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Abstract—Proactive scheduling aims at the generation of robust 

baseline schedules, which has been studied for many years with the 

assumption that activity splitting is not allowed. In this paper, we 

focus on the proactive resource-constrained project scheduling 

problem in which each activity can be split at discrete time instants 

under the constraints of a maximum number of splitting and a 

minimum period of continuous execution. Besides, in this problem 

setup times are considered. Two properties of the established 

model and one lemma are proposed and applied in the developed 

genetic algorithm. After linearizing the proposed model, we use a 

commercial mathematical programming solver as a benchmark to 

solve the problem. From the computational results, we find that 

the developed genetic algorithm is effective and efficient in solving 

the defined problem, and activity splitting improves robustness. 

With the growth of the maximum number of splitting, the decline 

in the minimum execution time, the decrease in the setup times, 

and the extension of the project due date, robustness increases.  

 
Index Terms—Activity splitting, setup time, genetic algorithm, 

proactive project scheduling, solution robustness 

 

Managerial Relevance Statement—In consideration of the fact 

that some project activities can be split, our research proposes a 

model to split and schedule activities with the aim to generate 

robust baseline schedules that are protected against schedule 

disruptions. With our developed genetic algorithm, the contractor 

could generate satisfying baseline schedules within an acceptable 

computing time, which are likely to have low adjustment costs 

during project execution. From the computational results, we find 

that activity splitting improves robustness, which offers a method 

to improve schedule robustness when activity splitting is allowed. 

Furthermore, we find that, with the growth of the maximum 

number of splitting, the decline in the minimum execution time, 

the decrease in the setup times, and the extension of the project 

due date, schedule robustness increases. To summarize, our 

findings could help project managers better understand the 

benefits of making good use of activity splitting in the scheduling 

of activities in a resource-constrained project, and then help them 

do a better job in improving the robustness of baseline schedules. 

 

I. INTRODUCTION 

t is a well-known fact that project activities are subject to 

considerable uncertainties, such as accidents, resource 

breakdowns, and bad weather conditions, which may lead to 

numerous schedule disruptions during project execution and 

therefore incur some costs when project managers adjust the 

starting times of the activities to deal with them. Accordingly, 

proactive scheduling has been the subject of many research 

efforts that aim to generate robust baseline schedules that are 

protected against schedule disruptions. The more robust the 

baseline schedules are, the lower the adjustment costs will be 

during project execution. These research efforts have led to 

many models and algorithms, which are summarized in [1] - [4].  

Two robustness approaches are considered in this field, i.e., 

quality robustness and solution robustness [5]. For quality 

robustness, the robust multi-mode discrete time/cost trade-off                       

problem is introduced and solved by exact and heuristic 

algorithms [6], [7]. Regarding solution robustness, various 

approaches are developed to cope with multiple disruptions, 

including activity duration disruptions [8], stochastic activity 

durations [9], [10], and stochastic resource availabilities [11], 

[12]. In contrast to the literature that addresses quality 

robustness or solution robustness separately, several studies 

have concentrated on the potential trade-off between these two 

types of robustness. Al-Fawzan and Haouari develop a bi-

objective model with an aggregation function in the absence of 

available information regarding the nature or size of the 

uncertain events [13]. With the composite objective of 

maximizing both schedule stability and timely project 

completion probability, Van de Vonder et al. develop a 

heuristic algorithm for minimizing a stability cost function [14] 

and they discuss the results obtained by a large experimental 

design that is established to evaluate several predictive-reactive 

resource-constrained project scheduling procedures [15]. 

Furthermore, Chtourou and Haouari present a two-stage 

algorithm in which the first stage is designed to minimize the 

project makespan, while the second one aims to maximize 

schedule robustness [16]. Deblaere et al. propose an objective 

to minimize a cost function that consists of the weighted 

expected activity starting time deviations and the penalties or 

bonuses that are associated with late or early project completion 

[17]. One recent study defines a new robustness measure that is 

completely independent of the applied reactive policy and then 

introduces a branch-and-cut algorithm to solve a sample 

average approximation of the original problem [18]. More 

details about the literature on proactive scheduling can be found 

in Appendix A. 

It is noteworthy that most of the literature on proactive 

scheduling does not consider activity splitting, which means 

that these activities are not divisible. However, if activity 

splitting is allowed, it may be more flexible for project 

managers to schedule activities and make good use of resources 

and slacks to generate much more robust baseline schedules. In 

other words, if activity splitting contributes to higher robustness, 

then activities will be split into certain parts for execution; 

otherwise, activities will be scheduled without splitting. Note 

that we consider to split activities actively during the stage of 

baseline schedule generation, which is different from 

interrupting activities passively to deal with disruptions during 

the stage of project execution.  

In previous literature, some researchers have already 
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considered the project scheduling problem with activity 

splitting. The difference from what we discussed before is that 

their objective function is mainly focused on makespan 

minimization and the term they use of activity splitting is 

activity preemption or activity interruption. For example, 

Demeulemeester and Herroelen describe a branch-and-bound 

procedure to solve the preemptive resource-constrained project 

scheduling problem (PRCPSP) with the objective of 

minimizing project duration [19]. Following the work that 

reveals the potential benefits of allowing one interruption in the 

scheduling of activities in a resource-constrained project [20], 

Buddhakulsomsiri and Kim present a priority rule-based 

heuristic for the multi-mode scheduling problem with the 

splitting of activities around unavailable resources allowed [21]. 

Based on an analysis of the characterizations of the solution set 

for the preemptive and non-preemptive resource-constrained 

project scheduling problem (RCPSP), Damay et al. present a 

linear programming based algorithm to solve the two problems 

[22]. Ballestín et al. mainly focus on problem 1_PRCPSP in 

which a maximum of one interruption per activity is allowed, 

and they propose a new model that covers most practical 

applications of discrete activity preemption [23], [24]. A 

genetic algorithm for the non-preemptive multi-mode 

scheduling problem is developed and extended to the 

preemptive case of this problem [25]. Recently, Haouari et al. 

use a linear programming model that is based on the PRCPSP 

to compute a lower bound for the RCPSP [26], and Moukrim et 

al. propose an effective branch-and-price algorithm based on 

minimal interval order enumeration that involves column 

generation as well as constraint propagation [27]. For more 

research efforts on project scheduling problems with activity 

splitting, we refer to [28] - [30]. In Appendix B, more details 

can be found about the literature on the resource-constrained 

project scheduling problem with activity splitting. 

In practice, activities may be different with respect to activity 

splitting. Firstly, activities may need to be executed 

continuously for certain periods before the next splitting and the 

duration of the continuous execution time is different. Secondly, 

some activities, such as chemical reactions, may not be split at 

all due to technical reasons, but some activities, such as the 

transportation of materials, are technically feasible to be split 

into certain parts. Even though the activities are all feasible for 

splitting, the maximum number of splitting allowed may be still 

different. Thirdly, some activities, such as managerial 

operations, do not need setup times before execution while 

some activities, such as a bridge construction, may need certain 

periods for preparation. From the previous literature, we know 

that the first two differences have been considered and 

measured by two factors, i.e., the maximum number of activity 

splitting and the minimum continuous execution [24], [30], but 

the third one has not been considered in the scheduling research 

with activity splitting.  

Typically speaking, activities that are split into certain parts 

cause additional setup times (and thus additional costs) when 

returning to their execution. In other words, if one activity 

technically needs a setup time before execution, then there will 

be additional setup times for the second and the subsequent 

parts of this activity. This implies that there will be a trade-off 

between the benefits of activity splitting and the drawbacks of 

the increasing setup times under the objective of solution 

robustness maximization.  

Based on the facts above, this paper presents a proactive 

resource-constrained project scheduling problem with activity 

splitting. In this problem, each activity can be split at discrete 

time instants under the constraints of a maximum number of 

splitting and a minimum period of continuous execution. 

Besides, additional setup times are considered when the 

activities return to execution from splitting. Different from the 

existing proactive scheduling which aims to improve schedule 

robustness without activity splitting, this paper aims to take 

activity splitting into account to seek opportunities to further 

improve schedule robustness. Therefore, it can be regarded as a 

two-stage problem: the first one is to decide how to split 

activities and the second stage is proactive scheduling, i.e. how 

to schedule activities to construct an optimal baseline schedule 

with the objective of solution robustness maximization. The 

solution robustness is obtained by inserting time buffers into the 

baseline schedule with the consideration of precedence, 

renewable resources, and project deadline constraints, and it is 

measured by a free slack based function, an adjusted surrogate 

solution robustness measure that is proposed by Lambrechts et 

al. [31]. This problem can be defined as an extension of the 

proactive RCPSP because activity splitting becomes allowed. 

As activities are handled in different ways in terms of activity 

splitting, this problem is also a generalization of 𝑚 _PRCPSP 

where all activities can be split 𝑚 times. We believe that the 

proposed problem, which to the best of our knowledge has not 

thus far been investigated, may be more practical because it 

takes activity splitting into account and considers multiple cases 

of divisible activities. 

Note that in previous literature on proactive scheduling 

activities are indivisible and treated as the basic project units. 

However, based on the theory of the work breakdown structure, 

activities are broken down by different levels. Therefore, in this 

paper activities are much more similar to work packages, which 

are not divided to the lowest level so that project managers can 

have the freedom to decide whether to further split the activities. 

Conversely, if activities have already been divided to the lowest 

level, we can regard them as subactivities, and then we can 

decide how to merge and schedule them to decrease the setup 

times and improve schedule robustness, which is just equivalent 

to scheduling activities without activity splitting in this paper.  

The rest of this paper is organized as follows. In Section II 

we present the notations and the problem formulation. Section 

III is devoted to the development of a genetic algorithm that is 

based on the analysis of the proposed scheduling model. 

Section IV conducts an extensive computational experiment. 

Finally, in Section V, general conclusions and directions for 

further research are presented. 

II. PROBLEM FORMULATION 

A. Optimization Model 

Consider a project represented in an activity-on-the-node 
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(AoN) format by means of a digraph 𝐺 = (𝑁, 𝐴), where the set 

of nodes 𝑁 represents the activities and the set of arcs 𝐴 the 

finish-start, zero-lag precedence relations. The activities are 

numbered from the dummy start activity 1 to the dummy end 

activity 𝑛 , and each activity 𝑖  has a duration 𝑑𝑖  and requires 

renewable resources to ensure that it is carried out. There are 𝐾 

different renewable resource types with an availability in each 

period [𝑡, 𝑡 + 1), (𝑡 = 0,1,⋯ , 𝐷), of 𝑅𝑘
𝜌

 units, 𝑘 = 1,2,⋯ , 𝐾. 

Each activity 𝑖 requires 𝑟𝑖,𝑘
𝜌

 units of resource type 𝑘 during each 

period in which it is processed. Dummy activities have zero 

duration and resource usage. We use subactivity  (𝑖, 𝑣)  to 

denote the 𝑣-th part of activity 𝑖, which has the same resource 

usage as activity 𝑖. The only difference between the activity and 

its subactivities is the duration. The project deadline is denoted 

as 𝐷.  

For practical reasons that activities are different with respect 

to activity splitting, we make the following three assumptions. 

