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Abstract

Ignoring the model selection step in inference after selection is harmful. This paper studies the
asymptotic distribution of estimators after model selection using the Akaike information criterion.
First, we consider the classical setting in which a true model exists and is included in the candidate
set of models. We exploit the overselection property of thiscriterion in the construction of a selection
region, and obtain the asymptotic distribution of estimators and linear combinations thereof condi-
tional on the selected model. The limiting distribution depends on the set of competitive models and
on the smallest overparameterized model. Second, we relax the assumption about the existence of
a true model, and obtain uniform asymptotic results. We use simulation to study the resulting post-
selection distributions and to calculate confidence regions for the model parameters. We apply the
method to data.
Key words: Akaike information criterion; confidence region; likelihood model; model selection;
post-selection inference.

1 Introduction

Variable selection, model selection and estimation with a sparsity-enforcing penalty all induce uncer-
tainty due to the process of selection, and they complicate subsequent inference.

We investigate post-selection inference for the Akaike information criterion (Akaike, 1973). The
method is valid for variable selection in any likelihood-based model. We construct confidence intervals
for regression parameters, or linear combinations thereof, conditional on the selected model, that have
the correct coverage probabilities. The method involves rewriting the event of selection asymptotically
as a number of inequalities that involve multivariate normal random variables. While the calculation of
critical values might proceed exactly for one or two parameters, we develop a numerical approach that
applies more generally. We focus explicitly on the classical low-dimensional setting, for which no such
post-selection results are yet available.

The need to address the selection uncertainty has been pointed out several times (e.g., Kabaila, 1995,
1998; Hjort & Claeskens, 2003; Leeb & Pötscher, 2003, 2005,2006; Danilov & Magnus, 2004; Kabaila
& Leeb, 2006). Claeskens & Hjort (2008) approached the post-selection issue via model averaging, by
simulation in a local misspecification framework. For modelselection via sequential testing in nested
models, Pötscher (1991) calculated the asymptotic distribution of the parameter estimator. Several ad-
vances have recently been made. The post-selection inference method of Berk et al. (2013) results for
linear models in valid confidence intervals irrespective ofthe selection procedure, which can also be
informal. Bachoc et al. (2015) generalized this method to prediction intervals. Since these methods are
not specific to any selection procedure, the resulting confidence intervals might be quite conservative.
Efron (2014) proposed to use a bagging, bootstrap aggregation, estimator and derived its variance, us-
ing normal quantiles to obtain confidence intervals. Ferrari & Yang (2014) assessed model uncertainty
when performing F-tests in linear models via a so-called variable selection confidence set. Kabaila et al.
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(2016) investigated the exact coverage and scaled expectedlength of certain model-averaged confidence
intervals for a parameter of a linear regression model.

In selective inference one lets the data determine the selected model and the target of the parameter
estimators. For the lasso, Lee et al. (2016) obtain exact post-selection inference by relating the selected
set of active coefficients to a union of polyhedra. For forward selection and least angle regression in
normal linear regression models, Taylor et al. (2016) studyselective hypothesis tests and confidence
intervals. Jansen (2014) studied the effect of the optimization on the expected values of the Akaike
information criterion and Mallow’sCp in high-dimensional sparse models. Belloni et al. (2015) obtained
uniformly valid confidence intervals in the presence of a sparse high-dimensional nuisance parameter.

We explain the methodology first in the traditional simple case of selection using the Akaike informa-
tion criterion in a sequence of nested model, the so-called order selection problem. Next, this is extended
to the practically more relevant selection from a general set of models, not necessarily nested and possi-
bly all misspecified. When a true parametric model exists, only pointwise results can be obtained, while
under misspecification and working with pseudo-true valuesthat change per model, stronger, uniformly
valid confidence intervals are constructed.

