our research proposes a

model to split and schedule activities with the aim to generate

robust baseline schedules that are protected against schedule

disruptions. With our developed genetic algorithm, the contractor

could generate satisfying baseline schedules within an acceptable

computing time, which are likely to have low adjustment costs

during project execution. From the computational results, we find

that activity splitting improves robustness, which offers a method

to improve schedule robustness when activity splitting is allowed.

Furthermore, we find that, with the growth of the maximum

number of splitting, the decline in the minimum execution time,

the decrease in the setup times, and the extension of the project

due date, schedule robustness increases. To summarize, our

findings could help project managers better understand the

benefits of making good use of activity splitting in the scheduling

of activities in a resource-constrained project, and then help them

do a better job in improving the robustness of baseline schedules.

I. INTRODUCTION

t is a well-known fact that project activities are subject to

considerable uncertainties, such as accidents, resource

breakdowns, and bad weather conditions, which may lead to

numerous schedule disruptions during project execution and

therefore incur some costs when project managers adjust the

starting times of the activities to deal with them. Accordingly,

proactive scheduling has been the subject of many research

efforts that aim to generate robust baseline schedules that are

protected against schedule disruptions. The more robust the

baseline schedules are, the lower the adjustment costs will be

during project execution. These research efforts have led to

many models and algorithms, which are summarized in [1] - [4].

Two robustness approaches are considered in this field, i.e.,

quality robustness and solution robustness [5]. For quality

robustness, the robust multi-mode discrete time/cost trade-off

problem is introduced and solved by exact and heuristic

algorithms [6], [7]. Regarding solution robustness, various

approaches are developed to cope with multiple disruptions,

including activity duration disruptions [8], stochastic activity

durations [9], [10], and stochastic resource availabilities [11],

[12]. In contrast to the literature that addresses quality

robustness or solution robustness separately, several studies

have concentrated on the potential trade-off between these two

types of robustness. Al-Fawzan and Haouari develop a bi-

objective model with an aggregation function in the absence of

available information regarding the nature or size of the

uncertain events [13]. With the composite objective of

maximizing both schedule stability and timely project

completion probability, Van de Vonder et al. develop a

heuristic algorithm for minimizing a stability cost function [14]

and they discuss the results obtained by a large experimental

design that is established to evaluate several predictive-reactive

resource-constrained project scheduling procedures [15].

Furthermore, Chtourou and Haouari present a two-stage

algorithm in which the first stage is designed to minimize the

project makespan, while the second one aims to maximize

schedule robustness [16]. Deblaere et al. propose an objective

to minimize a cost function that consists of the weighted

expected activity starting time deviations and the penalties or

bonuses that are associated with late or early project completion

[17]. One recent study defines a new robustness measure that is

completely independent of the applied reactive policy and then

introduces a branch-and-cut algorithm to solve a sample

average approximation of the original problem [18]. More

details about the literature on proactive scheduling can be found

in Appendix A.

It is noteworthy that most of the literature on proactive

scheduling does not consider activity splitting, which means

that these activities are not divisible. However, if activity

splitting is allowed, it may be more flexible for project

managers to schedule activities and make good use of resources

and slacks to generate much more robust baseline schedules. In

other words, if activity splitting contributes to higher robustness,

then activities will be split into certain parts for execution;

otherwise, activities will be scheduled without splitting. Note

that we consider to split activities actively during the stage of

baseline schedule generation, which is different from

interrupting activities passively to deal with disruptions during

the stage of project execution.

In previous literature, some researchers have already

A Genetic Algorithm for the Proactive

Resource-Constrained Project Scheduling

Problem with Activity Splitting

I

> TEM-16-0254.R3 < 2

considered the project scheduling problem with activity

splitting. The difference from what we discussed before is that

their objective function is mainly focused on makespan

minimization and the term they use of activity splitting is

activity preemption or activity interruption. For example,

Demeulemeester and Herroelen describe a branch-and-bound

procedure to solve the preemptive resource-constrained project

scheduling problem (PRCPSP) with the objective of

minimizing project duration [19]. Following the work that

reveals the potential benefits of allowing one interruption in the

scheduling of activities in a resource-constrained project [20],

Buddhakulsomsiri and Kim present a priority rule-based

heuristic for the multi-mode scheduling problem with the

splitting of activities around unavailable resources allowed [21].

Based on an analysis of the characterizations of the solution set

for the preemptive and non-preemptive resource-constrained

project scheduling problem (RCPSP), Damay et al. present a

linear programming based algorithm to solve the two problems

[22]. Ballestín et al. mainly focus on problem 1_PRCPSP in

which a maximum of one interruption per activity is allowed,

and they propose a new model that covers most practical

applications of discrete activity preemption [23], [24]. A

genetic algorithm for the non-preemptive multi-mode

scheduling problem is developed and extended to the

preemptive case of this problem [25]. Recently, Haouari et al.

use a linear programming model that is based on the PRCPSP

to compute a lower bound for the RCPSP [26], and Moukrim et

al. propose an effective branch-and-price algorithm based on

minimal interval order enumeration that involves column

generation as well as constraint propagation [27]. For more

research efforts on project scheduling problems with activity

splitting, we refer to [28] - [30]. In Appendix B, more details

can be found about the literature on the resource-constrained

project scheduling problem with activity splitting.

In practice, activities may be different with respect to activity

splitting. Firstly, activities may need to be executed

continuously for certain periods before the next splitting and the

duration of the continuous execution time is different. Secondly,

some activities, such as chemical reactions, may not be split at

all due to technical reasons, but some activities, such as the

transportation of materials, are technically feasible to be split

into certain parts. Even though the activities are all feasible for

splitting, the maximum number of splitting allowed may be still

different. Thirdly, some activities, such as managerial

operations, do not need setup times before execution while

some activities, such as a bridge construction, may need certain

periods for preparation. From the previous literature, we know

that the first two differences have been considered and

measured by two factors, i.e., the maximum number of activity

splitting and the minimum continuous execution [24], [30], but

the third one has not been considered in the scheduling research

with activity splitting.

Typically speaking, activities that are split into certain parts

cause additional setup times (and thus additional costs) when

returning to their execution. In other words, if one activity

technically needs a setup time before execution, then there will

be additional setup times for the second and the subsequent

parts of this activity. This implies that there will be a trade-off

between the benefits of activity splitting and the drawbacks of

the increasing setup times under the objective of solution

robustness maximization.

Based on the facts above, this paper presents a proactive

resource-constrained project scheduling problem with activity

splitting. In this problem, each activity can be split at discrete

time instants under the constraints of a maximum number of

splitting and a minimum period of continuous execution.

Besides, additional setup times are considered when the

activities return to execution from splitting. Different from the

existing proactive scheduling which aims to improve schedule

robustness without activity splitting, this paper aims to take

activity splitting into account to seek opportunities to further

improve schedule robustness. Therefore, it can be regarded as a

two-stage problem: the first one is to decide how to split

activities and the second stage is proactive scheduling, i.e. how

to schedule activities to construct an optimal baseline schedule

with the objective of solution robustness maximization. The

solution robustness is obtained by inserting time buffers into the

baseline schedule with the consideration of precedence,

renewable resources, and project deadline constraints, and it is

measured by a free slack based function, an adjusted surrogate

solution robustness measure that is proposed by Lambrechts et

al. [31]. This problem can be defined as an extension of the

proactive RCPSP because activity splitting becomes allowed.

As activities are handled in different ways in terms of activity

splitting, this problem is also a generalization of 𝑚 _PRCPSP

where all activities can be split 𝑚 times. We believe that the

proposed problem, which to the best of our knowledge has not

thus far been investigated, may be more practical because it

takes activity splitting into account and considers multiple cases

of divisible activities.

Note that in previous literature on proactive scheduling

activities are indivisible and treated as the basic project units.

However, based on the theory of the work breakdown structure,

activities are broken down by different levels. Therefore, in this

paper activities are much more similar to work packages, which

are not divided to the lowest level so that project managers can

have the freedom to decide whether to further split the activities.

Conversely, if activities have already been divided to the lowest

level, we can regard them as subactivities, and then we can

decide how to merge and schedule them to decrease the setup

times and improve schedule robustness, which is just equivalent

to scheduling activities without activity splitting in this paper.

The rest of this paper is organized as follows. In Section II

we present the notations and the problem formulation. Section

III is devoted to the development of a genetic algorithm that is

based on the analysis of the proposed scheduling model.

Section IV conducts an extensive computational experiment.

Finally, in Section V, general conclusions and directions for

further research are presented.

II. PROBLEM FORMULATION

A. Optimization Model

Consider a project represented in an activity-on-the-node

> TEM-16-0254.R3 < 3

(AoN) format by means of a digraph 𝐺 = (𝑁, 𝐴), where the set

of nodes 𝑁 represents the activities and the set of arcs 𝐴 the

finish-start, zero-lag precedence relations. The activities are

numbered from the dummy start activity 1 to the dummy end

activity 𝑛 , and each activity 𝑖 has a duration 𝑑𝑖 and requires

renewable resources to ensure that it is carried out. There are 𝐾

different renewable resource types with an availability in each

period [𝑡, 𝑡 + 1), (𝑡 = 0,1,⋯ , 𝐷), of 𝑅𝑘
𝜌

 units, 𝑘 = 1,2,⋯ , 𝐾.

Each activity 𝑖 requires 𝑟𝑖,𝑘
𝜌

 units of resource type 𝑘 during each

period in which it is processed. Dummy activities have zero

duration and resource usage. We use subactivity (𝑖, 𝑣) to

denote the 𝑣-th part of activity 𝑖, which has the same resource

usage as activity 𝑖. The only difference between the activity and

its subactivities is the duration. The project deadline is denoted

as 𝐷.

For practical reasons that activities are different with respect

to activity splitting, we make the following three assumptions.

Firstly, for each activity 𝑖, a required minimum execution time

휀𝑖 is predefined during which the activity must be in progress

without any splitting. This forces the duration 𝑑𝑢𝑟𝑖,𝑣 of

subactivity (𝑖, 𝑣) to be at least 휀𝑖. Secondly, each activity 𝑖 can

be split a maximum of 휂𝑖(휂𝑖 < [
𝑑𝑖

𝜀𝑖
]) times at any discrete time

instant, which results in 𝑉𝑖 (𝑉𝑖 ≤ 휂𝑖 + 1) precedence-

connected subactivities, each of which has a resource

requirement 𝑟𝑖,𝑘
𝜌

. The first two assumptions are responses to the

fact that activities cannot be split too frequently. Obviously, the

case 휂𝑖 = 0 or 𝑑𝑖 < 2휀𝑖 means that activity 𝑖 must be

processed without splitting. In addition, as a response to the fact

that in projects activities may need setup times for preparation,

we assume each activity technically needs setup time 휃𝑖 before

execution. Note that the setup time is not included in the activity

duration, which means the actual duration of one indivisible

activity is its duration plus its setup time, and there will be

additional setup times for activities that are split into certain

parts. Obviously, the case 휃𝑖 = 0 means that activity 𝑖
technically does not need setup time.

The weight 𝑤𝑖 , which is allocated to each activity 𝑖, denotes

the marginal cost of deviating the completion time of activity 𝑖
during project execution from its planned completion time in

the baseline schedule. The cost can be regarded as the impact

of such a delay on all its immediate and transitive successors.

Because the successors of the subactivities are the same as those

of their original activity, we assume that the weights of the

subactivities are equivalent to those of their original activities.