Firstly, for each activity 𝑖, a required minimum execution time 

휀𝑖 is predefined during which the activity must be in progress 

without any splitting. This forces the duration 𝑑𝑢𝑟𝑖,𝑣  of 

subactivity (𝑖, 𝑣) to be at least 휀𝑖. Secondly, each activity 𝑖 can 

be split a maximum of 휂𝑖(휂𝑖 < [
𝑑𝑖

𝜀𝑖
]) times at any discrete time 

instant, which results in 𝑉𝑖 (𝑉𝑖 ≤ 휂𝑖 + 1)  precedence-

connected subactivities, each of which has a resource 

requirement 𝑟𝑖,𝑘
𝜌

. The first two assumptions are responses to the 

fact that activities cannot be split too frequently. Obviously, the 

case 휂𝑖 = 0  or  𝑑𝑖 < 2휀𝑖  means that activity 𝑖  must be 

processed without splitting. In addition, as a response to the fact 

that in projects activities may need setup times for preparation, 

we assume each activity technically needs setup time 휃𝑖 before 

execution. Note that the setup time is not included in the activity 

duration, which means the actual duration of one indivisible 

activity is its duration plus its setup time, and there will be 

additional setup times for activities that are split into certain 

parts. Obviously, the case 휃𝑖 = 0  means that activity 𝑖  
technically does not need setup time. 

The weight 𝑤𝑖 , which is allocated to each activity 𝑖, denotes 

the marginal cost of deviating the completion time of activity 𝑖 
during project execution from its planned completion time in 

the baseline schedule. The cost can be regarded as the impact 

of such a delay on all its immediate and transitive successors. 

Because the successors of the subactivities are the same as those 

of their original activity, we assume that the weights of the 

subactivities are equivalent to those of their original activities. 

The free slack 𝐹𝑆𝑖,𝑣, which represents the time buffers after the 

duration of subactivity (𝑖, 𝑣), is defined as the total amount of 

time this subactivity can be delayed without causing any 

precedence or resource constraint violations. Note that the free 

slack here is defined in the context of limited resources, which 

is an extension of the one in the framework of CPM (Critical 

Path Method). Referring to Lambrechts et al. [31], the utility of 

the free slacks may decrease marginally in exponent with the 

increase of their amounts. For example, if one activity has a free 

slack of 6, then the first slack will be much more beneficial than 

the sixth one to absorb the disruptions because it is less likely 

for the activity to delay six periods. Thus, the robustness that is 

generated by 𝐹𝑆𝑖,𝑣  can be calculated as 𝑤𝑖 ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1 . Then, 

counting the utilities of all subactivities of all activities, the 

robustness of a schedule (hereafter denoted as 𝑅𝑜𝑏𝑢) can be 

defined as ∑ [𝑤𝑖 (∑ ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1 )𝑛

𝑖=1 ]. 

There are three groups of decision variables in this problem, 

i.e., 𝑉𝑖 , 𝑑𝑢𝑟𝑖,𝑣 , and 𝑠𝑖,𝑣 , which respectively represent the 

number of subactivities of activity 𝑖, the duration of subactivity 

(𝑖, 𝑣), and the starting time of this subactivity. Then, the goal is 

to decide the optimal values for 𝑉𝑖, 𝑑𝑢𝑟𝑖,𝑣, and 𝑠𝑖,𝑣 to obtain a 

baseline schedule with the maximum schedule robustness 

𝑅𝑜𝑏𝑢 . The optimization model for the proactive resource-

constrained project scheduling problem with activity splitting is 

constructed as follows. It is important to note that in our model 

setup times are not included in 𝑑𝑖 but are included in 𝑑𝑢𝑟𝑖,𝑣. 

Maximize 𝑅𝑜𝑏𝑢 = ∑ [𝑤𝑖 (∑ ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1 )𝑛

𝑖=1 ] (1) 

Subject to:  

𝑠1,1 = 0 (2) 

𝑠𝑖,𝑉𝑖 + 𝑑𝑢𝑟𝑖,𝑉𝑖 ≤ 𝑠𝑗,1  (𝑖, 𝑗) ∈ 𝐴 (3) 

𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 ≤ 𝑠𝑖,𝑣+1 𝑖 = 1,⋯ , 𝑛; 𝑣 = 1,… , 𝑉𝑖 − 1 (4) 

𝑠𝑛,1 ≤ 𝐷 (5) 

∑ 𝑟𝑖,𝑘
𝜌
≤𝑖∈𝑆(𝑡) 𝑅𝑘

𝜌
  𝑘 = 1,2,⋯ , 𝐾; 𝑡 = 0,1,⋯ , 𝐷 (6) 

∑ 𝑑𝑢𝑟𝑖,𝑣
𝑉𝑖
𝑣=1 = 𝑑𝑖 + 𝑉𝑖 × 휃𝑖     𝑖 = 1,2,⋯ , 𝑛 (7) 

𝑉𝑖 ≤ 휂𝑖 + 1   𝑖 = 1,2,⋯ , 𝑛 (8) 

𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 휀𝑖   𝑖 = 1,2,⋯ , 𝑛; 𝑣 = 1,2, … , 𝑉𝑖  (9) 

𝑉𝑖 , 𝑑𝑢𝑟𝑖,𝑣 , and𝑠𝑖,𝑣 are nonnegative integers   ∀𝑖, ∀𝑣 (10) 

In the formulation, the objective function (1) is to maximize 

solution robustness. Equation (2) forces the project to start at 

time 0. The precedence constraints given by (3) indicate that the 

start of activity 𝑗 must wait for the end of the last subactivity of 

all its preceding activities, and in constraints (4) one subactivity 

of an activity does not start before the end of the previous 

subactivity of the same activity. Constraint (5) imposes a 

deadline on the project. As 𝑆(𝑡) is the set of activities that are 

in progress during time interval [𝑡, 𝑡 + 1), constraints (6) force 

the total units of utilized resources to be no greater than the 

available resource capacity for every period. The conditions for 

activity splitting are reflected in (7), (8), and (9). Equation (7) 

ensures that the duration of all the subactivities of activity 𝑖 
must equal the sum of the processing time of activity 𝑖 and its 

total setup times. The constraints (8) guarantee that the times of 

splitting for a given divisible activity is no more than a 

predefined level called 휂𝑖, while in (9) for each subactivity the 

duration without setup time must be at least its minimum 

execution time. The range of values for 𝑉𝑖, 𝑑𝑢𝑟𝑖,𝑣, and 𝑠𝑖,𝑣 are 

given in the constraints (10).  

In this non-linear model, we need to take constraints (7), (8), 

and (9) into account to decide how to split activities and decide 

how to schedule those subactivities based on the constraints (2) 

- (6). In the first decision, there will be a trade-off between the 

benefits of activity splitting and the drawbacks of the increasing 

setup times. In the second decision, there will be a trade-off 

between inserting time buffers and the deadline constraint. For 

the objective function, 𝐹𝑆𝑖,𝑣 will be calculated by an algorithm 
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that is developed in the next section. Note that 𝐹𝑆𝑖,𝑣 may not 

equal the values of time buffers. Time buffers are inserted based 

on the rule of marginally decreasing slack utility, activity 

weights, and the changes of the schedule after inserting time 

buffers, which together influence the improvement of the 

objective function value. The bigger the improvement, the 

bigger the possibility to insert time buffers to this activity. 

B. An Example 

We use an example to illustrate the problem that is identified 

above. The AoN network of the example is depicted in Fig. 1 

where activities 1 and 6 are the dummy start and end activities 

respectively. The activities in the project require one renewable 

resource and their durations as well as resource requirements, 

activity weights, the maximum numbers of splitting, the 

minimum periods of continuous execution, and the setup times 

are labeled with the nodes. Other data of the project are as 

follows: 𝐾 = 1, 𝑅1
𝜌
= 4, 𝐷 = 14. To demonstrate that activity 

splitting is beneficial to schedule robustness, we give the most 

robust baseline schedules without and with activity splitting 

which are depicted as schedules (a) and (b) respectively in Fig. 

2 and compare the results produced below. 

1) The Case without Activity Splitting 

In this case, we suppose that activities are indivisible during 

execution. Therefore, we have 휂𝑖 = 0 for each activity 𝑖. Under 

this circumstance, schedule (a) is the optimal baseline schedule 

in terms of solution robustness where each activity has only one 

subactivity and the part with slashes represents the setup time 

of activity 5. Obviously, only activity 2 has a free slack of 2. 

The corresponding objective function value is equal to 2.00 and 

was calculated as shown in Table I. 

 
Fig. 1.  An example. 

 
(a) 

 
(b) 

Fig. 2.  Two feasible schedules for the project. 

2) The Case with Activity Splitting 

In this case, it is assumed that activity splitting is allowed. 

Based on the data shown in Fig. 1, schedule (b) is the most 

robust baseline schedule where activity 5 is split into two 

subactivities. Because of activity splitting, another setup time is 

needed before the execution of the second subactivity of 

activity 5. The corresponding objective function value is 10.90, 

the computation of which can be found in Table I as well. 

Comparing the results discussed above, we can find that an 

improvement of 445% is obtained for the free slack based 

objective function value, which verifies the potential benefits of 

making good use of activity splitting in proactive scheduling to 

some extent. The reason is that activity splitting enhances the 

flexibility of scheduling activities, which is beneficial to 

making good use of resources to shorten the project duration 

and thus spare more space to insert time buffers.  Next, we will 

make an analysis about the cost saving when taking activity 

splitting into account. In this example, compared with schedule 

(a), schedule (b) is likely to have lower adjustment costs. For 

example, if the activity duration increases by 1 both for activity 

3 and activity 5, we need to adjust the starting times of activity 

3 and 4 in schedule (a), but do nothing in schedule (b), which 

incurs a lower cost of 13 (9+2*2) for schedule (b). 
TABLE I 

 CALCULATION OF THE OBJECTIVE FUNCTION 

 𝑖 𝑤𝑖 
Schedule (a)  Schedule (b) 

𝐹𝑆𝑖,1 ∑ 𝑒−𝑏
𝐹𝑆𝑖,1
𝑏=1   𝑤𝑖 ∑ 𝑒−𝑏

𝐹𝑆𝑖,1
𝑏=1    𝐹𝑆𝑖,𝑣 ∑ ∑ 𝑒−𝑏

𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1   𝑤𝑖 ∑ ∑ 𝑒−𝑏

𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1   

1 0 0 0.00 0.00  0 0.00 0.00 

2 4 2 0.50 2.00  1 0.37 1.48 
3 9 0 0.00 0.00  1 0.37 3.33 

4 2 0 0.00 0.00  0 0.00 0.00 

5 7 0 0.00 0.00  1+2 0.87 6.09 
6 25 0 0.00 0.00  0 0.00 0.00 

𝑅𝑜𝑏𝑢     2.00    10.90 

III. THE DEVELOPED GENETIC ALGORITHM 

In the first part, we propose two properties of the scheduling 

model and one lemma, which can be used for the development 

of the algorithm. In the second part, we firstly explain why we 

choose a genetic algorithm to solve the problem and then 

present the framework of the developed algorithm. Afterwards, 

technical details are given to describe the developed genetic 

algorithm in seven parts where the proposed properties and the 

lemma are used for the local search procedure. 

A. The Properties and the Lemma 

To explain the properties and the lemma more clearly, we 

provide three definitions in advance.  
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Definition 1: In a given schedule, time period 𝑇 is feasible 

for a minimum part of activity 𝑖 , whose duration equals the 

minimum execution time of activity𝑖, to be executed if: 1) the 

successors of activity 𝑖 do not start before the end of time period 

𝑇, 2) the remaining resources in time period 𝑇 can still satisfy 

the resource requirements of activity 𝑖, 3) the length of time 

period 𝑇 is no less than 휀𝑖 + 휃𝑖 , and 4) the starting time of the 

time period is after the completion time of the last subactivity 

of activity 𝑖.  
Definition 2: Subactivity (𝑖, 𝑣)  is divisible if 𝑉𝑖 ≤ 휂𝑖  and 

𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 2휀𝑖. 

