>TEM-16-0254.R3 <

A Genetic Algorithm for the Proactive
Resource-Constrained Project Scheduling
Problem with Activity Splitting

Abstract—Proactive scheduling aims at the generation of robust
baseline schedules, which has been studied for many years with the
assumption that activity splitting is not allowed. In this paper, we
focus on the proactive resource-constrained project scheduling
problem in which each activity can be split at discrete time instants
under the constraints of a maximum number of splitting and a
minimum period of continuous execution. Besides, in this problem
setup times are considered. Two properties of the established
model and one lemma are proposed and applied in the developed
genetic algorithm. After linearizing the proposed model, we use a
commercial mathematical programming solver as a benchmark to
solve the problem. From the computational results, we find that
the developed genetic algorithm is effective and efficient in solving
the defined problem, and activity splitting improves robustness.
With the growth of the maximum number of splitting, the decline
in the minimum execution time, the decrease in the setup times,
and the extension of the project due date, robustness increases.

Index Terms—Activity splitting, setup time, genetic algorithm,
proactive project scheduling, solution robustness

Managerial Relevance Statement—In consideration of the fact
that some project activities can be split, our research proposes a
model to split and schedule activities with the aim to generate
robust baseline schedules that are protected against schedule
disruptions. With our developed genetic algorithm, the contractor
could generate satisfying baseline schedules within an acceptable
computing time, which are likely to have low adjustment costs
during project execution. From the computational results, we find
that activity splitting improves robustness, which offers a method
to improve schedule robustness when activity splitting is allowed.
Furthermore, we find that, with the growth of the maximum
number of splitting, the decline in the minimum execution time,
the decrease in the setup times, and the extension of the project
due date, schedule robustness increases. To summarize, our
findings could help project managers better understand the
benefits of making good use of activity splitting in the scheduling
of activities in a resource-constrained project, and then help them
do a better job in improving the robustness of baseline schedules.

I. INTRODUCTION

t is a well-known fact that project activities are subject to

considerable uncertainties, such as accidents, resource
breakdowns, and bad weather conditions, which may lead to
numerous schedule disruptions during project execution and
therefore incur some costs when project managers adjust the
starting times of the activities to deal with them. Accordingly,
proactive scheduling has been the subject of many research
efforts that aim to generate robust baseline schedules that are
protected against schedule disruptions. The more robust the
baseline schedules are, the lower the adjustment costs will be
during project execution. These research efforts have led to

many models and algorithms, which are summarized in [1] - [4].

Two robustness approaches are considered in this field, i.e.,
quality robustness and solution robustness [5]. For quality
robustness, the robust multi-mode discrete time/cost trade-off
problem is introduced and solved by exact and heuristic
algorithms [6], [7]. Regarding solution robustness, various
approaches are developed to cope with multiple disruptions,
including activity duration disruptions [8], stochastic activity
durations [9], [10], and stochastic resource availabilities [11],
[12]. In contrast to the literature that addresses quality
robustness or solution robustness separately, several studies
have concentrated on the potential trade-off between these two
types of robustness. Al-Fawzan and Haouari develop a bi-
objective model with an aggregation function in the absence of
available information regarding the nature or size of the
uncertain events [13]. With the composite objective of
maximizing both schedule stability and timely project
completion probability, Van de Vonder et al. develop a
heuristic algorithm for minimizing a stability cost function [14]
and they discuss the results obtained by a large experimental
design that is established to evaluate several predictive-reactive
resource-constrained project scheduling procedures [15].
Furthermore, Chtourou and Haouari present a two-stage
algorithm in which the first stage is designed to minimize the
project makespan, while the second one aims to maximize
schedule robustness [16]. Deblaere ef al. propose an objective
to minimize a cost function that consists of the weighted
expected activity starting time deviations and the penalties or
bonuses that are associated with late or early project completion
[17]. One recent study defines a new robustness measure that is
completely independent of the applied reactive policy and then
introduces a branch-and-cut algorithm to solve a sample
average approximation of the original problem [18]. More
details about the literature on proactive scheduling can be found
in Appendix A.

It is noteworthy that most of the literature on proactive
scheduling does not consider activity splitting, which means
that these activities are not divisible. However, if activity
splitting is allowed, it may be more flexible for project
managers to schedule activities and make good use of resources
and slacks to generate much more robust baseline schedules. In
other words, if activity splitting contributes to higher robustness,
then activities will be split into certain parts for execution;
otherwise, activities will be scheduled without splitting. Note
that we consider to split activities actively during the stage of
baseline schedule generation, which is different from
interrupting activities passively to deal with disruptions during
the stage of project execution.

In previous literature, some researchers have already



>TEM-16-0254.R3 <

considered the project scheduling problem with activity
splitting. The difference from what we discussed before is that
their objective function is mainly focused on makespan
minimization and the term they use of activity splitting is
activity preemption or activity interruption. For example,
Demeulemeester and Herroelen describe a branch-and-bound
procedure to solve the preemptive resource-constrained project
scheduling problem (PRCPSP) with the objective of
minimizing project duration [19]. Following the work that
reveals the potential benefits of allowing one interruption in the
scheduling of activities in a resource-constrained project [20],
Buddhakulsomsiri and Kim present a priority rule-based
heuristic for the multi-mode scheduling problem with the
splitting of activities around unavailable resources allowed [21].
Based on an analysis of the characterizations of the solution set
for the preemptive and non-preemptive resource-constrained
project scheduling problem (RCPSP), Damay et al. present a
linear programming based algorithm to solve the two problems
[22]. Ballestin et al. mainly focus on problem 1 PRCPSP in
which a maximum of one interruption per activity is allowed,
and they propose a new model that covers most practical
applications of discrete activity preemption [23], [24]. A
genetic algorithm for the non-preemptive multi-mode
scheduling problem is developed and extended to the
preemptive case of this problem [25]. Recently, Haouari ef al.
use a linear programming model that is based on the PRCPSP
to compute a lower bound for the RCPSP [26], and Moukrim et
al. propose an effective branch-and-price algorithm based on
minimal interval order enumeration that involves column
generation as well as constraint propagation [27]. For more
research efforts on project scheduling problems with activity
splitting, we refer to [28] - [30]. In Appendix B, more details
can be found about the literature on the resource-constrained
project scheduling problem with activity splitting.

In practice, activities may be different with respect to activity
splitting. Firstly, activities may need to be executed
continuously for certain periods before the next splitting and the
duration of the continuous execution time is different. Secondly,
some activities, such as chemical reactions, may not be split at
all due to technical reasons, but some activities, such as the
transportation of materials, are technically feasible to be split
into certain parts. Even though the activities are all feasible for
splitting, the maximum number of splitting allowed may be still
different. Thirdly, some activities, such as managerial
operations, do not need setup times before execution while
some activities, such as a bridge construction, may need certain
periods for preparation. From the previous literature, we know
that the first two differences have been considered and
measured by two factors, i.e., the maximum number of activity
splitting and the minimum continuous execution [24], [30], but
the third one has not been considered in the scheduling research
with activity splitting.

Typically speaking, activities that are split into certain parts
cause additional setup times (and thus additional costs) when
returning to their execution. In other words, if one activity
technically needs a setup time before execution, then there will
be additional setup times for the second and the subsequent

parts of this activity. This implies that there will be a trade-off
between the benefits of activity splitting and the drawbacks of
the increasing setup times under the objective of solution
robustness maximization.

Based on the facts above, this paper presents a proactive
resource-constrained project scheduling problem with activity
splitting. In this problem, each activity can be split at discrete
time instants under the constraints of a maximum number of
splitting and a minimum period of continuous execution.
Besides, additional setup times are considered when the
activities return to execution from splitting. Different from the
existing proactive scheduling which aims to improve schedule
robustness without activity splitting, this paper aims to take
activity splitting into account to seek opportunities to further
improve schedule robustness. Therefore, it can be regarded as a
two-stage problem: the first one is to decide how to split
activities and the second stage is proactive scheduling, i.e. how
to schedule activities to construct an optimal baseline schedule
with the objective of solution robustness maximization. The
solution robustness is obtained by inserting time buffers into the
baseline schedule with the consideration of precedence,
renewable resources, and project deadline constraints, and it is
measured by a free slack based function, an adjusted surrogate
solution robustness measure that is proposed by Lambrechts et
al. [31]. This problem can be defined as an extension of the
proactive RCPSP because activity splitting becomes allowed.
As activities are handled in different ways in terms of activity
splitting, this problem is also a generalization of m _PRCPSP
where all activities can be split m times. We believe that the
proposed problem, which to the best of our knowledge has not
thus far been investigated, may be more practical because it
takes activity splitting into account and considers multiple cases
of divisible activities.

Note that in previous literature on proactive scheduling
activities are indivisible and treated as the basic project units.
However, based on the theory of the work breakdown structure,
activities are broken down by different levels. Therefore, in this
paper activities are much more similar to work packages, which
are not divided to the lowest level so that project managers can
have the freedom to decide whether to further split the activities.
Conversely, if activities have already been divided to the lowest
level, we can regard them as subactivities, and then we can
decide how to merge and schedule them to decrease the setup
times and improve schedule robustness, which is just equivalent
to scheduling activities without activity splitting in this paper.

