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Abstract

Ignoring the model selection step in inference after selads harmful. This paper studies the
asymptotic distribution of estimators after model setattiising the Akaike information criterion.
First, we consider the classical setting in which a true rmeglists and is included in the candidate
set of models. We exploit the overselection property of¢hiterion in the construction of a selection
region, and obtain the asymptotic distribution of estima&nd linear combinations thereof condi-
tional on the selected model. The limiting distribution degds on the set of competitive models and
on the smallest overparameterized model. Second, we tedgaassumption about the existence of
a true model, and obtain uniform asymptotic results. We irsalation to study the resulting post-
selection distributions and to calculate confidence regfonthe model parameters. We apply the
method to data.

Key words: Akaike information criterion; confidence regidikelihood model; model selection;
post-selection inference.

1 Introduction

Variable selection, model selection and estimation witlparsity-enforcing penalty all induce uncer-
tainty due to the process of selection, and they compliagtisexjuent inference.

We investigate post-selection inference for the Akaikeimfation criterion (Akaike, 1973). The
method is valid for variable selection in any likelihoodsbd model. We construct confidence intervals
for regression parameters, or linear combinations thefditional on the selected model, that have
the correct coverage probabilities. The method involvesitieg the event of selection asymptotically
as a number of inequalities that involve multivariate ndrrmadom variables. While the calculation of
critical values might proceed exactly for one or two parargtwe develop a numerical approach that
applies more generally. We focus explicitly on the claddma-dimensional setting, for which no such
post-selection results are yet available.

The need to address the selection uncertainty has beemr@aint several times (e.g., Kabaila, 1995,
1998; Hjort & Claeskens, 2003; Leeb & Potscher, 2003, 2Q096; Danilov & Magnus, 2004; Kabaila
& Leeb, 2006). Claeskens & Hjort (2008) approached the pekdetion issue via model averaging, by
simulation in a local misspecification framework. For moslelection via sequential testing in nested
models, Potscher (1991) calculated the asymptotic bigtan of the parameter estimator. Several ad-
vances have recently been made. The post-selection ickraethod of Berk et al. (2013) results for
linear models in valid confidence intervals irrespectivehs selection procedure, which can also be
informal. Bachoc et al. (2015) generalized this method &jtion intervals. Since these methods are
not specific to any selection procedure, the resulting centid intervals might be quite conservative.
Efron (2014) proposed to use a bagging, bootstrap aggoegastimator and derived its variance, us-
ing normal quantiles to obtain confidence intervals. Fefarang (2014) assessed model uncertainty
when performing F-tests in linear models via a so-calledhtze selection confidence set. Kabaila et al.
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(2016) investigated the exact coverage and scaled explectgith of certain model-averaged confidence
intervals for a parameter of a linear regression model.

In selective inference one lets the data determine thetsdl@odel and the target of the parameter
estimators. For the lasso, Lee et al. (2016) obtain exadtggbsction inference by relating the selected
set of active coefficients to a union of polyhedra. For forvaelection and least angle regression in
normal linear regression models, Taylor et al. (2016) stsehgctive hypothesis tests and confidence
intervals. Jansen (2014) studied the effect of the optitiwimaon the expected values of the Akaike
information criterion and Mallow’s’,, in high-dimensional sparse models. Belloni et al. (2015aioled
uniformly valid confidence intervals in the presence of aspaigh-dimensional nuisance parameter.

We explain the methodology firstin the traditional simpleeaf selection using the Akaike informa-
tion criterion in a sequence of nested model, the so-callder@election problem. Next, this is extended
to the practically more relevant selection from a generabsmodels, not necessarily nested and possi-
bly all misspecified. When a true parametric model existly paintwise results can be obtained, while
under misspecification and working with pseudo-true vathes change per model, stronger, uniformly
valid confidence intervals are constructed.

2 Post-AlC-selection in nested models

2.1 Selection properties of the AIC

Consider first a nested sequencd©oft- 1 likelihood modelsMy C - - - C M, for which the likelihood
function L,, depends on a parameter vector = (6 ,01,...,0k) € Q C R*TK wheref, € R®
denotes the parameter vector that is common to all models@meck is not subject to variable selection
andn denotes the sample size. For ease of notation we assumedtat i, adds a single parameter to
model M;_;. Generalizations are straightforward.

We start by assuming that there is a single minimal true madg|in the set of models\,,.; =
{M; :i=0,...,K} in the sense that, is the smallest model order for which all non-zero compo-
nents of the true parameter vectpiare included. This assumption is relaxed in Section 4, where
do not require the existence of a true model, we allow for nested models and for model misspeci-
fication. In the current setting, models with indices< py are underparametrized, while models with
i > po are overparametrized. We denoteéjyi) the maximum likelihood estimator for the parameter
vectord' (i) = (8] ,...,0;) € R*" in model M;, (i) = (0'(i)",05_,)", and byd = 9(po) the
corresponding true value whefig = 0 for j > py. Note that); is a zero vector with length

The Akaike information criterion for modél/; in the model listM s is AIC (M) = —2£,{0(j)}+
2(a+j) wherel,, = log L,,. The index of the selected modefig = min{j : AIC(M;) = Ming<;<x AIC(M;)}.
The idea behind the construction of post-selection infezes to rewrite the selection procedure in terms
of a set of inequalities, which define a geometrical regioteims of random variables that can be easily
simulated. For this purpose, we redefjiie= min{j € {0,..., K} : j = argmax;—o,_. x AIC*(M;)}
with AIC* (M;) = 26, {0(j)} — £n(9)] — 25 = 205 — 2j.

Asymptotically, the probability of underselection is z€kvoodroofe, 1982, see Lemma Al in the
Appendix); see also Shibata (1976). Conditioningsgr= p, we have thatic*(M,) — AIC*(M;) > 0
forj =po,...,p—1andAic*(M,) — AIC*(M;) > 0forj=p+1,..., K. Forn — oo, there is joint
convergence in distribution df}; ..., ;) to (3200 22, SR 72) /2, with Z1, ..., Zas ke
independent and identicallyf (0, 1) variables (Woodroofe, 1982). By the continuous mappingrie,
asymptotically, whemy = p, (Z1,...,Za+k) € Ap(Miest), Which is called the selection region for
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nested models and is defined Ay (M. ) equal to

p J

zeRE ) (=200 () > (22 -2)<0

Jj=po+l,...p | i=J j=p+1,..K | i=p+1

Geometrically, the first set of— pg — 1 strict inequalities specifies regions outside spheredatiieset of
K — pinequalities indicates regions inside certain other sgexhile the inequalityf, > 2 determines
the union of two half-spaces, namélyco, —21/2) U (21/2, +0).

The specific structure of the Akaike information critericgt&mines the form of the regions. Other
selection methods define other regions, see Section 7 for@ra. Lee et al. (2016, Lemma5.1, Th. 5.2)
characterize the lasso-selection procedure, for a giviere \ed the/; -penalty, in terms of polyhedral sets;
see also Taylor et al. (2016).

2.2 Distributional results

Inference post-selection deals with the distribution efélstimators in the selected model, conditional on
the selection. In this paper we always mean selection of thaefhwith the smallest Akaike information
criterion value and by the post-selection estimator we ntearmaximum likelihood estimator based
on the selected model. We show that the limiting cumulatigéribution function ofn/2{4(py) — 9}
conditional on the selected model can be described by avanéte normal random variablg that is
for nested models conditioned éhe A, (M et ).

Due to the nature of the selection using Akaike’s informatioiterion and the results of Potscher
(1991) and Leeb & Potscher (2003) it can be shown that thecseh of an overspecified model does
not happen in a uniform way, but depends on the true paramtez?. Hence, in sections 2 and 3, the
results are pointwise. All proofs and assumptions are gdlacéhe Appendix.

Define, for model)M;, the submatrix/y, () of the Fisher information matrix/ (J) in the model
with all parameters, see Assumption A4, and fofeat K) vector v denote its subvector(i) =
(V1,...,vass) . The indicator function’ (A) = 1 if Ais true, and/(A) = 0 otherwise.

Proposition 1. Assume A1-A4. For a sequence of nested madgls: with py denoting the true model
order, the asymptotic conditional cumulative distributifunction of the post-selection estimator is

Fp(t) = nh—>n;o P[n1/2{é(p) - 19} S t ‘ ﬁO = p7Mnest]
= P{J,2(0)Z(p) < 1(p) | Z(p) € AP (Muest) M (¢ € Tp), (1)

with p > pg by Lemma 17 = (Z1,..., Z,. k)", the region with simplified constraintsés) (Mpest) =
{Z(p) € R - (ipy i1, p 2ot (Zors — 2) > 0} @nd T, = RHP x (RY)5 P,

By the forms ofA, and A", the limiting distribution ofn'/2{0(p) — ¥} conditional on selection
in the setM,.s; IS symmetric and its density function is that of a truncatedmal random variable.
Let ¢, (- | A; V) denote the density df ~'/2Z(p), whereZ(p) ~ Nu+,(0, I4,) is truncated such that
Z(p) € A. In the case of selecting the true model, the conditionirenegontains random variables that
are independent df (p,) and hence may be omitted. Figure 3 depicts some of the lignitirst-selection
densities for an example of selecting the largest in a seguefthree nested models, while the smallest
model is the true one. This example is continued in SectibnFor more details, see the Supplementary
Material.
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Figure 1: Marginal asymptotic densiti¢ss (j = 1, 2, 3) of nl/z(éj — ;) conditional onpy = 3 when
po = 1 andJ; '(¥) is a diagonal matrix with diagonal elemerts 4, 4).

Corollary 1. Under the assumptions of Proposition 1, the limiting densitn'/2{A(p,) — ¥} con-
ditional on AIC-selection withpy = p from the set of nested modeMlyest, is f,(t) = ¢p{t(p) |
Aés)(Mncst);Jljl(ﬂ)}I(t € 7T,)- When the true model is selected, i.gs, = po, then f,,(t) =
Ppo{E(p0) I (t € Tp).

2.3 Confidence regions

A correct post-selection analysis incorporates the uairdyt associated with variable selection; we ob-
tain confidence regions conditional on the selected model.

Corollary 2. Under the assumptions of Proposition 1, an asymptotié(1 — «)% Wald confidence
ellipsoid conditionally on having selected a model wigh= p is

{0 € RF nfd/(p) = 30)} T 100 (0) — I(p)} < aa}

wheregq,, is defined such that — « equals

qg Wp—2 [Wp—1
)/ / / wp""’%““’wl) dw, dwy_1 ... dwyy+r dw; 2)
(P Po (P po P{Z S Ap (Mnost)}

exp(—w1 /2wy (w1 — wpy 1) (@ FPO/ 2L TTPZPOF (4 qpy1)=1/2

ST (1/2))ppor ()

f(wp>' . 7wP0+17w1) =

In Section 2.4 we propose an accurate method to estijpatden exact computation is cumbersome.
Clearly, the naive approach of using the quantile of a chiasg distribution is gives too low coverage.
Confidence intervals for single componentgjatquire the calculation of marginal distributions.

Corollary 3. Under the assumptions of Proposition 1, with, = R/™" x [—q, /2, ¢a/a] X R*TP77 x
(R*)X =P the asymptotid 00(1—a) % quantiles of the marginal distributions gfwithj =1,2,...,a+
psatisty [, fp(t)dt =1—a.
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2.4 Simulation based inference

Since the calculations are quite tedious, even in small d&oas, we present a method to simulate this
conditional distribution, from which quantiles can thenditained.