Definition 3: Subactivity (𝑖, 𝑣) is abundant in free slacks if 

𝐹𝑆𝑖,𝑣 ≥ 2 + 휃𝑖. 

Based on the above definitions, we develop two properties of 

the model, which are named as Pioneering and Balancing 

respectively based on the mechanism of each operation. After 

that, one lemma is proposed for improving the schedule 

robustness. 

Property 1 (Pioneering): If subactivity (𝑖, 𝑣) is divisible, 

and there is a feasible period 𝑇, whose length is denoted as 𝜉𝑇, 

for activity 𝑖 to be executed, then schedule robustness can be 

improved in three steps: Firstly, keep other activities unchanged. 

Secondly, divide this subactivity into two parts, which are 

denoted as (𝑖, 𝑣1)  and (𝑖, 𝑣2) , whose durations are 𝑑𝑢𝑟𝑖,𝑣 −

𝑑𝑑(휀𝑖 ≤ 𝑑𝑑 ≤ min{𝑑𝑢𝑟𝑖,𝑣 − 휀𝑖 − 휃𝑖 , 𝜉𝑇 − 휃𝑖})  and 𝑑𝑑 + 휃𝑖 

respectively. Thirdly, schedule the two parts of this subactivity 

in the original and the new periods. In this way, the objective 

function value of the schedule can be improved. 

Proof of Property 1: After the Pioneering operation, the free 

slack of subactivity (𝑖, 𝑣1) will be 𝐹𝑆𝑖,𝑣 + 𝑑𝑑, while the free 

slack of subactivity (𝑖, 𝑣2) will be 𝜉𝑇 − 𝑑𝑑 − 휃𝑖. The utility of 

the free slacks before the operation is 𝑈1 = ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1 , which is 

smaller than that after the operation 𝑈2 = ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣+𝑑𝑑

𝑏=1 +

∑ 𝑒−𝑏
𝜉𝑇−𝑑𝑑−𝜃𝑖
𝑏=1 . Hence, Property 1 can be used as a rule to 

maximize schedule robustness.  

Property 2 (Balancing): If subactivity (𝑖, 𝑣) is divisible, and 

its free slack is not abundant, while the reverse is true for 

subactivity (𝑖, 𝑝), then schedule robustness may be improved 

by transferring one unit of time from the duration of subactivity 

(𝑖, 𝑣) to that of subactivity (𝑖, 𝑝). 
Proof of Property 2: From the prerequisites of Property 2, 

we can obtain the four following constraints: 𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 2휀𝑖, 

0 ≤ 𝐹𝑆𝑖,𝑣 ≤ 1 , 휀𝑖 ≤ 𝑑𝑢𝑟𝑖,𝑝 − 휃𝑖 < 2휀𝑖 , and 𝐹𝑆𝑖,𝑝 ≥ 2 . After 

the Balancing operation, the free slack of subactivity (𝑖, 𝑣) will 

be 𝐹𝑆𝑖,𝑣 + 1, while the free slack of subactivity (𝑖, 𝑝) will be 

𝐹𝑆𝑖,𝑝 − 1. Then, the utility of the free slacks after the operation 

can be calculated as: 𝑈2 = ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣+1

𝑏=1 + ∑ 𝑒−𝑏 =
𝐹𝑆𝑖,𝑝−1

𝑏=1

∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1 + ∑ 𝑒−𝑏

𝐹𝑆𝑖,𝑝
𝑏=1 + (𝑒−𝐹𝑆𝑖,𝑣−1 − 𝑒−𝐹𝑆𝑖,𝑝). Because of the 

two following constraints, i.e., −𝐹𝑆𝑖,𝑣 ≥ −1 and −𝐹𝑆𝑖,𝑝 ≤ −2, 

𝑈2 will be no less than the utility before the operation 𝑈1 =

∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1 + ∑ 𝑒−𝑏

𝐹𝑆𝑖,𝑝
𝑏=1 . Hence, Property 2 can be used to 

improve the objective function value. 

To summarize, Pioneering facilitates the discovery of new 

periods for activities to be executed, and Balancing is used to 

balance the length of the durations between two subactivities of 

one activity. As the two properties can help to transform 

subactivities into divisible ones with abundant free slacks, they 

pave the way for the following lemma, which is used to divide 

one subactivity into subactivities that specifically share the 

buffer of the original subactivity as equally as possible such that 

the schedule robustness can be improved. 

Lemma 1: For any subactivity (𝑖, 𝑣)  that is divisible and 

abundant in free slacks, we can first divide this subactivity 

into 𝑛𝑢𝑚𝑖,𝑣 = min([
𝑑𝑢𝑟𝑖,𝑣−𝜃𝑖

𝜀𝑖
] ,

𝐹𝑆𝑖,𝑣+𝜃𝑖

1+𝜃𝑖
, 휂𝑖 − 𝑉𝑖 + 2)  parts 

whose durations are no less than 휀𝑖 , and then schedule them 

continuously and make sure their free slacks are as equal as 

possible, i.e., the difference between the maximum and the 

minimum free slack value of the newly generated subactivities 

is no more than one. In this way, schedule robustness will be 

improved. 

Proof of Lemma 1: As ∑ 𝑒−𝑥 =
1

𝑒−1

∞
𝑏=1 < 2𝑒−1  is true, it 

would be always beneficial for improving schedule robustness 

by splitting a divisible subactivity with abundant free slacks 

into certain parts. To maximize robustness, 𝐹𝑆𝑖,𝑣 − (𝑛𝑢𝑚𝑖,𝑣 −

1)휃𝑖  should be no less than 𝑛𝑢𝑚𝑖,𝑣 , so 𝑛𝑢𝑚𝑖,𝑣 ≤
𝐹𝑆𝑖,𝑣+𝜃𝑖

1+𝜃𝑖
. 

Furthermore, if the difference between the maximum and the 

minimum free slack value of the newly generated subactivities 

is more than one in the optimal improvement, for example, 

𝑓𝑠1 > 𝑓𝑠2 + 1 , then ∑ 𝑒−𝑏
𝑓𝑠1
𝑏=1 +∑ 𝑒−𝑏

𝑓𝑠2
𝑏=1 = (∑ 𝑒−𝑏

𝑓𝑠1−1
𝑏=1 +

𝑒−𝑓𝑠1) + ∑ 𝑒−𝑏
𝑓𝑠2
𝑏=1 < ∑ 𝑒−𝑏

𝑓𝑠1−1
𝑏=1 + (∑ 𝑒−𝑏

𝑓𝑠2
𝑏=1 + 𝑒−𝑓𝑠2−1) =

∑ 𝑒−𝑏
𝑓𝑠1−1
𝑏=1 +∑ 𝑒−𝑏

𝑓𝑠2+1
𝑏=1 . As there will be a contradiction, to 

obtain an optimal improvement based on the proposed lemma, 

the original subactivity should be divided into 𝑛𝑢𝑚𝑖,𝑣  parts 

whose free slacks are as equal as possible. 

Note that it is possible that none of the subactivities in a 

schedule is divisible and abundant in free slacks, and under this 

circumstance we cannot apply Lemma 1 to improve solution 

robustness of this schedule.  

B. The Developed Genetic Algorithm 

As shown in Appendix C, the proposed problem can be 

simplified into the RCPSP with the objective of makespan 

minimization. As the latter is known to be NP-hard in the strong 

sense [32], [33], the proposed proactive scheduling problem 

with activity splitting is NP-hard in the strong sense as well, 

which makes the achievement of optimal solutions a 

computationally difficult proposition, especially for large 

projects. For this reason, we use a well-known metaheuristic, 

i.e., a genetic algorithm as introduced by Holland [34], to solve 

the problem. We choose the genetic search methodology for 

two reasons. Firstly, this technique has been successfully 

applied to many project scheduling problems [24], [25], [29], 

[30], [35], [36], and second, it is easy to generate activity 

splitting at each iteration by using the crossover operator. 

Genetic algorithms work with a “population” of individuals. 

In our algorithm, we set the size of the population as 𝜇, the 

individual of which can be initially generated by a procedure 
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called 𝐼𝐺𝑃. At each iteration, which is denoted as 𝑖𝑡𝑒𝑟, the best 

𝜑 individuals of the population in terms of fitness (objective 

function value) are chosen to be included in the population of 

the next iteration, while (𝜇 − 𝜑) individuals of the population 

are selected following the roulette wheel sampling method to 

generate children with the aid of a crossover operator called 

𝐶𝑅𝑃. Then, a mutation operator called 𝑀𝑇𝑃 is used to apply a 

certain change to the generated children. Each child will be 

decoded into a solution using the procedure 𝐷𝐶𝑃 . If it is 

feasible, the solution will be buffered with the procedure 𝐵𝐹𝑃 

and improved with a local search procedure that includes three 

operators called 𝐿𝑆𝑃_1, 𝐿𝑆𝑃_2, and 𝐿𝑆𝑃_3, respectively. As far 

as the termination criterion of the developed genetic algorithm 

is concerned, we define 𝛿 as the required number of iterations 

and stop the algorithm once 𝛿 is reached. It is noteworthy that 

we work with the notion of life span to solve the problem of 

super-individuals. Super-individuals far exceed, in fitness, 

other solutions of the population, and their existence might 

result in premature convergence to a local optimum. We set the 

life span of an individual at “birth” at 0. At each iteration, the 

life span of each surviving individual is increased by 1. When 

the life span reaches a certain number, 𝑚𝑎𝑥𝑙𝑖𝑓𝑒, the individual 

dies and is replaced by a newly generated individual with the 

aid of the procedure 𝐼𝐺𝑃. 

1) Solution Representation 

Referring to [24], [31], we use three lists below to codify the 

solutions, the length of which is denoted as 𝑛𝑠𝑢𝑏. 

 Subactivity list (𝐿): This list is the sequence of subactivities. 

The 𝑗-th element in 𝐿 represents the subactivity 𝐿𝑗 = (𝑖, 𝑣)𝑗. 

 Duration list (𝐷𝐿): This list stores the duration 𝑑𝑢𝑟(𝑖,𝑣)𝑗 of 

the corresponding subactivity (𝑖, 𝑣)𝑗 in 𝐿. 

 Buffer list (𝐵𝐿): This list indicates which subactivities should 

be buffered and by how much their finish times can be 

delayed beyond their earliest finish times as dictated by the 

serial schedule generation scheme (SSGS). For convenience, 

let 𝑏𝑢𝑓(𝑖,𝑣)𝑗  denote the buffer of the corresponding 

subactivity (𝑖, 𝑣)𝑗  in 𝐿 . Note that 𝑏𝑢𝑓(𝑖,𝑣)𝑗  represents the 

inserted buffer, which is different from 𝐹𝑆(𝑖,𝑣)𝑗 . 

Given the above lists, a solution can be obtained using a 

decoding approach, which is an extension of SSGS and is 

described in Algorithm 1 in Appendix D. 

2) Objective Function 

For a solution that is represented by the combination of the 

three lists, the key to calculating its objective function value is 

to compute the free slack 𝐹𝑆𝑖,𝑣 of each subactivity. Once they 

are obtained, the objective function value can be easily 

computed based on the formula (1). We develop a procedure to 

compute the free slack of every subactivity, which is an 

extension of the procedure developed by Lambrechts et al. [31] 

and is indicated in Algorithm 2 in Appendix D.  