2 Post-AIC-selection in nested models

2.1 Selection properties of the AIC

Consider first a nested sequence ofK + 1 likelihood modelsM0 ⊆ · · · ⊆ MK , for which the likelihood
function Ln depends on a parameter vectorθ⊤ = (θ⊤0 , θ1, . . . , θK) ∈ Ω ⊆ R

a+K , whereθ0 ∈ Ra

denotes the parameter vector that is common to all models andhence is not subject to variable selection
andn denotes the sample size. For ease of notation we assume that modelMi adds a single parameter to
modelMi−1. Generalizations are straightforward.

We start by assuming that there is a single minimal true modelMp0 in the set of modelsMnest =

{Mi : i = 0, . . . ,K} in the sense thatp0 is the smallest model order for which all non-zero compo-
nents of the true parameter vectorϑ are included. This assumption is relaxed in Section 4, wherewe
do not require the existence of a true model, we allow for non-nested models and for model misspeci-
fication. In the current setting, models with indicesi < p0 are underparametrized, while models with
i > p0 are overparametrized. We denote byθ̂′(i) the maximum likelihood estimator for the parameter
vector θ⊤(i) = (θ⊤0 , . . . , θi) ∈ Ra+i in modelMi, θ̂(i) = (θ̂′(i)⊤, 0⊤K−i)

⊤, and byϑ = ϑ(p0) the
corresponding true value whereϑj = 0 for j > p0. Note that0l is a zero vector with lengthl.

The Akaike information criterion for modelMj in the model listMnest is AIC(Mj) = −2ℓn{θ̂(j)}+

2(a+j) whereℓn = logLn. The index of the selected model isp̂0 = min{j : AIC(Mj) = min0≤i≤K AIC(Mi)}.

The idea behind the construction of post-selection inference is to rewrite the selection procedure in terms
of a set of inequalities, which define a geometrical region interms of random variables that can be easily
simulated. For this purpose, we redefinep̂0 = min{j ∈ {0, . . . ,K} : j = argmaxj=0,...,K AIC∗(Mj)}

with AIC∗(Mj) = 2[ℓn{θ̂(j)} − ℓn(ϑ)]− 2j = 2ℓ∗n,j − 2j.
Asymptotically, the probability of underselection is zero(Woodroofe, 1982, see Lemma A1 in the

Appendix); see also Shibata (1976). Conditioning onp̂0 = p, we have thatAIC∗(Mp)− AIC∗(Mj) > 0

for j = p0, . . . , p− 1 andAIC∗(Mp)− AIC∗(Mj) ≥ 0 for j = p+ 1, . . . ,K. Forn → ∞, there is joint
convergence in distribution of(ℓ∗n,p0 , . . . , ℓ

∗
n,K) to (

∑a+p0
i=1 Z2

i , . . . ,
∑a+K

i=1 Z2
i )/2, with Z1, . . . , Za+K

independent and identicallyN(0, 1) variables (Woodroofe, 1982). By the continuous mapping theorem,
asymptotically, when̂p0 = p, (Z1, . . . , Za+K) ∈ Ap(Mnest), which is called the selection region for
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nested models and is defined byAp(Mnest) equal to


z ∈ Ra+K :

⋂

j=p0+1,...,p





p∑

i=j

(z2a+i − 2) > 0



 ∩

⋂

j=p+1,...,K





j∑

i=p+1

(z2a+i − 2) ≤ 0







 .

Geometrically, the first set ofp−p0−1 strict inequalities specifies regions outside spheres, thelast set of
K − p inequalities indicates regions inside certain other spheres, while the inequalityz2p > 2 determines
the union of two half-spaces, namely(−∞,−21/2) ∪ (21/2,+∞).

The specific structure of the Akaike information criterion determines the form of the regions. Other
selection methods define other regions, see Section 7 for examples. Lee et al. (2016, Lemma 5.1, Th. 5.2)
characterize the lasso-selection procedure, for a given value of theℓ1-penalty, in terms of polyhedral sets;
see also Taylor et al. (2016).