The free slack 𝐹𝑆𝑖,𝑣, which represents the time buffers after the

duration of subactivity (𝑖, 𝑣), is defined as the total amount of

time this subactivity can be delayed without causing any

precedence or resource constraint violations. Note that the free

slack here is defined in the context of limited resources, which

is an extension of the one in the framework of CPM (Critical

Path Method). Referring to Lambrechts et al. [31], the utility of

the free slacks may decrease marginally in exponent with the

increase of their amounts. For example, if one activity has a free

slack of 6, then the first slack will be much more beneficial than

the sixth one to absorb the disruptions because it is less likely

for the activity to delay six periods. Thus, the robustness that is

generated by 𝐹𝑆𝑖,𝑣 can be calculated as 𝑤𝑖 ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1 . Then,

counting the utilities of all subactivities of all activities, the

robustness of a schedule (hereafter denoted as 𝑅𝑜𝑏𝑢) can be

defined as ∑ [𝑤𝑖 (∑ ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1)𝑛

𝑖=1].

There are three groups of decision variables in this problem,

i.e., 𝑉𝑖 , 𝑑𝑢𝑟𝑖,𝑣 , and 𝑠𝑖,𝑣 , which respectively represent the

number of subactivities of activity 𝑖, the duration of subactivity

(𝑖, 𝑣), and the starting time of this subactivity. Then, the goal is

to decide the optimal values for 𝑉𝑖, 𝑑𝑢𝑟𝑖,𝑣, and 𝑠𝑖,𝑣 to obtain a

baseline schedule with the maximum schedule robustness

𝑅𝑜𝑏𝑢 . The optimization model for the proactive resource-

constrained project scheduling problem with activity splitting is

constructed as follows. It is important to note that in our model

setup times are not included in 𝑑𝑖 but are included in 𝑑𝑢𝑟𝑖,𝑣.

Maximize 𝑅𝑜𝑏𝑢 = ∑ [𝑤𝑖 (∑ ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1)𝑛

𝑖=1] (1)

Subject to:

𝑠1,1 = 0 (2)

𝑠𝑖,𝑉𝑖 + 𝑑𝑢𝑟𝑖,𝑉𝑖 ≤ 𝑠𝑗,1 (𝑖, 𝑗) ∈ 𝐴 (3)

𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 ≤ 𝑠𝑖,𝑣+1 𝑖 = 1,⋯ , 𝑛; 𝑣 = 1,… , 𝑉𝑖 − 1 (4)

𝑠𝑛,1 ≤ 𝐷 (5)

∑ 𝑟𝑖,𝑘
𝜌
≤𝑖∈𝑆(𝑡) 𝑅𝑘

𝜌
 𝑘 = 1,2,⋯ , 𝐾; 𝑡 = 0,1,⋯ , 𝐷 (6)

∑ 𝑑𝑢𝑟𝑖,𝑣
𝑉𝑖
𝑣=1 = 𝑑𝑖 + 𝑉𝑖 × 휃𝑖 𝑖 = 1,2,⋯ , 𝑛 (7)

𝑉𝑖 ≤ 휂𝑖 + 1 𝑖 = 1,2,⋯ , 𝑛 (8)

𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 휀𝑖 𝑖 = 1,2,⋯ , 𝑛; 𝑣 = 1,2, … , 𝑉𝑖 (9)

𝑉𝑖 , 𝑑𝑢𝑟𝑖,𝑣 , and𝑠𝑖,𝑣 are nonnegative integers ∀𝑖, ∀𝑣 (10)

In the formulation, the objective function (1) is to maximize

solution robustness. Equation (2) forces the project to start at

time 0. The precedence constraints given by (3) indicate that the

start of activity 𝑗 must wait for the end of the last subactivity of

all its preceding activities, and in constraints (4) one subactivity

of an activity does not start before the end of the previous

subactivity of the same activity. Constraint (5) imposes a

deadline on the project. As 𝑆(𝑡) is the set of activities that are

in progress during time interval [𝑡, 𝑡 + 1), constraints (6) force

the total units of utilized resources to be no greater than the

available resource capacity for every period. The conditions for

activity splitting are reflected in (7), (8), and (9). Equation (7)

ensures that the duration of all the subactivities of activity 𝑖
must equal the sum of the processing time of activity 𝑖 and its

total setup times. The constraints (8) guarantee that the times of

splitting for a given divisible activity is no more than a

predefined level called 휂𝑖, while in (9) for each subactivity the

duration without setup time must be at least its minimum

execution time. The range of values for 𝑉𝑖, 𝑑𝑢𝑟𝑖,𝑣, and 𝑠𝑖,𝑣 are

given in the constraints (10).

In this non-linear model, we need to take constraints (7), (8),

and (9) into account to decide how to split activities and decide

how to schedule those subactivities based on the constraints (2)

- (6). In the first decision, there will be a trade-off between the

benefits of activity splitting and the drawbacks of the increasing

setup times. In the second decision, there will be a trade-off

between inserting time buffers and the deadline constraint. For

the objective function, 𝐹𝑆𝑖,𝑣 will be calculated by an algorithm

> TEM-16-0254.R3 < 4

that is developed in the next section. Note that 𝐹𝑆𝑖,𝑣 may not

equal the values of time buffers. Time buffers are inserted based

on the rule of marginally decreasing slack utility, activity

weights, and the changes of the schedule after inserting time

buffers, which together influence the improvement of the

objective function value. The bigger the improvement, the

bigger the possibility to insert time buffers to this activity.

B. An Example

We use an example to illustrate the problem that is identified

above. The AoN network of the example is depicted in Fig. 1

where activities 1 and 6 are the dummy start and end activities

respectively. The activities in the project require one renewable

resource and their durations as well as resource requirements,

activity weights, the maximum numbers of splitting, the

minimum periods of continuous execution, and the setup times

are labeled with the nodes. Other data of the project are as

follows: 𝐾 = 1, 𝑅1
𝜌
= 4, 𝐷 = 14. To demonstrate that activity

splitting is beneficial to schedule robustness, we give the most

robust baseline schedules without and with activity splitting

which are depicted as schedules (a) and (b) respectively in Fig.

2 and compare the results produced below.

1) The Case without Activity Splitting

In this case, we suppose that activities are indivisible during

execution. Therefore, we have 휂𝑖 = 0 for each activity 𝑖. Under

this circumstance, schedule (a) is the optimal baseline schedule

in terms of solution robustness where each activity has only one

subactivity and the part with slashes represents the setup time

of activity 5. Obviously, only activity 2 has a free slack of 2.

The corresponding objective function value is equal to 2.00 and

was calculated as shown in Table I.

Fig. 1. An example.

(a)

(b)

Fig. 2. Two feasible schedules for the project.

2) The Case with Activity Splitting

In this case, it is assumed that activity splitting is allowed.

Based on the data shown in Fig. 1, schedule (b) is the most

robust baseline schedule where activity 5 is split into two

subactivities. Because of activity splitting, another setup time is

needed before the execution of the second subactivity of

activity 5. The corresponding objective function value is 10.90,

the computation of which can be found in Table I as well.

Comparing the results discussed above, we can find that an

improvement of 445% is obtained for the free slack based

objective function value, which verifies the potential benefits of

making good use of activity splitting in proactive scheduling to

some extent. The reason is that activity splitting enhances the

flexibility of scheduling activities, which is beneficial to

making good use of resources to shorten the project duration

and thus spare more space to insert time buffers. Next, we will

make an analysis about the cost saving when taking activity

splitting into account. In this example, compared with schedule

(a), schedule (b) is likely to have lower adjustment costs. For

example, if the activity duration increases by 1 both for activity

3 and activity 5, we need to adjust the starting times of activity

3 and 4 in schedule (a), but do nothing in schedule (b), which

incurs a lower cost of 13 (9+2*2) for schedule (b).
TABLE I

 CALCULATION OF THE OBJECTIVE FUNCTION

 𝑖 𝑤𝑖
Schedule (a) Schedule (b)

𝐹𝑆𝑖,1 ∑ 𝑒−𝑏
𝐹𝑆𝑖,1
𝑏=1 𝑤𝑖 ∑ 𝑒−𝑏

𝐹𝑆𝑖,1
𝑏=1 𝐹𝑆𝑖,𝑣 ∑ ∑ 𝑒−𝑏

𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1 𝑤𝑖 ∑ ∑ 𝑒−𝑏

𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1

1 0 0 0.00 0.00 0 0.00 0.00

2 4 2 0.50 2.00 1 0.37 1.48
3 9 0 0.00 0.00 1 0.37 3.33

4 2 0 0.00 0.00 0 0.00 0.00

5 7 0 0.00 0.00 1+2 0.87 6.09
6 25 0 0.00 0.00 0 0.00 0.00

𝑅𝑜𝑏𝑢 2.00 10.90

III. THE DEVELOPED GENETIC ALGORITHM

In the first part, we propose two properties of the scheduling

model and one lemma, which can be used for the development

of the algorithm. In the second part, we firstly explain why we

choose a genetic algorithm to solve the problem and then

present the framework of the developed algorithm. Afterwards,

technical details are given to describe the developed genetic

algorithm in seven parts where the proposed properties and the

lemma are used for the local search procedure.

A. The Properties and the Lemma

To explain the properties and the lemma more clearly, we

provide three definitions in advance.

> TEM-16-0254.R3 < 5

Definition 1: In a given schedule, time period 𝑇 is feasible

for a minimum part of activity 𝑖 , whose duration equals the

minimum execution time of activity𝑖, to be executed if: 1) the

successors of activity 𝑖 do not start before the end of time period

𝑇, 2) the remaining resources in time period 𝑇 can still satisfy

the resource requirements of activity 𝑖, 3) the length of time

period 𝑇 is no less than 휀𝑖 + 휃𝑖 , and 4) the starting time of the

time period is after the completion time of the last subactivity

of activity 𝑖.
Definition 2: Subactivity (𝑖, 𝑣) is divisible if 𝑉𝑖 ≤ 휂𝑖 and

𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 2휀𝑖.

Definition 3: Subactivity (𝑖, 𝑣) is abundant in free slacks if

𝐹𝑆𝑖,𝑣 ≥ 2 + 휃𝑖.

Based on the above definitions, we develop two properties of

the model, which are named as Pioneering and Balancing

respectively based on the mechanism of each operation. After

that, one lemma is proposed for improving the schedule

robustness.

Property 1 (Pioneering): If subactivity (𝑖, 𝑣) is divisible,

and there is a feasible period 𝑇, whose length is denoted as 𝜉𝑇,

for activity 𝑖 to be executed, then schedule robustness can be

improved in three steps: Firstly, keep other activities unchanged.

Secondly, divide this subactivity into two parts, which are

denoted as (𝑖, 𝑣1) and (𝑖, 𝑣2) , whose durations are 𝑑𝑢𝑟𝑖,𝑣 −

𝑑𝑑(휀𝑖 ≤ 𝑑𝑑 ≤ min{𝑑𝑢𝑟𝑖,𝑣 − 휀𝑖 − 휃𝑖 , 𝜉𝑇 − 휃𝑖}) and 𝑑𝑑 + 휃𝑖

respectively. Thirdly, schedule the two parts of this subactivity

in the original and the new periods. In this way, the objective

function value of the schedule can be improved.

Proof of Property 1: After the Pioneering operation, the free

slack of subactivity (𝑖, 𝑣1) will be 𝐹𝑆𝑖,𝑣 + 𝑑𝑑, while the free

slack of subactivity (𝑖, 𝑣2) will be 𝜉𝑇 − 𝑑𝑑 − 휃𝑖. The utility of

the free slacks before the operation is 𝑈1 = ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1 , which is

smaller than that after the operation 𝑈2 = ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣+𝑑𝑑

𝑏=1 +

∑ 𝑒−𝑏
𝜉𝑇−𝑑𝑑−𝜃𝑖
𝑏=1 . Hence, Property 1 can be used as a rule to

maximize schedule robustness.