As the decoded schedule may cause a project deadline 

violation, we transform the deadline constraint into a soft 

constraint that is based on a deadline feasibility test function 

𝐷𝐹𝑇, which is defined as 𝐷𝐹𝑇 = max{0, 𝑠𝑛,1 − 𝐷}. During the 

searching process, if the 𝐷𝐹𝑇 of a solution is greater than 0, the 

objective function value of the solution will be penalized based 

on the following formula: 

𝑅𝑜𝑏𝑢 = ∑ [𝑤𝑖 (∑ ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1 )𝑛

𝑖=1 ] − 𝑛𝑝 ∙ 𝑛𝑐 ∙ 𝐷𝐹𝑇. 

Here,𝑛𝑝 is the penalty factor, and 𝑛𝑐 denotes the number of 

iterations that are used by the genetic algorithm since the last 

major improvement was found. 

3) Buffering 

For a feasible solution, we use a procedure called 𝐵𝐹𝑃 , 

which is described in Algorithm 3 in Appendix D, to insert 

enough buffers into the schedule to improve its robustness, 

which serves as a local search of the buffer list. We firstly select 

a subactivity randomly and add one unit of time buffer to that. 

Then we calculate the objective function value 𝑅𝑜𝑏𝑢′  of the 

improved solution. If the deadline constraint is violated or the 

objective function value has not been improved, the number of 

failure times 휁 that is initialized at zero will increase by one. If 

휁 reaches a predefined maximum allowed number 𝑍 of failures, 

the procedure ends. Otherwise, another subactivity is chosen 

and the procedure continues.  

4) Initial Population Generation 

The individual 𝑔 of the initial population can be generated 

through the procedure 𝐼𝐺𝑃, which is described in Algorithm 4 

in Appendix D. To decide whether to split the activities in the 

initial solution, we take the constraints of the maximum number 

of splitting and the minimum execution time into consideration. 

If the two constraints are satisfied, then we generate random 

numbers and compare them with a predefined parameter 𝑖𝑡𝑟𝑝𝑡 
to make the decision of activity splitting. Note that this 

procedure builds an individual in 𝑛𝑠𝑢𝑏 iterations, where 𝑛𝑠𝑢𝑏 

is unknown until the end of the procedure. 

5) Crossover 

Children can be generated by operating on the selected 

individuals with the aid of a crossover procedure called 𝐶𝑅𝑃. 

This procedure is described in Algorithm 5 in Appendix D, 

which is similar to the one that is developed by Ballestín et al. 

[24] except that we now have a third list called buffer list. In 

our procedure, we copy the same proportion of time buffer of 

the parent to the child as that of the duration. Note that the 

selected individuals are randomly paired as parents, and each of 

them can be a father or a mother. 

6) Mutation 

We make a change on the children with the procedure 𝑀𝑇𝑃, 

which is described in Algorithm 6 in Appendix D. We must 

emphasize that it is a deliberate choice that the mutation 

operation only considers the operators of changing the 

sequences and time buffers of the subactivities and does not 

introduce more operators. We considered many operators such 

as introducing more activity splitting, merging some 

subactivities, and changing the duration of subactivities. 

However, the preliminary tests with such operators did not lead 

to improved results. A reason could be that the local search 

procedure that is developed in the next section plays the same 

roles as those of these operators. For example, the procedures 

𝐿𝑆𝑃_1 and 𝐿𝑆𝑃_3 can be regarded as operations that introduce 

more splitting of activities, and the procedure 𝐿𝑆𝑃_2  is 

structured to change the duration of the subactivities. 
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7) Local Search 

For each feasible child, we adopt a local search procedure 

that includes three operators called 𝐿𝑆𝑃_1, 𝐿𝑆𝑃_2, and 𝐿𝑆𝑃_3, 

respectively, to improve its schedule robustness. The operator 

𝐿𝑆𝑃_1 , which is based on Property 1 and described in 

Algorithm 1, facilitates the discovery of new periods for 

activities to be executed. Let 𝐶1 = {𝑇1, 𝑇2, ⋯ , 𝑇𝑐} denote the set 

of feasible periods, as defined in Definition 1, and let 𝐶2 =

{(𝑖, 𝑣)|𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 2휀𝑖 𝑎𝑛𝑑𝑉𝑖 ≤ 휂𝑖}  represent the set of 

divisible subactivities, as defined in Definition 2. 

Algorithm 1. Pioneering: 𝑅𝑜𝑏𝑢′ = 𝐿𝑆𝑃_1(𝐿, 𝐷𝐿, 𝐵𝐿) 

1: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿), obtain 𝑉𝑖 (𝑖 ∈ 𝑁) 

2: FOR 𝑖 = 2 TO 𝑛 − 1 DO 

3:    IF 휂𝑖 > 0 AND 𝑑𝑖 ≥ 2휀𝑖 THEN 

4:       Obtain the sets 𝐶1 and 𝐶2 

5:       WHILE 𝐶1 ≠ ∅ AND 𝐶2 ≠ ∅ AND 𝑉𝑖 ≤ 휂𝑖 DO 

6:          Choose the period 𝑇1 from 𝐶1 and one subactivity (𝑖, 𝑣) from 

𝐶2 

7:          Generate 𝑑𝑑 from [휀𝑖 ,min{𝑑𝑢𝑟𝑖,𝑣 − 휀𝑖 − 휃𝑖 , 𝜉𝑇 − 휃𝑖}] 

8:          Update the sets 𝐶1 and 𝐶2, 𝑉𝑖 = 𝑉𝑖 + 1 

9:          𝑑𝑢𝑟𝑖,𝑣 = 𝑑𝑢𝑟𝑖,𝑣 − 𝑑𝑑, 𝑑𝑢𝑟𝑖,𝑉𝑖 = 𝑑𝑑 + 휃𝑖 , 𝐹𝑆𝑖,𝑣 = 𝐹𝑆𝑖,𝑣 +

𝑑𝑑, 𝐹𝑆𝑖,𝑉𝑖 = 𝜉𝑇1 − 𝑑𝑑 − 휃𝑖  

10:      END WHILE 

11:   END IF 

12:END FOR 

13:Calculate the objective function value 𝑅𝑜𝑏𝑢′ of the improved 

solution 

The operator 𝐿𝑆𝑃_2 , which is based on Property 2 and 

described in Algorithm 2, is used to balance the length of 

durations between two subactivities of one activity. Let 𝐶3 =

{(𝑖, 𝑣)|𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 ≥ 2휀𝑖 𝑎𝑛𝑑𝐹𝑆𝑖,𝑣 ≤ 1 + 휃𝑖} denote the set of 

subactivities that are divisible but not abundant in free slacks 

and let 𝐶4 = {(𝑖, 𝑣)|𝑑𝑢𝑟𝑖,𝑣 − 휃𝑖 < 2휀𝑖 𝑎𝑛𝑑𝐹𝑆𝑖,𝑣 ≥ 2 + 휃𝑖} 

represent the ones that are just the reverse. 

Algorithm 2. Balancing: 𝑅𝑜𝑏𝑢′ = 𝐿𝑆𝑃_2(𝐿, 𝐷𝐿, 𝐵𝐿) 

1: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿) 

2: FOR 𝑖 = 2 TO 𝑛 − 1 DO 

3:    IF 휂𝑖 > 0 AND 𝑑𝑖 ≥ 2휀𝑖 THEN 

4:       Obtain the sets 𝐶3 and 𝐶4, 𝑁𝑆 = min{|𝐶3|, |𝐶4|} 
5:       FOR 𝑞 = 1 TO 𝑁𝑆 DO 

6:          Choose one subactivity (𝑖, 𝑣) from 𝐶3 and another one (𝑖, 𝑝) 
from 𝐶4 

7:          𝑑𝑢𝑟𝑖,𝑣 = 𝑑𝑢𝑟𝑖,𝑣 − 1, 𝑑𝑢𝑟𝑖,𝑝 = 𝑑𝑢𝑟𝑖,𝑝 + 1 

8:          𝐹𝑆𝑖,𝑣 = 𝐹𝑆𝑖,𝑣 + 1, 𝐹𝑆𝑖,𝑝 = 𝐹𝑆𝑖,𝑝 − 1 

9:          Update 𝐶3 and 𝐶4 

10:      END FOR 

11:   END IF 

12:END FOR 

13:Calculate the objective function value 𝑅𝑜𝑏𝑢′ of the improved 

solution 

The operator 𝐿𝑆𝑃_3 , which is based on Lemma 1 and 

described in Algorithm 3, is used to divide one subactivity into 

subactivities that specifically share the buffer of the original 

subactivity as equally as possible. For the sake of description, 

let 𝐶5 = {(𝑖, 𝑣)|𝑑𝑢𝑟𝑖,𝑣 ≥ 2휀𝑖𝑎𝑛𝑑𝐹𝑆𝑖,𝑣 ≥ 2} denote the set of 

subactivities that are divisible and abundant in free slacks. 

Algorithm 3. 𝑅𝑜𝑏𝑢′ = 𝐿𝑆𝑃_3(𝐿, 𝐷𝐿, 𝐵𝐿) 

1: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿), obtain 𝑉𝑖 (𝑖 ∈ 𝑁) 

2: FOR 𝑖 = 2 TO 𝑛 − 1 DO 

3:    IF 휂𝑖 > 0 AND 𝑑𝑖 ≥ 2휀𝑖 THEN 

4:       Obtain the set 𝐶5 

5:       WHILE 𝐶5 ≠ ∅ AND 𝑉𝑖 ≤ 휂𝑖 DO 

6:          Choose one subactivity (𝑖, 𝑣) from 𝐶5, 𝑛𝑢𝑚𝑖,𝑣 =

min {[
𝑑𝑢𝑟𝑖,𝑣−휃𝑖

휀𝑖
] ,

𝐹𝑆𝑖,𝑣+휃𝑖

1+휃𝑖
, 휂

𝑖
− 𝑉𝑖 + 2} 

7:          Divide the subactivity (𝑖, 𝑣) into 𝑛𝑢𝑚𝑖,𝑣 parts whose free 

slacks are as equal as possible and durations are [𝑑𝑢𝑟𝑖,𝑣 −

(𝑛𝑢𝑚𝑖,𝑣 − 1) ∙ 휀𝑖], 휀𝑖 + 휃𝑖 ,⋯ , 휀𝑖 + 휃𝑖  respectively 

8:          Update 𝑉𝑖 and the set 𝐶5 

9:       END WHILE 

10:   END IF 

11:END FOR 

12:Calculate the objective function value 𝑅𝑜𝑏𝑢′ of the improved 

solution 

IV. COMPUTATIONAL RESULTS 

A. Experimental Design 

Based on the three developed local search operators, four 

different versions of the genetic algorithm are presented. For 

the sake of description, we represent the genetic algorithm 

without any local search operator as GA, the genetic algorithm 

with the operator 𝐿𝑆𝑃_1 as GA-LSP1, the genetic algorithm 

with operators 𝐿𝑆𝑃_1  and 𝐿𝑆𝑃_2  as GA-LSP12, and the 

genetic algorithm with all the three operators as GA-LSP123, 

respectively, in the remainder of the paper. To evaluate the 

effectiveness of the proposed genetic algorithms, we propose 

the use of CPLEX as a benchmark to optimally solve the 

established model. Referring to the methods that are proposed 

to reduce zero-one polynomial formulations to zero-one linear 

formulations [37], the proposed non-linear model can be 

linearized, just as shown in Appendix E.  As many variables and 

constraints are introduced into the model, it may take much time 

to solve the problem. However, there is no loss of the quality of 

the solutions for the problem and therefore it is enough for the 

sake of comparison of effectiveness. Note that we can use 

CPLEX to directly represent the algorithm that is conducted by 

the software. The aim of our experiment is not only to test the 

effectiveness of the three local search operators by comparing 

the performance of different versions of the genetic algorithm, 

but also to validate the performance of the genetic algorithm 

developed in this paper against CPLEX. Besides, it is expected 

to draw conclusions based on an analysis of the results. 