The rest of this paper is organized as follows. In Section II
we present the notations and the problem formulation. Section
IIT is devoted to the development of a genetic algorithm that is
based on the analysis of the proposed scheduling model.
Section IV conducts an extensive computational experiment.
Finally, in Section V, general conclusions and directions for
further research are presented.

II. PROBLEM FORMULATION

A. Optimization Model
Consider a project represented in an activity-on-the-node



>TEM-16-0254.R3 <

(AoN) format by means of a digraph G = (N, A), where the set
of nodes N represents the activities and the set of arcs A the
finish-start, zero-lag precedence relations. The activities are
numbered from the dummy start activity 1 to the dummy end
activity n, and each activity i has a duration d; and requires
renewable resources to ensure that it is carried out. There are K
different renewable resource types with an availability in each
period [t,t + 1), (t = 0,1,--+,D), of R} units, k = 1,2,-+, K.
Each activity i requires riﬁ{ units of resource type k during each
period in which it is processed. Dummy activities have zero
duration and resource usage. We use subactivity (i,v) to
denote the v-th part of activity i, which has the same resource
usage as activity i. The only difference between the activity and
its subactivities is the duration. The project deadline is denoted
as D.

For practical reasons that activities are different with respect
to activity splitting, we make the following three assumptions.
Firstly, for each activity i, a required minimum execution time
&; is predefined during which the activity must be in progress
without any splitting. This forces the duration dur;, of
subactivity (i, v) to be at least €;. Secondly, each activity i can

be split a maximum of 7n;(n; < [%]) times at any discrete time
L

instant, which results
connected subactivities,
requirement rip - The first two assumptions are responses to the

in V;(V; <n;+1) precedence-
each of which has a resource

fact that activities cannot be split too frequently. Obviously, the
case 7; =0 or d; <2¢g means that activity i must be
processed without splitting. In addition, as a response to the fact
that in projects activities may need setup times for preparation,
we assume each activity technically needs setup time 8; before
execution. Note that the setup time is not included in the activity
duration, which means the actual duration of one indivisible
activity is its duration plus its setup time, and there will be
additional setup times for activities that are split into certain
parts. Obviously, the case 6; =0 means that activity i
technically does not need setup time.

The weight w;, which is allocated to each activity i, denotes
the marginal cost of deviating the completion time of activity i
during project execution from its planned completion time in
the baseline schedule. The cost can be regarded as the impact
of such a delay on all its immediate and transitive successors.
Because the successors of the subactivities are the same as those
of their original activity, we assume that the weights of the
subactivities are equivalent to those of their original activities.
The free slack FS; ,,, which represents the time buffers after the
duration of subactivity (i, v), is defined as the total amount of
time this subactivity can be delayed without causing any
precedence or resource constraint violations. Note that the free
slack here is defined in the context of limited resources, which
is an extension of the one in the framework of CPM (Critical
Path Method). Referring to Lambrechts et al. [31], the utility of
the free slacks may decrease marginally in exponent with the
increase of their amounts. For example, if one activity has a free
slack of 6, then the first slack will be much more beneficial than
the sixth one to absorb the disruptions because it is less likely

for the activity to delay six periods. Thus, the robustness that is
S.

generated by FS;, can be calculated as w; Z:'l”e_b . Then,

counting the utilities of all subactivities of all activities, the

robustness of a schedule (hereafter denoted as Robu) can be
defined as Y1, [w; (Zvi FSiw e‘b)].

v=1%p=1
There are three groups of decision variables in this problem,
ie, V;, dur;,, and s;,,, which respectively represent the
number of subactivities of activity i, the duration of subactivity
(i, v), and the starting time of this subactivity. Then, the goal is
to decide the optimal values for V;, dur;,,, and s;,, to obtain a
baseline schedule with the maximum schedule robustness
Robu. The optimization model for the proactive resource-
constrained project scheduling problem with activity splitting is
constructed as follows. It is important to note that in our model
setup times are not included in d; but are included in dur; ,,.

Maximize Robu = Y1 [w; (Zzizl i e-b)] (1)
Subject to:

S11.=0 2)
Sy, Tduryy, <s;1 (L,j) €A (3)
Siptdury, <sjppi=1-m v=1.,V,-1 (4
Sp1 <D (5)
YiesoTix < Rp k=12,,K; t=01,-,D (6)
YVl dur, =di+V;x6; i=12-,n (7)
Vism+1 i=12,-,n (8)
dur,, —6;>¢ i=12,,n v=12.,V )

Vi, dur;,,ands;, are nonnegative integers Vi,Vv  (10)

In the formulation, the objective function (1) is to maximize
solution robustness. Equation (2) forces the project to start at
time 0. The precedence constraints given by (3) indicate that the
start of activity j must wait for the end of the last subactivity of
all its preceding activities, and in constraints (4) one subactivity
of an activity does not start before the end of the previous
subactivity of the same activity. Constraint (5) imposes a
deadline on the project. As S(t) is the set of activities that are
in progress during time interval [t, t + 1), constraints (6) force
the total units of utilized resources to be no greater than the
available resource capacity for every period. The conditions for
activity splitting are reflected in (7), (8), and (9). Equation (7)
ensures that the duration of all the subactivities of activity i
must equal the sum of the processing time of activity i and its
total setup times. The constraints (8) guarantee that the times of
splitting for a given divisible activity is no more than a
predefined level called 7;, while in (9) for each subactivity the
duration without setup time must be at least its minimum
execution time. The range of values for V;, dur; ,, and s; ,, are
given in the constraints (10).

In this non-linear model, we need to take constraints (7), (8),
and (9) into account to decide how to split activities and decide
how to schedule those subactivities based on the constraints (2)
- (6). In the first decision, there will be a trade-off between the
benefits of activity splitting and the drawbacks of the increasing
setup times. In the second decision, there will be a trade-off
between inserting time buffers and the deadline constraint. For
the objective function, FS;, will be calculated by an algorithm



>TEM-16-0254.R3 <

that is developed in the next section. Note that FS;,, may not
equal the values of time buffers. Time buffers are inserted based
on the rule of marginally decreasing slack utility, activity
weights, and the changes of the schedule after inserting time
buffers, which together influence the improvement of the
objective function value. The bigger the improvement, the
bigger the possibility to insert time buffers to this activity.

B. An Example

We use an example to illustrate the problem that is identified
above. The AoN network of the example is depicted in Fig. 1
where activities 1 and 6 are the dummy start and end activities
respectively. The activities in the project require one renewable
resource and their durations as well as resource requirements,
activity weights, the maximum numbers of splitting, the
minimum periods of continuous execution, and the setup times
are labeled with the nodes. Other data of the project are as
follows: K = 1, R? =4, D = 14. To demonstrate that activity
splitting is beneficial to schedule robustness, we give the most
robust baseline schedules without and with activity splitting
which are depicted as schedules (a) and (b) respectively in Fig.
2 and compare the results produced below.

1) The Case without Activity Splitting

In this case, we suppose that activities are indivisible during
execution. Therefore, we have n; = 0 for each activity i. Under
this circumstance, schedule (a) is the optimal baseline schedule
in terms of solution robustness where each activity has only one
subactivity and the part with slashes represents the setup time
of activity 5. Obviously, only activity 2 has a free slack of 2.
The corresponding objective function value is equal to 2.00 and
was calculated as shown in Table 1.

2
1

6,
5,

,
o
. i 15w,

77;"5;"6’;'

Fig. 1. An example.

4
availability
4
3 5
2
3
1 2 4
time
0 1 2 3 4 5 6 7 8 9 10 11 12 13
(@)
availability
4
3 5 5
2
3
I % — 4
time
0 1 2 3 4 5 6 7 8 9 10 11 12 13
(]

Fig. 2. Two feasible schedules for the project.

2) The Case with Activity Splitting

In this case, it is assumed that activity splitting is allowed.
Based on the data shown in Fig. 1, schedule (b) is the most
robust baseline schedule where activity 5 is split into two
subactivities. Because of activity splitting, another setup time is
needed before the execution of the second subactivity of
activity 5. The corresponding objective function value is 10.90,
the computation of which can be found in Table I as well.

Comparing the results discussed above, we can find that an
improvement of 445% is obtained for the free slack based
objective function value, which verifies the potential benefits of
making good use of activity splitting in proactive scheduling to
some extent. The reason is that activity splitting enhances the
flexibility of scheduling activities, which is beneficial to
making good use of resources to shorten the project duration
and thus spare more space to insert time buffers. Next, we will
make an analysis about the cost saving when taking activity
splitting into account. In this example, compared with schedule
(a), schedule (b) is likely to have lower adjustment costs. For
example, if the activity duration increases by 1 both for activity
3 and activity 5, we need to adjust the starting times of activity
3 and 4 in schedule (a), but do nothing in schedule (b), which
incurs a lower cost of 13 (9+2*2) for schedule (b).

TABLE I
CALCULATION OF THE OBJECTIVE FUNCTION
Schedule (a) Schedule (b)
LM me? wiet  Pu Riove wn e’
1 0 0 0.00 0.00 0 0.00 0.00
2 4 2 0.50 2.00 1 0.37 1.48
3 9 0 0.00 0.00 1 0.37 3.33
4 2 0 0.00 0.00 0 0.00 0.00
5 7 0 0.00 0.00 1+2 0.87 6.09
6 25 0 0.00 0.00 0 0.00 0.00
Robu 2.00 10.90

III. THE DEVELOPED GENETIC ALGORITHM

In the first part, we propose two properties of the scheduling
model and one lemma, which can be used for the development
of the algorithm. In the second part, we firstly explain why we
choose a genetic algorithm to solve the problem and then
present the framework of the developed algorithm. Afterwards,

technical details are given to describe the developed genetic
algorithm in seven parts where the proposed properties and the
lemma are used for the local search procedure.