2.2 Distributional results

Inference post-selection deals with the distribution of the estimators in the selected model, conditional on
the selection. In this paper we always mean selection of the model with the smallest Akaike information
criterion value and by the post-selection estimator we meanthe maximum likelihood estimator based
on the selected model. We show that the limiting cumulative distribution function ofn1/2{θ̂(p̂0) − ϑ}

conditional on the selected model can be described by a multivariate normal random variableZ that is
for nested models conditioned onZ ∈ Ap(Mnest).

Due to the nature of the selection using Akaike’s information criterion and the results of Pötscher
(1991) and Leeb & Pötscher (2003) it can be shown that the selection of an overspecified model does
not happen in a uniform way, but depends on the true parametervalueϑ. Hence, in sections 2 and 3, the
results are pointwise. All proofs and assumptions are placed in the Appendix.

Define, for modelMi, the submatrixJMi
(ϑ) of the Fisher information matrixJ(ϑ) in the model

with all parameters, see Assumption A4, and for a(a + K) vector ν denote its subvector̃ν(i) =

(ν1, . . . , νa+i)
⊤. The indicator functionI(A) = 1 if A is true, andI(A) = 0 otherwise.

Proposition 1. Assume A1–A4. For a sequence of nested modelsMnest with p0 denoting the true model
order, the asymptotic conditional cumulative distribution function of the post-selection estimator is

Fp(t) = lim
n→∞

P[n1/2{θ̂(p)− ϑ} ≤ t | p̂0 = p,Mnest]

= P{J−1/2
p (ϑ)Z̃(p) ≤ t̃(p) | Z̃(p) ∈ A(s)

p (Mnest)}I(t ∈ Tp), (1)

with p ≥ p0 by Lemma 1,Z = (Z1, . . . , Za+K)⊤, the region with simplified constraintsA(s)
p (Mnest) =

{z̃(p) ∈ Ra+p :
⋂

j=p0+1,...,p

∑p
i=j(z

2
a+i − 2) > 0} andTp = Ra+p × (R+)K−p.

By the forms ofAp andA(s)
p , the limiting distribution ofn1/2{θ̂(p) − ϑ} conditional on selection

in the setMnest is symmetric and its density function is that of a truncated normal random variable.
Let φp(· | A;V ) denote the density ofV −1/2Z̃(p), whereZ̃(p) ∼ Na+p(0, Ia+p) is truncated such that
Z̃(p) ∈ A. In the case of selecting the true model, the conditioning event contains random variables that
are independent of̃Z(p0) and hence may be omitted. Figure 3 depicts some of the limiting post-selection
densities for an example of selecting the largest in a sequence of three nested models, while the smallest
model is the true one. This example is continued in Section 3.1. For more details, see the Supplementary
Material.
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Figure 1: Marginal asymptotic densitiesfj|3 (j = 1, 2, 3) of n1/2(θ̂j − ϑj) conditional onp̂0 = 3 when
p0 = 1 andJ−1

3 (ϑ) is a diagonal matrix with diagonal elements(1, 4, 4).

Corollary 1. Under the assumptions of Proposition 1, the limiting density of n1/2{θ̂(p̂0) − ϑ} con-
ditional on AIC-selection witĥp0 = p from the set of nested modelsMnest, is fp(t) = φp{t̃(p) |

A
(s)
p (Mnest);J

−1
p (ϑ)}I(t ∈ Tp). When the true model is selected, i.e.,p̂0 = p0, then fp0(t) =

φp0{t̃(p0)}I(t ∈ Tp).

2.3 Confidence regions

A correct post-selection analysis incorporates the uncertainty associated with variable selection; we ob-
tain confidence regions conditional on the selected model.