The five algorithms are tested on five instance sets that are 

constructed by the ProGen project generator [38], [39], which 

is classified by three parameters, i.e., network complexity (NC), 

resource factor (RF), and resource strength (RS). Specifically, 

the instances with 6 or 8 or 10 non-dummy activities, denoted 

as J6, J8, and J10, are generated by ourselves using the ProGen 

generator while the instances with 30 or 60 non-dummy 

activities, denoted as J30 and J60, are randomly (the first and 

the sixth instances out of the ten provided instances) chosen 

from the Project Scheduling Problem Library (PSPLIB), which 

is also generated by the ProGen generator [39]. The five sets 
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consist of 48×2×5=480 instances, and the parameter setting that 

is used to generate instances is described in Table II. Note that 

in consideration of the feasibility of the instance generation, we 

choose a different level setting of network complexity for J6, 

J8, and J10 from the one for J30 and J60. As for the other 

parameters in our problem, such as 𝑤𝑖 , 휃𝑖 , 휂𝑖 , and 휀𝑖 , we 

generate them randomly to cover all the cases in practice. The 

parameter settings of these parameters can be found in Table II 

and Table III. 

In our experiment, the project due date 𝐷 of each instance is 

set at 𝐶max
RCPSP(1 + 𝛼)  where 𝐶max

RCPSP  represents the minimum 

makespan that is optimally solved by CPLEX under a 

deterministic, indivisible, and non-setup-time environment, and 

the due date factor α is a parameter that is chosen by the project 

1 

TABLE II 
PARAMETER SETTINGS THAT ARE USED TO GENERATE THE DATA SET 

Parameter Setting 

Number of non-dummy activities 6, 8, 10, 30, 60 

Network complexity, NC 1.2, 1.5, 1.8 for the sets J6, J8, and J10 

1.5, 1.8, 2.1 for the sets J30 and J60 
Resource factor, RF 0.25, 0.50, 0.75, 1.00 

Resource strength, RS 0.2, 0.5, 0.7, 1.0 

Number of instances for each combination of parameters under a given number of non-
dummy activities 

2 

Number of initial or terminal activities 3 

Maximal number of successors or predecessors 3 

Activity duration, 𝑑𝑖 Randomly selected from interval [1, 10] 

Number of resource types, 𝐾 4 

Resource amounts required by activities, 𝑟𝑖,𝑘
𝜌

 Randomly selected from interval [1, 10] 

Weights of non-dummy activities, 𝑤𝑖 Randomly selected from interval [1, 10] 

TABLE III 
LEVELS OF THE KEY PARAMETERS 

Parameter Level Value 

Project due date factor 𝛼 1-3 20%, 30%, 40% 

Setup times of non-dummy activities 휃𝑖 
1 휃𝑖 = 0.8 ∗ 𝑐 ∗ 𝑑𝑖 
2 휃𝑖 = 1.0 ∗ 𝑐 ∗ 𝑑𝑖 
3 휃𝑖 = 1.2 ∗ 𝑐 ∗ 𝑑𝑖 

Combination of 휂𝑖 and 휀𝑖 

1 휂𝑖 = min{𝑑𝑖 − 1, 𝑎} 휀𝑖 = 1 
2 휂𝑖 = min{𝑑𝑖 − 1, 1.5𝑎} 휀𝑖 = 1 
3 휂𝑖 = min{𝑑𝑖 − 1, 2𝑎} 휀𝑖 = 1 
4 휂𝑖 = [𝑑𝑖 휀𝑖⁄ ] − 1 휀𝑖 = max{1, 𝑏} 
5 휂𝑖 = [𝑑𝑖 휀𝑖⁄ ] − 1 휀𝑖 = max{1, 0.7𝑏} 
6 휂𝑖 = [𝑑𝑖 휀𝑖⁄ ] − 1 휀𝑖 = max{1, 0.4𝑏} 
7 휂𝑖 = 𝑑𝑖 − 1 휀𝑖 = 1 

TABLE V 

PERFORMANCE OF THE FOUR VERSIONS OF THE GENETIC ALGORITHM 

Set Version AOV 
APB 

 (%) 

API  

(%) 

ARI  

(%) 

ACT 

(s) 

ACT’ 

(s) 

AOG’ 

(%) 

J6 

GA 30.21 73.31 0.00 0.00 0.12 0.24 2.79 

GA-LSP1 30.23 74.11 0.23 15.94 0.12 0.24 2.76 

GA-LSP12 30.28 76.57 3.04 4.89 0.12 0.24 2.70 

GA-LSP123 30.49 96.36 10.07 9.40 0.12 0.20 1.89 

J8 

GA 40.00 44.71 0.00 0.00 0.16 0.39 2.98 

GA-LSP1 40.07 46.15 0.48 17.31 0.16 0.39 2.92 

GA-LSP12 40.21 50.15 3.80 5.44 0.17 0.38 2.88 

GA-LSP123 40.92 91.34 11.28 11.47 0.17 0.29 1.70 

J10 

GA 47.62 26.74 0.00 0.00 0.19 0.49 3.39 

GA-LSP1 47.77 28.04 1.02 9.41 0.20 0.49 3.01 

GA-LSP12 48.05 31.40 4.69 5.16 0.19 0.48 3.13 

GA-LSP123 49.38 87.12 12.68 8.45 0.20 0.34 2.00 

J30 

GA 158.83 3.90 0.00 0.00 3.12 9.44 6.88 

GA-LSP1 162.52 6.37 3.44 5.67 3.21 9.13 5.54 

GA-LSP12 162.83 6.66 8.55 3.60 3.13 9.10 5.69 
GA-LSP123 175.05 83.50 17.98 6.33 3.32 5.22 2.41 

J60 

GA 300.98 1.82 0.00 0.00 9.35 28.80 9.57 

GA-LSP1 318.10 6.30 10.85 4.23 9.73 26.32 6.40 

GA-LSP12 318.58 6.07 17.12 3.60 9.47 25.51 6.63 

GA-LSP123 349.83 85.81 30.16 7.01 10.04 13.69 4.24 

Avg 

GA 115.53  30.10  0.00  0.00  2.59  7.87  5.12  

GA-LSP1 119.74  32.19  3.20  10.51  2.68  7.31  4.13  

GA-LSP12 119.99  34.17  7.44  4.54  2.62  7.14  4.21  

GA-LSP123 129.13  88.83  16.43  8.53  2.77  3.95  2.45  
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manager and constitutes the trade-off between project stability 

and project duration [14]. The value of the four key parameters, 

i.e., 𝛼, 휃𝑖, 휂𝑖, and 휀𝑖, is set at certain levels, as shown in Table 

III, where parameter 𝑐  denotes a decimal that is randomly 

selected from [1/10, 1/8] and parameters 𝑎 and 𝑏 respectively 

denote random numbers that are selected from [0, 𝑑𝑖 − 1] and 

[1, 𝑑𝑖 ]. Consequently, a full factorial experiment of the four 

parameters results in 3×3×7=63 replicates for each instance 

and 480×63 = 30240 ones overall. 

The following ten indices are defined to evaluate the 

performance of the algorithms. Specifically, the first seven 

indices are used to compare the performance of the four 

different versions of the genetic algorithm, and the last three 

indices are additionally designed to make a comparison of the 

performance between the genetic algorithm and CPLEX. 

 AOV: Average objective function value. 

 APB: The percentage of instances for which the algorithm 

finds a solution that is equal to the best solution known, i.e., 

the best one among the solutions that are found by the four 

developed versions of the genetic algorithm – GA, GA-LSP1, 

GA-LSP12, and GA-LSP123. 

 API: The percentage of solutions that are improved after 

using the local search procedure. 

 ARI: Average rate of improvement in terms of the objective 

function value after using the local search procedure. 

 ACT: Average computing time. 

 ACT’: Average computing time to solve the problems to 

obtain the best solutions known. 

 AOG’: Average gap in terms of the objective function values 

of the worse solutions that are obtained by a specific version 

of the genetic algorithm compared with those of the best 

solutions known. 

 AOG: Average gap in terms of the objective function values 

of the worse solutions that are obtained by the genetic 

algorithm compared with those of the corresponding 

solutions that are obtained by CPLEX. 

 APN: The percentage of instances that cannot be solved by 

CPLEX within a predefined time limit.  

 AWS: The percentage of instances in which worse solutions 

are obtained by the developed genetic algorithm than by 

CPLEX. 

In our experiment, the developed algorithms are programmed 

in the C++ language, implemented in Microsoft Visual Studio 

2013 and executed on a DELL OptiPlex 3040MT with 3.20 

GHz clock-pulse and 8G RAM. 

B. Parameter Selection 

TABLE IV 

VALUES OF PARAMETERS FOR INSTANCE SETS 

Set 𝜇 𝜑 𝑍 𝑚𝑎𝑥𝑙𝑖𝑓𝑒 𝑛𝑝 𝑖𝑡𝑟𝑝𝑡 𝑝𝑚𝑢𝑡 𝛿 

J6, J8, and J10 64 15 2 7 25 0.4 5% 80 

J30 64 11 2 7 30 0.4 5% 350 

J60 64 15 2 9 50 0.4 4% 450 

Our developed genetic algorithm allows for different choices 

of eight parameters. With a focus on the value of AOV, we 

performed a preliminary experiment to choose the best 

combination of parameters. This experiment tests the instances 

whose project due date factor 𝛼 is set at 30%, setup time is set 

at level 1, and the combination of 휂𝑖  and 휀𝑖  is set at level 4. 

According to the results of the preliminary test, the parameters 

are set at different values to solve different instance sets, as 

shown in Table IV. 

C. Performance of the Developed Genetic Algorithm 

1) Comparison of the Four Different Versions of the Genetic 

Algorithm 

The results of the performance of the four developed genetic 

algorithms on the five instance sets are presented in Table V, 

where the italic numbers in the four bottom rows represent the 

average values of the five instance sets. It is noteworthy that the 

five left indices are used to measure the performance of the 

genetic algorithms that stop after a predefined number of 

iterations while the two right ones are used to measure the 

performance of the genetic algorithms that stop once obtaining 

the best solutions known. From the table, we observe that for 

different instance sets the conclusion is almost the same in 

terms of the performance of the four versions of the genetic 

algorithm. The indices AOV and APB of GA-LSP1 are higher 

than those of GA, which verifies a better performance of GA-

LSP1 compared with GA. This is not surprising because the 

operator LSP_1  is added in GA-LSP1, which on average 

improves the objective function values of 3.20 percent of the 

solutions by 10.51%. Similarly, the effectiveness of the 

operator 𝐿𝑆𝑃_2  can be analyzed by comparing the versions 

GA-LSP12 and GA-LSP1. On average, GA-LSP12 performs 

better than GA-LSP1 in terms of AOV, APB, and ACT. 