Property 2 (Balancing): If subactivity (𝑖, 𝑣) is divisible, and

its free slack is not abundant, while the reverse is true for

subactivity (𝑖, 𝑝), then schedule robustness may be improved

by transferring one unit of time from the duration of subactivity

(𝑖, 𝑣) to that of subactivity (𝑖, 𝑝).
Proof of Property 2: From the prerequisites of Property 2,

we can obtain the four following constraints: 𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 2휀𝑖,

0 ≤ 𝐹𝑆𝑖,𝑣 ≤ 1 , 휀𝑖 ≤ 𝑑𝑢𝑟𝑖,𝑝 − 휃𝑖 < 2휀𝑖 , and 𝐹𝑆𝑖,𝑝 ≥ 2 . After

the Balancing operation, the free slack of subactivity (𝑖, 𝑣) will

be 𝐹𝑆𝑖,𝑣 + 1, while the free slack of subactivity (𝑖, 𝑝) will be

𝐹𝑆𝑖,𝑝 − 1. Then, the utility of the free slacks after the operation

can be calculated as: 𝑈2 = ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣+1

𝑏=1 + ∑ 𝑒−𝑏 =
𝐹𝑆𝑖,𝑝−1

𝑏=1

∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1 + ∑ 𝑒−𝑏

𝐹𝑆𝑖,𝑝
𝑏=1 + (𝑒−𝐹𝑆𝑖,𝑣−1 − 𝑒−𝐹𝑆𝑖,𝑝). Because of the

two following constraints, i.e., −𝐹𝑆𝑖,𝑣 ≥ −1 and −𝐹𝑆𝑖,𝑝 ≤ −2,

𝑈2 will be no less than the utility before the operation 𝑈1 =

∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1 + ∑ 𝑒−𝑏

𝐹𝑆𝑖,𝑝
𝑏=1 . Hence, Property 2 can be used to

improve the objective function value.

To summarize, Pioneering facilitates the discovery of new

periods for activities to be executed, and Balancing is used to

balance the length of the durations between two subactivities of

one activity. As the two properties can help to transform

subactivities into divisible ones with abundant free slacks, they

pave the way for the following lemma, which is used to divide

one subactivity into subactivities that specifically share the

buffer of the original subactivity as equally as possible such that

the schedule robustness can be improved.

Lemma 1: For any subactivity (𝑖, 𝑣) that is divisible and

abundant in free slacks, we can first divide this subactivity

into 𝑛𝑢𝑚𝑖,𝑣 = min([
𝑑𝑢𝑟𝑖,𝑣−𝜃𝑖

𝜀𝑖
] ,

𝐹𝑆𝑖,𝑣+𝜃𝑖

1+𝜃𝑖
, 휂𝑖 − 𝑉𝑖 + 2) parts

whose durations are no less than 휀𝑖 , and then schedule them

continuously and make sure their free slacks are as equal as

possible, i.e., the difference between the maximum and the

minimum free slack value of the newly generated subactivities

is no more than one. In this way, schedule robustness will be

improved.

Proof of Lemma 1: As ∑ 𝑒−𝑥 =
1

𝑒−1

∞
𝑏=1 < 2𝑒−1 is true, it

would be always beneficial for improving schedule robustness

by splitting a divisible subactivity with abundant free slacks

into certain parts. To maximize robustness, 𝐹𝑆𝑖,𝑣 − (𝑛𝑢𝑚𝑖,𝑣 −

1)휃𝑖 should be no less than 𝑛𝑢𝑚𝑖,𝑣 , so 𝑛𝑢𝑚𝑖,𝑣 ≤
𝐹𝑆𝑖,𝑣+𝜃𝑖

1+𝜃𝑖
.

Furthermore, if the difference between the maximum and the

minimum free slack value of the newly generated subactivities

is more than one in the optimal improvement, for example,

𝑓𝑠1 > 𝑓𝑠2 + 1 , then ∑ 𝑒−𝑏
𝑓𝑠1
𝑏=1 +∑ 𝑒−𝑏

𝑓𝑠2
𝑏=1 = (∑ 𝑒−𝑏

𝑓𝑠1−1
𝑏=1 +

𝑒−𝑓𝑠1) + ∑ 𝑒−𝑏
𝑓𝑠2
𝑏=1 < ∑ 𝑒−𝑏

𝑓𝑠1−1
𝑏=1 + (∑ 𝑒−𝑏

𝑓𝑠2
𝑏=1 + 𝑒−𝑓𝑠2−1) =

∑ 𝑒−𝑏
𝑓𝑠1−1
𝑏=1 +∑ 𝑒−𝑏

𝑓𝑠2+1
𝑏=1 . As there will be a contradiction, to

obtain an optimal improvement based on the proposed lemma,

the original subactivity should be divided into 𝑛𝑢𝑚𝑖,𝑣 parts

whose free slacks are as equal as possible.

Note that it is possible that none of the subactivities in a

schedule is divisible and abundant in free slacks, and under this

circumstance we cannot apply Lemma 1 to improve solution

robustness of this schedule.

B. The Developed Genetic Algorithm

As shown in Appendix C, the proposed problem can be

simplified into the RCPSP with the objective of makespan

minimization. As the latter is known to be NP-hard in the strong

sense [32], [33], the proposed proactive scheduling problem

with activity splitting is NP-hard in the strong sense as well,

which makes the achievement of optimal solutions a

computationally difficult proposition, especially for large

projects. For this reason, we use a well-known metaheuristic,

i.e., a genetic algorithm as introduced by Holland [34], to solve

the problem. We choose the genetic search methodology for

two reasons. Firstly, this technique has been successfully

applied to many project scheduling problems [24], [25], [29],

[30], [35], [36], and second, it is easy to generate activity

splitting at each iteration by using the crossover operator.

Genetic algorithms work with a “population” of individuals.

In our algorithm, we set the size of the population as 𝜇, the

individual of which can be initially generated by a procedure

> TEM-16-0254.R3 < 6

called 𝐼𝐺𝑃. At each iteration, which is denoted as 𝑖𝑡𝑒𝑟, the best

𝜑 individuals of the population in terms of fitness (objective

function value) are chosen to be included in the population of

the next iteration, while (𝜇 − 𝜑) individuals of the population

are selected following the roulette wheel sampling method to

generate children with the aid of a crossover operator called

𝐶𝑅𝑃. Then, a mutation operator called 𝑀𝑇𝑃 is used to apply a

certain change to the generated children. Each child will be

decoded into a solution using the procedure 𝐷𝐶𝑃 . If it is

feasible, the solution will be buffered with the procedure 𝐵𝐹𝑃

and improved with a local search procedure that includes three

operators called 𝐿𝑆𝑃_1, 𝐿𝑆𝑃_2, and 𝐿𝑆𝑃_3, respectively. As far

as the termination criterion of the developed genetic algorithm

is concerned, we define 𝛿 as the required number of iterations

and stop the algorithm once 𝛿 is reached. It is noteworthy that

we work with the notion of life span to solve the problem of

super-individuals. Super-individuals far exceed, in fitness,

other solutions of the population, and their existence might

result in premature convergence to a local optimum. We set the

life span of an individual at “birth” at 0. At each iteration, the

life span of each surviving individual is increased by 1. When

the life span reaches a certain number, 𝑚𝑎𝑥𝑙𝑖𝑓𝑒, the individual

dies and is replaced by a newly generated individual with the

aid of the procedure 𝐼𝐺𝑃.

1) Solution Representation

Referring to [24], [31], we use three lists below to codify the

solutions, the length of which is denoted as 𝑛𝑠𝑢𝑏.

 Subactivity list (𝐿): This list is the sequence of subactivities.

The 𝑗-th element in 𝐿 represents the subactivity 𝐿𝑗 = (𝑖, 𝑣)𝑗.

 Duration list (𝐷𝐿): This list stores the duration 𝑑𝑢𝑟(𝑖,𝑣)𝑗 of

the corresponding subactivity (𝑖, 𝑣)𝑗 in 𝐿.

 Buffer list (𝐵𝐿): This list indicates which subactivities should

be buffered and by how much their finish times can be

delayed beyond their earliest finish times as dictated by the

serial schedule generation scheme (SSGS). For convenience,

let 𝑏𝑢𝑓(𝑖,𝑣)𝑗 denote the buffer of the corresponding

subactivity (𝑖, 𝑣)𝑗 in 𝐿 . Note that 𝑏𝑢𝑓(𝑖,𝑣)𝑗 represents the

inserted buffer, which is different from 𝐹𝑆(𝑖,𝑣)𝑗 .

Given the above lists, a solution can be obtained using a

decoding approach, which is an extension of SSGS and is

described in Algorithm 1 in Appendix D.

2) Objective Function

For a solution that is represented by the combination of the

three lists, the key to calculating its objective function value is

to compute the free slack 𝐹𝑆𝑖,𝑣 of each subactivity. Once they

are obtained, the objective function value can be easily

computed based on the formula (1). We develop a procedure to

compute the free slack of every subactivity, which is an

extension of the procedure developed by Lambrechts et al. [31]

and is indicated in Algorithm 2 in Appendix D.

As the decoded schedule may cause a project deadline

violation, we transform the deadline constraint into a soft

constraint that is based on a deadline feasibility test function

𝐷𝐹𝑇, which is defined as 𝐷𝐹𝑇 = max{0, 𝑠𝑛,1 − 𝐷}. During the

searching process, if the 𝐷𝐹𝑇 of a solution is greater than 0, the

objective function value of the solution will be penalized based

on the following formula:

𝑅𝑜𝑏𝑢 = ∑ [𝑤𝑖 (∑ ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1)𝑛

𝑖=1] − 𝑛𝑝 ∙ 𝑛𝑐 ∙ 𝐷𝐹𝑇.

Here,𝑛𝑝 is the penalty factor, and 𝑛𝑐 denotes the number of

iterations that are used by the genetic algorithm since the last

major improvement was found.

3) Buffering

For a feasible solution, we use a procedure called 𝐵𝐹𝑃 ,

which is described in Algorithm 3 in Appendix D, to insert

enough buffers into the schedule to improve its robustness,

which serves as a local search of the buffer list. We firstly select

a subactivity randomly and add one unit of time buffer to that.

Then we calculate the objective function value 𝑅𝑜𝑏𝑢′ of the

improved solution. If the deadline constraint is violated or the

objective function value has not been improved, the number of

failure times 휁 that is initialized at zero will increase by one. If

휁 reaches a predefined maximum allowed number 𝑍 of failures,

the procedure ends. Otherwise, another subactivity is chosen

and the procedure continues.

4) Initial Population Generation

The individual 𝑔 of the initial population can be generated

through the procedure 𝐼𝐺𝑃, which is described in Algorithm 4

in Appendix D. To decide whether to split the activities in the

initial solution, we take the constraints of the maximum number

of splitting and the minimum execution time into consideration.

If the two constraints are satisfied, then we generate random

numbers and compare them with a predefined parameter 𝑖𝑡𝑟𝑝𝑡
to make the decision of activity splitting. Note that this

procedure builds an individual in 𝑛𝑠𝑢𝑏 iterations, where 𝑛𝑠𝑢𝑏

is unknown until the end of the procedure.

5) Crossover

Children can be generated by operating on the selected

individuals with the aid of a crossover procedure called 𝐶𝑅𝑃.

This procedure is described in Algorithm 5 in Appendix D,

which is similar to the one that is developed by Ballestín et al.

[24] except that we now have a third list called buffer list. In

our procedure, we copy the same proportion of time buffer of

the parent to the child as that of the duration. Note that the

selected individuals are randomly paired as parents, and each of

them can be a father or a mother.

6) Mutation

We make a change on the children with the procedure 𝑀𝑇𝑃,

which is described in Algorithm 6 in Appendix D. We must

emphasize that it is a deliberate choice that the mutation

operation only considers the operators of changing the

sequences and time buffers of the subactivities and does not

introduce more operators. We considered many operators such

as introducing more activity splitting, merging some

subactivities, and changing the duration of subactivities.

However, the preliminary tests with such operators did not lead

to improved results. A reason could be that the local search

procedure that is developed in the next section plays the same

roles as those of these operators. For example, the procedures

𝐿𝑆𝑃_1 and 𝐿𝑆𝑃_3 can be regarded as operations that introduce

more splitting of activities, and the procedure 𝐿𝑆𝑃_2 is

structured to change the duration of the subactivities.