Corollary 2. Under the assumptions of Proposition 1, an asymptotic100(1 − α)% Wald confidence
ellipsoid conditionally on having selected a model withp̂0 = p is

{
ϑ ∈ Ra+K : n{θ̂′(p)− ϑ̃(p)}⊤Jp(ϑ){θ̂′(p)− ϑ̃(p)} ≤ qα

}
,

whereqα is defined such that1− α equals
∫ qα

2(p−p0)

∫ w1

2(p−p0)
· · ·

∫ wp−2

4

∫ wp−1

2

f(wp, . . . , wp0+1, w1)

P{Z̃(p) ∈ A
(s)
p (Mnest)}

dwp dwp−1 . . . dwp0+1 dw1; (2)

f(wp, . . . , wp0+1, w1) =
exp(−w1/2)w

−1/2
p (w1 − wp0+1)

−(a+p0)/2−1
∏p−p0+1

i=1 (wi − wi−1)
−1/2

2
a+p

2 {Γ(1/2)}p−p0Γ(a+p0
2 )

.

In Section 2.4 we propose an accurate method to estimateqα when exact computation is cumbersome.
Clearly, the naive approach of using the quantile of a chi-square distribution is gives too low coverage.
Confidence intervals for single components ofϑ require the calculation of marginal distributions.

Corollary 3. Under the assumptions of Proposition 1, withRα = Rj−1 × [−qα/2, qα/2] × R
a+p−j ×

(R+)K−p the asymptotic100(1−α)% quantiles of the marginal distributions ofϑj with j = 1, 2, . . . , a+

p satisfy
∫
Rα

fp(t) dt = 1− α.
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2.4 Simulation based inference

Since the calculations are quite tedious, even in small dimensions, we present a method to simulate this
conditional distribution, from which quantiles can then beobtained.

WhenJ(ϑ) is unknown, we use a consistent estimatorĴ{θ̂(K)}. We use a Hamiltonian Monte
Carlo method (Pakman & Paninski, 2014) to sample from a(a+K)-variate standard normal distribution
subject to quadratic constraints that are also based on standard normal random variables. The resultingn′

samples drawn from this density are placed in then′ × (a+K) matrixZA. Next, we multiply each row
of Z̃A(p) by Ĵ−1/2

p {θ̂(K)}, which leads ton′ samples from the limiting distribution ofn1/2{θ̂(p̂0)−ϑ};
see Corollary 1.

The example in the Supplementary Material shows close agreement between the 95% quantilesqα in
(2) simulated via constrainedχ2 distributions and their exact values.

3 Post-selection inference in general models

3.1 AIC selection in a set of non-nested models

Lemma 1 generalizes Lemma A1 in the Supplementary Material (Woodroofe, 1982) to an arbitrary set
of models that contains at least one overparametrized model.

Lemma 1. Under Assumptions A1–A4, the asymptotic probability that selection using the Akaike infor-
mation criterion results in an underparametrized model from a set of modelsM that contains at least
one overparametrized model is equal to zero.

The distributional properties of the post-selection estimators depend on the candidate set of models
M. Indeed, another setM could have led to another selection. We define the selection matrix to indicate
which variables appear in the set of models.

Definition 1. The selection matrixζM is a |M| × (a +K) matrix with{0, 1} elements, constructed as
ζM = (1ta+Kπt

1π1, . . . , 1
t
a+Kπt

MπM )⊤, where|M| is the number of models andπm is a |m| × (a+K)

projection matrix that selects those covariates that belong to modelm.

First considerM = Mall, the set of all possible submodels of a largest model. Denoteby MO ⊆

Mall the set of all overparametrized models, including the true model, so the models inMO are over-
lapping. In modelM the estimator ofϑ is denoted bŷθ(M), with zeros added for components not inM .
For any vectorν, let ν̃(M) denote its subvector corresponding to the variables in model M . Under the
orthogonality assumption A5, Proposition 2 is similar to the nested model case. Otherwise, we follow
Vuong (1989) for testing in overlapping models. DefineΣ(θ) as a partitioned matrix withi, jth block
equal toΣMi,Mj

= Q−1
Mi

(θ)Jij(θ, θ)Q
−1
Mj

(θ).

Proposition 2. Assume A1–A4 and selection fromMall. (i) If A5 holds, the selection region for model
M is

AM (MO) =
{
z ∈ Ra+K : {1(|MO |−1) ⊗ (1tKπt

MπM )− ζMO\M}{(z21 − 2), . . . , (z2a+K − 2)}⊤ > 0
}
.