A. The Properties and the Lemma

To explain the properties and the lemma more clearly, we
provide three definitions in advance.



>TEM-16-0254.R3 <

Definition 1: In a given schedule, time period T is feasible
for a minimum part of activity i, whose duration equals the
minimum execution time of activity i, to be executed if: 1) the
successors of activity i do not start before the end of time period
T, 2) the remaining resources in time period T can still satisfy
the resource requirements of activity i, 3) the length of time
period T is no less than ¢; + 6;, and 4) the starting time of the
time period is after the completion time of the last subactivity
of activity i.

Definition 2: Subactivity (i,v) is divisible if V; <n; and
duri‘v - Gi = 2€i.

Definition 3: Subactivity (i, v) is abundant in free slacks if
FS,, =22+6;.

Based on the above definitions, we develop two properties of
the model, which are named as Pioneering and Balancing
respectively based on the mechanism of each operation. After
that, one lemma is proposed for improving the schedule
robustness.

Property 1 (Pioneering): If subactivity (i, v) is divisible,
and there is a feasible period T, whose length is denoted as &,
for activity i to be executed, then schedule robustness can be

improved in three steps: Firstly, keep other activities unchanged.

Secondly, divide this subactivity into two parts, which are
denoted as (i,v;) and (i,v,), whose durations are dur;, —
dd (¢; < dd < min{dur;,, —&; — 6;, & —6;}) and dd +6;
respectively. Thirdly, schedule the two parts of this subactivity
in the original and the new periods. In this way, the objective
function value of the schedule can be improved.

Proof of Property 1: After the Pioneering operation, the free
slack of subactivity (i, v;) will be FS;,, + dd, while the free
slack of subactivity (i, v,) will be & — dd — ;. The utility of

_ FSip _ -

the free slacks before the operation is U; = ¥, " e, which is
. FS; p+dd

smaller than that after the operation U, = b:l'l”+ e’ +

ZfT 4= o=b, Hence, Property 1 can be used as a rule to

maximize schedule robustness.

Property 2 (Balancing): If subactivity (i, v) is divisible, and
its free slack is not abundant, while the reverse is true for
subactivity (i,p), then schedule robustness may be improved
by transferring one unit of time from the duration of subactivity
(i, v) to that of subactivity (i, p).

Proof of Property 2: From the prerequisites of Property 2,
we can obtain the four following constraints: dur;,, — 8; = 2¢;,
OSFSL-J,SL SiSduTi’p_9i<2€i, and FSLpZZ After
the Balancing operation, the free slack of subactivity (i, v) will
be FS;,, + 1, while the free slack of subactivity (i, p) will be
FS;,, — 1. Then, the utility of the free slacks after the operation

FS;p+1 FSLp

v o=b e b =
b=1 + Z -

can be calculated as: U, =
ZFS“’ b4 Zb e’ + (e7FSiv=t — ¢ FSip), Because of the
two following constraints, i.e., —FS;,, = —1 and —FS; , < —2,
U, will be no less than the utility before the operation U; =
ZFS“’ b +stl” . Hence, Property 2 can be used to

improve the objective function value.
To summarize, Pioneering facilitates the discovery of new

periods for activities to be executed, and Balancing is used to
balance the length of the durations between two subactivities of
one activity. As the two properties can help to transform
subactivities into divisible ones with abundant free slacks, they
pave the way for the following lemma, which is used to divide
one subactivity into subactivities that specifically share the
buffer of the original subactivity as equally as possible such that
the schedule robustness can be improved.

Lemma 1: For any subactivity (i, v) that is divisible and
abundant in free slacks, we can first divide this subactivity

duri,,—ei] FS;,+0;
W ip _TuLv 7t — /4 2 art:
& ’ 1+0; ! Th t + p S

whose durations are no less than ¢;, and then schedule them
continuously and make sure their free slacks are as equal as
possible, i.e., the difference between the maximum and the
minimum free slack value of the newly generated subactivities
is no more than one. In this way, schedule robustness will be
improved.

Proof of Lemma 1: As Y)° e * = :11 < 2e?

would be always beneficial for improving schedule robustness
by splitting a divisible subactivity with abundant free slacks

into num;, = min ([

IS true, it

into certain parts. To maximize robustness, FS;,, — (numi,v -

FS;p+0;

1)6; should be no less than num;,, so num;, < ﬁ
i

Furthermore, if the difference between the maximum and the
minimum free slack value of the newly generated subactivities
is more than one in the optimal improvement, for example,
fs1>fs,+1, then Y% e + 302 70 = (¥ e +

—fsl) + Zfsz -b Zfsl Lo-b + (Zfsz -b 4 o—fs2- 1) —
Zf S171o=b 4 Zf 241 6-b  Ag there will be a contradiction, to
obtaln an optimal 1mpr0vement based on the proposed lemma,
the original subactivity should be divided into num,, parts
whose free slacks are as equal as possible.

Note that it is possible that none of the subactivities in a
schedule is divisible and abundant in free slacks, and under this
circumstance we cannot apply Lemma 1 to improve solution
robustness of this schedule.

B. The Developed Genetic Algorithm

As shown in Appendix C, the proposed problem can be
simplified into the RCPSP with the objective of makespan
minimization. As the latter is known to be NP-hard in the strong
sense [32], [33], the proposed proactive scheduling problem
with activity splitting is NP-hard in the strong sense as well,
which makes the achievement of optimal solutions a
computationally difficult proposition, especially for large
projects. For this reason, we use a well-known metaheuristic,
i.e., a genetic algorithm as introduced by Holland [34], to solve
the problem. We choose the genetic search methodology for
two reasons. Firstly, this technique has been successfully
applied to many project scheduling problems [24], [25], [29],
[30], [35], [36], and second, it is easy to generate activity
splitting at each iteration by using the crossover operator.

Genetic algorithms work with a “population” of individuals.
In our algorithm, we set the size of the population as u, the
individual of which can be initially generated by a procedure



>TEM-16-0254.R3 <

called IGP. At each iteration, which is denoted as iter, the best
¢ individuals of the population in terms of fitness (objective
function value) are chosen to be included in the population of
the next iteration, while (u — ¢) individuals of the population
are selected following the roulette wheel sampling method to
generate children with the aid of a crossover operator called
CRP. Then, a mutation operator called MTP is used to apply a
certain change to the generated children. Each child will be
decoded into a solution using the procedure DCP. If it is
feasible, the solution will be buffered with the procedure BFP
and improved with a local search procedure that includes three
operators called LSP_1, LSP_2, and LSP_3, respectively. As far
as the termination criterion of the developed genetic algorithm
is concerned, we define § as the required number of iterations
and stop the algorithm once § is reached. It is noteworthy that
we work with the notion of life span to solve the problem of
super-individuals. Super-individuals far exceed, in fitness,
other solutions of the population, and their existence might
result in premature convergence to a local optimum. We set the
life span of an individual at “birth” at 0. At each iteration, the
life span of each surviving individual is increased by 1. When
the life span reaches a certain number, maxlife, the individual
dies and is replaced by a newly generated individual with the
aid of the procedure IGP.

1) Solution Representation
Referring to [24], [31], we use three lists below to codify the

solutions, the length of which is denoted as nsub.

* Subactivity list (L): This list is the sequence of subactivities.
The j-th element in L represents the subactivity L; = (i,v);.

* Duration list (DL): This list stores the duration dur(i‘v)j of
the corresponding subactivity (i,v); in L.

e Buffer list (BL): This list indicates which subactivities should
be buffered and by how much their finish times can be
delayed beyond their earliest finish times as dictated by the
serial schedule generation scheme (SSGS). For convenience,
let bu f(i,v)j denote the buffer of the corresponding

subactivity ({,v); in L. Note that buf(l-_v)j represents the
inserted buffer, which is different from F S(i_v)j.

Given the above lists, a solution can be obtained using a
decoding approach, which is an extension of SSGS and is
described in Algorithm 1 in Appendix D.

2) Objective Function

For a solution that is represented by the combination of the
three lists, the key to calculating its objective function value is
to compute the free slack FS; ,, of each subactivity. Once they
are obtained, the objective function value can be easily
computed based on the formula (1). We develop a procedure to
compute the free slack of every subactivity, which is an
extension of the procedure developed by Lambrechts et al. [31]
and is indicated in Algorithm 2 in Appendix D.