When J(¥9) is unknown, we use a consistent estimaidf(K)}. We use a Hamiltonian Monte
Carlo method (Pakman & Paninski, 2014) to sample fram-a K )-variate standard normal distribution
subject to quadratic constraints that are also based odiasthnormal random variables. The resultitig
samples drawn from this density are placed insthe (a + K) matrix Z 4. Next, we multiply each row
of Z4(p) by jp_m{é(K)}, which leads ta.’ samples from the limiting distribution af'/2{ () — v};
see Corollary 1.

The example in the Supplementary Material shows close agreebetween the 95% quantilgsin
(2) simulated via constrainegf distributions and their exact values.

3 Post-selection inference in general models

3.1 AIC selection in a set of non-nested models

Lemma 1 generalizes Lemma Al in the Supplementary Mataffabfroofe, 1982) to an arbitrary set
of models that contains at least one overparametrized model

Lemma 1. Under Assumptions A1-A4, the asymptotic probability thécion using the Akaike infor-
mation criterion results in an underparametrized modehfra set of modelg that contains at least
one overparametrized model is equal to zero.

The distributional properties of the post-selection eators depend on the candidate set of models
M. Indeed, another se! could have led to another selection. We define the selectairnto indicate
which variables appear in the set of models.

Definition 1. The selection matri§, is a| M| x (a + K) matrix with{0, 1} elements, constructed as
(v = (U gemimy, . 1L, eml mar) T, where| M| is the number of models ang, is a|m| x (a+ K)
projection matrix that selects those covariates that bglmmodebn.

First considetM = M., the set of all possible submodels of a largest model. Demptéty C
M. the set of all overparametrized models, including the tregleh so the models i are over-
lapping. In modelV the estimator of) is denoted by?(M), with zeros added for components notlih
For any vectow, let (M) denote its subvector corresponding to the variables in inbteUnder the
orthogonality assumption A5, Proposition 2 is similar te tiested model case. Otherwise, we follow
Vuong (1989) for testing in overlapping models. Defld@)) as a partitioned matrix with, jth block

equal toXy, v, = QK;Z. (0)J:5(8, Q)Qﬁji(e)-

Proposition 2. Assume A1-A4 and selection front,;. (i) If A5 holds, the selection region for model
M is

An(Mo) = {z € R {1 a1y ® (Uiemhymar) = Cuouar HE = 2, (ke = 2} > 0.
The conditional limiting cumulative distribution funatiof the post-selection estimator is

Fy(t) = lim P[nY2{0(M) — 9} <t | Marc = M, M)

n— o0

— P P@)Z(M) <E(M) | Z € Anr(Mo)}(t € Tar) 3)
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whereTy, is RIM| x (RT)K=IMl and Jy, (9), Z(M) and#(M) are submatrices of, respectively(s),
Z =(Z,...,Z.+x) andt, corresponding to the variables in modd.

(ii) If A5 does not hold, defing, = ZMeMO |M| and letW,c ; be a matrix partitioned in the same
way asx(v) with diagonal blocks corresponding fd,,c and M; equal toQ s, (¥) and—Q s, (9), and
zero elsewhere. The selection region for madg|. is

AM(MO) = {Z € IR,m:ZTzl/Q(ﬁ)WNC’iEl/z(ﬁ)Z 2 2(’MAIC‘ — ’MZ‘)a M’i € MO\MAIC}- (4)

Let Z(M) denote the subvector &f ~ N,,(0,1), Z € Ay (Mo) that contains only those components
that correspond to components in the selected maflgthen

Fut) = P20 Z(M) <EM) | Z € Ay(Mo)}(t € Ta) (5)
whereTy; is RIMI x (R*)m— M,

The choice ofM is important. Regarding (i), the constraint involves thdge corresponding to
the parameters in the selected modél,c that are not in the smallest true modef,,.s, hence no
constraints are placed on tl& corresponding to parameters that occur in every model. dbisiy,
the selection affects the distribution of all parametevenehose common to all models. The effect of
the set of models is illustrated by the following examplet k&= 2, a = 1 and M, be the smallest
true model containing only;. Assume that A5 holds and that the full model,c = (6;,62,63) is
selected in both\M e and M. SO, Ay (Man) = {z € R? 1 25 > 2,22 > 2,22 + 22 > 4} while
Ap (Mapest) = {2 € R3 : 23 > 2,22 + 22 > 4}. Figure 2 depicts these regions for bot,,., shaded

Z3

=
=2

Figure 2: Allowable domain of> and Z3 for nested model selection (shaded), and all subsets ieglect
(double shaded) when AIC selects the full model.

area, andM,;, double shaded area. If one selects the full modeVip.:, thenZ; is defined inR as
long asZ3 + Z3 > 4, while selection inM,,, requires bothZ, and Z3 in (—oo, —2/2) U (2!/2, 00). The
distribution of parameter estimators can be obtained bsnpléplying Z = (71, Zs, Z3) by J]b/jc (9).
For the normal linear model§ ~ N,,(X 1, 0%1) andMuc € Mo, the distribution results are also exact
for finite samples. In such model&) = n~'X T X/o?, which does not depend ah For (ii) the
main difference is that we need the joint distribution of #stimators in the different models and place
constraints on the full vector.
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3.2 Confidence regions

For any arbitrary set of modelgy1,,1,, with M,,;, N Mo # 0, due to Assumption Al, (3) still holds
after replacing4,;(Mo) with Aps (M, NM). With My = M selected fromM .4, the confidence
region ford is

Clga) = {0 € R 0 {0'(2) = 0D} Tns (90 (M) = O(M)} < g } (6)

with 6’(M) the | M|-vector of non-zero values ¢ M) andg, determined by solving

P{iem 22 < 4a) N Z € Api(Mar, N Mo)}
P{Z € Apy(Mary " Mo)}

=1-aq. @)

Let far{H(M)} = ¢ {E(M)|Apr(Mar, " Mo); J3, (9)} denote the density of'/2{§'(M) — 9 (M)},
a truncated M |-dimensional normal density. The quantile of jta component is obtained via

/R FudEOM)}E(M) =1 — a,

whereR,, C RIM! restricts only thejth component td—g, /s, 4, 2]. The confidence interval faf; is
éJ(M) + qa/Q’l’L_l/Q.

While there is no uniform convergence of the distributiondiion in all settings (Leeb & Potscher,
2003), for normal linear models using rectangular confideregions and sequential testing, a uniform
result regarding coverage has been obtained by PotscB@b)1 The following result holds for over-
specified models. For models in the geffy all parameter components that appear in the true model are
nonzero, but there might be additional parameter compsnemtch might be zero or non-zero. However,
the setM does not depend on the value of the true paramegtéfter conditioning onMaic € Mo,
the setC'(¢,) is random due to maximum likelihood estimation in the seléehodel.

Proposition 3. Assume A1-A4, and th&, () in (A2) is continuous over a compact $&that contains
9. The confidence regiofi(q,,) from (6) is such thalim,, ., infyce Py{? € C(qa) | Maic € Mo} =
1—a. WhenA; (M,,p) replacesAy (M, N M) in (7) to obtain a valug,, lim,, . infyce P{0 €
C((ja) ’ MAIC c Mo} >1—aq.

One limitation of the Akaike information criterion is thdie selection of an overspecified model
does not happen in a uniform way (Leeb & Potscher, 2003).cElethis result cannot be strengthened.
If the selected model is underparametrized, correct infexreean be obtained for the pseudo-true values
instead; see Section 4. For a predetermined number of stepforward selection, least angle regres-
sion and lasso in linear additive error models, Tibshirdrale(2015) obtain asymptotic results which
are uniformly valid for a specific class of non-normal erroFor a comparison between two models,
Andrews & Guggenberger (2009) use a local neighborhood abwigh the overselection and to obtain
uniform results for parameters that were not subject taciele Chernozhukov et al. (2015) performed
uniformly valid inference on a low-dimensional parametéiew there is selection in a high-dimensional
vector of nuisance parameters. See also Belloni et al. j2@0t%sing least absolute deviation in high
dimensional regression.

Inference after selection depends on (i) the set of madi¢lspecified by the researcher and (i) the
smallest true model/,,,s, in nested modelsy, via Ay (M N Mp). In Mpesr and M,y one could take
the smallest model fa¥/,,,,. If this model is true or overparametrized, Propositionsd 2hold and the
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asymptotic confidence intervals can be calculated exdttlye smallest model is underparametrized, the
structure of the additional constraints,;(M)\Axr(M N M) is such that the resulting distribution
of the parameters is longer-tailed. This leads to conseevabnfidence intervals, especially for the
parameters which are truly non-zero. In practice we caleullae constraints based on the selected
model andA; (Myp).

For case (i), inM,;; the number of constraints equa§ —/Mol — 1. Here, we show thatl,; (M)
can be reduced to the set € R+ Moy g (28 > 2) N Nigaguc\aga (27 < 2)} without
losing information. LetZ,,. denote the set consisting of all subsets of the indiced/jit\ Mpars,
referring to the redundant selected parameters, and deydtg, the set of all subsets of the indices
in{1,...,a+ K}\Mac, referring to the variables that were not selected. Then

2 c RHK . . 22> 2} N, 22> 9},
AMAIC (M ﬂMO) — { mZGJV[AIC\Mpars{ i } mze{l,,,,ﬂ.;_](}\]\/[“c{ i } }

nIeZMAIC ﬂJez]cuAlc {Xier#l — > jes 2 > 2(|11 = |J))}

The first two sets of constraints consist, respectively\Mfc| — | Mpars| and K — | Mac| elements. The
third set only involves constraints that are summationefdonstraints in the first two sets and does
not add any new restrictions an The constraint set for any1,,, can be simplified as long as some
constraints can be implied by summing other constraintsnd¥ng redundant constraints is not always
possible, for example fak1,e; .

3.3 Inference for linear combinations

For inference for linear combinationsy after model selection, we rewrite (3) as

F(t) = lim Pln'/& (M){0'(M) = 9(M)} <t | Mac = M, M|
= P{E (M) 1y P (0)Z(M) <t ] Ay(M N Mo)}, ()

wherez (M) are the covariates correspondinglMb The asymptotic distribution of the estimated linear
combinationz!¥ is simulated via (8).