Furthermore, we find that GA-LSP123, followed by GA-LSP12, 

GA-LSP1, and GA, performs the best with the highest average 

objective function value (AOV) and the highest average 

percentage of the best solutions (APB). Corresponding with the 

highest value of APB, GA-LSP123 takes the least time to solve 

the problems again, reaching a smallest average gap of the 

objective function values compared with those of the best 

solutions known. Most of the success is due to the application 

of the operator 𝐿𝑆𝑃_3, which on average improves the objective 

function values of 16.43 percent of the solutions by 8.53%. 

Compared with the operators 𝐿𝑆𝑃_1  and 𝐿𝑆𝑃_2 , 𝐿𝑆𝑃_3  is 

much more effective as there is a sharp increase of AOV and 

APB once it is included in the genetic algorithm. In summary, 

the three developed local search operators improve the solution 

robustness of the baseline schedules, although it takes a 

somewhat longer computing time to solve the problems. Thus, 

GA-LSP123 is the most promising version for the problem 

among the four presented genetic algorithms, which can be used 

to compete with a commercial mathematical programming 

solver next. 

2) Comparison of the Performance between the Genetic 

Algorithm and Commercial Software 

To test the effectiveness of the algorithm that is developed in 

this paper, we conduct an experiment to compare the 

performance between GA-LSP123 and a commercial 

mathematical programming solver (CPLEX). In this 

experiment, we predefine a maximum period of one hour for 

CPLEX to solve each instance. This means that even though 

one instance is not solved optimally by that time, we end the 

algorithm and save the outcome that has been obtained thus far, 

which includes the best solution, the objective function value, 

and the computing time. Because it is difficult for CPLEX to 

solve the problems with a lot of non-dummy activities, we only 

choose to test the three instance sets J6, J8, and J10. 
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TABLE VI 

PERFORMANCE OF GA-LSP123 AND CPLEX 

Set  
ACT (s) APN 

 (%) 

AWS 

 (%) 

AOG 

 (%) GA-LSP123 CPLEX 

J6 0.12 1592.04 42.21 2.63 2.30 

J8 0.17 1766.92 46.93 8.09 1.37 

J10 0.20 2022.72 54.17 16.77 1.33 

Avg 0.16 1793.89 47.77 9.16 1.67 

The results of the experiment can be found in Table VI. From 

the table, we can see that the number of instances that cannot 

be solved by CPLEX in the predefined period is very high and 

increases quickly with an increasing number of non-dummy 

activities. Simply put, CPLEX requires a great deal of time to 

solve the problem. This is not surprising because many 

variables and constraints are introduced during the linearization 

process of the proposed scheduling model, which results in the 

difficulty of computing problems for CPLEX. By contrast, GA-

LSP123 is much more efficient, with a very small computing 

time. Although GA-LSP123 cannot solve some instances as 

optimally as CPLEX, the percentage of these instances is very 

small, and it is acceptable of the average gap between the 

objective function values of the solutions for these instances 

that are solved by GA-LSP123 and the corresponding ones that 

are solved by CPLEX. 

D. Sensitivity Analysis of the Key Parameters 

Firstly, we investigate the effect of different levels of the 

combination of 휂𝑖  and 휀𝑖  on solution robustness for the five 

instance sets. In addition to the seven levels of the divisible case, 

we take level 8, which represents the indivisible case, into 

account. The results are described in Table VII where for each 

instance set the italic numbers in the second row from the 

bottom represent the average values of the divisible case. From 

the table, two main phenomena can be observed. The first one 

is that the average objective function value under the divisible 

case is significantly higher than the corresponding values under 

the indivisible case. This indicates that activity splitting is 

beneficial for generating more robust baseline schedules that 

are likely to have lower adjustment costs during project 

execution. Compared with the classic proactive scheduling 

models where activity splitting is not allowed, this paper offers 

a new method to improve schedule robustness when activity 

splitting is allowed and generates better solutions to project 

management. This phenomenon can be explained as follows. 

When activities can be split, it will be more flexible for project 

managers to schedule activities at the design stage of the 

baseline schedules, which may help to obtain higher solution 

robustness. Essentially, the solution space of the divisible case 

is extended because of the constraint relaxation. The second 

phenomenon is that the average objective function value 

increases with the growth of 휂𝑖 or the decline of 휀𝑖. Activities 

can be split more frequently with a higher value of 휂𝑖 or with a 

lower value of 휀𝑖 , which improves the scheduling feasibility, 

and thus this is beneficial for obtaining a higher objective 

function value. 

Secondly, we investigate the influence of the key parameter 

휃𝑖 on the index AOV for the five instance sets. The results are 

shown in Fig. 3, from which we can see that the growth of 휃𝑖 
has a negative effect on the average objective function value. 

This is because there will be less space for inserting time buffers 

when taking more setup times into account.  

TABLE VII 

EFFECT OF DIFFERENT LEVELS OF THE COMBINATION OF 휂𝑖 AND 휀𝑖 

Set Case Level 휂𝑖 휀𝑖 AOV ACT 

J6 

Divisible 1 2.38 1.00 28.91 0.12 

2 2.92 1.00 29.86 0.12 
3 3.38 1.00 31.26 0.13 

4 1.17 3.26 24.49 0.11 

5 2.17 2.06 29.45 0.12 
6 3.43 1.33 33.94 0.13 

7 4.66 1.00 35.54 0.14 

Avg 2.87  1.52  30.49  0.12  

Indivisible 8 0.00 5.66 16.43 0.09 

J8 

Divisible 1 2.31 1.00 38.83 0.17 

2 2.84 1.00 40.81 0.17 

3 3.26 1.00 42.62 0.17 
4 1.03 3.26 31.93 0.15 

5 2.03 2.06 38.73 0.16 

6 3.25 1.34 45.17 0.18 
7 4.49 1.00 48.33 0.19 

Avg  2.74  1.52  40.92  0.17  

Indivisible 8 0.00 5.49 21.56 0.12 

J10 

Divisible 1 2.15 1.00 47.01 0.20 
2 2.65 1.00 48.94 0.20 

3 3.03 1.00 51.12 0.21 

4 1.07 3.04 38.93 0.18 
5 2.02 1.93 47.05 0.20 

6 3.22 1.28 54.50 0.22 

7 4.25 1.00 58.08 0.22 
Avg 2.63  1.46  49.38  0.20  

Indivisible 8 0.00 5.25 26.92 0.14 

J30 

Divisible 1 2.17 1.00 167.22 3.21 

2 2.63 1.00 176.05 3.30 

3 3.04 1.00 184.71 3.40 

4 1.02 3.22 132.16 2.82 

5 1.97 2.05 163.02 3.18 

6 3.20 1.34 192.29 3.54 

7 4.41 1.00 209.88 3.77 

Avg 2.63  1.52  175.05  3.32  

Indivisible 8 0.00 5.41 84.88 2.45 

J60 

Divisible 1 2.27 1.00 334.81 9.37 

2 2.76 1.00 353.98 9.91 

3 3.19 1.00 370.93 10.39 

4 1.07 3.25 267.95 8.24 

5 2.03 2.06 328.29 9.37 

6 3.29 1.34 379.33 10.73 

7 4.52 1.00 413.52 12.23 

Avg 2.73  1.52  349.83  10.03  

 Indivisible 8 0.00 5.52 169.18 6.95 

 

 

Fig. 3.  The influence of the key parameter 휃𝑖 on AOV. 

In addition, we investigate the influence of the key parameter 

𝛼 on the index AOV for the five instance sets, and we take two 

θi=0.8c·di θi=1.0c·di θi=1.2c·di

J6 33.58 30.25 27.65

J8 45.15 40.77 36.83

J10 54.28 49.35 44.50

J30 192.97 173.94 158.24

J60 385.52 347.48 316.50

A
O
V



> TEM-16-0254.R3 < 11 

more levels of 𝛼, 25% and 35%, into account. The results are 

shown in Fig. 4, from which we can see that the growth of 𝛼 

has a positive effect on the average objective function value. 

This is reasonable because there will be more inserted buffers 

in the schedule as the project due date constraint becomes less 

strict. 

 
Fig. 4.  The influence of the key parameter 𝛼 on AOV. 

V. CONCLUSIONS 

This paper presents a proactive resource- constrained project 

scheduling problem with activity splitting where each activity 

can be split at discrete time instants under the constraints of a 

maximum number of splitting and a minimum period of 

continuous execution. Besides, in this problem setup times are 

considered. Based on the analysis of the established model, two 

properties and one lemma are proposed and applied in our 

developed genetic algorithm to improve the local search 

efficiency. In addition, we linearize the proposed model, 

making it solvable for commercial software. A computational 

experiment that is performed on data sets generated by the 

ProGen is designed and executed, from which the following 

conclusions are drawn:  

1) The two developed properties and the proposed lemma can 

be used to maximize the objective function, and the genetic 

algorithm with a combination of the three local search 

operators performs the best. 

2) Compared with commercial software, the developed 

genetic algorithm is much more efficient to solve the 

proposed scheduling problem, and the gap in terms of the 

objective function value is acceptable. 

3) Due to the increase in flexibility of executing activities, 

activity splitting enhances the robustness of baseline 

schedules that are likely to have lower adjustment costs 

during project execution. Compared with the classic 

proactive scheduling models where activity splitting is not 

allowed, this paper offers a new method to improve 

schedule robustness when activity splitting is allowed and 

generates better solutions to project management. 

4) With the growth of the maximum number of splitting, the 

decline in the minimum execution time, the decrease in the 

setup times, and the extension of the project due date, 

schedule robustness increases.  

Note that the research in this paper is based on specific 

assumptions of activity splitting, so further research can provide 

support for quantitative decisions on project management under 

more complex and realistic conditions of activity splitting, such 

as cases in which activity splitting is allowed at arbitrary 

rational times. In addition, more effective and efficient 

algorithms can be developed to solve the proposed scheduling 

problem, and other efficient methods can be proposed to solve 

the zero-one polynomial formulations. 
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APPENDIX1 

A. More Details about the Literature on Proactive Scheduling 

TABLE VIII 

DETAILS ABOUT THE LITERATURE ON PROACTIVE SCHEDULING 

Reference 
Mode  Objective Surrogate 

 robustness 

measure 

Slacks  Algorithm 

Single Multi- 
 

Robustness Others Time Resource  
 

Exact Heuristic  

[5] √    Trade-off  √    CC/BM & ADFF 

[6]  √   Trade-off √ √   A two-phase approach  

[7]  √   Trade-off √ √   Benders decomposition Tabu search 

[8] √   √  √ √    EWD1 
[9] √   √   Resource allocation  Brand & bound  

[10] √   √   √    Multiple procedures 

[11] √   √   √ √   Priority rule based  
[12] √   √   √    Steepest descent  

[13] √    Trade-off √ √    Tabu search 

[14] √    Trade-off  √    RFDFF 
[16] √    Trade-off √ √    Priority rule based 

[17] √    Cost  √    STC + D heuristic 

[18] √   √  √ Confidence level  CCP method  
[31] √   √  √ √    Tabu search 

Mine √   √  √ √    Genetic algorithm 

B. More Details about the Literature on the Resource-constrained Project Scheduling Problem with Activity Splitting 

TABLE IX 
DETAILS ABOUT THE LITERATURE ON THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM WITH ACTIVITY SPLITTING 