As the decoded schedule may cause a project deadline
violation, we transform the deadline constraint into a soft
constraint that is based on a deadline feasibility test function
DFT, which is defined as DFT = max{O, Sp1— D}. During the
searching process, if the DFT of a solution is greater than 0, the

objective function value of the solution will be penalized based
on the following formula:

Robu =Y [w; (Zziﬂ Zii'l" e‘b)] —np -nc - DFT.
Here, np is the penalty factor, and nc denotes the number of
iterations that are used by the genetic algorithm since the last
major improvement was found.
3) Buffering

For a feasible solution, we use a procedure called BFP,
which is described in Algorithm 3 in Appendix D, to insert
enough buffers into the schedule to improve its robustness,
which serves as a local search of the buffer list. We firstly select
a subactivity randomly and add one unit of time buffer to that.
Then we calculate the objective function value Robu' of the
improved solution. If the deadline constraint is violated or the
objective function value has not been improved, the number of
failure times ¢ that is initialized at zero will increase by one. If
¢ reaches a predefined maximum allowed number Z of failures,
the procedure ends. Otherwise, another subactivity is chosen
and the procedure continues.
4) Initial Population Generation

The individual g of the initial population can be generated
through the procedure IGP, which is described in Algorithm 4
in Appendix D. To decide whether to split the activities in the
initial solution, we take the constraints of the maximum number
of splitting and the minimum execution time into consideration.
If the two constraints are satisfied, then we generate random
numbers and compare them with a predefined parameter itrpt
to make the decision of activity splitting. Note that this
procedure builds an individual in nsub iterations, where nsub
is unknown until the end of the procedure.
5) Crossover

Children can be generated by operating on the selected
individuals with the aid of a crossover procedure called CRP.
This procedure is described in Algorithm 5 in Appendix D,
which is similar to the one that is developed by Ballestin et al.
[24] except that we now have a third list called buffer list. In
our procedure, we copy the same proportion of time buffer of
the parent to the child as that of the duration. Note that the
selected individuals are randomly paired as parents, and each of
them can be a father or a mother.
6) Mutation

We make a change on the children with the procedure MTP,
which is described in Algorithm 6 in Appendix D. We must
emphasize that it is a deliberate choice that the mutation
operation only considers the operators of changing the
sequences and time buffers of the subactivities and does not
introduce more operators. We considered many operators such
as introducing more activity splitting, merging some
subactivities, and changing the duration of subactivities.
However, the preliminary tests with such operators did not lead
to improved results. A reason could be that the local search
procedure that is developed in the next section plays the same
roles as those of these operators. For example, the procedures
LSP_1 and LSP_3 can be regarded as operations that introduce
more splitting of activities, and the procedure LSP_2 is
structured to change the duration of the subactivities.



>TEM-16-0254.R3 <

7) Local Search

For each feasible child, we adopt a local search procedure
that includes three operators called LSP_1, LSP_2, and LSP_3,
respectively, to improve its schedule robustness. The operator
LSP_1, which is based on Property 1 and described in
Algorithm 1, facilitates the discovery of new periods for
activities to be executed. Let C; = {Ty, T, ---, T,.} denote the set
of feasible periods, as defined in Definition 1, and let C, =
{(i, v)|duri,,, —60; =22 and V; < ni} represent the set of
divisible subactivities, as defined in Definition 2.

Algorithm 3. Robu’' = LSP_3 (L, DL, BL)

Algorithm 1. Pioneering: Robu' = LSP_1 (L, DL, BL)

I: FS(1y, = FSP (L, DL, BL), obtain V; (i € N)
2:FORi=2TOn—1DO

3: IFn; >0 AND d; > 2¢; THEN

4: Obtain the sets C; and C,

5. WHILE C; # ® AND C, # @ AND V; < 7; DO

6: Choose the period T; from C; and one subactivity (i, v) from
G

7: Generate dd from [si, min{duri'v —&—0;, & — Gi}]

8: Update the sets C; and C,, V; = V; + 1

9: dur;,, = dury, — dd, duryy, = dd + 0, FS;;, = FS;;, +

dd, FSi,Vi = le - dd - Ql-

10:  END WHILE

11: ENDIF

12:END FOR

13:Calculate the objective function value Robu' of the improved
solution

The operator LSP_2, which is based on Property 2 and
described in Algorithm 2, is used to balance the length of
durations between two subactivities of one activity. Let C5 =
{(i, v)|duri,,, —0;=22gand FS;, <1+ Gi} denote the set of
subactivities that are divisible but not abundant in free slacks
and let C, ={(i,v)|dur,, — 6; < 2e; and FS;,, > 2 + 6;}
represent the ones that are just the reverse.

Algorithm 2. Balancing: Robu' = LSP_2 (L,DL,BL)

1: FS(L-'V); =FSP (L,DL,BL)

2:FORi=2TOn—-1DO

3: IFn; >0 AND d; > 2¢; THEN

4 Obtain the sets C5 and Cy, NS = min{|Cs5], |C,|}

5: FOR g =1TO NS DO

6 Choose one subactivity (i, v) from C3 and another one (i, p)
from C,

7: dur;, = dury, — 1, durj, = durjp, + 1
8: FSi, =FSiy+1, FS;, =FS;, — 1

9: Update C3 and C,

10: END FOR

11: ENDIF

12:END FOR

13:Calculate the objective function value Robu' of the improved
solution

The operator LSP_3, which is based on Lemma 1 and
described in Algorithm 3, is used to divide one subactivity into
subactivities that specifically share the buffer of the original
subactivity as equally as possible. For the sake of description,
let Cs = {(i, v)|dun-_,, > 2¢ and FS;,, = 2} denote the set of
subactivities that are divisible and abundant in free slacks.

1: FS(L,,);_ = FSP (L,DL,BL), obtain V; (i € N)
2:FORi=2TOn—-1DO

3: IFn; > 0 AND d; > 2¢; THEN

4 Obtain the set Cs

5. WHILE Cs # @ AND V; < n; DO

6 Choose one subactivity (i, v) from Cs, num;,, =

. dur; ,—6 FS; ,+6
min {[—”’ ’] =, n, =V, + 2}
£ 1+6; t

7: Divide the subactivity (i, v) into num,, parts whose free
slacks are as equal as possible and durations are [dur;,, —
(numi‘,J - 1) ~&i )& + 6, + 0; respectively

8: Update V; and the set Cy
9:  END WHILE

10: ENDIF

11:END FOR

12:Calculate the objective function value Robu' of the improved
solution

IV. COMPUTATIONAL RESULTS

A. Experimental Design

Based on the three developed local search operators, four
different versions of the genetic algorithm are presented. For
the sake of description, we represent the genetic algorithm
without any local search operator as GA, the genetic algorithm
with the operator LSP_1 as GA-LSP1, the genetic algorithm
with operators LSP_1 and LSP_2 as GA-LSP12, and the
genetic algorithm with all the three operators as GA-LSP123,
respectively, in the remainder of the paper. To evaluate the
effectiveness of the proposed genetic algorithms, we propose
the use of CPLEX as a benchmark to optimally solve the
established model. Referring to the methods that are proposed
to reduce zero-one polynomial formulations to zero-one linear
formulations [37], the proposed non-linear model can be
linearized, just as shown in Appendix E. As many variables and
constraints are introduced into the model, it may take much time
to solve the problem. However, there is no loss of the quality of
the solutions for the problem and therefore it is enough for the
sake of comparison of effectiveness. Note that we can use
CPLEX to directly represent the algorithm that is conducted by
the software. The aim of our experiment is not only to test the
effectiveness of the three local search operators by comparing
the performance of different versions of the genetic algorithm,
but also to validate the performance of the genetic algorithm
developed in this paper against CPLEX. Besides, it is expected
to draw conclusions based on an analysis of the results.

The five algorithms are tested on five instance sets that are
constructed by the ProGen project generator [38], [39], which
is classified by three parameters, i.e., network complexity (NC),
resource factor (RF), and resource strength (RS). Specifically,
the instances with 6 or 8 or 10 non-dummy activities, denoted
as J6, J8, and J10, are generated by ourselves using the ProGen
generator while the instances with 30 or 60 non-dummy
activities, denoted as J30 and J60, are randomly (the first and
the sixth instances out of the ten provided instances) chosen
from the Project Scheduling Problem Library (PSPLIB), which
is also generated by the ProGen generator [39]. The five sets



>TEM-16-0254.R3 <

consist of 48x2x5=480 instances, and the parameter setting that
is used to generate instances is described in Table II. Note that
in consideration of the feasibility of the instance generation, we
choose a different level setting of network complexity for J6,
J8, and J10 from the one for J30 and J60. As for the other
parameters in our problem, such as w;, 6;, n;, and ¢;, we
generate them randomly to cover all the cases in practice. The

parameter settings of these parameters can be found in Table II
and Table II1.