When the sample size is small and the diagonal entrieﬁ(é} are large, it may happen that an
underparametrized model is selected. In this case the agegrobability of confidence regions of a
linear combination of the parameters, or a transformatiemeiof in generalized linear models, may be
smaller than the nominal value. In case of suspected uridetis®, one can use

lim Pln'/ 2z {0( M) — 9} <t | Mac= M, M]=P{2lTY2(9) Zoyrx <t | Apy(M)}, (9)
where M;,; is the full model. This differs from (8) in using all parametenot just the selected pa-
rameters. This procedure differs from assuming that thenfioldel is selected, since, for example in
M, An(Man) containsz? > 2 for the parameters which are selected afid< 2 for those which
are not selected, whereas,, , (M,n) containsz? > 2 for all parameters, which leads to a long-tailed
distribution. The probability of underselection disapseasymptotically. The valid confidence intervals
of Bachoc et al. (2015) target the true value for the seleatedel, not the true value’y. While in their
case underparametrized selection is not an issue, thexe gsiarantee that their proposed confidence
interval is valid for the true value.
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4 Confidence regions when all models are misspecified

4.1 Limiting distribution of estimators

The results in this section do not require any assumptiomitaihe existence of a true model, are uni-
formly valid, and apply to general parametric likelihood aets. In order to obtain uniformly valid
results we consider the setting where there is no true paeamector, either because the true den-
sity of the data does not belong to a parametric family or beeaall models are misspecified. We
assume the observations to be represented by a triangugr{&f,,; : i = 1,...,n,n € N}, where
there is independence between the rows, i.e., differenpkasizesn, and within the rows, i.e., for
i # j, Yp; andY,,; are independent. Regression models are included, as aheas/may have dif-
ferent distributions. The true joint density 0,1, ..., Yu,) iS g,, with distribution functionG,,. All
probabilities are computed under the true distributionPse Pg, . The data are modeled via models
M, ; = {12 f5i(yi;05) - 05 € ©; C R™}. Thusm; is the number of parameters in model, ;.
All models are collected in the sét,, = {M,,1,..., M, ;}. When there is no confusion, we omit the
subscriptn in the notation. We assume for eaete N that [ g,,(y) log g, (y)dy < oc. This defines the
class of true distribution§,,.

Regarding the models, assume that for eaehN and eachj = 1,...J, f;;(-;6;) is measurable
for all ; € ©;, a compact setf;;(y;; -) is continuous or®; almost surely and continuously differen-
tiable on©;. Then for every model there exists (White, 1994, Th 2.12)sl'rnrmtorén7j, maximizing
[T, fi(yi; 0;) over®©,. If Eg, {n=' "1 log f;.i(yi; 6;)} has an identifiable unique maximizer over
©;, this maximizer is called the pseudo-true valyjgM/;). This value depends on the true joint den-

sity, the model densities, and on the sample size. We definevéstors of lengthn’ = jzlmj,
0% v = {05 (M), .. 05 (M)} andf, g = {04 (M7), ..., 0L (Mg)} .
Lemma2. Let{Y,; : i =1,...,n,n € N\0} form a triangular array consisting of independent random

variables. Assume that (i) for all components of the veofog,, here stated for théth such component
of ; corresponding to model/;, for all G,, € G, with A = {y; € R : [(0/00)) log f; i{vs; 0 (M;)} >
enQu; ki (M;)}}, and for alle > 0,

n o 2
jm 3 o108 £l G300} /1@t 005,V NGii) = 0

and (i) denoting®az, {05, (M;)} = Quy {07 (M)} 55 {95, (M), 905, (M;)} Q7 {05, (M) },

. — — — * 0 *
i Po, ((San 000 IQu IO s 5 08 £1500 02060} > €) =0

n—o0i=1,...,n
DefineW,, ~ Ny {0, 2(3}, 14)} whereX(d; ) is am’ x m' matrix withijth block, with dimensions
mi x my, equal toQ {07, (M) }Ji {95, (M;), 95, (M;)} Q. {07, (M;)}, then

lim sup sup !P{nl/z(én,M — 0y ) <t} —PW, < t)‘ =0.
n—oo tE]Rm/ Gn€Gn ’

A pivot is needed in order to construct confidence regiongelmeral, the variancE(ﬁ;:, ) of Wy,
might depend o ,,. When there is an estimatarof ¥ such that

lim sup Pg, (|5, — 2| >e) =0,

=0 GLeGy
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with || A|| denoting the Euclidean matrix operator normAfthen, withZ,,,, ~ N,/ (0, I,,,/)

lim sup sup |P{S Y207 Y2(0, 0 — 05 ) <t} —P(Z0 < 1) = 0.

n—o0 Gn€ln te]f{m/ ’
The model determines whether or not the variance may be astihwell. White (1994, Sec 8.3) gives
some general conditions for consistent estimation of thiawee. One requirement is that

n~t Zf; E(s)E(s") = 0,

with s the vector of lengthn’ consisting of subvector&®/06;,) log f1:(Y:; v5), fork =1,..., K. This
assumption holds, for example, when the models are coyrgpécified. Under misspecification, White
(1994, Sec 8.3) showed that the empirical estimatorﬁ‘()ﬁ; ) Might overestimate the covariance
matrix, leading to conservative confidence intervals.

4.2 Selection region in a misspecified setting

When M consists of misspecified models, calculating the sele@i@mnt requires additional care. De-
fine £, a1, (y,0;) = >0, 1og f;.:(yi, 0;). When modelM, ¢ is selected, then for all/ € M\ My,
2l M {5 On (Maic)} — Lori{y, 0 (M)}] > 2(|Mac| — |M]|). When both models)/,,c and M, are
correctly specified, the difference of log-likelihoods dancharacterized asymptotically by chi-squared
random variables. However, when there is misspecificatimdifference can diverge tooo or —oo,
depending on the assumptions about the models. For striotiynested models the difference always
diverges (Vuong, 1989, Th. 5.1). When the selected modelwiays best, there is no restriction on
parameter estimators. See also Cox & Hinkley (1974, Se¢.f@r3he asymptotic behavior of likeli-
hood ratio tests in non-nested settings. For overlappindefschaving some common parameters, the
log-likelihood difference converges to some random véeidone of the models is correctly specified,
and otherwise diverges. Under misspecification of all mmdile only setting where the asymptotic
distribution can be used to characterize the selectiontésdar nested models under similarity of the
likelihoods (Vuong, 1989, Assumption A8). This means thais {y, 9, (M)} = Co o, {y, 0 (M;)}
fork,l=1,..., K. Foran arbitrary set of models we impose the same similasisgmption and assume
that M includes a moded = M,y Which is nested in all other models. If we were to perform a-ik
lihood ratio test, under this assumption it would corresptmtesting whether the smaller model can be
considered equal versus worse than the larger model (VU&@89, Lemma 7.1). We first compare each
model with the smallest model and then we use the obtainedngfrom each comparison to compute
the final selection region using pairwise comparisons. Byasing similarity, the calculated quantiles
to be used in the confidence regions are larger than withaitasity since, as explained earlier, the
log-likelihood difference diverges otherwise and theraagestriction on the parameter estimators. For
all M € M\ M,

2[£n,M{ya én(M)} - gn,Ms {y7 én(Ms)}]
= n{0,(M) — 05, (M)} Qur{9}, (M) HOM) — 95, (M)}
—n {0 (M) — 05 (Mg)} T Q{0 (M) H 0 (M) — 05,(Ms) } + op(1)
= 10t — 9 p0) Wasat, Onpt — 9 pq) +0p(1), (10)

where W ar, is a block-diagonal matrix partitioned in the same way>aswith the diagonal block
referring to modelM/ equal toQ ,{¥; (M)} and that referring to model/; equal to—Q s, {9} (M)},



A. Charkhi and G. Claeskens 11

and zero elsewhere. If the models are already nested, tharerneed to compare each model with the
smallest model. The asymptotic counterpart of the sele@i@nt is

Apppe (M) = {z € R™ = 2TSY2(Wigyear, — Warar) S22 > 2(|Muc| — [M)),
M € M\Myc}. (11)

Proposition 4. Let the assumptions of Lemma 2 hold. For a set of models it} (M) from (11) it
holds that

lim sup sup |P[nl/2{é(MAIC) — 0" (Mac)} <t | Mac] (12)

%0 Gn€Gn teRIMac|

—P{2Y2Z <t | A (M)} =0

As noted by Tibshirani et al. (2015), uniform convergencaelistribution can be translated to uni-
formly valid confidence sets. The following propositionrdias this statement. The proof is similar to
the proof of Proposition 4, using the fact that a continuoapping preserves uniform convergence.

Proposition 5. Let the assumptions of Lemma 2 hold and let the set of mddetontain a smallest
model which is nested in all models. Define the set

C*(qa) =10 € RMael ; n{é(MAIC) - Q(MAIC)}TEMNC (ﬂ?WAIC)_l{é(MAIC) —0(Maic)} < qa}s
wheregq, is determined by solving

P{[ZT (MA|C)2MAIC (ﬁMA,C)_IZ(MNC) S qa] N {Z € AMAIC (M)}}
=P{Z € Apye (M)} — ).

Thenlim,,_, sSupg, g, SUPqe(0,1] ‘Pgn{ﬁ*(MA.c) € C*(qa) | Mac} — (1 — oz)‘ = 0.

5 Simulation study

5.1 Parameters in linear models

While the proposed method is applicable in general likelthmodels, in order to compare it with exist-
ing methods, we present simulation results for linear neadeksults for generalized linear models and
for other settings are placed in the Supplementary Material

The data were generated from a regression maglek 3.0, 0,25 + &, @ = 1,...,n, with
g; ~ N(0,1). The true value for the parametersi$ = (2:25, —11,243, —2:24,2:5,0] ), with 05 a
vector of all zeros with length 5. We sef; = 1 and(xy;, . .. ,xlo,i)T ~ N(09,2) where( is a positive

definite matrix with diagonal elements equal to 1 and offydizal entries equal ©25. The sample size
is either 30 or 100.

Three different model sets were considered. ¢gtbe the selection matrix when the fiigparame-
ters are present in all models. We takg which is a2” x 10 matrix and¢, which is2* x 10 matrix,
and(,,1, which contains 14 rows, arbitrarily chosen froﬁﬁ.

We are interested in inference for the parameters in thetselenodel. In order to facilitate the
comparison, the simulations were run until modiélwith parameter$d,, . . . , ¥, ¥s) had been selected
3000 times. For each of those simulation runs the Fisherrimdtion matrix is estimated in the full model
by J(6), leading to the submatri¥;;(6). When A5 does not hold one should use (5) to calculate the
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n method 19]' Csn Cgll Carb
30 PoStAIC ¥, [~285,—1:64] 98 [~2:68,—1.78] 92 [~2.85,—1:64] 97
D6 [~060, 0.62] 94  [-045, 045] 93  [-060, 062] 96
Vs [—060, 061] 94 [~060, 060] 95 [—061, 062] 96
PoSI ¥4 [-298, —151] 99 [—289, —157] 99 [~297,-152] 99
96 [~073, 075] 99 [~0-66, 066] 99 [~071, 073] 99
s [~073, 074] 98 (066, 067] 97 [~072, 073] 99
Naive 9, [-267,-182] 89 [~268,—1.79] 91 [~2.66, —183] 89
96 [~042, 043] 69  [-044, 044] 92  [-041, 042] 71
s [~042, 043] 70  [-044, 045] 75  [-041, 043 71
100  POStAIC ¥, [~254,—-1:94] 99 [—246,-202] 94 [~2:55,-1:93] 99
de [~0-30, 031] 95 (022, 022] 95 [—0-31, 032] 96
s [-0-30, 0-31] 95 [—029, 030] 95 [~031, 031 97
PoSI ¥4 [-258,-190] 100  [-254,—-194] 99 [~257,-190] 99
D6 [~0:33, 034] 98 [—0-30, 0-30] 99 [~0-33, 034] 98
s [~034, 034 98  [-029, 031] 95  [-033, 034] 98
Naive 14 [—246,-202] 93 [—246,-202] 93 [—246,-202] 92
Vs [—022, 022] 66 [—022, 022] 94 [—021, 022] 67
s [~022, 022] 66 (022, 023] 69 (022, 022] 65

Table 1. Simulation study with 3000 runs of AIC selection.efage confidence intervals and coverage
percentages fof 4, ¢, ¥s using different selection matricgscorresponding to different model setd
and different sample sizesfor the proposed method, the method of Berk et al. (2013) and haive
approach that treats the selected model as given and igeelextion.

confidence intervals. However, we used (3) instead, resuiti good approximations. Quantiles of the
limiting asymptotic distribution for each setting were aibed via simulation. See the Supplementary
Material for the code. In each simulation run we compute ¢l and upper limit of the confidence in-
terval and report the averaged confidence intervals alotigtiné coverage percentages. Table 1 presents
the results ford,, ¢ andds. Results for the other parameters are not presented to gave.s

Confidence intervals from the method of Berk et al. (2013yaperted for sake of comparison. Their
target for inference is the so-called non-standard taBgetlfoc et al., 2015), namely the best coefficients
within the selected model, not the standard target, thevialiges of the parameters (Berk et al., 2013,
equation (3.2)). Simulation results in Leeb et al. (201%vetd that the coverage probability of such
intervals for the standard target is lower than the nomiahles/for certain situations.