> TEM-16-0254.R3 < 7

7) Local Search

For each feasible child, we adopt a local search procedure

that includes three operators called 𝐿𝑆𝑃_1, 𝐿𝑆𝑃_2, and 𝐿𝑆𝑃_3,

respectively, to improve its schedule robustness. The operator

𝐿𝑆𝑃_1 , which is based on Property 1 and described in

Algorithm 1, facilitates the discovery of new periods for

activities to be executed. Let 𝐶1 = {𝑇1, 𝑇2, ⋯ , 𝑇𝑐} denote the set

of feasible periods, as defined in Definition 1, and let 𝐶2 =

{(𝑖, 𝑣)|𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 2휀𝑖 𝑎𝑛𝑑𝑉𝑖 ≤ 휂𝑖} represent the set of

divisible subactivities, as defined in Definition 2.

Algorithm 1. Pioneering: 𝑅𝑜𝑏𝑢′ = 𝐿𝑆𝑃_1(𝐿, 𝐷𝐿, 𝐵𝐿)

1: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿), obtain 𝑉𝑖 (𝑖 ∈ 𝑁)

2: FOR 𝑖 = 2 TO 𝑛 − 1 DO

3: IF 휂𝑖 > 0 AND 𝑑𝑖 ≥ 2휀𝑖 THEN

4: Obtain the sets 𝐶1 and 𝐶2

5: WHILE 𝐶1 ≠ ∅ AND 𝐶2 ≠ ∅ AND 𝑉𝑖 ≤ 휂𝑖 DO

6: Choose the period 𝑇1 from 𝐶1 and one subactivity (𝑖, 𝑣) from

𝐶2

7: Generate 𝑑𝑑 from [휀𝑖 ,min{𝑑𝑢𝑟𝑖,𝑣 − 휀𝑖 − 휃𝑖 , 𝜉𝑇 − 휃𝑖}]

8: Update the sets 𝐶1 and 𝐶2, 𝑉𝑖 = 𝑉𝑖 + 1

9: 𝑑𝑢𝑟𝑖,𝑣 = 𝑑𝑢𝑟𝑖,𝑣 − 𝑑𝑑, 𝑑𝑢𝑟𝑖,𝑉𝑖 = 𝑑𝑑 + 휃𝑖 , 𝐹𝑆𝑖,𝑣 = 𝐹𝑆𝑖,𝑣 +

𝑑𝑑, 𝐹𝑆𝑖,𝑉𝑖 = 𝜉𝑇1 − 𝑑𝑑 − 휃𝑖

10: END WHILE

11: END IF

12:END FOR

13:Calculate the objective function value 𝑅𝑜𝑏𝑢′ of the improved

solution

The operator 𝐿𝑆𝑃_2 , which is based on Property 2 and

described in Algorithm 2, is used to balance the length of

durations between two subactivities of one activity. Let 𝐶3 =

{(𝑖, 𝑣)|𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 2휀𝑖 𝑎𝑛𝑑𝐹𝑆𝑖,𝑣 ≤ 1 + 휃𝑖} denote the set of

subactivities that are divisible but not abundant in free slacks

and let 𝐶4 = {(𝑖, 𝑣)|𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 < 2휀𝑖 𝑎𝑛𝑑𝐹𝑆𝑖,𝑣 ≥ 2 + 휃𝑖}

represent the ones that are just the reverse.

Algorithm 2. Balancing: 𝑅𝑜𝑏𝑢′ = 𝐿𝑆𝑃_2(𝐿, 𝐷𝐿, 𝐵𝐿)

1: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿)

2: FOR 𝑖 = 2 TO 𝑛 − 1 DO

3: IF 휂𝑖 > 0 AND 𝑑𝑖 ≥ 2휀𝑖 THEN

4: Obtain the sets 𝐶3 and 𝐶4, 𝑁𝑆 = min{|𝐶3|, |𝐶4|}
5: FOR 𝑞 = 1 TO 𝑁𝑆 DO

6: Choose one subactivity (𝑖, 𝑣) from 𝐶3 and another one (𝑖, 𝑝)
from 𝐶4

7: 𝑑𝑢𝑟𝑖,𝑣 = 𝑑𝑢𝑟𝑖,𝑣 − 1, 𝑑𝑢𝑟𝑖,𝑝 = 𝑑𝑢𝑟𝑖,𝑝 + 1

8: 𝐹𝑆𝑖,𝑣 = 𝐹𝑆𝑖,𝑣 + 1, 𝐹𝑆𝑖,𝑝 = 𝐹𝑆𝑖,𝑝 − 1

9: Update 𝐶3 and 𝐶4

10: END FOR

11: END IF

12:END FOR

13:Calculate the objective function value 𝑅𝑜𝑏𝑢′ of the improved

solution

The operator 𝐿𝑆𝑃_3 , which is based on Lemma 1 and

described in Algorithm 3, is used to divide one subactivity into

subactivities that specifically share the buffer of the original

subactivity as equally as possible. For the sake of description,

let 𝐶5 = {(𝑖, 𝑣)|𝑑𝑢𝑟𝑖,𝑣 ≥ 2휀𝑖𝑎𝑛𝑑𝐹𝑆𝑖,𝑣 ≥ 2} denote the set of

subactivities that are divisible and abundant in free slacks.

Algorithm 3. 𝑅𝑜𝑏𝑢′ = 𝐿𝑆𝑃_3(𝐿, 𝐷𝐿, 𝐵𝐿)

1: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿), obtain 𝑉𝑖 (𝑖 ∈ 𝑁)

2: FOR 𝑖 = 2 TO 𝑛 − 1 DO

3: IF 휂𝑖 > 0 AND 𝑑𝑖 ≥ 2휀𝑖 THEN

4: Obtain the set 𝐶5

5: WHILE 𝐶5 ≠ ∅ AND 𝑉𝑖 ≤ 휂𝑖 DO

6: Choose one subactivity (𝑖, 𝑣) from 𝐶5, 𝑛𝑢𝑚𝑖,𝑣 =

min {[
𝑑𝑢𝑟𝑖,𝑣−휃𝑖

휀𝑖
] ,

𝐹𝑆𝑖,𝑣+휃𝑖

1+휃𝑖
, 휂

𝑖
− 𝑉𝑖 + 2}

7: Divide the subactivity (𝑖, 𝑣) into 𝑛𝑢𝑚𝑖,𝑣 parts whose free

slacks are as equal as possible and durations are [𝑑𝑢𝑟𝑖,𝑣 −

(𝑛𝑢𝑚𝑖,𝑣 − 1) ∙ 휀𝑖], 휀𝑖 + 휃𝑖 ,⋯ , 휀𝑖 + 휃𝑖 respectively

8: Update 𝑉𝑖 and the set 𝐶5

9: END WHILE

10: END IF

11:END FOR

12:Calculate the objective function value 𝑅𝑜𝑏𝑢′ of the improved

solution

IV. COMPUTATIONAL RESULTS

A. Experimental Design

Based on the three developed local search operators, four

different versions of the genetic algorithm are presented. For

the sake of description, we represent the genetic algorithm

without any local search operator as GA, the genetic algorithm

with the operator 𝐿𝑆𝑃_1 as GA-LSP1, the genetic algorithm

with operators 𝐿𝑆𝑃_1 and 𝐿𝑆𝑃_2 as GA-LSP12, and the

genetic algorithm with all the three operators as GA-LSP123,

respectively, in the remainder of the paper. To evaluate the

effectiveness of the proposed genetic algorithms, we propose

the use of CPLEX as a benchmark to optimally solve the

established model. Referring to the methods that are proposed

to reduce zero-one polynomial formulations to zero-one linear

formulations [37], the proposed non-linear model can be

linearized, just as shown in Appendix E. As many variables and

constraints are introduced into the model, it may take much time

to solve the problem. However, there is no loss of the quality of

the solutions for the problem and therefore it is enough for the

sake of comparison of effectiveness. Note that we can use

CPLEX to directly represent the algorithm that is conducted by

the software. The aim of our experiment is not only to test the

effectiveness of the three local search operators by comparing

the performance of different versions of the genetic algorithm,

but also to validate the performance of the genetic algorithm

developed in this paper against CPLEX. Besides, it is expected

to draw conclusions based on an analysis of the results.

The five algorithms are tested on five instance sets that are

constructed by the ProGen project generator [38], [39], which

is classified by three parameters, i.e., network complexity (NC),

resource factor (RF), and resource strength (RS). Specifically,

the instances with 6 or 8 or 10 non-dummy activities, denoted

as J6, J8, and J10, are generated by ourselves using the ProGen

generator while the instances with 30 or 60 non-dummy

activities, denoted as J30 and J60, are randomly (the first and

the sixth instances out of the ten provided instances) chosen

from the Project Scheduling Problem Library (PSPLIB), which

is also generated by the ProGen generator [39]. The five sets

> TEM-16-0254.R3 < 8

consist of 48×2×5=480 instances, and the parameter setting that

is used to generate instances is described in Table II. Note that

in consideration of the feasibility of the instance generation, we

choose a different level setting of network complexity for J6,

J8, and J10 from the one for J30 and J60. As for the other

parameters in our problem, such as 𝑤𝑖 , 휃𝑖 , 휂𝑖 , and 휀𝑖 , we

generate them randomly to cover all the cases in practice. The

parameter settings of these parameters can be found in Table II

and Table III.

In our experiment, the project due date 𝐷 of each instance is

set at 𝐶max
RCPSP(1 + 𝛼) where 𝐶max

RCPSP represents the minimum

makespan that is optimally solved by CPLEX under a

deterministic, indivisible, and non-setup-time environment, and

the due date factor α is a parameter that is chosen by the project

1

TABLE II
PARAMETER SETTINGS THAT ARE USED TO GENERATE THE DATA SET

Parameter Setting

Number of non-dummy activities 6, 8, 10, 30, 60

Network complexity, NC 1.2, 1.5, 1.8 for the sets J6, J8, and J10

1.5, 1.8, 2.1 for the sets J30 and J60
Resource factor, RF 0.25, 0.50, 0.75, 1.00

Resource strength, RS 0.2, 0.5, 0.7, 1.0

Number of instances for each combination of parameters under a given number of non-
dummy activities

2

Number of initial or terminal activities 3

Maximal number of successors or predecessors 3

Activity duration, 𝑑𝑖 Randomly selected from interval [1, 10]

Number of resource types, 𝐾 4

Resource amounts required by activities, 𝑟𝑖,𝑘
𝜌

 Randomly selected from interval [1, 10]

Weights of non-dummy activities, 𝑤𝑖 Randomly selected from interval [1, 10]

TABLE III
LEVELS OF THE KEY PARAMETERS

Parameter Level Value

Project due date factor 𝛼 1-3 20%, 30%, 40%

Setup times of non-dummy activities 휃𝑖
1 휃𝑖 = 0.8 ∗ 𝑐 ∗ 𝑑𝑖
2 휃𝑖 = 1.0 ∗ 𝑐 ∗ 𝑑𝑖
3 휃𝑖 = 1.2 ∗ 𝑐 ∗ 𝑑𝑖

Combination of 휂𝑖 and 휀𝑖

1 휂𝑖 = min{𝑑𝑖 − 1, 𝑎} 휀𝑖 = 1
2 휂𝑖 = min{𝑑𝑖 − 1, 1.5𝑎} 휀𝑖 = 1
3 휂𝑖 = min{𝑑𝑖 − 1, 2𝑎} 휀𝑖 = 1
4 휂𝑖 = [𝑑𝑖 휀𝑖⁄] − 1 휀𝑖 = max{1, 𝑏}
5 휂𝑖 = [𝑑𝑖 휀𝑖⁄] − 1 휀𝑖 = max{1, 0.7𝑏}
6 휂𝑖 = [𝑑𝑖 휀𝑖⁄] − 1 휀𝑖 = max{1, 0.4𝑏}
7 휂𝑖 = 𝑑𝑖 − 1 휀𝑖 = 1