The conditional limiting cumulative distribution function of the post-selection estimator is

FM (t) = lim
n→∞

P[n1/2{θ̂(M)− ϑ} ≤ t | MAIC = M,Mall]

= P{J−1/2
M (ϑ)Z̃(M) ≤ t̃(M) | Z ∈ AM(MO)}I(t ∈ TM) (3)
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whereTM isR|M | × (R+)K−|M | andJM (ϑ), Z̃(M) and t̃(M) are submatrices of, respectively,J(ϑ),
Z = (Z1, . . . , Za+K) andt, corresponding to the variables in modelM .

(ii) If A5 does not hold, definem =
∑

M∈MO
|M | and letWAIC,i be a matrix partitioned in the same

way asΣ(ϑ) with diagonal blocks corresponding toMAIC andMi equal toQMAIC (ϑ) and−QMi
(ϑ), and

zero elsewhere. The selection region for modelMAIC is

AM (MO) = {z ∈ Rm :z⊤Σ1/2(ϑ)WAIC,iΣ
1/2(ϑ)z ≥ 2(|MAIC| − |Mi|), Mi ∈ MO\MAIC}. (4)

Let Z̃(M) denote the subvector ofZ ∼ Nm(0, I), Z ∈ AM(MO) that contains only those components
that correspond to components in the selected modelM , then

FM (t) = P{J−1/2
M (ϑ)Z̃(M) ≤ t̃(M) | Z ∈ AM(MO)}I(t ∈ TM) (5)

whereTM isR|M | × (R+)m−|M |.

The choice ofM is important. Regarding (i), the constraint involves thoseZis corresponding to
the parameters in the selected modelMAIC that are not in the smallest true modelMpars, hence no
constraints are placed on theZi corresponding to parameters that occur in every model. Obviously,
the selection affects the distribution of all parameters, even those common to all models. The effect of
the set of models is illustrated by the following example. Let K = 2, a = 1 andM0 be the smallest
true model containing onlyθ1. Assume that A5 holds and that the full modelMAIC = (θ1, θ2, θ3) is
selected in bothMnest andMall. So,AM(Mall) = {z ∈ R3 : z22 > 2, z23 > 2, z22 + z23 > 4} while
AM (Mnest) = {z ∈ R3 : z23 > 2, z22 + z23 > 4}. Figure 2 depicts these regions for bothMnest, shaded

−2 − 2 2 2

−2

− 2

2

2

z2

z3

Figure 2: Allowable domain ofZ2 andZ3 for nested model selection (shaded), and all subsets selection
(double shaded) when AIC selects the full model.

area, andMall, double shaded area. If one selects the full model inMnest, thenZ2 is defined inR as
long asZ2

2 +Z2
3 > 4, while selection inMall requires bothZ2 andZ3 in (−∞,−21/2)∪ (21/2,∞). The

distribution of parameter estimators can be obtained by premultiplying Z = (Z1, Z2, Z3) by J
1/2
MAIC

(ϑ).
For the normal linear modelsY ∼ Nn(Xϑ, σ2I) andMAIC ∈ MO, the distribution results are also exact
for finite samples. In such modelsJ(ϑ) = n−1X⊤X/σ2, which does not depend onϑ. For (ii) the
main difference is that we need the joint distribution of theestimators in the different models and place
constraints on the full vector.
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3.2 Confidence regions

For any arbitrary set of models,Marb, with Marb ∩ MO 6= ∅, due to Assumption A1, (3) still holds
after replacingAM(MO) with AM (Marb∩MO). WithMAIC = M selected fromMarb, the confidence
region forϑ is

C(qα) =
{
θ ∈ Ra+K : n{θ̂′(M)− θ̃(M)}⊤JM (θ){θ̂′(M)− θ̃(M)} ≤ qα

}
, (6)

with θ̂′(M) the |M |-vector of non-zero values of̂θ(M) andqα determined by solving