In our experiment, the project due date D of each instance is
set at CRSPSP(1 + a) where CREPSP represents the minimum
makespan that is optimally solved by CPLEX under a
deterministic, indivisible, and non-setup-time environment, and
the due date factor « is a parameter that is chosen by the project

TABLE II
PARAMETER SETTINGS THAT ARE USED TO GENERATE THE DATA SET
Parameter Setting
Number of non-dummy activities 6, 8, 10, 30, 60

Network complexity, NC

Resource factor, RF
Resource strength, RS

1.2, 1.5, 1.8 for the sets J6, J8, and J10
1.5, 1.8, 2.1 for the sets J30 and J60
0.25, 0.50, 0.75, 1.00

0.2,0.5,0.7,1.0

Number of instances for each combination of parameters under a given number of non- 2

dummy activities

Number of initial or terminal activities
Maximal number of successors or predecessors
Activity duration, d;

Number of resource types, K

Resource amounts required by activities, rfk
Weights of non-dummy activities, w;

3
3
Randomly selected from interval [1, 10]
4
Randomly selected from interval [1, 10]

Randomly selected from interval [1, 10]

TABLE III
LEVELS OF THE KEY PARAMETERS
Parameter Level  Value
Project due date factor a 1-3 20%, 30%, 40%
1 6; =08x*cxd;
Setup times of non-dummy activities 6; 2 6;=10*cxd;
3 6;=12=*cxd;
1 n; = min{d; — 1,a} =1
2 n; = min{d; — 1, 1.5a} =1
3 n; = min{d; — 1,2a} g=1
Combination of ; and &; 4 n =[di/g]—1 & = max{1,b}
5 n; =[d;/g]—1 & = max{1,0.7b}
6 n; =[d;/g]—1 & = max{1,0.4b}
7 n=d -1 =1
TABLE V
PERFORMANCE OF THE FOUR VERSIONS OF THE GENETIC ALGORITHM
. APB API ARI ACT ACT’ AOG’
Set Version AOV (%) %) %) (s) ) (%)
GA 30.21 73.31 0.00 0.00 0.12 0.24 2.79
16 GA-LSP1 30.23 74.11 0.23 15.94 0.12 0.24 2.76
GA-LSP12 30.28 76.57 3.04 4.89 0.12 0.24 2.70
GA-LSP123 30.49 96.36 10.07 9.40 0.12 0.20 1.89
GA 40.00 44.71 0.00 0.00 0.16 0.39 2.98
18 GA-LSP1 40.07 46.15 0.48 17.31 0.16 0.39 2.92
GA-LSP12 40.21 50.15 3.80 5.44 0.17 0.38 2.88
GA-LSP123 40.92 91.34 11.28 11.47 0.17 0.29 1.70
GA 47.62 26.74 0.00 0.00 0.19 0.49 3.39
110 GA-LSP1 47.77 28.04 1.02 9.41 0.20 0.49 3.01
GA-LSPI12 48.05 31.40 4.69 5.16 0.19 0.48 3.13
GA-LSP123 49.38 87.12 12.68 8.45 0.20 0.34 2.00
GA 158.83 3.90 0.00 0.00 3.12 9.44 6.88
130 GA-LSP1 162.52 6.37 3.44 5.67 3.21 9.13 5.54
GA-LSP12 162.83 6.66 8.55 3.60 3.13 9.10 5.69
GA-LSP123 175.05 83.50 17.98 6.33 3.32 5.22 2.41
GA 300.98 1.82 0.00 0.00 9.35 28.80 9.57
160 GA-LSP1 318.10 6.30 10.85 423 9.73 26.32 6.40
GA-LSP12 318.58 6.07 17.12 3.60 9.47 25.51 6.63
GA-LSP123 349.83 85.81 30.16 7.01 10.04 13.69 4.24
GA 115.53 30.10 0.00 0.00 2.59 7.87 512
Avg GA-LSP1 119.74 32.19 3.20 10.51 2.68 7.31 4.13
GA-LSP12 119.99 34.17 7.44 4.54 2.62 7.14 4.21
GA-LSP123 129.13 88.83 16.43 8.53 2.77 3.95 245




>TEM-16-0254.R3 <

manager and constitutes the trade-off between project stability

and project duration [14]. The value of the four key parameters,

ie., a, 0;, n;, and g;, is set at certain levels, as shown in Table

III, where parameter ¢ denotes a decimal that is randomly

selected from [1/10, 1/8] and parameters a and b respectively

denote random numbers that are selected from [0, d; — 1] and

[1, d;]. Consequently, a full factorial experiment of the four

parameters results in 3 X3 X7=63 replicates for each instance

and 480X 63 = 30240 ones overall.

The following ten indices are defined to evaluate the
performance of the algorithms. Specifically, the first seven
indices are used to compare the performance of the four
different versions of the genetic algorithm, and the last three
indices are additionally designed to make a comparison of the
performance between the genetic algorithm and CPLEX.

* AOV: Average objective function value.

* APB: The percentage of instances for which the algorithm
finds a solution that is equal to the best solution known, i.c.,
the best one among the solutions that are found by the four
developed versions of the genetic algorithm — GA, GA-LSP1,
GA-LSP12, and GA-LSP123.

* API: The percentage of solutions that are improved after
using the local search procedure.

* ARI: Average rate of improvement in terms of the objective
function value after using the local search procedure.

* ACT: Average computing time.

* ACT’: Average computing time to solve the problems to
obtain the best solutions known.

* AOG’: Average gap in terms of the objective function values
of the worse solutions that are obtained by a specific version
of the genetic algorithm compared with those of the best
solutions known.

* AOG: Average gap in terms of the objective function values
of the worse solutions that are obtained by the genetic
algorithm compared with those of the corresponding
solutions that are obtained by CPLEX.

* APN: The percentage of instances that cannot be solved by
CPLEX within a predefined time limit.

* AWS: The percentage of instances in which worse solutions
are obtained by the developed genetic algorithm than by
CPLEX.

In our experiment, the developed algorithms are programmed
in the C++ language, implemented in Microsoft Visual Studio
2013 and executed on a DELL OptiPlex 3040MT with 3.20
GHz clock-pulse and 8G RAM.

B. Parameter Selection

TABLE IV
VALUES OF PARAMETERS FOR INSTANCE SETS

Set u @ Z maxlife np itrpt pmut )
J6,18,and J1I0O 64 15 2 7 25 0.4 5% 80

130 64 11 2 7 30 04 5% 350

J60 64 15 2 9 50 04 4% 450

Our developed genetic algorithm allows for different choices
of eight parameters. With a focus on the value of AOV, we
performed a preliminary experiment to choose the best
combination of parameters. This experiment tests the instances
whose project due date factor « is set at 30%, setup time is set
at level 1, and the combination of 1; and ¢; is set at level 4.
According to the results of the preliminary test, the parameters

are set at different values to solve different instance sets, as
shown in Table IV.

C. Performance of the Developed Genetic Algorithm

1) Comparison of the Four Different Versions of the Genetic
Algorithm

The results of the performance of the four developed genetic
algorithms on the five instance sets are presented in Table V,
where the italic numbers in the four bottom rows represent the
average values of the five instance sets. It is noteworthy that the
five left indices are used to measure the performance of the
genetic algorithms that stop after a predefined number of
iterations while the two right ones are used to measure the
performance of the genetic algorithms that stop once obtaining
the best solutions known. From the table, we observe that for
different instance sets the conclusion is almost the same in
terms of the performance of the four versions of the genetic
algorithm. The indices AOV and APB of GA-LSP1 are higher
than those of GA, which verifies a better performance of GA-
LSP1 compared with GA. This is not surprising because the
operator LSP_1 is added in GA-LSP1, which on average
improves the objective function values of 3.20 percent of the
solutions by 10.51%. Similarly, the effectiveness of the
operator LSP_2 can be analyzed by comparing the versions
GA-LSP12 and GA-LSPI1. On average, GA-LSP12 performs
better than GA-LSPI1 in terms of AOV, APB, and ACT.
Furthermore, we find that GA-LSP123, followed by GA-LSP12,
GA-LSP1, and GA, performs the best with the highest average
objective function value (AOV) and the highest average
percentage of the best solutions (APB). Corresponding with the
highest value of APB, GA-LSP123 takes the least time to solve
the problems again, reaching a smallest average gap of the
objective function values compared with those of the best
solutions known. Most of the success is due to the application
ofthe operator LSP_3, which on average improves the objective
function values of 16.43 percent of the solutions by 8.53%.
Compared with the operators LSP_1 and LSP_2, LSP_3 is
much more effective as there is a sharp increase of AOV and
APB once it is included in the genetic algorithm. In summary,
the three developed local search operators improve the solution
robustness of the baseline schedules, although it takes a
somewhat longer computing time to solve the problems. Thus,
GA-LSP123 is the most promising version for the problem
among the four presented genetic algorithms, which can be used
to compete with a commercial mathematical programming
solver next.
2) Comparison of the Performance between the Genetic
Algorithm and Commercial Software

To test the effectiveness of the algorithm that is developed in
this paper, we conduct an experiment to compare the
performance between GA-LSP123 and a commercial
mathematical programming solver (CPLEX). In this
experiment, we predefine a maximum period of one hour for
CPLEX to solve each instance. This means that even though
one instance is not solved optimally by that time, we end the
algorithm and save the outcome that has been obtained thus far,
which includes the best solution, the objective function value,
and the computing time. Because it is difficult for CPLEX to
solve the problems with a lot of non-dummy activities, we only
choose to test the three instance sets J6, J8, and J10.