TABLE V

PERFORMANCE OF THE FOUR VERSIONS OF THE GENETIC ALGORITHM

Set Version AOV
APB

 (%)

API

(%)

ARI

(%)

ACT

(s)

ACT’

(s)

AOG’

(%)

J6

GA 30.21 73.31 0.00 0.00 0.12 0.24 2.79

GA-LSP1 30.23 74.11 0.23 15.94 0.12 0.24 2.76

GA-LSP12 30.28 76.57 3.04 4.89 0.12 0.24 2.70

GA-LSP123 30.49 96.36 10.07 9.40 0.12 0.20 1.89

J8

GA 40.00 44.71 0.00 0.00 0.16 0.39 2.98

GA-LSP1 40.07 46.15 0.48 17.31 0.16 0.39 2.92

GA-LSP12 40.21 50.15 3.80 5.44 0.17 0.38 2.88

GA-LSP123 40.92 91.34 11.28 11.47 0.17 0.29 1.70

J10

GA 47.62 26.74 0.00 0.00 0.19 0.49 3.39

GA-LSP1 47.77 28.04 1.02 9.41 0.20 0.49 3.01

GA-LSP12 48.05 31.40 4.69 5.16 0.19 0.48 3.13

GA-LSP123 49.38 87.12 12.68 8.45 0.20 0.34 2.00

J30

GA 158.83 3.90 0.00 0.00 3.12 9.44 6.88

GA-LSP1 162.52 6.37 3.44 5.67 3.21 9.13 5.54

GA-LSP12 162.83 6.66 8.55 3.60 3.13 9.10 5.69
GA-LSP123 175.05 83.50 17.98 6.33 3.32 5.22 2.41

J60

GA 300.98 1.82 0.00 0.00 9.35 28.80 9.57

GA-LSP1 318.10 6.30 10.85 4.23 9.73 26.32 6.40

GA-LSP12 318.58 6.07 17.12 3.60 9.47 25.51 6.63

GA-LSP123 349.83 85.81 30.16 7.01 10.04 13.69 4.24

Avg

GA 115.53 30.10 0.00 0.00 2.59 7.87 5.12

GA-LSP1 119.74 32.19 3.20 10.51 2.68 7.31 4.13

GA-LSP12 119.99 34.17 7.44 4.54 2.62 7.14 4.21

GA-LSP123 129.13 88.83 16.43 8.53 2.77 3.95 2.45

> TEM-16-0254.R3 < 9

manager and constitutes the trade-off between project stability

and project duration [14]. The value of the four key parameters,

i.e., 𝛼, 휃𝑖, 휂𝑖, and 휀𝑖, is set at certain levels, as shown in Table

III, where parameter 𝑐 denotes a decimal that is randomly

selected from [1/10, 1/8] and parameters 𝑎 and 𝑏 respectively

denote random numbers that are selected from [0, 𝑑𝑖 − 1] and

[1, 𝑑𝑖]. Consequently, a full factorial experiment of the four

parameters results in 3×3×7=63 replicates for each instance

and 480×63 = 30240 ones overall.

The following ten indices are defined to evaluate the

performance of the algorithms. Specifically, the first seven

indices are used to compare the performance of the four

different versions of the genetic algorithm, and the last three

indices are additionally designed to make a comparison of the

performance between the genetic algorithm and CPLEX.

 AOV: Average objective function value.

 APB: The percentage of instances for which the algorithm

finds a solution that is equal to the best solution known, i.e.,

the best one among the solutions that are found by the four

developed versions of the genetic algorithm – GA, GA-LSP1,

GA-LSP12, and GA-LSP123.

 API: The percentage of solutions that are improved after

using the local search procedure.

 ARI: Average rate of improvement in terms of the objective

function value after using the local search procedure.

 ACT: Average computing time.

 ACT’: Average computing time to solve the problems to

obtain the best solutions known.

 AOG’: Average gap in terms of the objective function values

of the worse solutions that are obtained by a specific version

of the genetic algorithm compared with those of the best

solutions known.

 AOG: Average gap in terms of the objective function values

of the worse solutions that are obtained by the genetic

algorithm compared with those of the corresponding

solutions that are obtained by CPLEX.

 APN: The percentage of instances that cannot be solved by

CPLEX within a predefined time limit.

 AWS: The percentage of instances in which worse solutions

are obtained by the developed genetic algorithm than by

CPLEX.

In our experiment, the developed algorithms are programmed

in the C++ language, implemented in Microsoft Visual Studio

2013 and executed on a DELL OptiPlex 3040MT with 3.20

GHz clock-pulse and 8G RAM.

B. Parameter Selection

TABLE IV

VALUES OF PARAMETERS FOR INSTANCE SETS

Set 𝜇 𝜑 𝑍 𝑚𝑎𝑥𝑙𝑖𝑓𝑒 𝑛𝑝 𝑖𝑡𝑟𝑝𝑡 𝑝𝑚𝑢𝑡 𝛿

J6, J8, and J10 64 15 2 7 25 0.4 5% 80

J30 64 11 2 7 30 0.4 5% 350

J60 64 15 2 9 50 0.4 4% 450

Our developed genetic algorithm allows for different choices

of eight parameters. With a focus on the value of AOV, we

performed a preliminary experiment to choose the best

combination of parameters. This experiment tests the instances

whose project due date factor 𝛼 is set at 30%, setup time is set

at level 1, and the combination of 휂𝑖 and 휀𝑖 is set at level 4.

According to the results of the preliminary test, the parameters

are set at different values to solve different instance sets, as

shown in Table IV.

C. Performance of the Developed Genetic Algorithm

1) Comparison of the Four Different Versions of the Genetic

Algorithm

The results of the performance of the four developed genetic

algorithms on the five instance sets are presented in Table V,

where the italic numbers in the four bottom rows represent the

average values of the five instance sets. It is noteworthy that the

five left indices are used to measure the performance of the

genetic algorithms that stop after a predefined number of

iterations while the two right ones are used to measure the

performance of the genetic algorithms that stop once obtaining

the best solutions known. From the table, we observe that for

different instance sets the conclusion is almost the same in

terms of the performance of the four versions of the genetic

algorithm. The indices AOV and APB of GA-LSP1 are higher

than those of GA, which verifies a better performance of GA-

LSP1 compared with GA. This is not surprising because the

operator LSP_1 is added in GA-LSP1, which on average

improves the objective function values of 3.20 percent of the

solutions by 10.51%. Similarly, the effectiveness of the

operator 𝐿𝑆𝑃_2 can be analyzed by comparing the versions

GA-LSP12 and GA-LSP1. On average, GA-LSP12 performs

better than GA-LSP1 in terms of AOV, APB, and ACT.

Furthermore, we find that GA-LSP123, followed by GA-LSP12,

GA-LSP1, and GA, performs the best with the highest average

objective function value (AOV) and the highest average

percentage of the best solutions (APB). Corresponding with the

highest value of APB, GA-LSP123 takes the least time to solve

the problems again, reaching a smallest average gap of the

objective function values compared with those of the best

solutions known. Most of the success is due to the application

of the operator 𝐿𝑆𝑃_3, which on average improves the objective

function values of 16.43 percent of the solutions by 8.53%.

Compared with the operators 𝐿𝑆𝑃_1 and 𝐿𝑆𝑃_2 , 𝐿𝑆𝑃_3 is

much more effective as there is a sharp increase of AOV and

APB once it is included in the genetic algorithm. In summary,

the three developed local search operators improve the solution

robustness of the baseline schedules, although it takes a

somewhat longer computing time to solve the problems. Thus,

GA-LSP123 is the most promising version for the problem

among the four presented genetic algorithms, which can be used

to compete with a commercial mathematical programming

solver next.

2) Comparison of the Performance between the Genetic

Algorithm and Commercial Software

To test the effectiveness of the algorithm that is developed in

this paper, we conduct an experiment to compare the

performance between GA-LSP123 and a commercial

mathematical programming solver (CPLEX). In this

experiment, we predefine a maximum period of one hour for

CPLEX to solve each instance. This means that even though

one instance is not solved optimally by that time, we end the

algorithm and save the outcome that has been obtained thus far,

which includes the best solution, the objective function value,

and the computing time. Because it is difficult for CPLEX to

solve the problems with a lot of non-dummy activities, we only

choose to test the three instance sets J6, J8, and J10.

> TEM-16-0254.R3 < 10

TABLE VI

PERFORMANCE OF GA-LSP123 AND CPLEX

Set
ACT (s) APN

 (%)

AWS

 (%)

AOG

 (%) GA-LSP123 CPLEX

J6 0.12 1592.04 42.21 2.63 2.30

J8 0.17 1766.92 46.93 8.09 1.37

J10 0.20 2022.72 54.17 16.77 1.33

Avg 0.16 1793.89 47.77 9.16 1.67

The results of the experiment can be found in Table VI. From

the table, we can see that the number of instances that cannot

be solved by CPLEX in the predefined period is very high and

increases quickly with an increasing number of non-dummy

activities. Simply put, CPLEX requires a great deal of time to

solve the problem. This is not surprising because many

variables and constraints are introduced during the linearization

process of the proposed scheduling model, which results in the

difficulty of computing problems for CPLEX. By contrast, GA-

LSP123 is much more efficient, with a very small computing

time. Although GA-LSP123 cannot solve some instances as

optimally as CPLEX, the percentage of these instances is very

small, and it is acceptable of the average gap between the

objective function values of the solutions for these instances

that are solved by GA-LSP123 and the corresponding ones that

are solved by CPLEX.

D. Sensitivity Analysis of the Key Parameters

Firstly, we investigate the effect of different levels of the

combination of 휂𝑖 and 휀𝑖 on solution robustness for the five

instance sets. In addition to the seven levels of the divisible case,

we take level 8, which represents the indivisible case, into

account. The results are described in Table VII where for each

instance set the italic numbers in the second row from the

bottom represent the average values of the divisible case. From

the table, two main phenomena can be observed. The first one

is that the average objective function value under the divisible

case is significantly higher than the corresponding values under

the indivisible case. This indicates that activity splitting is

beneficial for generating more robust baseline schedules that

are likely to have lower adjustment costs during project

execution. Compared with the classic proactive scheduling

models where activity splitting is not allowed, this paper offers

a new method to improve schedule robustness when activity

splitting is allowed and generates better solutions to project

management. This phenomenon can be explained as follows.

When activities can be split, it will be more flexible for project

managers to schedule activities at the design stage of the

baseline schedules, which may help to obtain higher solution

robustness. Essentially, the solution space of the divisible case

is extended because of the constraint relaxation. The second

phenomenon is that the average objective function value

increases with the growth of 휂𝑖 or the decline of 휀𝑖. Activities

can be split more frequently with a higher value of 휂𝑖 or with a

lower value of 휀𝑖 , which improves the scheduling feasibility,

and thus this is beneficial for obtaining a higher objective

function value.

Secondly, we investigate the influence of the key parameter

휃𝑖 on the index AOV for the five instance sets. The results are

shown in Fig. 3, from which we can see that the growth of 휃𝑖
has a negative effect on the average objective function value.

This is because there will be less space for inserting time buffers

when taking more setup times into account.