P{(
∑

i∈M Z2
i ≤ qα) ∩ Z ∈ AM (Marb ∩MO)}

P{Z ∈ AM (Marb ∩MO)}
= 1− α. (7)

Let fM{t̃(M)} = φM{t̃(M)|AM (Marb ∩MO);J
−1
M (ϑ)} denote the density ofn1/2{θ̂′(M)− ϑ̃(M)},

a truncated|M |-dimensional normal density. The quantile of itsjth component is obtained via
∫

Rα

fM{t̃(M)}dt̃(M) = 1− α,

whereRα ⊂ R|M | restricts only thejth component to[−qα/2, qα/2]. The confidence interval forϑj is
θ̂j(M)± qα/2n

−1/2.
While there is no uniform convergence of the distribution function in all settings (Leeb & Pötscher,

2003), for normal linear models using rectangular confidence regions and sequential testing, a uniform
result regarding coverage has been obtained by Pötscher (1995). The following result holds for over-
specified models. For models in the setMO all parameter components that appear in the true model are
nonzero, but there might be additional parameter components which might be zero or non-zero. However,
the setMO does not depend on the value of the true parameterϑ. After conditioning onMAIC ∈ MO,
the setC(qα) is random due to maximum likelihood estimation in the selected model.

Proposition 3. Assume A1–A4, and thatQn(θ) in (A2) is continuous over a compact setΘ that contains
ϑ. The confidence regionC(qα) from (6) is such thatlimn→∞ infϑ∈Θ Pϑ{ϑ ∈ C(qα) | MAIC ∈ MO} =

1−α. WhenAM (Marb) replacesAM(Marb∩MO) in (7) to obtain a valuẽqα, limn→∞ infϑ∈Θ P{ϑ ∈

C(q̃α) | MAIC ∈ MO} ≥ 1− α.

One limitation of the Akaike information criterion is that the selection of an overspecified model
does not happen in a uniform way (Leeb & Pötscher, 2003). Hence, this result cannot be strengthened.
If the selected model is underparametrized, correct inference can be obtained for the pseudo-true values
instead; see Section 4. For a predetermined number of steps in a forward selection, least angle regres-
sion and lasso in linear additive error models, Tibshirani et al. (2015) obtain asymptotic results which
are uniformly valid for a specific class of non-normal errors. For a comparison between two models,
Andrews & Guggenberger (2009) use a local neighborhood to deal with the overselection and to obtain
uniform results for parameters that were not subject to selection. Chernozhukov et al. (2015) performed
uniformly valid inference on a low-dimensional parameter when there is selection in a high-dimensional
vector of nuisance parameters. See also Belloni et al. (2015) for using least absolute deviation in high
dimensional regression.

Inference after selection depends on (i) the set of modelsM specified by the researcher and (ii) the
smallest true modelMpars, in nested modelsp0, viaAM (M∩MO). In Mnest andMall one could take
the smallest model forMpars. If this model is true or overparametrized, Propositions 1 and 2 hold and the
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asymptotic confidence intervals can be calculated exactly.If the smallest model is underparametrized, the
structure of the additional constraintsAM(M)\AM (M ∩ MO) is such that the resulting distribution
of the parameters is longer-tailed. This leads to conservative confidence intervals, especially for the
parameters which are truly non-zero. In practice we calculate the constraints based on the selected
model andAM (Marb).

For case (i), inMall the number of constraints equals2K−|M0| − 1. Here, we show thatAM (MO)

can be reduced to the set{z ∈ Ra+K :
⋂

i∈MAIC\Mpars
(z2i > 2) ∩

⋂
i/∈MAIC\Mpars

(z2i < 2)} without
losing information. LetIMAIC denote the set consisting of all subsets of the indices inMAIC\Mpars,
referring to the redundant selected parameters, and denoteby Ic

MAIC
the set of all subsets of the indices

in {1, . . . , a+K}\MAIC, referring to the variables that were not selected. Then

AMAIC (M∩MO) =

{
z ∈ Ra+K :

⋂
i∈MAIC\Mpars

{z2i > 2},
⋂

i∈{1,...,a+K}\MAIC
{−z2i > −2},⋂

I∈IMAIC

⋂
J∈Ic

MAIC

{
∑

i∈I z
2
i −

∑
j∈J z

2
i > 2(|I| − |J |)}

}
.