> TEM-16-0254.R3 < 10
TABLE VI TABLE VII
PERFORMANCE OF GA-LSP123 AND CPLEX EFFECT OF DIFFERENT LEVELS OF THE COMBINATION OF 717; AND &;
Set ACT (s) APN AWS AOG Set .C.as.e Level N & AOV ACT
GA-LSP123  CPLEX (%) (%) (%) Divisible 1 238 1.00 28.91 0.12
J6 0.12 1592.04 42.21 2.63 2.30 2 292 1.00 29.86 0.12
J8 0.17 1766.92 46.93 8.09 1.37 3 338 1.00 31.26 0.13
J10 0.20 202272 5417 16.77 1.33 4 117326 2449  0.11
Avg 0.16 1793.89  47.77 9.16 1.67 16 5 217 206 2945  0.12
- : 6 343 133 33.94 0.13
The results of the experiment can be found in Table VI. From 7 466 100 3554 014
the table, we can see that the number of instances that cannot Avg 287 152 3049 0.2
be solved by CPLEX in the predefined period is very high and Indivisible 8 000 566 1643  0.09
increases quickly with an increasing number of non-dummy Divisible 1231 100 3883 017
P . . . 2 2.84  1.00 40.81 0.17
activities. Simply put, CPLEX requires a great deal of time to 3 326 100 4262 017
solve the problem. This is not surprising because many 4 1.03 326 3193 0.15
variables and constraints are introduced during the linearization 18 5 203 206 3873 0.6
process of the proposed scheduling model, which results in the g i-i; }gg 32;; 8}3
dlfﬁculty of computing prob!ems fo.r CPLEX. By contrast, QA- Avg 274 Isa 4092 017
LSP123 is much more efficient, with a very small computing Indivisible 3 000 549 2156 012
time. Although GA-LSP123 cannot solve some instances as Divisible 1 215 100  47.01 0.20
optimally as CPLEX, the percentage of these instances is very 2 2,65 1.00 4894  0.20
small, and it is acceptable of the average gap between the i i'gg ;'82 ié;g 8'%
objective function values of the solutions for these instances 110 5 202 193 4705 020
that are solved by GA-LSP123 and the corresponding ones that 6 322 128 5450 022
are solved by CPLEX. 7 4.25 1.00 58.08 0.22
Avg  2.63 146 4938  0.20
D. Sensitivity Analysis of the Key Parameters Indivisible 8 000 525 2692  0.14
Firgtly,‘ we investigate the effec.t of different levels of the Divisible ; ;ég igg }%é? gg(l)
combination of 7; and ¢&; on solution robustness for the five 3 304 100 18471  3.40
instance sets. In addition to the seven levels of the divisible case, 4 1.02 322 13216  2.82
we take level 8, which represents the indivisible case, into 130 5 197 205 163.02  3.18
account. The results are described in Table VII where for each 6 320 134 19229  3.54
. .1 . 7 4.41 1.00  209.88 3.77
instance set the italic numbers in the second row from the e 263 152 17505 332
bottom represent the average values of the divisible case. From Tndivisible 3 000 541 8488 245
the table, two main phenomena can be observed. The first one Divisible 1 227  1.00 33481 937
is that the average objective function value under the divisible 2 276 100 35398 991
case is significantly higher than the corresponding values under 3 319 1.00 37093  10.39
the indivisible case. This indicates that activity splitting is 160 4 1.07 325 26795 824
beneficial for generating more robust baseline schedules that 5 2.03 206 32829 937
are likely to have lower adjustment costs during project 6 329 134 37933 1073
execution. Compared with the classic proactive scheduling 7 452 100 41352 1223
models where activity splitting is not allowed, this paper offers — Advg 273 152 34983 10.03
. .. Indivisible 8 0.00 552  169.18 6.95
a new method to improve schedule robustness when activity
splitting is allowed and generates better solutions to project
management. This phenomenon can be explained as follows. 400
When activities can be split, it will be more flexible for project ggg %
managers to schedule activities at the design stage of the S 250
baseline schedules, which may help to obtain higher solution <Ot 200 e —
robustness. Essentially, the solution space of the divisible case igg
is extended because of the constraint relaxation. The second 50 = 2 o
phenomenop is that the average objectl've function 'V.‘?ll.ue 0 0iz0.8cdi 0icL.0cdi Bict 20di
increases with the growth of 7; or the decline of ¢;. Activities
can be split more frequently with a higher value of n; or with a —a—J6 33.58 30.25 27.65
lower value of ¢;, which improves the scheduling feasibility, =08 45.15 40.77 36.83
and thus this is beneficial for obtaining a higher objective 110 54.28 49.35 44.50
function valye. . —=J30| 19297 173.94 158.24
Secondly, we investigate the influence of the key parameter
0; on the index AOV for the five instance sets. The results are —+—160 385.52 347.48 31650

shown in Fig. 3, from which we can see that the growth of 6;
has a negative effect on the average objective function value.
This is because there will be less space for inserting time buffers
when taking more setup times into account.

Fig. 3. The influence of the key parameter 6; on AOV.

In addition, we investigate the influence of the key parameter
a on the index AOV for the five instance sets, and we take two



>TEM-16-0254.R3 <

more levels of a, 25% and 35%, into account. The results are
shown in Fig. 4, from which we can see that the growth of «
has a positive effect on the average objective function value.
This is reasonable because there will be more inserted buffers
in the schedule as the project due date constraint becomes less
strict.

400 /:

350 /C

300 L
8 250
< 200 m——

150 #—

100

50 T |

0

a=20% | a=25% | a=30% | a=35% | a=40%

e—fe=]6 | 24.84 | 27.92 | 30.58 | 33.00 | 36.07
e | 8 33.50 37.55 41.25 44,55 48.00

J10| 40.26 45.44 49.95 54.26 57.92
et )30 | 148.85 | 164.22 | 176.79 | 188.93 | 199.51
e===]60| 299.68 | 327.29 | 352.77 | 375.96 | 397.05

Fig. 4. The influence of the key parameter « on AOV.

V. CONCLUSIONS

This paper presents a proactive resource- constrained project
scheduling problem with activity splitting where each activity
can be split at discrete time instants under the constraints of a
maximum number of splitting and a minimum period of
continuous execution. Besides, in this problem setup times are
considered. Based on the analysis of the established model, two
properties and one lemma are proposed and applied in our
developed genetic algorithm to improve the local search
efficiency. In addition, we linearize the proposed model,
making it solvable for commercial software. A computational
experiment that is performed on data sets generated by the
ProGen is designed and executed, from which the following
conclusions are drawn:

1) The two developed properties and the proposed lemma can
be used to maximize the objective function, and the genetic
algorithm with a combination of the three local search
operators performs the best.

2) Compared with commercial software, the developed
genetic algorithm is much more efficient to solve the
proposed scheduling problem, and the gap in terms of the
objective function value is acceptable.

3) Due to the increase in flexibility of executing activities,
activity splitting enhances the robustness of baseline
schedules that are likely to have lower adjustment costs
during project execution. Compared with the classic
proactive scheduling models where activity splitting is not
allowed, this paper offers a new method to improve
schedule robustness when activity splitting is allowed and
generates better solutions to project management.

4) With the growth of the maximum number of splitting, the
decline in the minimum execution time, the decrease in the
setup times, and the extension of the project due date,
schedule robustness increases.

11

Note that the research in this paper is based on specific
assumptions of activity splitting, so further research can provide
support for quantitative decisions on project management under
more complex and realistic conditions of activity splitting, such
as cases in which activity splitting is allowed at arbitrary
rational times. In addition, more effective and efficient
algorithms can be developed to solve the proposed scheduling
problem, and other efficient methods can be proposed to solve
the zero-one polynomial formulations.

REFERENCES

[1] W. Herroelen and R. Leus, "Robust and reactive project scheduling: A
review and classification of procedures," Int. J. Prod. Res., vol. 42, pp.
1599-1620, 2004.

[2] W.Herroelen and R. Leus, "Project scheduling under uncertainty: Survey
and research potentials," Eur. J. Oper. Res., vol. 165, pp. 289-306, 2005.

[3] S. Van de Vonder, E. Demeulemeester, W. Herroelen, and R. Leus,
"Proactive-reactive project scheduling trade-offs and procedures," in
Perspectives in Modern Project Scheduling. New York, NY, USA:
Springer, 2006, ch. 2, pp. 25-51.

[4] E.Demeulemeester and W. Herroelen, Robust project scheduling. Boston,
USA: Now Publishers, 2011.

[5] S.Vande Vonder, E. Demeulemeester, W. Herroelen, and R. Leus, "The
use of buffers in project management: The trade-off between stability and
makespan," Int. J. Prod. Econ., vol. 97, pp. 227-240, 2005.

[6] O. Hazir, M. Haouari, and E. Erel, "Robust scheduling and robustness
measures for the discrete time/cost trade-off problem," Eur. J. Oper. Res.,
vol. 207, pp. 633-643, 2010.

[71 O. Hazr, E. Erel, and Y. Giinalay, "Robust optimization models for the
discrete time/cost trade-off problem," Int. J. Prod. Econ., vol. 130, pp. 87-
95,2011.

[8] W. Herroelen and R. Leus, "The construction of stable project baseline
schedules," Eur. J. Oper. Res., vol. 156, pp. 550-565, 2004.

[91 R. Leus and W. Herroelen, "Stability and resource allocation in project
planning," IIE Trans., vol. 36, pp. 667-682, 2004.

[10] S. Van de Vonder, E. Demeulemeester, and W. Herroelen, "Proactive
heuristic procedures for robust project scheduling: An experimental
analysis," Eur. J. Oper. Res., vol. 189, pp. 723-733, 2008.

[11] O. Lambrechts, E. Demeulemeester, and W. Herroelen, "Proactive and
reactive strategies for resource-constrained project scheduling with
uncertain resource availabilities," J. Scheduling, vol. 11, pp. 121-136,
2008.