TABLE VII

EFFECT OF DIFFERENT LEVELS OF THE COMBINATION OF 휂𝑖 AND 휀𝑖

Set Case Level 휂𝑖 휀𝑖 AOV ACT

J6

Divisible 1 2.38 1.00 28.91 0.12

2 2.92 1.00 29.86 0.12
3 3.38 1.00 31.26 0.13

4 1.17 3.26 24.49 0.11

5 2.17 2.06 29.45 0.12
6 3.43 1.33 33.94 0.13

7 4.66 1.00 35.54 0.14

Avg 2.87 1.52 30.49 0.12

Indivisible 8 0.00 5.66 16.43 0.09

J8

Divisible 1 2.31 1.00 38.83 0.17

2 2.84 1.00 40.81 0.17

3 3.26 1.00 42.62 0.17
4 1.03 3.26 31.93 0.15

5 2.03 2.06 38.73 0.16

6 3.25 1.34 45.17 0.18
7 4.49 1.00 48.33 0.19

Avg 2.74 1.52 40.92 0.17

Indivisible 8 0.00 5.49 21.56 0.12

J10

Divisible 1 2.15 1.00 47.01 0.20
2 2.65 1.00 48.94 0.20

3 3.03 1.00 51.12 0.21

4 1.07 3.04 38.93 0.18
5 2.02 1.93 47.05 0.20

6 3.22 1.28 54.50 0.22

7 4.25 1.00 58.08 0.22
Avg 2.63 1.46 49.38 0.20

Indivisible 8 0.00 5.25 26.92 0.14

J30

Divisible 1 2.17 1.00 167.22 3.21

2 2.63 1.00 176.05 3.30

3 3.04 1.00 184.71 3.40

4 1.02 3.22 132.16 2.82

5 1.97 2.05 163.02 3.18

6 3.20 1.34 192.29 3.54

7 4.41 1.00 209.88 3.77

Avg 2.63 1.52 175.05 3.32

Indivisible 8 0.00 5.41 84.88 2.45

J60

Divisible 1 2.27 1.00 334.81 9.37

2 2.76 1.00 353.98 9.91

3 3.19 1.00 370.93 10.39

4 1.07 3.25 267.95 8.24

5 2.03 2.06 328.29 9.37

6 3.29 1.34 379.33 10.73

7 4.52 1.00 413.52 12.23

Avg 2.73 1.52 349.83 10.03

 Indivisible 8 0.00 5.52 169.18 6.95

Fig. 3. The influence of the key parameter 휃𝑖 on AOV.

In addition, we investigate the influence of the key parameter

𝛼 on the index AOV for the five instance sets, and we take two

θi=0.8c·di θi=1.0c·di θi=1.2c·di

J6 33.58 30.25 27.65

J8 45.15 40.77 36.83

J10 54.28 49.35 44.50

J30 192.97 173.94 158.24

J60 385.52 347.48 316.50

A
O
V

> TEM-16-0254.R3 < 11

more levels of 𝛼, 25% and 35%, into account. The results are

shown in Fig. 4, from which we can see that the growth of 𝛼

has a positive effect on the average objective function value.

This is reasonable because there will be more inserted buffers

in the schedule as the project due date constraint becomes less

strict.

Fig. 4. The influence of the key parameter 𝛼 on AOV.

V. CONCLUSIONS

This paper presents a proactive resource- constrained project

scheduling problem with activity splitting where each activity

can be split at discrete time instants under the constraints of a

maximum number of splitting and a minimum period of

continuous execution. Besides, in this problem setup times are

considered. Based on the analysis of the established model, two

properties and one lemma are proposed and applied in our

developed genetic algorithm to improve the local search

efficiency. In addition, we linearize the proposed model,

making it solvable for commercial software. A computational

experiment that is performed on data sets generated by the

ProGen is designed and executed, from which the following

conclusions are drawn:

1) The two developed properties and the proposed lemma can

be used to maximize the objective function, and the genetic

algorithm with a combination of the three local search

operators performs the best.

2) Compared with commercial software, the developed

genetic algorithm is much more efficient to solve the

proposed scheduling problem, and the gap in terms of the

objective function value is acceptable.

3) Due to the increase in flexibility of executing activities,

activity splitting enhances the robustness of baseline

schedules that are likely to have lower adjustment costs

during project execution. Compared with the classic

proactive scheduling models where activity splitting is not

allowed, this paper offers a new method to improve

schedule robustness when activity splitting is allowed and

generates better solutions to project management.

4) With the growth of the maximum number of splitting, the

decline in the minimum execution time, the decrease in the

setup times, and the extension of the project due date,

schedule robustness increases.

Note that the research in this paper is based on specific

assumptions of activity splitting, so further research can provide

support for quantitative decisions on project management under

more complex and realistic conditions of activity splitting, such

as cases in which activity splitting is allowed at arbitrary

rational times. In addition, more effective and efficient

algorithms can be developed to solve the proposed scheduling

problem, and other efficient methods can be proposed to solve

the zero-one polynomial formulations.

REFERENCES

[1] W. Herroelen and R. Leus, "Robust and reactive project scheduling: A

review and classification of procedures," Int. J. Prod. Res., vol. 42, pp.
1599-1620, 2004.

[2] W. Herroelen and R. Leus, "Project scheduling under uncertainty: Survey

and research potentials," Eur. J. Oper. Res., vol. 165, pp. 289-306, 2005.
[3] S. Van de Vonder, E. Demeulemeester, W. Herroelen, and R. Leus,

"Proactive-reactive project scheduling trade-offs and procedures," in

Perspectives in Modern Project Scheduling. New York, NY, USA:
Springer, 2006, ch. 2, pp. 25-51.

[4] E. Demeulemeester and W. Herroelen, Robust project scheduling. Boston,

USA: Now Publishers, 2011.
[5] S. Van de Vonder, E. Demeulemeester, W. Herroelen, and R. Leus, "The

use of buffers in project management: The trade-off between stability and

makespan," Int. J. Prod. Econ., vol. 97, pp. 227-240, 2005.
[6] Ö. Hazır, M. Haouari, and E. Erel, "Robust scheduling and robustness

measures for the discrete time/cost trade-off problem," Eur. J. Oper. Res.,

vol. 207, pp. 633-643, 2010.
[7] Ö. Hazır, E. Erel, and Y. Günalay, "Robust optimization models for the

discrete time/cost trade-off problem," Int. J. Prod. Econ., vol. 130, pp. 87-

95, 2011.
[8] W. Herroelen and R. Leus, "The construction of stable project baseline

schedules," Eur. J. Oper. Res., vol. 156, pp. 550-565, 2004.

[9] R. Leus and W. Herroelen, "Stability and resource allocation in project
planning," IIE Trans., vol. 36, pp. 667-682, 2004.

[10] S. Van de Vonder, E. Demeulemeester, and W. Herroelen, "Proactive

heuristic procedures for robust project scheduling: An experimental
analysis," Eur. J. Oper. Res., vol. 189, pp. 723-733, 2008.

[11] O. Lambrechts, E. Demeulemeester, and W. Herroelen, "Proactive and

reactive strategies for resource-constrained project scheduling with
uncertain resource availabilities," J. Scheduling, vol. 11, pp. 121-136,

2008.

[12] O. Lambrechts, E. Demeulemeester, and W. Herroelen, "Time slack-
based techniques for generating robust project schedules subject to

resource uncertainty," Ann. Oper. Res., vol. 186, pp. 443-464, 2011.

[13] M. A. Al-Fawzan and M. Haouari, "A bi-objective model for robust
resource-constrained project scheduling," Int. J. Prod. Econ., vol. 96, pp.

175-187, 2005.

[14] S. Van De Vonder, E. Demeulemeester, W. Herroelen, and R. Leus, "The
trade-off between stability and makespan in resource-constrained project

scheduling," Int. J. Prod. Res., vol. 44, pp. 215-236, 2006.

[15] S. Van de Vonder, E. Demeulemeester, and W. Herroelen, "A
classification of predictive-reactive project scheduling procedures," J.

Scheduling, vol. 10, pp. 195-207, 2007.

[16] H. Chtourou and M. Haouari, "A two-stage-priority-rule-based algorithm
for robust resource-constrained project scheduling," Comput. Ind. Eng.,

vol. 55, pp. 183-194, 2008.
[17] F. Deblaere, E. Demeulemeester, and W. Herroelen, "Proactive policies

for the stochastic resource-constrained project scheduling problem," Eur.

J. Oper. Res., vol. 214, pp. 308-316, 2011.
[18] P. Lamas and E. Demeulemeester, "A purely proactive scheduling

procedure for the resource-constrained project scheduling problem with

stochastic activity durations," J. Scheduling, vol. 19, pp. 409-428, 2016.
[19] E. Demeulemeester and W. Herroelen, "An efficient optimal solution

procedure for the preemptive resource-constrained project scheduling

problem," Eur. J. Oper. Res., vol. 90, pp. 334-348, 1996.
[20] J. Buddhakulsomsiri and D. S. Kim, "Properties of multi-mode resource-

constrained project scheduling problems with resource vacations and

activity splitting," Eur. J. Oper. Res., vol. 175, pp. 279-295, 2006.
[21] J. Buddhakulsomsiri and D. S. Kim, "Priority rule-based heuristic for

multi-mode resource-constrained project scheduling problems with

α=20% α=25% α=30% α=35% α=40%

J6 24.84 27.92 30.58 33.00 36.07

J8 33.50 37.55 41.25 44.55 48.00

J10 40.26 45.44 49.95 54.26 57.92

J30 148.85 164.22 176.79 188.93 199.51

J60 299.68 327.29 352.77 375.96 397.05

A
O
V

> TEM-16-0254.R3 < 12

resource vacations and activity splitting," Eur. J. Oper. Res., vol. 178, pp.

374-390, 2007.

[22] J. Damay, A. Quilliot, and E. Sanlaville, "Linear programming based

algorithms for preemptive and non-preemptive RCPSP," Eur. J. Oper.

Res., vol. 182, pp. 1012-1022, 2007.

[23] F. Ballestin, V. Valls, and S. Quintanilla, "Pre-emption in resource-
constrained project scheduling," Eur. J. Oper. Res., vol. 189, pp. 1136-

1152, 2008.

[24] F. Ballestín, V. Valls, and S. Quintanilla, "Scheduling projects with
limited number of preemptions," Comput. Oper. Res., vol. 36, pp. 2913-

2925, 2009.

[25] V. V. Peteghem and M. Vanhoucke, "A genetic algorithm for the
preemptive and non-preemptive multi-mode resource-constrained project

scheduling problem," Eur. J. Oper. Res., vol. 201, pp. 409-418, 2010.

[26] M. Haouari, A. Kooli, E. Neron, and J. Carlier, "A preemptive bound for
the Resource Constrained Project Scheduling Problem," J. Scheduling,

vol. 17, pp. 237-248, 2014.

[27] A. Moukrim, A. Quilliot, and H. Toussaint, "An effective branch-and-
price algorithm for the Preemptive Resource Constrained Project

Scheduling Problem based on minimal Interval Order Enumeration," Eur.

J. Oper. Res., vol. 244, pp. 360-368, 2015.

[28] M. Vanhoucke and D. Debels, "The impact of various activity

assumptions on the lead time and resource utilization of resource-

constrained projects," Comput. Ind. Eng., vol. 54, pp. 140-154, 2008.
[29] S. Quintanilla, Á. Pérez, P. Lino, and V. Valls, "Time and work

generalised precedence relationships in project scheduling with pre-

emption: An application to the management of Service Centres," Eur. J.
Oper. Res., vol. 219, pp. 59-72, 2012.

[30] M. Tavana, A. R. Abtahi, and K. Khalili-Damghani, "A new multi-

objective multi-mode model for solving preemptive time-cost-quality

trade-off project scheduling problems," Expert Syst. Appl., vol. 41, pp.

1830-1846, 2014.

[31] O. Lambrechts, E. Demeulemeester, and W. Herroelen, "A tabu search

procedure for developing robust predictive project schedules," Int. J. Prod.
Econ., vol. 111, pp. 493-508, 2008.

[32] J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan, "Scheduling subject to

resource constraints: Classification and complexity," Discrete Appl.
Math., vol. 5, pp. 11-24, 1983.

[33] R. Leus, "The generation of stable project plans: Complexity and exact

algorithms," PhD thesis, Katholieke Universiteit Leuven, Belgium, 2003.
[34] J. Holland, Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence.

Michigan, USA: University of Michigan Press, 1975.
[35] W. Huang and L. Ding, "Project-scheduling problem with random time-

dependent activity duration times," IEEE Trans. Eng. Manage., vol. 58,

pp. 377-387, 2011.
[36] C. Fang, F. Marle, M. Xie, and E. Zio, "An integrated framework for risk

response planning under resource constraints in large engineering

projects," IEEE Trans. Eng. Manage., vol. 60, pp. 627-639, 2013.