The first two sets of constraints consist, respectively, of|MAIC| − |Mpars| andK − |MAIC| elements. The
third set only involves constraints that are summations of the constraints in the first two sets and does
not add any new restrictions onz. The constraint set for anyMarb can be simplified as long as some
constraints can be implied by summing other constraints. Removing redundant constraints is not always
possible, for example forMnest.

3.3 Inference for linear combinations

For inference for linear combinationsxtϑ after model selection, we rewrite (3) as

F (t) = lim
n→∞

P[n1/2 x̃t(M){θ̂′(M)− ϑ̃(M)} ≤ t | MAIC = M,M]

= P{x̃t(M)J
−1/2
M (ϑ)Z̃(M) ≤ t | AM (M∩MO)}, (8)

wherex̃(M) are the covariates corresponding toM . The asymptotic distribution of the estimated linear
combinationxtϑ is simulated via (8).

When the sample size is small and the diagonal entries ofJ(θ̂) are large, it may happen that an
underparametrized model is selected. In this case the coverage probability of confidence regions of a
linear combination of the parameters, or a transformation thereof in generalized linear models, may be
smaller than the nominal value. In case of suspected underselection, one can use

lim
n→∞

P[n1/2xt{θ̂(Mfull)− ϑ} ≤ t | MAIC = M,M]=P{xtJ−1/2(ϑ)Za+K ≤ t | AM(M)}, (9)

whereMfull is the full model. This differs from (8) in using all parameters, not just the selected pa-
rameters. This procedure differs from assuming that the full model is selected, since, for example in
Mall, AM (Mall) containsz2i > 2 for the parameters which are selected andz2i < 2 for those which
are not selected, whereasAMfull

(Mall) containsz2i > 2 for all parameters, which leads to a long-tailed
distribution. The probability of underselection disappears asymptotically. The valid confidence intervals
of Bachoc et al. (2015) target the true value for the selectedmodel, not the true valuextϑ. While in their
case underparametrized selection is not an issue, there is no guarantee that their proposed confidence
interval is valid for the true value.
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4 Confidence regions when all models are misspecified

4.1 Limiting distribution of estimators

The results in this section do not require any assumption about the existence of a true model, are uni-
formly valid, and apply to general parametric likelihood models. In order to obtain uniformly valid
results we consider the setting where there is no true parameter vector, either because the true den-
sity of the data does not belong to a parametric family or because all models are misspecified. We
assume the observations to be represented by a triangular array {Yni : i = 1, . . . , n, n ∈ N}, where
there is independence between the rows, i.e., different sample sizesn, and within the rows, i.e., for
i 6= j, Yni andYnj are independent. Regression models are included, as observations may have dif-
ferent distributions. The true joint density of(Yn1, . . . , Ynn) is gn, with distribution functionGn. All
probabilities are computed under the true distribution, soP = PGn . The data are modeled via models
Mn,j = {

∏n
i=1 fj,i(yi; θj) : θj ∈ Θj ⊂ Rmj}. Thusmj is the number of parameters in modelMn,j.