For ¢3, whered, and s are truly non-zero, the conditional confidence intervalstfie proposed
method have simulated coverage probabilities higher thannbminal value 95%. This is because
Ap(M3), ZZ > 2andZ2 > 2 in the constraint set, whil¢Z, and Z5 are truly unconstrained when
taking AM(/\/@ll N Mop). Fordg anddsg which are truly zero,Z62 > 2 and Z82 > 2 are correct con-
straints. One may expect conservative confidence intefoald; andds because they are defined by
multiplication of the corresponding rows if;}/l/z(é) by Z(M). The latter vector satisfies the constraints
Apr(M3)) rather thand , (M32;N. M), so the distribution is longer-tailed than needed. For theent
simulation, the settings considered Ieadfﬁf(é) with small off-diagonal elements, so, the distribution
of an estimator is mainly determined by its correspondifag Forg‘gll the coverages almost equal the
nominal values, especially for = 100. Using(,.1, leads to conservative confidence intervals for all pa-
rameters because of the additional constraintd jp(M,1,), while theoretically the constraints should
beAM(Marb NMop).

The method of Berk et al. (2013) always yields conservatefidence intervals although there is
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no guarantee that it always leads to valid confidence intefeathe true parameters. Naive confidence
intervals ford, have coverages almost equal to the nominal value whil@farsing(ay, andg‘g’ll and for

Jg in all settings the coverage percentages are around 70% isTte result of wrongly treating the se-
lected model as given. For settings with small off-diagaiaments otf}vf(é), the confidence intervals
for the truly non-zero parameters are valid. Other simottatesults are contained in the Supplementary
Material. We find that the proposed method can be used evenderparametrized situations, where
assumption Al does not hold.

5.2 Linear combinations in linear models

The performance of the proposed method for linear comlminatiwas investigated by simulations.
Let9 ' = (2.25,—1.1,2.43,-1.24,2.5,04 ) be the true values for the parameters in a linear model,
with error standard deviation either 1 or 3. Four differeelestion matrices are considereg,,, for

i € {3,5,8,10}, indicating that the first covariates are common to each model. The data generation
processes are as in Section 5.1. For this simulation, we tdoomérol the selected model because we are
interested in a linear combination of the selected parameiable 2 shows the results. We compare the
post-selection intervals with the smoothed bootstrap denfie intervals (Efron, 2014) and the intervals
for post-selection predictions (Bachoc et al., 2015). Toet&trap samples consist ofdraws with re-
placement from the main data set and we replicatefhis 1000 times. The non-ideal bootstrap when
the number of replications is not equal#8 biases the variance of the smoothed bootstrap estimator
upward, so we use the bias-corrected version (Efron, 2@&ark J). The post-selection intervals for
prediction have a target based on the selected model, smitiie be different from the true prediction.

The choice of models with?; as a selection matrix results in conservative confidenesvials due
to conditioning onA,;(M3),), similar to before. For this selection matrix, the confideitervals by
the bootstrap method are shorter than by the proposed glestien method. The bootstrap confidence
intervals are not directly based on the selected model otiginal data because a model is selected
for each bootstrap sample.

The ideal situation is when the selection matrixjﬁ, since all truly non-zero parameters are then
forced to be in the model. The confidence intervals for theogsed method are always shorter than
those for the competing methods and their coverages arestlegoal to the nominal value. quu
and ¢! the situation is the same, though with wider intervals thath §,, for all methods, because
more parameters are forced to be in the model, which incsehgevariability of the predictions. These
confidence intervals are not wider than @ﬁ. Thus the variability of the prediction is more affected
by the condition part than by forcing more variables into thedel. The post-selection method for
prediction (Bachoc et al., 2015) always leads to wider cemiig intervals than the bootstrap method
and the proposed method.

The coverages of the confidence intervals for the proposeldad@re always close to or higher than
the nominal values, while the bootstrap method can haverloaxerage probabilities than the nominal
values. Moreover, the bootstrap method for all possibleatsid computationally intensive, because it
needsB bootstrap samples and in each of them all candidate modefg.ar

For the settingg = 3 andn = 30 in (g’u, we used the results in (9) instead of (8). In this setting
the probability of selecting an underparametrized modebtszero due to a small sample size and large
variance. The average length of the confidence interval véaar@l the coverage was around 90% when
we used (8).



A. Charkhi and G. Claeskens 14

CSII Cgll C:ll ;l(}
o n  method length  cow. length  cov. length  cov. length  cow.
1 30 PostAIC 311 97 2:61 95 2:90 94 308 94
Boot 3-67 92 332 92 331 92 379 92
PoSlIp 4.38 100 439 100 536 100 6-00 100
100 PostAIC 142 98 117 95 1-30 96 1.37 95
Boot 125 94 125 94 1-30 94 1.33 93
PoSlp 1.83 100 1.83 100 220 100 242 100
3 30 PostAIC 11.76 98 7-82 94 868 94 9-24 94
Boot 11-46 92 995 92 9-94 92 11-37 92
PoSIp 1265 99 1316 100 1608 100 1799 100
PostAIC 4-25 98 350 95 390 96 412 95
Boot 377 94 374 94 390 94 400 93
PoSIp 547 100 548 100 660 100 726 100

Table 2: Simulation study with 3000 runs of selection withaide’s information criterion. Average
length of 95% confidence intervals and coverage percent@ges for a linear combination of the
parameters for different methods and model sets using teetiem matriceg for different sample sizes.

6 Pima Indian diabetes data

We construct confidence intervals conditional on the seteatodel for a logistic regression model ap-
plied to the Pima Indian diabetes data set (Lichman, 201Bjs data set consists of women at least 21
years old of Pima Indian heritage, living near Phoenix Anao We used 332 complete observations.
The response is 0 if a test for diabetes is negative and isd fossitive test. We use seven covariates in
the model, npreg: number of pregnancies, glu: plasma giucoiscentration in an oral glucose tolerance
test, bp: diastolic blood pressure, skin: triceps skin thidkness in millimeter, bmi: body mass index,

ped: diabetes pedigree function and age in years. See Sraith(£#988) for more details about the data.

First, we consider bootstrap percentile and naive configlémervals for the parameters in the full
model when no selection is involved, see Table 3(b). We u880 bootstrap runs, each resampling the
332 women uniformly with replacement. Several intervalstaim zero, which shows the possibility of
using a smaller model.

Selection uses the séi1,;; an intercept is present in all models. This results in selgcdour
variables: npreg, glu, bmi and ped. Table 3(a) presentsrthendgitional confidence intervals for these
parameters using the naive method with the post-selectofidence intervals that condition on the
model selected using the Akaike information criterion. Tihé/e method ignores the selection procedure
which leads to the significance of the covariate ped, whetleaproposed method, which takes the
selection uncertainty into account, concludes that thigigate is not individually significant at the 5%
level. For logistic regression, to the best of our knowledbere are no other post-selection methods to
compare with.

7 Discussion and extensions

For one of the classic model selection methods, the Akaikerimation criterion (Akaike, 1973) we have
provided an approach to deal with the selection uncertdogtgerforming inference conditional on the
selected model. Our results have demonstrated that teieimée depends not only on the selected model,
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(@ Method npreg glu bmi ped
Naive [0:091,0269]  [0:028,0049]  [0:042,0-129]  [0-305, 2:050]
PoStAIC  [0-058,0299]  [0-022,0054]  [0-027,0-142]  [—0-027, 2:358]

(b) Method npreg glu bp skin bmi ped age
Naive [0:03, 0-26] [0:03,005] [-003,0-02] [-0-03,0-05] [002,0-14] [0-24,2:00] [-0-02,0-05]
Bootstrap  [—0:003,030]  [0-03,005] [-0:03,0-16] [—0:03,0-06] [0:02,0-15] [0:005,241] [—0:02,0:07]

Table 3: (a) Confidence intervals for the Pima Indian diabel&ta with nominal level 95% ignoring
(Naive) and including (PostAIC) model selection using Adess information criterion. (b) 95% Naive
and bootstrap confidence intervals in the full model, witremlection.

but also on the set of models from which the selection takasepland on the smallest overparametrized
model. The dependence on the set of models is not surprigioggh has not received much attention
so far.

The proposed method explicitly uses the overselectionastigs of Akaike’s information criterion.
For some selection properties under local misspecificatiea Claeskens & Hjort (2004). For consistent
selection criteria, e.g., the Bayesian information ciater other approaches should be used, though ef-
fects of the selection remain present (Leeb & Potscheb,R@Dther selection methods that are similar to
Akaike’s information criterion can be approached in the savay. Consider, for example, selection in an
arbitrary set of models allowing for model misspecificatisee Section 4, using Takeuchi’s information
criterion (Takeuchi, 1976)1C(M) = 2,{0(M)} — 2tr{Qas (%)~ Jas(9*)}. For most practical set-
tings the information matrices are estimated by their eimiicounterpart@M(éM) and,fM(éM). We
rewrite (10) for an arbitrary set of models containihg by replacing| M | with tr{Qa; (9*) ' Jar (9%)}
and proceed to calculate the asymptotic distribution ofpa@meters conditioned on the constraint set.

Another such example is the generalized information doiteintroduced by Konishi & Kitagawa
(1996). It considers functional estimators, such as Myestors, and uses the influence function as part
of the criterion,GIc(M) = —20,{0(M)} + (2/n) Y1, tr{Infl(Y;)(0/6},) log f(Yi;Oar)}. Under
some regularity conditions, the functional estimator hassymptotic normal distribution, allowing to
extend the results in Section 4.

Mallows’ C,, (Mallows, 1973) for linear regression ,(M) = 6-26%(M) + 2|M| — n wheres?
is the estimated variance in the full model whit&(1/) uses model . The model with the smallest,,
value is the best. In nested models one can easily show treatmitends to infinity,C, (M) —C,(M*) ~
Xg/q + 2qg whereq = |M*| — |M|. In the same manner as for the Akaike information critermme can
calculate the constraint set and hence the distributiostirhators for parameters in the selected model.

In forward stepwise selection, we start from a small moddlembed it in a larger model containing
one additional parameter. This procedure continues udting a parameter does not decrease the
Akaike information criterion. To be precise, in steywe embed model/; in a number of bigger models,
each adding one parameter. Defilvg to be this set of models. Modall;.; € M, is selected when
this model has a smaller criterion value than matigland it has the smallest criterion value amongst
all models inM;. This means thatiC(M;11) < AIC(M;) andAIC(M;4+1) < AIC(M) for all M €
M\ My4. These inequalities can be translated to constraints. dh&ti@int set is the collection of all
these constraints from all steps.