Reference 

Mode 
Minimum 

execution 

time 

Maximum 

splitting  

times  

Setup  
times 

Objective  Algorithm 

Single Multi- Makespan Others 
 

Exact Heuristic 

[19] √     √   Branch & bound  

[20]  √    √   Branch & bound  
[21]  √    √    Priority-based 

[22] √     √    Local search 

[23] √     √    Improved RCPSP 
[24] √  √ √  √    Evolutionary 

[25]  √    √    Genetic algorithm 

[26] √     √   Lower bound  
[27] √     √   Branch-and-price  

[28]  √    √   Branch & bound  

[29] √      Cost   Genetic algorithm 
[30]  √ √ √   Trade-off   Evolutionary 

Mine √  √ √ √  Robustness   Genetic algorithm 
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C. Simplification of the Proposed Problem 

In the proposed problem, activities can be split into certain 

parts, which is decided by two parameters, the maximum 

splitting times 휂𝑖 and the minimum continuous execution time  

휀𝑖 . If we set 휂𝑖 = 0  or 휀𝑖 = 𝑑𝑖  for each activity 𝑖 , then the 

problem will be simplified into the proactive scheduling 

problem without activity splitting. As the dummy end activity 

is assumed to start and end at the project deadline, we can add 

an extra dummy activity (𝑛 − 1) in the project network 𝐺′ =
(𝑁, 𝐴′)  where (𝑛 − 1, 𝑛) ∈ 𝐴′  and (𝑖, 𝑛 − 1) ∈ 𝐴′, ∀(𝑖, 𝑛) ∈
𝐴. Then we can set the weight of activity (𝑛 − 1) as 1 and the 

weights of all other activities as 0. In this way, the objective 

function (maximize ∑ [𝑤𝑖 (∑ ∑ 𝑒−𝑏
𝐹𝑆𝑖,𝑣
𝑏=1

𝑉𝑖
𝑣=1 )𝑛

𝑖=1 ] ) will be 

simplified to maximize ∑ 𝑒−𝑏
𝐹𝑆𝑛−1,1
𝑏=1 , which is equivalent to 

minimizing the project makespan 𝐶𝑚𝑎𝑥 . As there are also 

precedence and resource constraints in the model and there 

won’t be a deadline constraint if we set the project deadline 

much bigger than 𝐶𝑚𝑎𝑥 , the proposed problem can be 

simplified into the resource-constrained project scheduling 

problem (RCPSP) with the objective of makespan 

minimization. 

D. More Details of the Procedures in the Genetic Algorithms 

Algorithm 1. Decoding procedure: 𝑠(𝑖,𝑣)𝑗 = 𝐷𝐶𝑃(𝐿, 𝐷𝐿, 𝐵𝐿) 

1: 𝑠(𝑖,𝑣)1 = 0 

2: FOR 𝑗 = 2 TO 𝑛𝑠𝑢𝑏 DO 

3:    𝑠(𝑖,𝑣)𝑗 = max(𝑖,𝑣)ℎ∈𝑃(𝑖,𝑣)𝑗
(𝑠(𝑖,𝑣)ℎ + 𝑑𝑢𝑟(𝑖,𝑣)ℎ + 𝑏𝑢𝑓(𝑖,𝑣)ℎ) 

4:    WHILE ∃𝑘, 𝑡: ∑ 𝑟ℎ,𝑘
𝜌

> 𝑅𝑘
𝜌
(𝑘 = 1,⋯ , 𝐾and𝑡 =ℎ∈𝑆(𝑡)

𝑠(𝑖,𝑣)𝑗 ,⋯ , 𝑠(𝑖,𝑣)𝑗 + 𝑑𝑢𝑟(𝑖,𝑣)𝑗 + 𝑏𝑢𝑓(𝑖,𝑣)𝑗 − 1) DO 

5:       𝑠(𝑖,𝑣)𝑗 = 𝑠(𝑖,𝑣)𝑗 + 1 

6:    END WHILE 

7: END FOR 

8: 𝑠(𝑖,𝑣)𝑛𝑠𝑢𝑏 = max(𝑠(𝑖,𝑣)𝑛𝑠𝑢𝑏 , 𝐷) 

Note: 𝑃(𝑖,𝑣)𝑗 represents the set of predecessors of subactivity (𝑖, 𝑣)𝑗. 

Algorithm 2. Slack calculation: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿) 

1: 𝑠(𝑖,𝑣)𝑗 = 𝐷𝐶𝑃(𝐿, 𝐷𝐿, 𝐵𝐿) 

2: Obtain the list 𝐿′ 
3: 𝐸𝑆(𝑖,𝑣)1′ = 𝐿𝑆(𝑖,𝑣)1′ = 𝑠(𝑖,𝑣)1′ , 𝐹𝑆(𝑖,𝑣)1′ = 0 

4: FOR 𝑗 = 2 TO 𝑛𝑠𝑢𝑏 DO 

5:    𝐸𝑆(𝑖,𝑣)𝑗
′ = 𝑠(𝑖,𝑣)𝑗

′ , 𝐿𝐹(𝑖,𝑣)𝑗
′ = min {𝐸𝑆ℎ|ℎ ∈ 𝑆(𝑖,𝑣)𝑗

′}, 𝐿𝑆(𝑖,𝑣)𝑗
′ =

𝐿𝐹(𝑖,𝑣)𝑗
′ − 𝑑𝑢𝑟(𝑖,𝑣)𝑗

′  

6:    WHILE ∃𝑘, 𝑡: ∑ 𝑟ℎ,𝑘
𝜌

> 𝑅𝑘
𝜌
(𝑘 = 1,⋯ , 𝐾and𝑡 =ℎ∈𝑆(𝑡)

𝐸𝑆(𝑖,𝑣)𝑗
′ , ⋯ , 𝐿𝐹(𝑖,𝑣)𝑗

′ − 1) DO 

7:       𝐿𝐹(𝑖,𝑣)𝑗
′ = 𝐿𝐹(𝑖,𝑣)𝑗

′ − 1, 𝐿𝑆(𝑖,𝑣)𝑗
′ = 𝐿𝑆(𝑖,𝑣)𝑗

′ − 1 

8:    END WHILE 

9:    𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐿𝑆(𝑖,𝑣)𝑗

′ − 𝐸𝑆(𝑖,𝑣)𝑗
′  

10:END FOR 

Note: 𝐿′ represents the list of subactivities that are ordered according to their 
non-increasing completion times (the tiebreaker is the highest subactivity 

number). For convenience, (𝑖, 𝑣)𝑗
′  denotes the subactivity in position 𝑗 of the 

ordered list 𝐿′. Additionally, 𝑆(𝑖,𝑣)𝑗
′ , 𝐸𝑆(𝑖,𝑣)𝑗

′ , 𝐿𝑆(𝑖,𝑣)𝑗
′ , and 𝐿𝐹(𝑖,𝑣)𝑗

′  respectively 

denote the set of immediate successors, the earliest starting time, the latest 

starting time, and the latest completion time of the subactivity (𝑖, 𝑣)𝑗
′ . 

Algorithm 3. Buffering: 𝑅𝑜𝑏𝑢′ = 𝐵𝐹𝑃(𝐿, 𝐷𝐿, 𝐵𝐿) 

1: 𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿), 휁 = 0 

2: Calculate the objective function value 𝑅𝑜𝑏𝑢 

3: WHILE 휁 ≤ 𝑍 DO 

4:    Choose one subactivity (𝑖, 𝑣)𝑗  from the list 𝐿, and then 

𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 𝑏𝑢𝑓(𝑖,𝑣)𝑗 + 1 

5:    𝐹𝑆(𝑖,𝑣)𝑗
′ = 𝐹𝑆𝑃(𝐿, 𝐷𝐿, 𝐵𝐿), and calculate its new objective 

function value 𝑅𝑜𝑏𝑢′ 
6:    IF 𝑠(𝑖,𝑣)𝑛𝑠𝑢𝑏 > 𝐷 OR 𝑅𝑜𝑏𝑢′ ≤ 𝑅𝑜𝑏𝑢 THEN 

7:       휁 = 휁 + 1, 𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 𝑏𝑢𝑓(𝑖,𝑣)𝑗 − 1 

8:    ELSE 

9:       𝑅𝑜𝑏𝑢 = 𝑅𝑜𝑏𝑢′ 
10:   END IF 

11:END WHILE 

Algorithm 4. Individual generation: (𝐿, 𝐷𝐿, 𝐵𝐿) = 𝐼𝐺𝑃(𝑔) 
1: DO 

2:    Initialize 𝐸𝑙𝑖𝑔 and the three lists, 𝑗 = 0, 𝑉𝑖 = 0(∀𝑖 ∈ 𝑁), 

𝑙𝑒𝑓𝑡𝑑(𝑖) = 𝑑𝑖 (∀𝑖 ∈ 𝑁) 
3:    WHILE 𝐸𝑙𝑖𝑔 ≠ ∅ DO 

4:       Select an activity 𝑖 from 𝐸𝑙𝑖𝑔, 𝑉𝑖 = 𝑉𝑖 + 1, 𝑗 = 𝑗 + 1 

5:       𝐿𝑗 = (𝑖, 𝑉𝑖), 𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 0, 𝑛𝑠𝑢𝑏 = 𝑗 

6:       Generate a random number 𝑚1 between 0 and 1 

7:       IF 𝑚1 > 𝑖𝑡𝑟𝑝𝑡 AND 𝑉𝑖 < 휂𝑖  AND 𝑙𝑒𝑓𝑡𝑑(𝑖) ≥ 2휀𝑖 THEN 

8:           Generate a random number 𝑚2 from [휀𝑖 , 𝑙𝑒𝑓𝑡𝑑(𝑖) − 휀𝑖] 
9:          𝑑𝑢𝑟(𝑖,𝑣)𝑗 = 𝑚2 + 휃𝑖, 𝑙𝑒𝑓𝑡𝑑(𝑖) = 𝑙𝑒𝑓𝑡𝑑(𝑖) − 𝑚2 

10:     ELSE 

11:        𝑑𝑢𝑟(𝑖,𝑣)𝑗 = 𝑙𝑒𝑓𝑡𝑑(𝑖) + 휃𝑖 , update 𝐸𝑙𝑖𝑔 

12:     END IF 

13:  END WHILE 

14:WHILE (𝑠(𝑖,𝑣)𝑛𝑠𝑢𝑏 > 𝐷) 

15:𝑅𝑜𝑏𝑢′ = 𝐵𝐹𝑃(𝐿, 𝐷𝐿, 𝐵𝐿) 

Note: Let 𝑙𝑒𝑓𝑡𝑑(𝑖) represent the number of duration units of activity 𝑖 that 

have not yet been assigned (setup times are not included in 𝑙𝑒𝑓𝑡𝑑(𝑖)), and let 

𝐸𝑙𝑖𝑔 , defined as 𝐸𝑙𝑖𝑔 = {𝑖|𝑙𝑒𝑓𝑡𝑑(𝑖) > 0and𝑙𝑒𝑓𝑡𝑑(𝑗) = 0, (𝑗, 𝑖) ∈ 𝐴} , be 

the set of eligible activities. 