[12] O. Lambrechts, E. Demeulemeester, and W. Herroelen, "Time slack-
based techniques for generating robust project schedules subject to
resource uncertainty," Ann. Oper. Res., vol. 186, pp. 443-464, 2011.

[13] M. A. Al-Fawzan and M. Haouari, "A bi-objective model for robust
resource-constrained project scheduling," Int. J. Prod. Econ., vol. 96, pp.
175-187, 2005.

[14] S. Van De Vonder, E. Demeulemeester, W. Herroelen, and R. Leus, "The
trade-off between stability and makespan in resource-constrained project
scheduling," Int. J. Prod. Res., vol. 44, pp. 215-236, 2006.

[15] S. Van de Vonder, E. Demeulemeester, and W. Herroelen, "A
classification of predictive-reactive project scheduling procedures," J.
Scheduling, vol. 10, pp. 195-207, 2007.

[16] H. Chtourou and M. Haouari, "A two-stage-priority-rule-based algorithm
for robust resource-constrained project scheduling," Comput. Ind. Eng.,
vol. 55, pp. 183-194, 2008.

[17] F. Deblaere, E. Demeulemeester, and W. Herroelen, "Proactive policies
for the stochastic resource-constrained project scheduling problem," Eur.
J. Oper. Res., vol. 214, pp. 308-316, 2011.

[18] P. Lamas and E. Demeulemeester, "A purely proactive scheduling
procedure for the resource-constrained project scheduling problem with
stochastic activity durations," J. Scheduling, vol. 19, pp. 409-428, 2016.

[19] E. Demeulemeester and W. Herroelen, "An efficient optimal solution

procedure for the preemptive resource-constrained project scheduling

problem," Eur. J. Oper. Res., vol. 90, pp. 334-348, 1996.

J. Buddhakulsomsiri and D. S. Kim, "Properties of multi-mode resource-

constrained project scheduling problems with resource vacations and

activity splitting," Eur. J. Oper. Res., vol. 175, pp. 279-295, 2006.

[21] J. Buddhakulsomsiri and D. S. Kim, "Priority rule-based heuristic for
multi-mode resource-constrained project scheduling problems with

[20

[



>TEM-16-0254.R3 <

[22]

(23]

[24]

(23]

[26]

[27]

(28]

[29]

resource vacations and activity splitting," Eur. J. Oper. Res., vol. 178, pp.
374-390, 2007.

J. Damay, A. Quilliot, and E. Sanlaville, "Linear programming based
algorithms for preemptive and non-preemptive RCPSP," Eur. J. Oper.
Res., vol. 182, pp. 1012-1022, 2007.

F. Ballestin, V. Valls, and S. Quintanilla, "Pre-emption in resource-
constrained project scheduling," Eur. J. Oper. Res., vol. 189, pp. 1136~
1152, 2008.

F. Ballestin, V. Valls, and S. Quintanilla, "Scheduling projects with
limited number of preemptions," Comput. Oper. Res., vol. 36, pp. 2913-
2925, 2009.

V. V. Peteghem and M. Vanhoucke, "A genetic algorithm for the
preemptive and non-preemptive multi-mode resource-constrained project
scheduling problem," Eur. J. Oper. Res., vol. 201, pp. 409-418, 2010.
M. Haouari, A. Kooli, E. Neron, and J. Carlier, "A preemptive bound for
the Resource Constrained Project Scheduling Problem," J. Scheduling,
vol. 17, pp. 237-248, 2014.

A. Moukrim, A. Quilliot, and H. Toussaint, "An effective branch-and-
price algorithm for the Preemptive Resource Constrained Project
Scheduling Problem based on minimal Interval Order Enumeration," Eur.
J. Oper. Res., vol. 244, pp. 360-368, 2015.

M. Vanhoucke and D. Debels, "The impact of various activity
assumptions on the lead time and resource utilization of resource-
constrained projects," Comput. Ind. Eng., vol. 54, pp. 140-154, 2008.

S. Quintanilla, A. Pérez, P. Lino, and V. Valls, "Time and work
generalised precedence relationships in project scheduling with pre-
emption: An application to the management of Service Centres," Eur. J.
Oper. Res., vol. 219, pp. 59-72, 2012.

1 APPENDIX

A. More Details about the Literature on Proactive Scheduling

[30]

[31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

12

M. Tavana, A. R. Abtahi, and K. Khalili-Damghani, "A new multi-
objective multi-mode model for solving preemptive time-cost-quality
trade-off project scheduling problems," Expert Syst. Appl., vol. 41, pp.
1830-1846, 2014.

O. Lambrechts, E. Demeulemeester, and W. Herroelen, "A tabu search
procedure for developing robust predictive project schedules," Int. J. Prod.
Econ., vol. 111, pp. 493-508, 2008.

J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan, "Scheduling subject to
resource constraints: Classification and complexity," Discrete Appl.
Math., vol. 5, pp. 11-24, 1983.

R. Leus, "The generation of stable project plans: Complexity and exact
algorithms," PhD thesis, Katholieke Universiteit Leuven, Belgium, 2003.
J. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence.
Michigan, USA: University of Michigan Press, 1975.

W. Huang and L. Ding, "Project-scheduling problem with random time-
dependent activity duration times," IEEE Trans. Eng. Manage., vol. 58,
pp. 377-387, 2011.

C. Fang, F. Marle, M. Xie, and E. Zio, "An integrated framework for risk
response planning under resource constraints in large engineering
projects," IEEE Trans. Eng. Manage., vol. 60, pp. 627-639, 2013.

L. J. Watters, "Reduction of integer polynomial problem to zero-one
linear programming problems," Oper. Res., vol. 15, pp. 1171-1174, 1967.
R. Kolisch, A. Sprecher, and A. Drexl, "Characterization and generation
of a general class of resource-constrained project scheduling problems,"
Manage. Sci., vol. 41, pp. 1693-1703, 1995.

R. Kolisch and A. Sprecher, "PSPLIB - A project scheduling problem
library," Eur. J. Oper. Res., vol. 96, pp. 205-216, 1997.

TABLE VIII
DETAILS ABOUT THE LITERATURE ON PROACTIVE SCHEDULING
Mode Objective Surrogate Slacks Algorithm
Reference Single  Multi- Robustness Others rﬁil;sst;l::s Time  Resource Exact Heuristic

[5] N Trade-off N CC/BM & ADFF

[6] \ Trade-off v \ A two-phase approach

[7] \/ Trade-off v \ Benders decomposition Tabu search

[8] y \ v v EWDI

[9] v v Resource allocation Brand & bound

[10] N \ \ Multiple procedures
[11] v \ v N Priority rule based
[12] v S v Steepest descent
[13] N Trade-off v \ Tabu search
[14] v Trade-off v RFDFF

[16] v Trade-off v v Priority rule based
[17] v Cost N STC + D heuristic
[18] v \ v Confidence level CCP method

[31] v \ v v Tabu search
Mine N \ N N Genetic algorithm

B. More Details about the Literature on the Resource-constrained Project Scheduling Problem with Activity Splitting

TABLE IX
DETAILS ABOUT THE LITERATURE ON THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM WITH ACTIVITY SPLITTING

Mode Minimum  Maximum Objective Algorithm
Reference execution splitting S_etup
Single  Multi- . . times  Makespan Others Exact Heuristic
time times
[19] N N Branch & bound
[20] \ N Branch & bound
[21] \ N Priority-based
[22] \/ \/ Local search
[23] \ N Improved RCPSP
[24] \ x/ x/ N Evolutionary
[25] \/ \/ Genetic algorithm
[26] \ N Lower bound
[27] \ N Branch-and-price
[28] S \/ Branch & bound
[29] \ Cost Genetic algorithm
[30] \ \ \ Trade-off Evolutionary
Mine N N N N Robustness Genetic algorithm




>TEM-16-0254.R3 <

C. Simplification of the Proposed Problem

In the proposed problem, activities can be split into certain
parts, which is decided by two parameters, the maximum
splitting times 7; and the minimum continuous execution time
g. If we setn; =0 or &; = d; for each activity i, then the
problem will be simplified into the proactive scheduling
problem without activity splitting. As the dummy end activity
is assumed to start and end at the project deadline, we can add
an extra dummy activity (n — 1) in the project network G’ =
(N,A") where (n—1,n) € A" and (i,n—1) € A',v(i,n) €
A. Then we can set the weight of activity (n — 1) as 1 and the
weights of all other activities as 0. In this way, the objective

function (maximize Y™ ,[w; (Z,‘:‘;l Zii'l”e‘b)]) will be

_— . FSpo1n o .
simplified to maximize ¥,,”", " e”?, which is equivalent to

minimizing the project makespan C,,, . As there are also
precedence and resource constraints in the model and there
won’t be a deadline constraint if we set the project deadline
much bigger than C,,,, , the proposed problem can be
simplified into the resource-constrained project scheduling
problem (RCPSP) with the objective of makespan
minimization.