We explicitly dealt with low-dimensional parameters forislhmaximum likelihood estimators exist
and Akaike’s information crierion is well-defined. Otheiteria are better suited for high-dimensional
parameters.
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Appendix

Let Bk (¢) denote a sphere i+ K dimensions centered étwith radiuse, and denote its complementary
set byBj (e).

Al For eache > 0, asn — 00, suppepe (o{ln(0) — €n(V)}— — oo in probability.

A2 There exist arep > 0 such that/,,(9) is twice continuously differentiable ik (o) for all n
large enough. Define the score vectdr () = (0/06)¢,(0) and the negative Hessian matrix
Qn(0) = —(02/00007 )0, (0).

A3 For somd) < €1 < eg whenn — oo, there exists a non-random positive definite continuousirmat
Q(0), for 0 in By (e1) such thabupgep, (o) tr{Qn(0)/n — Q(0)}—0 in probability.

A4 Asn — oo, n'/2U, (1) is asymptoticallyN {0, J(9)}.

A5 Fori # jandM;, M; € Mo, with the expectation with respect to the true distributidn{6(i), 0(j)} =
E({0/96(M;)}[6:{0(M;)}{0/96(Mj) " }[€n{0(M;)}]) = Oja,jx|asy -

Assumptions A1-A4 are from Woodroofe (1982). Assumptionl@elds to the consistency of maximum
likelihood estimators fol in the model considered and its submodels. For the nondhestee A5
leads to a simplification (Vuong, 1989). In linear regressi@ssumption A5 is equivalent to having an
orthogonal design matrix.

The next lemma is an extension of Lemma A in Vuong (1989) toetioan two models.

Lemma 3. Assume Al-A4. Fix any ordering of the models\ity and denote» = | M. Asn —
00, N 2(Oa, — Op,) = n/2{0/(M)T — (M) T, ..., 0/(M,)T —9(M,)T}T — N{0,Z(9)} in
distribution.

Proof. Similar to Vuong (1989), a Taylor series expansions leads to
0 =n"Y2Up 01, (9) + Qar, (9)n'/2{6 (M;) — 9} + op(1), M; € Mo.
By the multivariate central limit theorem, there is conrge in distribution, fon — oo,
Y 2U v Ui a) T = N(0,2,) (13)

whereX, is a partitioned matrix withijth block equal taJ;;(«,). The distribution of the estimators
follows. O

When the models are correctly specifiell,(?,9) = Jar, (9) = Qar,(9). Lemma 3 is also valid
for misspecified models and for models notfro. In such case the true parameter is replaced by the
pseudo-true parameter corresponding to the consideregélmod
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Proof of Proposition 1.We show that (1) equals

. P([n'/2{0' (p) — D(p)} < E(p)] N [265, — 2p > 2. — 2], j € {po.po + 1,...,K}])
n—»00 P[2¢;, , —2p > 205 - — 2§, j € {po,po + 1,..., K}] '

From Lemma 3 there is joint convergence of the estimatorserdtfferent models. Next, sin@g ; is a
function ofé’ (), namely

lg = 510 ®) = 00} ){E () = 9(p)} + 0p (1),

and since the probability of the event in the denominatotristly positive, Slutsky’s theorem and the
continuous mapping theorem give joint convergence for bwmumerator and denominator of the above
expression to their asymptotic counterparts.

To obtain the selection set I&; = {s € ROK . 5, =0, fori =a+37,...,a+ K} forj =
po, - - -, K. Woodroofe (1982) showed thét;, , ... ,B;K) converges in distribution t¢/; , ..., ¢%)
asn — oo, where forj = po, ..., K, £; = sup,eg {s'Y — s'J(J)s/2}, whereY ~ N{0, J(J)}. Then
;=05 ijf z2,forj = po,..., K, whereZy, ..., Z,+; are independent and identically distributed
standard normal random variables. Lemma 1 and Assumptidr&\Aimply thatnl/Qle/z(z?){é’(j) -
J(j)} converges in distribution t& (5) asn — oo. Parameters not in the selected model are set to zero,
which leads to the regiof,. SinceZ(p) and(Z,41,..., Zr) are independent, and forc 7,

Fy(t) = P20 Z(p) <tp) | Z € Apy(Muest)}

= PP Zp) <ip) | () {D Zia>20- 0} (14)

J=po,....p—1 i=j+1

Proof of Corollary 2. From Proposition 1, withhy = p, q,, IS equivalently found via

a-+p

P Z2<a)n () 1Y 22> 20— H/PIZ() € AP (Mue)} = 1— 0
i=1

J=P0,-.,p—1 i=j+1
The denominator can be calculated by Lemma Al in the Suppieme Material. To calculate the
numerator, we first find the joint density 6#W,, ..., Wy,+1, W1) whereW,; = S07P 72 W, =

b ZFandZ? ~ xiforalli=1,...,a+p. S0,Z2,, = W;_1 — W, fori = p, +ZI,CL.+.J. ,p—1and
Z2,, = Wy with >0 72 = Wy — W41 ~ X2, The joint distribution of( W), ..., W41, W1)
is obtained via a transformation of the distribution(af, ,, 22, _,,..., 2%, .1, > 001" Z3),

_exp(—wi /2wy, (wy = wpyy1) @2 TRy — )2
Ht et = 2 (D2 T |
The region of integration follows fromll(f)(MneSt) and the fact thatV; < W, for i > j. O

Proof of Lemma 1 Denote the smallest true model BY;,..s. For all M’ & M, by assumption A1,

P(Mpye = M') < P{AlC*(M’) > max AIC*(M)} < P{AIC*(M') > AIC* (Mpars) }

= PGB}~ M) 2 L0 {0(Mpars)} — M|

= P[6afBOM)) — £u{0(Mpars)} = 1M 2 o {B(Mpnse)} = {0 (Mpars)} = [ M|
— 0.
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O

Proof of Proposition 2.(i) Define S; = {s € R*X : 5, =0, i ¢ M}ande}, \, = ,{0(M;)} — £,(V)
whereM; € Mo. Similar to Proposition 1 we can show that fof; € Mo, €n,Mi — 0.5 e, ZJZ in
distribution. Now, the condition part can be calculated by

N ZF—2M|> Y Z7 —2IMy|, M; € Mo\M,
JEM JEM;
which is equivalent t&Z € Ay (Mo).

(i) By Lemma 3 there is joint convergence in distributiontbé estimators in the different models.
The constraint set can be calculated by pairwise comparigbtheaic* values. To do so, write

D)} = £a(9) + H0(M:) = 9T Qus, (D){O(M;) = 9} + 0p (1)

from which it follows that?}, ; = 2{0(M;) — 0} Qur, (9){0(M;) — 9} + op(1).
Then, sinceniC*(Mac) > AIC* (M;) is equivalent t2 (¢}, yc — £, ;) = 2(|Mac| — [Mi]) it follows
that

n(Onmo — Inmo)  Warci(Oamo — Imo) +0p(1) — 2(|Mac| — [M;]) > 0. (15)

By using Lemma 3 and the continuous mapping theorem, the @syim counterpart of (15) can be
written asZ " SV2Waic i 8Y2Z > 2(|Mac| — |M;|),  M; € Mo, which results in the stated selection
region and limiting distribution. O

Proof of Proposition 3.(i) Using Theorems 1 and 2 of Sweeting (1980),
n2{0(M) = D (M)} T2 (9)—Z(M),

uniformly in distribution over the compact g8t This leads to havinm,,_, » infyco Py{¥ € Co(¥)} =
1 — a. (i) When M is not known, we used; (M.,1) in (7) instead ofAd (M., N Mp), Which
defines the valug,. Since Ay (M) C Apr(May, N Mo), Go > qa, Which leads to a conservative

confidence region. O
Proof of Lemma 2For everyj = 1, ..., J and every componerit of the vectonén,M(Mj), it holds that
N * - a *

By assumption (i), which is a Llndeberg assumption for@Jl € G, we obtain a uniform limiting
normality result for each of the componentsidf?(6,, v — 0% ). Under assumption (ii) the data are
in a so-called null triangular array format, to which Coaojl 2 of Pollak (1972) applies, resulting in a
joint asymptotic normality for the vector combining all sucomponents. O

Proof of Proposition 4.Define the event® = [n'/2{A(Muc) — 9*(Mac)} < t] and
C = Mrem{n(Om — 9) " Watye, vt = W) O — 94) = 2(|Maic| — [ M)} + op(1).
Using the results of Lemma 2 and the continuous mapping ¢neathe difference between
Pn!/?{6(Mpc) — 9" (Mpc)} < t| M = Myc]P(B N C)/P(C)

and B{ Sy, (P, )2 Z(Mac) <t} N{Z € Apg,o (M)} /P{Z € Ay, (M)} converges uniformly
to 0. O
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Supplementary Material: Asymptotic
post-selection inference for Akaike’s information
criterion

This supplement contains a rewriting of results of Woodedd82), exact calculations for an example,
the selection matrix for one of the simulation settings asditéoonal simulation results.

A Additional lemma

The following Lemma is adapted from Woodroofe (1982). Thezwobability of underestimation is a
special case of our Lemma 1, while the exact expressionsvirnestimation are obtained by rewriting
the generalized arc-sine probabilities of Woodroofe (3982

Lemma 4. Under assumptions (A1)—(A4), in the nested models casbdanbdel ordep, selected such
that the Akaike information criterion is minimized for theesponding model, it holds that

{o it a<p<po,

m, = lim P(py =p) = .
P nsoo (pO p) 9p—po4K—p if po <p <K,

Wherego =qy=1 and withR; = {(’I"l, . ,T‘Z') e N*: T+ 2r9 + ... 4 ir; = ’i}, a; = P(XJQ > 2]),

glg{ﬁri'(ij)m} andqi;{ﬁé!<lj%>”}.

j=1 7j=1

B A worked-out illustrative example

Let erf(z) = 27~1/2 [ exp(—w?) dw denote the ‘error function’ and let effc) = 1 — erf(z). Assume
) = My C ... C Ms with the true valued = (J1,0,0)" and three situations for th x 3 matrix
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J—1/2(19),
1 0 0 1 0 0 1 09 09
(@ l|o 2 0], ®]o 2 05|, (¢]09 2 05
0 0 2 0 05 2 09 05 2

The Akaike information criterion is used to select a modeirfrthe set of three nested moddl$, ..; =
{M,, M, Ms}. Consider the situation that the smallest value of the Akaiformation criterion is
attained for the full model, thug = 3. In this caseds = {(z1, 22, 23) : 25 > 2,23 + 23 > 4}. Using
Lemma A.4 withpy = 1, K = 3 andpy = 3 results inP(Z € As) = 0.08.