[37] L. J. Watters, "Reduction of integer polynomial problem to zero-one

linear programming problems," Oper. Res., vol. 15, pp. 1171-1174, 1967.

[38] R. Kolisch, A. Sprecher, and A. Drexl, "Characterization and generation
of a general class of resource-constrained project scheduling problems,"

Manage. Sci., vol. 41, pp. 1693-1703, 1995.

[39] R. Kolisch and A. Sprecher, "PSPLIB - A project scheduling problem
library," Eur. J. Oper. Res., vol. 96, pp. 205-216, 1997.

APPENDIX1

A. More Details about the Literature on Proactive Scheduling

TABLE VIII

DETAILS ABOUT THE LITERATURE ON PROACTIVE SCHEDULING

Reference
Mode Objective Surrogate

 robustness

measure

Slacks Algorithm

Single Multi-

Robustness Others Time Resource

Exact Heuristic

[5] √ Trade-off √ CC/BM & ADFF

[6] √ Trade-off √ √ A two-phase approach

[7] √ Trade-off √ √ Benders decomposition Tabu search

[8] √ √ √ √ EWD1
[9] √ √ Resource allocation Brand & bound

[10] √ √ √ Multiple procedures

[11] √ √ √ √ Priority rule based
[12] √ √ √ Steepest descent

[13] √ Trade-off √ √ Tabu search

[14] √ Trade-off √ RFDFF
[16] √ Trade-off √ √ Priority rule based

[17] √ Cost √ STC + D heuristic

[18] √ √ √ Confidence level CCP method
[31] √ √ √ √ Tabu search

Mine √ √ √ √ Genetic algorithm

B. More Details about the Literature on the Resource-constrained Project Scheduling Problem with Activity Splitting

TABLE IX
DETAILS ABOUT THE LITERATURE ON THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM WITH ACTIVITY SPLITTING

Reference

Mode
Minimum

execution

time

Maximum

splitting

times

Setup
times

Objective Algorithm

Single Multi- Makespan Others

Exact Heuristic

[19] √ √ Branch & bound

[20] √ √ Branch & bound
[21] √ √ Priority-based

[22] √ √ Local search

[23] √ √ Improved RCPSP
[24] √ √ √ √ Evolutionary

[25] √ √ Genetic algorithm

[26] √ √ Lower bound
[27] √ √ Branch-and-price

[28] √ √ Branch & bound

[29] √ Cost Genetic algorithm
[30] √ √ √ Trade-off Evolutionary

Mine √ √ √ √ Robustness Genetic algorithm

> TEM-16-0254.R3 < 13

C. Simplification of the Proposed Problem

In the proposed problem, activities can be split into certain

parts, which is decided by two parameters, the maximum

splitting times 휂𝑖 and the minimum continuous execution time

휀𝑖 . If we set 휂𝑖 = 0 or 휀𝑖 = 𝑑𝑖 for each activity 𝑖 , then the

problem will be simplified into the proactive scheduling

problem without activity splitting. As the dummy end activity

is assumed to start and end at the project deadline, we can add

an extra dummy activity (𝑛 − 1) in the project network 𝐺′ =
(𝑁, 𝐴′) where (𝑛 − 1, 𝑛) ∈ 𝐴′ and (𝑖, 𝑛 − 1) ∈ 𝐴′, ∀(𝑖, 𝑛) ∈
𝐴. Then we can set the weight of activity (𝑛 − 1) as 1 and the

weights of all other activities as 0. In this way, the objective

function (maximize ∑ [𝑤𝑖 (∑ ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1)𝑛

𝑖=1]) will be

simplified to maximize ∑ 𝑒−𝑏
𝐹𝑆𝑛−1,1
𝑏=1 , which is equivalent to

minimizing the project makespan 𝐶𝑚𝑎𝑥 . As there are also

precedence and resource constraints in the model and there

won’t be a deadline constraint if we set the project deadline

much bigger than 𝐶𝑚𝑎𝑥 , the proposed problem can be

simplified into the resource-constrained project scheduling

problem (RCPSP) with the objective of makespan

minimization.

D. More Details of the Procedures in the Genetic Algorithms

Algorithm 1. Decoding procedure: 𝑠(𝑖,𝑣)𝑗 = 𝐷𝐶𝑃(𝐿, 𝐷𝐿, 𝐵𝐿)

1: 𝑠(𝑖,𝑣)1 = 0

2: FOR 𝑗 = 2 TO 𝑛𝑠𝑢𝑏 DO

3: 𝑠(𝑖,𝑣)𝑗 = max(𝑖,𝑣)ℎ∈𝑃(𝑖,𝑣)𝑗
(𝑠(𝑖,𝑣)ℎ + 𝑑𝑢𝑟(𝑖,𝑣)ℎ + 𝑏𝑢𝑓(𝑖,𝑣)ℎ)

4: WHILE ∃𝑘, 𝑡: ∑ 𝑟ℎ,𝑘
𝜌

> 𝑅𝑘
𝜌
(𝑘 = 1,⋯ , 𝐾and𝑡 =ℎ∈𝑆(𝑡)

𝑠(𝑖,𝑣)𝑗 ,⋯ , 𝑠(𝑖,𝑣)𝑗 + 𝑑𝑢𝑟(𝑖,𝑣)𝑗 + 𝑏𝑢𝑓(𝑖,𝑣)𝑗 − 1) DO

5: 𝑠(𝑖,𝑣)𝑗 = 𝑠(𝑖,𝑣)𝑗 + 1

6: END WHILE

7: END FOR

8: 𝑠(𝑖,𝑣)𝑛𝑠𝑢𝑏 = max(𝑠(𝑖,𝑣)𝑛𝑠𝑢𝑏 , 𝐷)

Note: 𝑃(𝑖,𝑣)𝑗 represents the set of predecessors of subactivity (𝑖, 𝑣)𝑗.

Algorithm 2. Slack calculation: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿)

1: 𝑠(𝑖,𝑣)𝑗 = 𝐷𝐶𝑃(𝐿, 𝐷𝐿, 𝐵𝐿)

2: Obtain the list 𝐿′
3: 𝐸𝑆(𝑖,𝑣)1′ = 𝐿𝑆(𝑖,𝑣)1′ = 𝑠(𝑖,𝑣)1′ , 𝐹𝑆(𝑖,𝑣)1′ = 0

4: FOR 𝑗 = 2 TO 𝑛𝑠𝑢𝑏 DO

5: 𝐸𝑆(𝑖,𝑣)𝑗
′ = 𝑠(𝑖,𝑣)𝑗

′ , 𝐿𝐹(𝑖,𝑣)𝑗
′ = min {𝐸𝑆ℎ|ℎ ∈ 𝑆(𝑖,𝑣)𝑗

′}, 𝐿𝑆(𝑖,𝑣)𝑗
′ =

𝐿𝐹(𝑖,𝑣)𝑗
′ − 𝑑𝑢𝑟(𝑖,𝑣)𝑗

′

6: WHILE ∃𝑘, 𝑡: ∑ 𝑟ℎ,𝑘
𝜌

> 𝑅𝑘
𝜌
(𝑘 = 1,⋯ , 𝐾and𝑡 =ℎ∈𝑆(𝑡)

𝐸𝑆(𝑖,𝑣)𝑗
′ , ⋯ , 𝐿𝐹(𝑖,𝑣)𝑗

′ − 1) DO

7: 𝐿𝐹(𝑖,𝑣)𝑗
′ = 𝐿𝐹(𝑖,𝑣)𝑗

′ − 1, 𝐿𝑆(𝑖,𝑣)𝑗
′ = 𝐿𝑆(𝑖,𝑣)𝑗

′ − 1

8: END WHILE

9: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐿𝑆(𝑖,𝑣)𝑗

′ − 𝐸𝑆(𝑖,𝑣)𝑗
′

10:END FOR

Note: 𝐿′ represents the list of subactivities that are ordered according to their
non-increasing completion times (the tiebreaker is the highest subactivity

number). For convenience, (𝑖, 𝑣)𝑗
′ denotes the subactivity in position 𝑗 of the

ordered list 𝐿′. Additionally, 𝑆(𝑖,𝑣)𝑗
′ , 𝐸𝑆(𝑖,𝑣)𝑗

′ , 𝐿𝑆(𝑖,𝑣)𝑗
′ , and 𝐿𝐹(𝑖,𝑣)𝑗

′ respectively

denote the set of immediate successors, the earliest starting time, the latest

starting time, and the latest completion time of the subactivity (𝑖, 𝑣)𝑗
′ .

Algorithm 3. Buffering: 𝑅𝑜𝑏𝑢′ = 𝐵𝐹𝑃(𝐿, 𝐷𝐿, 𝐵𝐿)

1: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿), 휁 = 0

2: Calculate the objective function value 𝑅𝑜𝑏𝑢

3: WHILE 휁 ≤ 𝑍 DO

4: Choose one subactivity (𝑖, 𝑣)𝑗 from the list 𝐿, and then

𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 𝑏𝑢𝑓(𝑖,𝑣)𝑗 + 1

5: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿), and calculate its new objective

function value 𝑅𝑜𝑏𝑢′
6: IF 𝑠(𝑖,𝑣)𝑛𝑠𝑢𝑏 > 𝐷 OR 𝑅𝑜𝑏𝑢′ ≤ 𝑅𝑜𝑏𝑢 THEN

7: 휁 = 휁 + 1, 𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 𝑏𝑢𝑓(𝑖,𝑣)𝑗 − 1

8: ELSE

9: 𝑅𝑜𝑏𝑢 = 𝑅𝑜𝑏𝑢′
10: END IF

11:END WHILE

Algorithm 4. Individual generation: (𝐿, 𝐷𝐿, 𝐵𝐿) = 𝐼𝐺𝑃(𝑔)
1: DO

2: Initialize 𝐸𝑙𝑖𝑔 and the three lists, 𝑗 = 0, 𝑉𝑖 = 0(∀𝑖 ∈ 𝑁),

𝑙𝑒𝑓𝑡𝑑(𝑖) = 𝑑𝑖 (∀𝑖 ∈ 𝑁)
3: WHILE 𝐸𝑙𝑖𝑔 ≠ ∅ DO

4: Select an activity 𝑖 from 𝐸𝑙𝑖𝑔, 𝑉𝑖 = 𝑉𝑖 + 1, 𝑗 = 𝑗 + 1

5: 𝐿𝑗 = (𝑖, 𝑉𝑖), 𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 0, 𝑛𝑠𝑢𝑏 = 𝑗

6: Generate a random number 𝑚1 between 0 and 1

7: IF 𝑚1 > 𝑖𝑡𝑟𝑝𝑡 AND 𝑉𝑖 < 휂𝑖 AND 𝑙𝑒𝑓𝑡𝑑(𝑖) ≥ 2휀𝑖 THEN

8: Generate a random number 𝑚2 from [휀𝑖 , 𝑙𝑒𝑓𝑡𝑑(𝑖) − 휀𝑖]
9: 𝑑𝑢𝑟(𝑖,𝑣)𝑗 = 𝑚2 + 휃𝑖, 𝑙𝑒𝑓𝑡𝑑(𝑖) = 𝑙𝑒𝑓𝑡𝑑(𝑖) − 𝑚2

10: ELSE

11: 𝑑𝑢𝑟(𝑖,𝑣)𝑗 = 𝑙𝑒𝑓𝑡𝑑(𝑖) + 휃𝑖 , update 𝐸𝑙𝑖𝑔

12: END IF

13: END WHILE

14:WHILE (𝑠(𝑖,𝑣)𝑛𝑠𝑢𝑏 > 𝐷)

15:𝑅𝑜𝑏𝑢′ = 𝐵𝐹𝑃(𝐿, 𝐷𝐿, 𝐵𝐿)

Note: Let 𝑙𝑒𝑓𝑡𝑑(𝑖) represent the number of duration units of activity 𝑖 that

have not yet been assigned (setup times are not included in 𝑙𝑒𝑓𝑡𝑑(𝑖)), and let

𝐸𝑙𝑖𝑔 , defined as 𝐸𝑙𝑖𝑔 = {𝑖|𝑙𝑒𝑓𝑡𝑑(𝑖) > 0and𝑙𝑒𝑓𝑡𝑑(𝑗) = 0, (𝑗, 𝑖) ∈ 𝐴} , be

the set of eligible activities.