D. More Details of the Procedures in the Genetic Algorithms
Algorithm 1. Decoding procedure: SGiw); = DCP (L,DL,BL)

13

Algorithm 3. Buffering: Robu’' = BFP (L,DL,BL)

1: FS(i,u)} =FSP (L,DL,BL),{ =0

2: Calculate the objective function value Robu

3: WHILE ¢ < Z DO

4:  Choose one subactivity (i, v); from the list L, and then
buf(l-,,,)j = buf(l-,,,)j +1

5: FS(i,,,)} = FSP (L,DL, BL), and calculate its new objective
function value Robu'

6: IF S(iv),.., > D OR Robu’ < Robu THEN

7o {={+1, bufy; = bufiy), — 1

8: ELSE
9: Robu = Robu'
10: END IF

11:END WHILE

Algorithm 4. Individual generation: (L, DL, BL) = IGP(g)

1: Siv), = 0

2: FOR j = 2 TO nsub DO

30 Sy = MAX(iw)yep iy, (Son, + AWy, + btfin),)
4: WHILE 3k, t: Shescoy 1ty > Rl (k =1, K and ¢ =

S(i,v)j' 's(i,v)j + dur(i'u)j + buf(i_,,)j - 1) DO
5: S(L',v)j = S(i,v)j +1

6: END WHILE

7: END FOR

8: S(ivv)nsub = max(s(ivv)nsub' D)

1: DO
2: Initialize Elig and the three lists, j = 0, V; = 0 (Vi € N),
leftd(i) = d; (Vi € N)
WHILE Elig # ¢ DO
Select an activity i from Elig, V; =V;+1,j=j+1
Li = (1, V), buf(i,,,)j =0,nsub=j
Generate a random number m; between 0 and 1
IF m; > itrpt AND V; < n; AND leftd(i) = 2¢; THEN
Generate a random number m, from [g;, leftd (i) — &]
dury), = my + 6;, leftd(i) = leftd(i) — m,
10: ELSE
11: duryy, = leftd(i) + 6;, update Elig
12: ENDIF
13: END WHILE
14:WHILE (S(i),.,, > D)
15:Robu’ = BFP(L, DL, BL)

R A A s

Note: P(;), represents the set of predecessors of subactivity (i, v) ;.

Algorithm 2. Slack calculation: FS; ,y» = FSP (L, DL, BL)
vj

Note: Let leftd(i) represent the number of duration units of activity i that
have not yet been assigned (setup times are not included in leftd(i)), and let
Elig, defined as Elig = {i | leftd(i) > 0 and leftd(j) = 0, (j, i) € A}, be
the set of eligible activities.

Algorithm 5. Crossover: (L¢, DL¢, BLe) =
CRP(Lg, DL, BLg, Ly, DLy, BLy)

1: S(iw); = DCP (L,DL,BL)

2: Obtain the list L'

3 ES(iwy, = LSiwyy = Sawyp FSwyy =0

4: FOR j = 2 TO nsub DO

5: ES(i,v)} = S(i,v);-’ LF(L',V);- = min {E5h|h € S(i,v);-}’ LS(i,v); =
LF(i,v)} - dur(i’v);

6: WHILE 3k, t: Ypeso Ty > R (k=1,--,Kandt =
ES(L-_,,)}, ~-,LF(L-’,,); —1) DO

7: LF(i,v);- = LF(i,v);- — 1, LS(L',V)} = LS(i,‘U)} -1

8: END WHILE

9: FS(L-'V)} = LS(L-'V)} — ES(i,v);-

10:END FOR

Note: L’ represents the list of subactivities that are ordered according to their
non-increasing completion times (the ticbreaker is the highest subactivity
number). For convenience, (i, v); denotes the subactivity in position j of the
ordered list L'. Additionally, S(i,,,)}, ES @ LS @ and LF @) respectively
denote the set of immediate successors, the earliest starting time, the latest
starting time, and the latest completion time of the subactivity (i, v)}.

1: Generate a random number m between 1 and nsuby
2: Copy the first m elements of every list of the father to the child
3: Obtain V; and leftd (i) of the child after copy, j = Djen(n; + 1)
4: FOR q = nsuby TO 1 DO
i= LI(‘I,I’ d= dur(i‘v)gz
IF leftd(i) > 0 THEN

IF V; > n; OR leftd(i) < d — 6; THEN

dur(i‘v)Jg = leftd(i) + 6;, leftd(i) =0

9: ELSE
10: dur(i,v)]g =d, leftd(i) = leftd(i) —d + 6;
11:  ENDIF
120 LF = L, buf e = buf gy X [(dur(i'v)]g —6)/(d - 6)
13: Vi=Vi+1,j=j—-1
14: END IF
15:END FOR
16:Erase the blank cells from L., DL, and BL¢

AN

Note: The parameters that are labeled with F, M, and C respectively represent
the subactivity list, the duration list, and the buffer list of the father, the mother,
and the child.



>TEM-16-0254.R3 <

Algorithm 6. Mutation: (Lg, DLy, BLy) = MTP(L, DL, BL)

1: FOR q = 1 TO pmut - nsub DO

2: Randomly generate a number m3 from {0,1}, a number j from
[1, nsub]

3: IFm3 = 0 THEN

4:  Calculate the possible positions [a, b] of subactivity (i,v); in
the list L without causing the precedence constraint violation

5:  Generate a random number m, (m, # j) from [a, b]

6:  Place subactivity (i, v); in position m, and update the lists
7: ELSE

8:  Generate a random number ms from {0,1}

9:  IFmgs = 0 THEN

10: buf(,:,v)]. = buf(iﬂ,)]. +1

11:  ELSE

12: IF bufyyy, = 1 THEN
13: buf(l-_v)]. = buf(l-,v)]. -1
14: END IF

15:  ENDIF

16: END IF

17:END FOR

Note: pmut represents the probability of mutation, and the parameters that are
labeled by Q represent the subactivity list, the duration list, and the buffer list
of the mutated individual.

E. Linearization of the Model

To conduct the linearization, we redefine V; as the
maximum number of subactivities of activity i, which is a
constant value that is known in advance instead of being a
decision variable. We use M to denote a large positive number
and introduce U; to represent the maximum number of free
slacks of activity i, which is calculated as the length of the time
window of activity i without the resource constraints under an
indivisible scheduling environment. Then, the free slack FS;
ranges from 0 to U;. Additionally, five groups of binary
variables are defined as follows.

o {0 if the duration of subactivity (i, v) is zero
v —

1 otherwise
0 if free slack u of subactivity (i, v) is zero

g = {0 Fire s
%1 otherwise
1 if Si,v <t

Ay =
Lot {0 otherwise

_ 1 ifSi’V + duTi’V + FSi,v >t
ﬁi,v,t -

0 otherwise
Yivt = {0

1 if Aipe = .Bi,v,t =1
otherwise

There are seven groups of decision variables in the
transformed linear model, i.e., ¥;,, duti,, Siy, Xipu> Tipe,
Bive, and ¥, .. Compared with those decision variables in the
non-linear model, y; ,, is used to replace V; while dur;,, and
S; , stay the same. In addition, x; ,,,, is used to take the place of
the computation of the free slack, while a; ¢, Biy,¢, and y; ¢
will decide the set of activities that are in progress at time t.
Based on the above definitions, the non-linear scheduling
model can be transformed into a linear one, as follows.

Maximize Robu = Y7, [w;(Zvl, Tt e x; )] (1
$11=0 2)
Si,Vi + duri,vi + FSi,Vi < Sj,l (l,j) €A (3)

Siptdur;, + FS;, <Sipy1 Vi v=1,..,V; -1 “4)

14

Sp1 <D (5)
Vi

(e Zoka Viwe) < R VK, VE (6)
ZZL=1 duri,v = di + 91’ Zzl=1 YViv Vi (7)
dur;, = (g +0;) Xy, Vi; v=12,..,V; ©)
YVivi1 SYip Vi v=12,..,V;—1 (10)
dur;, + FS;, <y, XM Vi,Vv 11
YOl Xiyu = FSiy Vi,V (12)
M(ajpr—1) <t —s;, <MXay,, ViV, Ve (13)
M(Bipe — 1) < sip + dury, + FS;, —t < (14)
M x ﬁi,v,t
2Vipe < Apr + Bive S Vipe +1 Vi, VY,V (15)
FS;,, dur;,, and s;, are nonnegative integers (16)
Vi Xivu Xip,tr ﬂi,v,t' Yivt € {0' 1} Vi, vv, Vvt (17)

In the formulation, the objective function is transformed into
a new linear one, while two constraints, (2), and (5), stay the
same. In addition, six constraints, (3), (4), (6), (7), (8), and (9),
are adjusted into new ones, and six constraints, from (10) to
(15), are added. Specifically, FS;,, should be included in the
precedence constraints (3) and (4). As the decision variable
Xy 18 used to decide the value of FS; ,, through (12), it should
also replace FS; ,, in the objective function. In constraints (7),

We now use Zzizl Y to represent the number of non-dummy
subactivities. Because V; now represents the maximum
number of subactivities of activity i, which is calculated by
constraints (8), there will be dummy subactivities whose
durations and free slacks should be zero. Hence, constraints (9)
force the duration of each subactivity to be at least its minimum
execution time plus its setup time, but only if it is a non-
dummy one. Moreover, constraints (10) and (11) ensure that
the dummy subactivities are the last ones of each activity and
that their duration and free slack are zero. Further, with three
added constraints, which are shown in (13), (14), and (15), to
describe the set S(t) based on the definition S(t) =
{i|si‘v <t<s;,t+dur,+ FSiJV} , the resource constraints
are transformed into new ones, as stated in constraints (6).