Let f;3 denote the limiting density 0f1/2(9 —1J;) conditional orp, = 3, then for case (351\3( ) =
¢(t) whereg¢ is the standard normal density function,

exp(—t2/8)erfc{(2 — t2/8)1/2} | (—23/2,23/2)
{0.16(2m) 21 i) (1) = exp(~t2/8)erfo(1), teIR\[—23/2,23/2]

0 otherwise

exp(—t2/8)erfc{(2 — t2/8)1/2} te (—4,-23/2) U (2%/24)
{0.16(2m) 2 £51)(6) = 4 exp(—t2/8) t € (—o0, —4] U [4,00)

0 otherwise

For case (b) where there is correlation between the secahtha&d component of the estimator, we
only calculatefss, with similar results forfy 3. The limiting distribution ofn1/2(§3 — 1J3) conditional
onpy = 3 is the distribution of the third row i =/2(19) Z3 which isT = 0-5Z, + 2Z3. We define

gi(t) = erf{17"2 —t4(2/17)/%},
g(t) = erf{17Y2 4 t4(2/17)Y/2},
gs(t) = erf{(2—2t/17)1/%},

By tedious calculations, we find the distribution7df/2(§3 — v3) conditional onpy = 3 as follows,

{0.08(34m) 2} £ (1) (16)
exp(—2t*/17) (2 — g1 (t) — g2(t)) t e (—271/23 271/23)
exp(—2t%/17) (2 — g2(t) — g3(t)) t e [271/23,271/25)
B exp(—2t2/17) (2 — g1(t) — g3(t)) te (=2 9-1/25, 2_1/23]
] exp(=2t2/17) (2 — gu(t) — ga(t) — 293(t)) t € (—177Y2, —271/25] U [271/25,171/2)
exp(—2t2/17) (2 — g1(t) — ga(t)) t € (=00, =177V U 17712, x0)
0 otherwise

For case (c) we calculate g3 the distribution ofit’ = T" + 092, whereT" has a density function
as in (16). Hence for case (c),

f3|3 / f3|3 ¢09 - t) (17)

whereD(T') is the domain of random variablé ande. is the density of a normal random variable with
standard deviatiof-9.

In the naive approach, often out of convenience, one wroagdumes thai, is deterministic, not
random, and hence one constructs the confidence interviiidgrarameters using an assumed asymp-
totic normal distribution of the maximum likelihood estitaes. For instance, Witlip_l/2(19) asin (a),



A. Charkhi and G. Claeskens 23

(@ (b) (©)
0.4 0.16 0.30
a0 530 ' @)
0.2 0.08 0.15
0.0 . s 0.00 - - 0.00 - - S
g -99) ) g, -9 ! v, -9 ’
(d) (e)
0.4 0.2 5
00 fa)
0.2 0.1
00d-— S . wl /M

A0 9 -9 A0 9
n"2(8;-99 n*"2(85-99
Figure 3: Marginal asymptotic densityof/z(éj—vﬂj) conditional orpy = 3whenpy = 1forj =1,2,3
and for case (@) in panels (a)—(c), for the third componertsé (b) in panel (d) and for that of case (c)
in panel (e). Dashed line: kernel density estimate usingithelated values; solid line: exact asymptotic
density.

the naive 95% confidence interval fof, is 65 + 1-:96(2n~1/2). Clearly, this confidence interval does
not consider the uncertainty of model selection. Rathershauld use the quantile of the symmetric
conditional distribution. The exa€t975% quantile is5-75 while the simulated one i577. Hence, the
conditional confidence interval & + 575n~1/2, clearly showing the overoptimism in the meaning of
having a too narrow interval, when neglecting the modelctigle uncertainty. It should be noted that
for case (a) the limiting probability of'/2(85 — ¥3) in [~23/2,23/2] is zero. The density function is not
only bimodal, but also has quite some curvature. The sinoulaiethod captures these properties almost
perfectly. For this information matrix, the limiting prokiéity of n!/2(8; — 93) to be in[0,271/23] is
equal to0-0141 while based on our sampling method, we finil 39. Again, the naive confidence inter-
val 65 + 1:96(4-25 /n) /2 is too narrow as compared to the conditional confidenceviatég - 5-93n,~1/2
where5-93 is the exac-975% quantile §-94 based on the simulated distribution).

The diversity of the shape of the density functions after eh@election is illustrated with case (c)
for nl/2(65 — ¥3). The plot of the exact limiting density is based on numerintgration from (17).
The97-5% quantile is equal t6-48, again larger than the unconditional vaI1196(5'061/2) = 441.

For simultaneous confidence regions we computé equation (3) in the paper via constraingtl
distributions. An exact calculation is possible when théedince between the number of selected and
true parameters is less than three. Table 4 presents théagh95% quantiles for some valuesgf
andp. Using these values in equation (3) in the paper gives cgesrashowing close agreement with
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0 simulated quantile  coveragey? quantile
bo, P q gex- q

2,3) 10-78
(3,4) 12:29
(1,3) 12:17
(2,4) 13-76
(3,5) 15-36
(10,12) 2528
(28,30) 4797

95-0
94-8
949
94-8
949
950
94-9

781
949
781
949
11.07
21.03
43-77

Table 4: Simulated quantiles and their exact coverage p&rges along with unconditional quantiles of

x? distributions.

the nominal value. The unconditional quantiles frgfhdistributions are obviously too small, resulting
in too optimistic inference, that is, too low coverage piuliges.

C Selection matrix for M, in Section 4

Carb =

e e e e T
e e T i e e e e e e T
e e T e e e e e e T
O O OO OO O = E =

O O OO H = = OO OO O - =

SO O = = O O = OO O O = O =

O O O O O O O O o o o o oo

10
00
00
10
01
0 0
0 0
0 0
10
0 0
10
00
10
00

O O OO OO oo+ O oo oo

14x10

D Effect of p, on confidence intervals in nested models

This simulation study illustrates that in nested modelss@®ring the smallest model as the true model
leads to confidence intervals with higher coverage probigsithan the nominal value.

Takef = (225, —1-1,243, —1-24,2:5,03) " as the true parameters in a linear regression model, thus
po = H,a =1and K = 7. M consists of 8 nested models; the smallest model contairysamn!
intercept, the biggest model is the model with all covagatéhe sample size varies {30, 100, 300}.

All other settings are as in Sectidrl.

For each sample size we generate data until each of the malibkd®, 6, 7 and 8 has been selected
3000 times. While in this simulation we know the true ordés,isve ignore this information by consid-
ering all possible values for the true order which are smalteequal topy. A confidence interval for
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each parameter of the selected model is calculated. Forg&amhenp, = 6, this means six intervals.
Confidence intervals for the post-selection method of Bedt.€2013) are reported for comparison. The
confidence intervals and their coverage have been caldudaten Section 4.1.

Tables 527 present the confidence intervals fr,. . ., 0g in different settings under different as-
sumptions fomp. For moderate and relatively large sample sizes, 100 andv@®nh we assumgy = 5
the simulation shows the validity of the proposed methodefach of the selected ordefs Smaller
values of the assumeg) lead to wider intervals. Fat = 30 the coverage probabilities decrease by in-
creasing which is due to a too small sample size for an accurate estimat the full 8 x 8 information
matrix. Whenp = py, the confidence intervals correspond to the naive confidienesvals, which have
coverage probabilities close to the nominal valueétqar. . . , 65 while for the other parameters they fail
to produce the correct intervals by ignoring the constsaimthe selection procedure.

p
n Po 5 6 7 8

30 1 [1-85,2:66] 95 [1-85,264] 94 [1-85,264] 93 [1-86,2:65] 93
2 [1-85,2:65] 95 [1-85,2:64] 94 [1-86,2-64] 93  [1-87,2:64] 92

3 [1-85,2:65] 95 [1-86,2:64] 93 [1-86,2-64] 93  [1-87,2:64] 92

4 [1-85,2:65] 95 [1-86,2:63] 93 [1-86,2-64] 92  [1-87,2:64] 92

5 [1-86,2:64] 95 [1-86,263] 93 [1-86,263] 92 [1-87,2:64] 91

6 - - [1-87,263] 93 [1-87,263] 92 [1-87,263] 91

7 - - - - [187,263] 91 [188,263] 91

8 - - - - - - [1-88,2:63] 90

PoSI [1:63,287] 100 [1:65,285] 99 [1:65,285] 99 [1-67,2:84] 99

100 1 [2:05,245] 96 [2:05,245] 95 [2:05,245] 95 [2:05,245] 94
2 [205,245] 95 [2:05,245] 95 [2:05,245] 95 [2:05,245] 94

3 [2:05,245] 95 [2:05,245] 95 [2:05,245] 95 [2:05,245] 94

4 [2:05,245] 95 [2:05,245] 95 [2:05,245] 95 [2:05,245] 94

5 [205,245] 95 [2:05,245] 95 [2:05,244] 95 [2:05,245] 94

6 - - [2:05,245] 95 [2:05,244] 95 [2:05,245] 94

7 - - [205,244] 95 [2:05,245] 94

8 - - - - [2:05,245] 94

PoSI [1:93,2:54] 100 [1:96,254] 99 [1.96,253] 99 [1.96,2:54] 99

300 1 [214,237) 96 [214,236] 96 [2:14,236] 96 [214,2:36] 95
2 [214,237) 96 [214,236] 96 [2:14,236] 96 [214,2:36] 95

3 [214,237) 96 [214,236] 96 [2:14,236] 96 [214,2:36] 95

4 [214,2:37) 96  [214,2:36] 96 [2:14,2:36] 96 [2:14,2:36] 95

5 [214,2:37) 96 [2:14,2:36] 96 [2:14,2:36] 96 [2:14,2:36] 95

6 - - [2:14,236] 96 [2-14,236] 96 [2:14,236] 95

7 - - - - [214,236] 96  [2:14,236] 95

8 - - - - - - [2:14,2:36] 95

PoSI [2:09,242] 100 [2:09,241] 99 [209,241] 100 [2:09,2-41] 99

Table 5: Average simulated post-selection confidencevatemwhen Akaike’s information criterion is
used for selection, fof, together with the average coverage percentage for diffeseenarios and
different assumptions regardipg, and the post-selection interval by Berk et al. (2013).
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p
n Po 5 6 7 8

30 1 [-1.59,—-061] 97 [-158,—063] 95 [-157,—062] 95 [-158,—063] 93
2 [-1:55, —0-65] 95  [-155,—-066] 94 [-154,—-065] 92 [-1.55,—066] 91

3 [—1:55, —0-66] 95  [-155,—-067] 93 [-154,—-066] 92 [-1.54,—-066] 91

4 [—1-54, —0-66] 95  [-154,-067] 93 [-154,-066] 92 [-154,—067] 91

5 [—153, —0-67] 94  [-154,-068] 93 [-153,-067] 92 [-154,—-067] 90

6 — - [-153,-069] 92 [-153,—-067] 91 [-153,—067] 90

7 — — — - [-152,-068] 91 [-153,—068] 90

8 — — - - — —  [-152,-069] 89

PoSI [-1.78,—042] 100 [-177,—044] 99 [-176,—043] 99 [-177,—044] 99

100 1 [—1-34, —0-86] 97  [-134,-086] 96 [-134,—086] 96 [—1-34,—0-86] 96
2 [—1-32, —0-87] 96 [-132,—-088] 95 [-132,—088] 94 [-1.32,—087] 95

3 [—1-32, —0-88] 96 [-132,—-088] 95 [-132,—088] 94 [-132,—087] 95

4 [—1-32, —0-88] 95 [-132,-088] 94 [-132,-088] 94 [-132,—-087] 95

5 [-131, —0-88] 95 [-132,-088] 94 [-132,-088] 94 [-132,—-088] 95

6 — — [-132,—088] 94 [-132,—088] 93 [-132,—088] 95

7 — — — —  [-132,-088] 93 [-132,—088] 94

8 — — — — — —  [-132,-088] 94

PoSI [-141,—0-78] 99  [-142,-078] 99 [-142,-078] 99 [-142,-078 99

300 1 [—124, —096] 98  [-124,-096] 97 [-124,-097] 97 [-124,-096] 96
2 [—123, —098] 97  [-123,-097 96 [-123,-097] 95 [-123,-097] 95

3 [—1-23, —098] 97  [-122,-097] 96 [-123,—-098] 95 [-123,—097] 95

4 [—1-22, —098] 97  [-122,-097] 96 [-123,—-098] 95 [-123,—-097] 95

5 [—122, —098] 96 [-122,—-098] 96 [-123,—-098] 95 [-123,-097] 95

6 — — [-122,—098] 95 [-123,—-098] 95 [-123,—-097] 95

7 — — — —  [-123,-098] 95 [-122,—-097] 94

8 — — — - [-122,-098] 94

[_

PoSI [-128,—0:93] 100 [-128,—092] 99 [-1.28,—092] 99 128, -092] 99

Table 6: Average simulated post-selection confidencevakeforf,, together with the average coverage
percentage for different scenarios and different assumgtiegarding,. Also given are the results of
the post-selection interval by Berk et al. (2013).