Algorithm 5. Crossover: (LC, DLC, BLC) =

CRP(LF, DLF, BLF, LM, DLM, BLM) 

1: Generate a random number 𝑚 between 1 and 𝑛𝑠𝑢𝑏𝐹 

2: Copy the first 𝑚 elements of every list of the father to the child 

3: Obtain 𝑉𝑖 and 𝑙𝑒𝑓𝑡𝑑(𝑖) of the child after copy, 𝑗 = ∑ (휂𝑖 + 1)𝑖∈𝑁  

4: FOR 𝑞 = 𝑛𝑠𝑢𝑏𝑀 TO 1 DO 

5:    𝑖 = 𝐿𝑞
𝑀, 𝑑 = 𝑑𝑢𝑟(𝑖,𝑣)𝑞𝑀 

6:    IF 𝑙𝑒𝑓𝑡𝑑(𝑖) > 0 THEN 

7:       IF 𝑉𝑖 ≥ 휂𝑖 OR 𝑙𝑒𝑓𝑡𝑑(𝑖) < 𝑑 − 휃𝑖  THEN 

8:          𝑑𝑢𝑟(𝑖,𝑣)𝑗
𝐶 = 𝑙𝑒𝑓𝑡𝑑(𝑖) + 휃𝑖 , 𝑙𝑒𝑓𝑡𝑑(𝑖) = 0 

9:       ELSE 

10:         𝑑𝑢𝑟(𝑖,𝑣)𝑗
𝐶 = 𝑑, 𝑙𝑒𝑓𝑡𝑑(𝑖) = 𝑙𝑒𝑓𝑡𝑑(𝑖) − 𝑑 + 휃𝑖  

11:      END IF 

12:      𝐿𝑗
𝐶 = 𝐿𝑞

𝑀, 𝑏𝑢𝑓(𝑖,𝑣)𝑗
𝐶 = 𝑏𝑢𝑓(𝑖,𝑣)𝑞𝑀 × [(𝑑𝑢𝑟(𝑖,𝑣)𝑗

𝐶 − 휃𝑖)/(𝑑 − 휃𝑖)] 

13:      𝑉𝑖 = 𝑉𝑖 + 1, 𝑗 = 𝑗 − 1 

14:   END IF 

15:END FOR 

16:Erase the blank cells from 𝐿𝐶, 𝐷𝐿𝐶, and 𝐵𝐿𝐶  

Note: The parameters that are labeled with 𝐹, 𝑀, and 𝐶 respectively represent 

the subactivity list, the duration list, and the buffer list of the father, the mother, 

and the child. 
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Algorithm 6. Mutation: (𝐿𝑄 , 𝐷𝐿𝑄 , 𝐵𝐿𝑄) = 𝑀𝑇𝑃(𝐿, 𝐷𝐿, 𝐵𝐿) 

1: FOR 𝑞 = 1 TO 𝑝𝑚𝑢𝑡 ∙ 𝑛𝑠𝑢𝑏 DO 

2:    Randomly generate a number 𝑚3 from {0,1}, a number 𝑗 from 

[1, 𝑛𝑠𝑢𝑏] 

3:    IF 𝑚3 = 0 THEN 

4:       Calculate the possible positions [𝑎, 𝑏] of subactivity (𝑖, 𝑣)𝑗  in 

the list 𝐿 without causing the precedence constraint violation 

5:       Generate a random number 𝑚4(𝑚4 ≠ 𝑗) from [𝑎, 𝑏] 
6:       Place subactivity (𝑖, 𝑣)𝑗  in position 𝑚4 and update the lists 

7:    ELSE 

8:       Generate a random number 𝑚5 from {0,1} 
9:       IF 𝑚5 = 0 THEN 

10:         𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 𝑏𝑢𝑓(𝑖,𝑣)𝑗 + 1 

11:      ELSE 

12:         IF 𝑏𝑢𝑓(𝑖,𝑣)𝑗 ≥ 1 THEN 

13:            𝑏𝑢𝑓(𝑖,𝑣)𝑗 = 𝑏𝑢𝑓(𝑖,𝑣)𝑗 − 1 

14:         END IF 

15:      END IF 

16:   END IF 

17:END FOR 

Note: 𝑝𝑚𝑢𝑡 represents the probability of mutation, and the parameters that are 

labeled by 𝑄 represent the subactivity list, the duration list, and the buffer list 

of the mutated individual. 

E. Linearization of the Model 

To conduct the linearization, we redefine 𝑉𝑖  as the 

maximum number of subactivities of activity 𝑖 , which is a 

constant value that is known in advance instead of being a 

decision variable. We use 𝑀 to denote a large positive number 

and introduce 𝑈𝑖  to represent the maximum number of free 

slacks of activity 𝑖, which is calculated as the length of the time 

window of activity 𝑖 without the resource constraints under an 

indivisible scheduling environment. Then, the free slack 𝐹𝑆𝑖,𝑣 

ranges from 0 to 𝑈𝑖 . Additionally, five groups of binary 

variables are defined as follows. 

𝑦𝑖,𝑣 = {
0ifthedurationofsubactivity(𝑖, 𝑣)iszero
1otherwise

 

𝑥𝑖,𝑣,𝑢 = {
0iffreeslack𝑢ofsubactivity(𝑖, 𝑣)iszero
1otherwise

 

𝛼𝑖,𝑣,𝑡 = {
1if𝑠𝑖,𝑣 ≤ 𝑡

0otherwise
 

𝛽𝑖,𝑣,𝑡 = {
1if𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣 > 𝑡

0otherwise
 

𝛾𝑖,𝑣,𝑡 = {
1if𝛼𝑖,𝑣,𝑡 = 𝛽𝑖,𝑣,𝑡 = 1

0otherwise
 

There are seven groups of decision variables in the 

transformed linear model, i.e., 𝑦𝑖,𝑣 , 𝑑𝑢𝑟𝑖,𝑣 , 𝑠𝑖,𝑣 , 𝑥𝑖,𝑣,𝑢 , 𝛼𝑖,𝑣,𝑡 , 

𝛽𝑖,𝑣,𝑡, and 𝛾𝑖,𝑣,𝑡 . Compared with those decision variables in the 

non-linear model, 𝑦𝑖,𝑣  is used to replace 𝑉𝑖  while 𝑑𝑢𝑟𝑖,𝑣  and 

𝑠𝑖,𝑣 stay the same. In addition, 𝑥𝑖,𝑣,𝑢 is used to take the place of 

the computation of the free slack, while 𝛼𝑖,𝑣,𝑡, 𝛽𝑖,𝑣,𝑡, and 𝛾𝑖,𝑣,𝑡 

will decide the set of activities that are in progress at time 𝑡. 
Based on the above definitions, the non-linear scheduling 

model can be transformed into a linear one, as follows. 

Maximize 𝑅𝑜𝑏𝑢 = ∑ [𝑤𝑖(∑ ∑ 𝑒−𝑢𝑥𝑖,𝑣,𝑢
𝑈𝑖
𝑢=1

𝑉𝑖
𝑣=1 )𝑛

𝑖=1 ]                                          (1) 

𝑠1,1 = 0 (2) 

𝑠𝑖,𝑉𝑖 + 𝑑𝑢𝑟𝑖,𝑉𝑖 + 𝐹𝑆𝑖,𝑉𝑖 ≤ 𝑠𝑗,1  (𝑖, 𝑗) ∈ 𝐴 (3) 

𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣 ≤ 𝑠𝑖,𝑣+1  ∀𝑖; 𝑣 = 1,… , 𝑉𝑖 − 1 (4) 

𝑠𝑛,1 ≤ 𝐷 (5) 

∑ (𝑟𝑖,𝑘
𝜌 ∑ 𝛾𝑖,𝑣,𝑡

𝑉𝑖
𝑣=1 ) ≤ 𝑅𝑘

𝜌𝑛
𝑖=1   ∀𝑘, ∀𝑡 (6) 

∑ 𝑑𝑢𝑟𝑖,𝑣
𝑉𝑖
𝑣=1 = 𝑑𝑖 + 휃𝑖 ∑ 𝑦𝑖,𝑣

𝑉𝑖
𝑣=1    ∀𝑖 (7) 

𝑉𝑖 = 휂𝑖 + 1   ∀𝑖 (8) 

𝑑𝑢𝑟𝑖,𝑣 ≥ (휀𝑖 + 휃𝑖) × 𝑦𝑖,𝑣   ∀𝑖; 𝑣 = 1,2, … , 𝑉𝑖 (9) 

𝑦𝑖,𝑣+1 ≤ 𝑦𝑖,𝑣   ∀𝑖; 𝑣 = 1,2, … , 𝑉𝑖 − 1 (10) 

𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣 ≤ 𝑦𝑖,𝑣 ×𝑀   ∀𝑖, ∀𝑣 (11) 

∑ 𝑥𝑖,𝑣,𝑢
𝑈𝑖
𝑢=1 = 𝐹𝑆𝑖,𝑣  ∀𝑖, ∀𝑣 (12) 

𝑀(𝛼𝑖,𝑣,𝑡 − 1) ≤ 𝑡 − 𝑠𝑖,𝑣 < 𝑀 × 𝛼𝑖,𝑣,𝑡  ∀𝑖, ∀𝑣, ∀𝑡 (13) 

𝑀(𝛽𝑖,𝑣,𝑡 − 1) < 𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣 − 𝑡 ≤

𝑀 × 𝛽𝑖,𝑣,𝑡  

(14) 

2𝛾𝑖,𝑣,𝑡 ≤ 𝛼𝑖,𝑣,𝑡 + 𝛽𝑖,𝑣,𝑡 ≤ 𝛾𝑖,𝑣,𝑡 + 1  ∀𝑖, ∀𝑣, ∀𝑡 (15) 

𝐹𝑆𝑖,𝑣 , 𝑑𝑢𝑟𝑖,𝑣 , and𝑠𝑖,𝑣 are nonnegative integers   (16) 

𝑦𝑖,𝑣, 𝑥𝑖,𝑣,𝑢, 𝛼𝑖,𝑣,𝑡 , 𝛽𝑖,𝑣,𝑡 , 𝛾𝑖,𝑣,𝑡 ∈ {0, 1}  ∀𝑖, ∀𝑣, ∀𝑡 (17) 

In the formulation, the objective function is transformed into 

a new linear one, while two constraints, (2), and (5), stay the 

same. In addition, six constraints, (3), (4), (6), (7), (8), and (9), 

are adjusted into new ones, and six constraints, from (10) to 

(15), are added. Specifically, 𝐹𝑆𝑖,𝑣 should be included in the 

precedence constraints (3) and (4). As the decision variable 

𝑥𝑖,𝑣,𝑢 is used to decide the value of 𝐹𝑆𝑖,𝑣  through (12), it should 

also replace 𝐹𝑆𝑖,𝑣 in the objective function. In constraints (7), 

we now use ∑ 𝑦𝑖,𝑣
𝑉𝑖
𝑣=1  to represent the number of non-dummy 

subactivities. Because 𝑉𝑖  now represents the maximum 

number of subactivities of activity 𝑖, which is calculated by 

constraints (8), there will be dummy subactivities whose 

durations and free slacks should be zero. Hence, constraints (9) 

force the duration of each subactivity to be at least its minimum 

execution time plus its setup time, but only if it is a non-

dummy one. Moreover, constraints (10) and (11) ensure that 

the dummy subactivities are the last ones of each activity and 

that their duration and free slack are zero. Further, with three 

added constraints, which are shown in (13), (14), and (15), to 

describe the set 𝑆(𝑡)  based on the definition 𝑆(𝑡) =

{𝑖|𝑠𝑖,𝑣 ≤ 𝑡 < 𝑠𝑖,𝑣 + 𝑑𝑢𝑟𝑖,𝑣 + 𝐹𝑆𝑖,𝑣} , the resource constraints 

are transformed into new ones, as stated in constraints (6). 