Algorithm 5. Crossover: (LC, DLC, BLC) =

CRP(LF, DLF, BLF, LM, DLM, BLM)

1: Generate a random number 𝑚 between 1 and 𝑛𝑠𝑢𝑏𝐹

2: Copy the first 𝑚 elements of every list of the father to the child

3: Obtain 𝑉𝑖 and 𝑙𝑒𝑓𝑡𝑑(𝑖) of the child after copy, 𝑗 = ∑ (휂𝑖 + 1)𝑖∈𝑁

4: FOR 𝑞 = 𝑛𝑠𝑢𝑏𝑀 TO 1 DO

5: 𝑖 = 𝐿𝑞
𝑀, 𝑑 = 𝑑𝑢𝑟(𝑖,𝑣)𝑞𝑀

6: IF 𝑙𝑒𝑓𝑡𝑑(𝑖) > 0 THEN

7: IF 𝑉𝑖 ≥ 휂𝑖 OR 𝑙𝑒𝑓𝑡𝑑(𝑖) < 𝑑 − 휃𝑖 THEN

8: 𝑑𝑢𝑟(𝑖,𝑣)𝑗
𝐶 = 𝑙𝑒𝑓𝑡𝑑(𝑖) + 휃𝑖 , 𝑙𝑒𝑓𝑡𝑑(𝑖) = 0

9: ELSE

10: 𝑑𝑢𝑟(𝑖,𝑣)𝑗
𝐶 = 𝑑, 𝑙𝑒𝑓𝑡𝑑(𝑖) = 𝑙𝑒𝑓𝑡𝑑(𝑖) − 𝑑 + 휃𝑖

11: END IF

12: 𝐿𝑗
𝐶 = 𝐿𝑞

𝑀, 𝑏𝑢𝑓(𝑖,𝑣)𝑗
𝐶 = 𝑏𝑢𝑓(𝑖,𝑣)𝑞𝑀 × [(𝑑𝑢𝑟(𝑖,𝑣)𝑗

𝐶 − 휃𝑖)/(𝑑 − 휃𝑖)]

13: 𝑉𝑖 = 𝑉𝑖 + 1, 𝑗 = 𝑗 − 1

14: END IF

15:END FOR

16:Erase the blank cells from 𝐿𝐶, 𝐷𝐿𝐶, and 𝐵𝐿𝐶

Note: The parameters that are labeled with 𝐹, 𝑀, and 𝐶 respectively represent

the subactivity list, the duration list, and the buffer list of the father, the mother,

and the child.

> TEM-16-0254.R3 < 14

Algorithm 6. Mutation: (𝐿𝑄 , 𝐷𝐿𝑄 , 𝐵𝐿𝑄) = 𝑀𝑇𝑃(𝐿, 𝐷𝐿, 𝐵𝐿)

1: FOR 𝑞 = 1 TO 𝑝𝑚𝑢𝑡 ∙ 𝑛𝑠𝑢𝑏 DO

2: Randomly generate a number 𝑚3 from {0,1}, a number 𝑗 from

[1, 𝑛𝑠𝑢𝑏]

3: IF 𝑚3 = 0 THEN

4: Calculate the possible positions [𝑎, 𝑏] of subactivity (𝑖, 𝑣)𝑗 in

the list 𝐿 without causing the precedence constraint violation

5: Generate a random number 𝑚4(𝑚4 ≠ 𝑗) from [𝑎, 𝑏]
6: Place subactivity (𝑖, 𝑣)𝑗 in position 𝑚4 and update the lists

7: ELSE

8: Generate a random number 𝑚5 from {0,1}
9: IF 𝑚5 = 0 THEN

10: 𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 𝑏𝑢𝑓(𝑖,𝑣)𝑗 + 1

11: ELSE

12: IF 𝑏𝑢𝑓(𝑖,𝑣)𝑗 ≥ 1 THEN

13: 𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 𝑏𝑢𝑓(𝑖,𝑣)𝑗 − 1

14: END IF

15: END IF

16: END IF

17:END FOR

Note: 𝑝𝑚𝑢𝑡 represents the probability of mutation, and the parameters that are

labeled by 𝑄 represent the subactivity list, the duration list, and the buffer list

of the mutated individual.

E. Linearization of the Model

To conduct the linearization, we redefine 𝑉𝑖 as the

maximum number of subactivities of activity 𝑖 , which is a

constant value that is known in advance instead of being a

decision variable. We use 𝑀 to denote a large positive number

and introduce 𝑈𝑖 to represent the maximum number of free

slacks of activity 𝑖, which is calculated as the length of the time

window of activity 𝑖 without the resource constraints under an

indivisible scheduling environment. Then, the free slack 𝐹𝑆𝑖,𝑣

ranges from 0 to 𝑈𝑖 . Additionally, five groups of binary

variables are defined as follows.

𝑦𝑖,𝑣 = {
0ifthedurationofsubactivity(𝑖, 𝑣)iszero
1otherwise

𝑥𝑖,𝑣,𝑢 = {
0iffreeslack𝑢ofsubactivity(𝑖, 𝑣)iszero
1otherwise

𝛼𝑖,𝑣,𝑡 = {
1if𝑠𝑖,𝑣 ≤ 𝑡

0otherwise

𝛽𝑖,𝑣,𝑡 = {
1if𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣 > 𝑡

0otherwise

𝛾𝑖,𝑣,𝑡 = {
1if𝛼𝑖,𝑣,𝑡 = 𝛽𝑖,𝑣,𝑡 = 1

0otherwise

There are seven groups of decision variables in the

transformed linear model, i.e., 𝑦𝑖,𝑣 , 𝑑𝑢𝑟𝑖,𝑣 , 𝑠𝑖,𝑣 , 𝑥𝑖,𝑣,𝑢 , 𝛼𝑖,𝑣,𝑡 ,

𝛽𝑖,𝑣,𝑡, and 𝛾𝑖,𝑣,𝑡 . Compared with those decision variables in the

non-linear model, 𝑦𝑖,𝑣 is used to replace 𝑉𝑖 while 𝑑𝑢𝑟𝑖,𝑣 and

𝑠𝑖,𝑣 stay the same. In addition, 𝑥𝑖,𝑣,𝑢 is used to take the place of

the computation of the free slack, while 𝛼𝑖,𝑣,𝑡, 𝛽𝑖,𝑣,𝑡, and 𝛾𝑖,𝑣,𝑡

will decide the set of activities that are in progress at time 𝑡.
Based on the above definitions, the non-linear scheduling

model can be transformed into a linear one, as follows.

Maximize 𝑅𝑜𝑏𝑢 = ∑ [𝑤𝑖(∑ ∑ 𝑒−𝑢𝑥𝑖,𝑣,𝑢
𝑈𝑖
𝑢=1

𝑉𝑖
𝑣=1)𝑛

𝑖=1] (1)

𝑠1,1 = 0 (2)

𝑠𝑖,𝑉𝑖 + 𝑑𝑢𝑟𝑖,𝑉𝑖 + 𝐹𝑆𝑖,𝑉𝑖 ≤ 𝑠𝑗,1 (𝑖, 𝑗) ∈ 𝐴 (3)

𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣 ≤ 𝑠𝑖,𝑣+1 ∀𝑖; 𝑣 = 1,… , 𝑉𝑖 − 1 (4)

𝑠𝑛,1 ≤ 𝐷 (5)

∑ (𝑟𝑖,𝑘
𝜌 ∑ 𝛾𝑖,𝑣,𝑡

𝑉𝑖
𝑣=1) ≤ 𝑅𝑘

𝜌𝑛
𝑖=1 ∀𝑘, ∀𝑡 (6)

∑ 𝑑𝑢𝑟𝑖,𝑣
𝑉𝑖
𝑣=1 = 𝑑𝑖 + 휃𝑖 ∑ 𝑦𝑖,𝑣

𝑉𝑖
𝑣=1 ∀𝑖 (7)

𝑉𝑖 = 휂𝑖 + 1 ∀𝑖 (8)

𝑑𝑢𝑟𝑖,𝑣 ≥ (휀𝑖 + 휃𝑖) × 𝑦𝑖,𝑣 ∀𝑖; 𝑣 = 1,2, … , 𝑉𝑖 (9)

𝑦𝑖,𝑣+1 ≤ 𝑦𝑖,𝑣 ∀𝑖; 𝑣 = 1,2, … , 𝑉𝑖 − 1 (10)

𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣 ≤ 𝑦𝑖,𝑣 ×𝑀 ∀𝑖, ∀𝑣 (11)

∑ 𝑥𝑖,𝑣,𝑢
𝑈𝑖
𝑢=1 = 𝐹𝑆𝑖,𝑣 ∀𝑖, ∀𝑣 (12)

𝑀(𝛼𝑖,𝑣,𝑡 − 1) ≤ 𝑡 − 𝑠𝑖,𝑣 < 𝑀 × 𝛼𝑖,𝑣,𝑡 ∀𝑖, ∀𝑣, ∀𝑡 (13)

𝑀(𝛽𝑖,𝑣,𝑡 − 1) < 𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣 − 𝑡 ≤

𝑀 × 𝛽𝑖,𝑣,𝑡

(14)

2𝛾𝑖,𝑣,𝑡 ≤ 𝛼𝑖,𝑣,𝑡 + 𝛽𝑖,𝑣,𝑡 ≤ 𝛾𝑖,𝑣,𝑡 + 1 ∀𝑖, ∀𝑣, ∀𝑡 (15)

𝐹𝑆𝑖,𝑣 , 𝑑𝑢𝑟𝑖,𝑣 , and𝑠𝑖,𝑣 are nonnegative integers (16)

𝑦𝑖,𝑣, 𝑥𝑖,𝑣,𝑢, 𝛼𝑖,𝑣,𝑡 , 𝛽𝑖,𝑣,𝑡 , 𝛾𝑖,𝑣,𝑡 ∈ {0, 1} ∀𝑖, ∀𝑣, ∀𝑡 (17)

In the formulation, the objective function is transformed into

a new linear one, while two constraints, (2), and (5), stay the

same. In addition, six constraints, (3), (4), (6), (7), (8), and (9),

are adjusted into new ones, and six constraints, from (10) to

(15), are added. Specifically, 𝐹𝑆𝑖,𝑣 should be included in the

precedence constraints (3) and (4). As the decision variable

𝑥𝑖,𝑣,𝑢 is used to decide the value of 𝐹𝑆𝑖,𝑣 through (12), it should

also replace 𝐹𝑆𝑖,𝑣 in the objective function. In constraints (7),

we now use ∑ 𝑦𝑖,𝑣
𝑉𝑖
𝑣=1 to represent the number of non-dummy

subactivities. Because 𝑉𝑖 now represents the maximum

number of subactivities of activity 𝑖, which is calculated by

constraints (8), there will be dummy subactivities whose

durations and free slacks should be zero. Hence, constraints (9)

force the duration of each subactivity to be at least its minimum

execution time plus its setup time, but only if it is a non-

dummy one. Moreover, constraints (10) and (11) ensure that

the dummy subactivities are the last ones of each activity and

that their duration and free slack are zero. Further, with three

added constraints, which are shown in (13), (14), and (15), to

describe the set 𝑆(𝑡) based on the definition 𝑆(𝑡) =

{𝑖|𝑠𝑖,𝑣 ≤ 𝑡 < 𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣} , the resource constraints

are transformed into new ones, as stated in constraints (6).