E PostAIC confidence intervals for linear combinations in nsted models

Four different scenarios for the true parameters are ceresid

Scenario1l : 0 = (225, —1.1,243,—1.24,2.5) ",
Scenario 2 : 0 = (225, —1-1,243,—1-24, 25, Og)T,
Scenario 3 : 0 = (225, 11,243, —1-24, 25, 012)T,
Scenario 4 : 6 = (2:25,07)".

In Scenario 1 the largest model is the true model. Scenarmsd23 are dealing with the true model
somewhere in between but with different numbers of candigabdels and redundant variables. In
Scenario 4 the smallest model is the true model. The errndatd deviation varies in the sgi-5, 1, 3}
and other settings for data generation process are the saimetee previous section. We uge,cst
to select a model which is used to make a confidence intervat f@, with = an out-of-sample new
observation. We run the simulation 3000 times for all sg#in

Table?? presents the average length of the intervals over 3000 rithgheir coverage percentages
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p
n Po 5 6 7 8

30 1 [1-90, 2:96] 99  [192,294] 96 [1:92,293] 95 [1.94,293] 95
2 [1:94,2:92] 98  [1-96,291] 95 [1.95,2:90] 94 [197,291] 93

3 [1-98, 2:87] 97 [1-99,2:87] 93 [198,2:87] 92 [2:00,287] 91

4 [1:99, 2-87] 96  [2:00,2:87] 93 [1:99,2-86] 92 [200,287] 91

5 [2:00, 2-86] 96  [2:00,2:86] 92 [1:99,2-86] 91 [200,2:87] 91

6 — — [2:01,2:85] 92 [1.99,2:85] 91 [201,2:86] 91

7 — — — —  [2:00,2:85] 90 [201,2-86] 90

8 - - - - — - [202,285] 90

PoSI [1-75,3.11] 100 [1.77,3.10] 99 [1-76,3.09] 99 [1.78,3.10] 99

100 1 [2:17,2:69] 99  [217,269] 98 [217,268] 97 [217,268] 97
2 [2:19,2:67] 98  [219,267] 97 [219,267] 96 [219,267] 96

3 [2-21, 2:65] 96  [2-21,265] 95 [221,265] 95 [220,265] 94

4 [2:21, 2:65] 96  [221,265] 95 [221,265] 94 [220,265] 94

5 [2:21, 2:65] 95 [221,265] 95 [2-21,265] 94 [220,265] 94

6 — — [221,264] 94 [221,265] 94 [221,265] 94

7 — — — —  [221,265] 94 [221,265] 94

8 — — — — — - [221,265] 94

PoSI [212,275] 100 [211,274] 99 [211,275] 99 [211,275] 99

300 1 [2:28,2:58] 98  [228,258] 98 [229,258 97 [229,257] 98
2 [2:29,2:57] 97  [229,257] 97 [2:30,257] 96 [229,257] 97

3 [2-30, 2:55] 96  [2-30,2:56] 95 [231,256] 95 [2:30,256] 95

4 [2-30, 2:55] 96  [2-30,2:55] 95 [231,256] 95 [2:30,256] 95

5 [2:31,2:55] 95 [2:31,255] 95 [2:31,256] 95 [2:30,2:56] 95

6 — — [2:31,2:55] 95 [2:31,256] 95 [2:30,2:56] 95

7 — — — —  [2:31,256) 95 [231,256] 95

8 — — — — — —  [2:31,256] 95

PoSI  [2:25,2:60] 99  [225,261] 99 [225,261] 99 [225,261] 99

Table 7: Average simulated post-selection confidenceviakeforfs, together with the average coverage
percentage for different scenarios and different assumgtiegarding,. Also given are the results of
the post-selection interval by Berk et al. (2013).

for the proposed method, the post-selection predictiorhatkaind the smoothed bootstrap method for
different settings. In scenario 4 where the true model isthallest model, the asymptotic method gives
accurate results as expected. koe 30, the bootstrap method underestimates the confidence atgerv
(low coverages) except in scenario 4 in which it gives aagptcoverage probabilities but the length
of these intervals is about5 times larger than those of the proposed method. In scenaréosl 2 for

n = 100 the bootstrap coverages are a bit lower than 95% but stéltable and the lengths are smaller
than from the proposed method, which is conservative. Fena@os 3 and 4 the proposed method
performs better than the other methods, especially for tigghes ofo. The post-selection prediction
intervals are always wider and their coverage probalslitiee always close to one. The reason for this is
that this method does not specify the specific selectiongoa® and in this simulation study, we used
the corresponding code that assumes that all subsets gfesianodel are used in the selection.
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p
n Po 5 6 7 8

30 1 [-181,-066] 99 [-179,—070] 97 [-178,—071] 96 [-176,—072] 96
2 [-1.78,-069] 98 [-1.76,—072] 97 [-1.75,—073] 96 [—1.74,—074] 95

3 [-1.74,—-074] 97 [-1.72,—076] 95 [-1.72,—076] 95 [-1.71,—077] 93

4 [-168,—080] 95 [-168,—081] 93 [-168,—080] 92 [-167,—080] 90

5 [-167,—-081] 95 [-167,—081] 93 [-168,—081] 92 [-167,—081] 90

6 — — [-166,—082] 92 [-167,—081] 92 [-167,—081] 90

7 — — — - [-166,-082] 91 [-166,—081] 89

8 — — — — - -  [-166,-082] 89

PoSI [-192,—056] 100 [-191,—-057] 99 [-191,—-057] 99 [—190,—058] 99

100 1 [-153,-095] 99 [-151,—096] 99 [-151,—097] 98 [-151,—097] 97
2 [-151,-097] 98 [-150,—098 98 [-150,—098] 98 [—1:49,—098] 97

3 [-149,—-099] 98 [-148,—099] 97 [-148,—100] 97 [-1.48,—100] 96

4 [-146,—102] 95 [-146,—102] 96 [-146,—102] 95 [-146,—102] 94

5 [-145,—102] 95 [-146,—102] 95 [-146,—102] 95 [-146,—102] 94

6 — — [-145,—1.02] 95 [-146,—1.02] 95 [-146,—102] 94

7 — — — —  [-145,-102] 95 [-146,—102] 94

8 — — — — — —  [-146,-1.02] 94

PoSI [-155,—092] 100 [-155,—092] 99 [-155,—092] 99 [-156,—092] 99

300 1 [-140,—108] 99 [-140,—108] 99 [-140,—109] 99 [-140,—109] 98
2 [-139,—109] 98 [-139,—109] 98 [-139,—109] 98 [-139,—110] 98

3 [-1.38,—110] 98 [-1-38,—110] 97 [-1:38,—110] 97 [-1:38,—111] 97

4 [-1.36,—-111] 96 [-1-37,—112] 96 [-1-37,—111] 95 [-1-37,—112] 95

5 [-136,—112] 96 [-137,—112] 96 [-137,—112] 95 [-137,—-112] 95

6 — — [-136,—112] 95 [-137,—-112] 95 [-137,—112] 95

7 — — — - [-136,-112] 95 [-137,—112] 95

8 — — — — — - [-137,—-112] 95

PoSI [-141,—106] 99 [-142,—106] 99 [-142,—-106] 99 [—142,—106] 99

Table 8: Average simulated post-selection confidencevakeford,, together with the average coverage
percentage for different scenarios and different assumgtiegarding,. Also given are the results of
the post-selection interval by Berk et al. (2013).

F Poisson regression

To investigate the performance of the proposed method iargéred linear models, we consider Poisson
regression where the response values are generated from

10
Y; = Pois{ exp(z O;zj)}, i=1,---,n,
j=1

x1; = land forj = 2,...,10, zj; are generated independently from Uniform, 1]. The sample size
varies as before arfl= (125, —1-1,1-43, —1-24,1-5,05) " . Three different selection matrices are consid-
ered,(;, i € {1, 3,5} which force the first covariates in the model. There were no under-parametrized
models selected, also for the small sample size. The simonlatns until for each setting the model
(61,...,05,07,09)" had been selected 3000 times. The confidence intervalse@uperfluous param-
eters are presented in Talf@

The results for the proposed method are similar as in thequs\wexamples. Fof; the simulated
coverage probabilities show the validity of the proposetho@. Because this selection matrix considers
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p
n Po 5 6 7 8

30 1 [1-81,3.20] 100 [1-91,3.09] 98 [193,3.06] 97 [1.95,3.05] 96
2 [1-84,3.17] 100 [1-94,3.06] 98 [195,3.04] 96 [1.97,3.03] 95

3 [1-87,3.14] 99 [1.97,3.03] 97 [198,3.01] 095 [2:00,3.00] 94

4 [192,3.09] 99 [201,299] 96 [2:02,298] 93 [2:03,297] 93

5 [207,294] 95  [207,293] 93 [2:06,293] 91 [207,293] 91

6 - - [208,292] 92 [2:07,293] 90 [207,2:93] 90

7 - - - - [207,292] 89 [207,292] 90

8 — — — — — — [2:08,2:92] 90

PoSI [1-82,3.19] 100 [1-83,3.17] 99 [1-83,3.17] 99  [1.84,3.16] 99

100 1 [215,2:85] 100 [2-20,2:80] 99 [221,279] 99  [222,278] 98
2 [217,283] 100 [2-22,279] 99 [222,278] 98  [2:23,277] 98

3 [2:18,2:82] 100 [2-23,277] 98 [224,276] 98  [2:24,275] 97

4 [221,2779] 99  [225,275] 97 [226,274] 96  [226,274] 96

5 [228,2:72] 95  [2:28,272] 95 [228,272] 94  [228,272] 94

6 — — [229,272] 94 [2:28,272] 94  [228,272] 93

7 — - - —  [228,272] 94 [228,272] 93

8 — - - - - - [2:28,271] 93

PoSI [218,2:82] 100 [219,2.82] 99 [218,282] 99  [218,2:81] 99

300 1 [2:30,270] 100 [2-33,2667] 99 [2:34,267] 99  [2:34,2:66] 99
2 [2:31,2:69] 100 [2-34,266] 99 [2:34,266] 99  [2:35,2:66] 98

3 [2:32,2:68] 100 [2-35,265] 99 [235,265] 98  [2:35,2:65] 98

4 [2:34,267] 99  [2:36,264] 98 [236,264] 97  [2:36,2:64] 97

5 [2:38,2:62] 96  [2:37,262] 95 [2:37,263] 95 [2:38,2:63] 95

6 — [238,262] 95 [2:38,263] 95 [238,263] 95

7 - - —  [238,262] 95 [238,263] 95

8 - - - - — [2:38,2:63] 95

PoSI [233,268] 100 [2-32,268] 99 [232,268 99  [2:32,2:68] 99

Table 9: Average simulated post-selection confidencevakefords, together with the average coverage
percentage for different scenarios and different assumgtiegarding,. Also given are the results of
the post-selection interval by Berk et al. (2013).

all the non-zero parameters in the model and all truly zerarpaters are under selection, the coverage
probabilities are close to 95%. Other selection matricad te more conservative confidence intervals for
the parameters due to conditioning on the selected model.n@lve unconditional confidence intervals
are always tighter than those of the proposed method anddbegrage probabilities are much lower
than the nominal value.

G Under-parametrized model selection

As discussed before, for small sample sizes it might hapipa&inat model with less parameters than the
true model is selected. If this happens, the proposed methiodtill be used, although assumption Al
does not hold. Consider the true value for parameters infiregressiod = (0-25, —0-1,0-43, —0-24,0-5,05) ",
sample size 30, error standard deviation equal to 2 andladr &tettings are as before. With the same
notation as in the previous example, the selection matrik.isWe focus on three models which are
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p
n Po 6 7 8

30 1 [-070,071] 99 [-061,061] 98 [-057,059] 97
2 [-068,069] 99 [-059,059] 97 [-055,0-57] 96

3 [-065,066] 98  [-056,056] 97 [—0-53,0-54] 95

4 [-062,063] 96 [-053,053] 95 [-050,052] 93

5 [-057,058] 94  [-049,049] 93 [-047,048 91

6 [-042,043] 73 [-043,043] 88 [—042,044] 88

7 — — [—042,042] 87 [-042,043] 87

8 — — - —  [-041,042] 86

PoSI [-066,068 98 [-067,067] 99 [-065,067] 98

100 1 [-036,036] 99 [-031,031] 99 [-0-30,0-30] 98
2 [-035,0:35] 99 [-0-30,0-30] 98 [-0-29,0-29] 97

3 [-034,033] 98 [-029,029] 98 [-0-28,0-28] 96

4 [-032,032] 97 [-027,027) 97 [-026,026] 95

5 [-029,029] 95 [-025,025] 95 [-024,024] 93

6 [-022,021] 72 [-022,022] 90 [-022,022] 90

7 — — [-022,022] 89 [-0-22,022] 90

8 — — — - [-022,022] 90

PoSI 032,031 96 [-032,032) 99 [-032,032] 98

300 1 021,020] 100 [-018,018 99 [-017,017] 99

(- ]

(- ]
[-020,020] 99 [-017,017] 99 [-017,016] 99
[-019,019] 99  [-0-16,016] 99 [-0-16,016] 98
[-018,018] 98  [—0-15,015] 98 [-0-15,015] 97
[-017,017] 96 [-014,014] 96 [—014,014] 95
[-012,012] 74 [-012,013] 92 [-013,013] 92
- - [-012,012] 91 [-013,012] 92
8 - - - —  [-013,012] 92
PoSI [-018,018] 97 [-018,018] 99 [-018,018] 99

Table 10: Average simulated post-selection confidencevialefor g, together with the average cover-
age percentage for different scenarios and different gsgons regarding. Also given are the results
of the post-selection interval by Berk et al. (2013).

represented in the selection matrix and contain the fofigygarameters,

model 1 : (61,63)
model 2 : (61,65)
model 3 : (91,92,95).

The simulations were run until each of these models had belented 3000 times. Tab®? illustrates
that the proposed method is able to provide conditional denfie intervals even in possibly under-
parametrized models. The naive method’s simulated coegragcentages are shown between parenthe-
ses. For model 3, the naive method performs poorly in termewérage.

H Naive method fails for the truly non-zero parameters

Inference for the truly non-zero parameters can fail bezanghe limit the estimators are defined as
a multiplication of the corresponding row i 1f(@) to Z(M) with Z(M) € Ay (M). So, if one of
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p p
n Po 7 8 n Po 8

30 1 [-071,072) 98 [-061,063] 97 30 1 [-075,071] 97
2 [-0-69,070) 98 [-0-60,061] 96 2 [-0-74,069] 97

3 [-067,067) 97 [-057,059] 96 3 [-072,067] 96

4 [-065,065] 96 [—055,056] 95 4 [-0-70,065] 95

5 [-061,062] 94 [-052,053] 93 5 [-067,062] 94

6 [-0-57,057) 90 [—048,049] 89 6 [-064,059] 92

7 [-042,042]) 58 [-042,043] 82 7 [-0:59,0-54] 87

8 — —  [-041,042] 81 8 [—0-44,0:39] 46

PoSI [-066,066] 96 [—066,067] 98 PoSI [-068,064] 94

100 1 [-037,037) 99 [-032,033] 98 100 1 [—0-38,0:38] 99
2 [-0-36,036) 99 [-0-31,032] 98 2 [-037,0-37] 98

3 [-0-35,035] 98 [-0-30,0:31] 97 3 [—0-36,0-36] 98

4 [-033,034] 97 [-029,029] 96 4 [-035,0:35] 97

5 [-032,032] 96 [-027,028] 94 5 [—0-34,0:34] 96

6 [-029,030] 92 [-025,025] 91 6 [-0-32,0:32] 93

7 [-021,022] 48 [-022,022] 84 7 [—0-30,0-30] &7

8 — —  [-021,022] 83 8 [-022,022] 39

PoSI [-031,032] 95 [-032,032] 98 PoSI [-032,032] 92

300 1 [-021,021] 99 [-018,018 99 300 1 [—022,022] 99
2 [-021,021] 99 [-018,018 99 2 [-021,021] 99

3 [-0-20,020] 98 [-0-17,017] 98 3 [-021,021] 99

4 [-019,019] 97 [-016,016] 97 4 [—0-20,0-20] 98

5 [-018,018] 95 [-015,015] 95 5 [-019,019] 96

6 [-017,017) 92 [-014,014] 93 6 [-0-18,0-18] 93

7 [-012,012) 49 [-013,013] 85 7 [-017,0-17] 87

8 - - [-012,012] 85 8 [-012,0-13] 38

PoSI [-018,018] 93 [-018,018 98 PoSI [-018,018] 89

Table 11: Average simulated post-selection Table 12: Average simulated post-selection confi-
confidence intervals fof;, together with the  dence intervals fofg, together with the average cov-
average coverage percentage for different sce-erage percentage for different scenarios and differ-
narios and different assumptions regarding ent assumptions regarding. Also given are the
Also given are the results of the post-selection results of the post-selection interval by Berk et al.
interval by Berk et al. (2013). (2013).

the Z;s is constrained and the corresponding element for Zhig f;f(@) is relatively big for one
parameter, then the distribution of that parameter is kigffected by thatZ;.
Consider the settings in Section 4.1 but heris defined as

095 i=3,7=4,...,9
095 j=3,i=4,...,9
1 1=

0-25 otherwise

Qij =

We use the functiomear PDin R to find the nearest positive definite matrix for tilsand use that
matrix to generate the covariates. For= 100, and¢?; the naive confidence interval’s coverage figr
is only 0-60 while for the proposed method it (596.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
o n method length coverage length coverage length coveragegthle coverage
05 30 PostAIC 117 98 1-26 99 1.72 97 0-57 94
Bootstrap  0-78 90 0-98 91 6.51 89 0-87 93
PoSIp 1-31 99 1-60 100 291 100 0-84 100
100 PostAIC 059 99 063 99 0-66 98 0-28 95
Bootstrap 042 93 0-50 94 0-68 95 0-42 96
PoSIp 063 100 0-74 100 0-96 100 0-39 99
300 PostAIC 034 99 0-35 99 0-37 98 015 95
Bootstrap 024 95 0-29 95 0-38 96 024 97
PoSIp 0-35 99 041 100 0-52 100 0-22 99
1 30 PostAIC 239 98 2:53 99 3.45 97 1-13 94
Bootstrap  1-57 90 1.96 91 13.01 89 1.74 93
PoSIp 262 99 3.19 100 5.82 100 1-69 100
100 PostAIC 119 99 125 99 1-33 98 0-55 95
Bootstrap  0-84 93 1.00 94 1.37 95 0-85 96
PoSIp 1-26 100 147 100 192 100 0-78 99
300 PostAIC 067 99 0-71 99 0-74 98 0-31 95
Bootstrap 049 95 0-58 95 0-75 96 0-49 97
PoSIp 0-71 99 0-82 100 1.04 100 0-44 99
3 30 PostAIC  6.98 98 7.56 98 10-32 97 3.40 94
Bootstrap  4.79 90 5.91 91 39.04 89 5.23 94
PoSIp 7.82 99 9.53 99 17.43 100 5.06 100
100 PostAIC  3.57 99 3.76 99 4.00 98 1-65 95
Bootstrap  2:51 95 2:98 94 4.10 95 2-54 96
PoSIp 3.79 100 4.14 100 5.74 100 2:35 99
300 PostAIC 202 99 212 99 222 99 093 95
Bootstrap  1-46 95 173 95 2:25 96 1-46 97
PoSIp 212 99 246 100 3.11 100 1-31 99

Table 13: Simulated average length of 95% confidence intearal the coverage percentages for a linear
combination of the parameters for different methods inatbstodels.

n method  6; G (3 (s
30 PostAIC 67 046,048] 98 [—044,045] 96 [-042,043] 94
) 047,048] 97 [-045,046] 96 [-042,043] 95
Naive 07 029,031 56 [-0-30,0-31] 56 [-0-30,0-31] 56
09 0-30,0-31 55 [-0-30,0-31 55 [-0-30,0-31] 55
100 PostAIC 6~ 018,018] 97 [-017,017] 96 [-017,017] 95
) 018,017] 96 [-017,017] 96 [-0-17,0-16] 95

(- ] ]
(- ] ]
(- ] ]
(- ] ]
(- ] ]
(- ] ]
Naive  6; [-012,012] 64 [-012,012] 64 [-012,012] 64
(- ] ]
(- ] ]
(- ] ]
(- ] ]
(- ] ]

() 012,012) 60 [-012,012] 60 [-012,0-12] 60

300 PostAIC 6~ 009,009] 97 [-009,009] 97 [-0-09,0-09] 95
09 009,009] 97 [-009,009] 97 [-0-09,008] 96

Naive 07 0:06,006) 67 [-006,006] 66 [-0-06,006] 67

() 007,006) 67 [-007,006] 66 [-007,0-06] 67

Table 14: Averaged simulated confidence intervals and thalated coverage percentages for parame-
ters in Poisson regression.
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model 1 model 2 model 3
01 [-054,1.05] 96(096) [—053,1-04] 96(95) [-0-52,101] 94(93)
02 — - - - [-1:52,071]  96(74)
0; [-026,186]  98(92) — - - —
05 — - [-022,1.89]  98(93) [—020,198] 98(88)

Table 15: Average simulated PostAIC confidence intervalitlgir coverage percentage using a possibly
under-parametrized selected model (coverage percentalige waive intervals).