All models are collected in the setMn = {Mn,1, . . . ,Mn,J}. When there is no confusion, we omit the
subscriptn in the notation. We assume for eachn ∈ N that

∫
gn(y) log gn(y)dy < ∞. This defines the

class of true distributionsGn.
Regarding the models, assume that for eachi ∈ N and eachj = 1, . . . J , fj,i(·; θj) is measurable

for all θj ∈ Θj, a compact set,fj,i(yi; ·) is continuous onΘj almost surely and continuously differen-
tiable onΘj. Then for every model there exists (White, 1994, Th 2.12) an estimatorθ̂n,j, maximizing∏n

i=1 fj,i(yi; θj) overΘj. If EGn{n
−1

∑n
i=1 log fj,i(yi; θj)} has an identifiable unique maximizer over

Θj, this maximizer is called the pseudo-true valueϑ∗
n(Mj). This value depends on the true joint den-

sity, the model densities, and on the sample size. We define two vectors of lengthm′ =
∑J

j=1mj ,

ϑ∗
n,M = {ϑ∗t

n (M1), . . . , ϑ
∗t
n (MK)}⊤ andθ̂n,M = {θ̂tn(M1), . . . , θ̂

t
n(MK)}⊤.

Lemma 2. Let{Yni : i = 1, . . . , n, n ∈ N\0} form a triangular array consisting of independent random
variables. Assume that (i) for all components of the vectorϑ∗

n,M, here stated for thekth such component
of θj corresponding to modelMj , for all Gn ∈ Gn withA = {yi ∈ R : |(∂/∂θk) log fj,i{yi; θ

∗
n(Mj)}| >

εnQMj ,kk{ϑ
∗
n(Mj)}}, and for all ε > 0,

lim
n→∞

n∑

i=1

∫

A

[
∂

∂θk
log fj,i{yi;ϑ

∗
n(Mj)}

]2
/[nQMj ,kk{ϑ

∗
n(Mj)}]dGni(yi) = 0.

and (ii) denotingΣMj
{ϑ∗

n(Mj)} = Q−1
Mj

{ϑ∗
n(Mj)}Jjj{ϑ

∗
n(Mj), ϑ

∗
n(Mj)}Q

−1
Mj

{ϑ∗
n(Mj)},

lim
n→∞

max
i=1,...,n

PGn

(
(ΣMj ,kk)

−1/2n−1/2[Q−1
Mj

{ϑ∗
n(Mj)}]kk

∣∣ ∂

∂θk
log fj,i{yi;ϑ

∗
n(Mj)}

∣∣ > ε

)
= 0

DefineWn ∼ Nm′{0,Σ(ϑ∗
n,M)} whereΣ(ϑ∗

n,M) is am′ ×m′ matrix with ijth block, with dimensions
mi ×mj, equal toQ−1

Mi
{ϑ∗

n(Mi)}Jij{ϑ
∗
n(Mi), ϑ

∗
n(Mj)}Q

−1
Mj

{ϑ∗
n(Mj)}, then

lim
n→∞

sup
t∈Rm′

sup
Gn∈Gn

∣∣P{n1/2(θ̂n,M − ϑ∗
n,M) ≤ t} − P(Wn ≤ t)

∣∣ = 0.

A pivot is needed in order to construct confidence regions. Ingeneral, the varianceΣ(ϑ∗
n,M) of Wn

might depend onϑ∗
n,M. When there is an estimator̂Σ of Σ such that

lim
n→∞

sup
Gn∈Gn

PGn(‖Σ̂n − Σ‖ > ε) = 0,
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with ‖A‖ denoting the Euclidean matrix operator norm ofA, then, withZm′ ∼ Nm′(0, Im′)

lim
n→∞

sup
Gn∈Gn

sup
t∈Rm′

|P{Σ̂−1/2
n n−1/2(θ̂n,M − ϑ∗

n,M) ≤ t} − P(Zm′ ≤ t)| = 0.

The model determines whether or not the variance may be estimated well. White (1994, Sec 8.3) gives
some general conditions for consistent estimation of the variance. One requirement is that

n−1
n∑

i=1

E(s)E(s⊤) → 0,

with s the vector of lengthm′ consisting of subvectors(∂/∂θk) log fki(Yi;ϑ
∗
k), for k = 1, . . . ,K. This

assumption holds, for example, when the models are correctly specified. Under misspecification, White
(1994, Sec 8.3) showed that the empirical estimator forΣ(ϑ∗

n,M) might overestimate the covariance
matrix, leading to conservative confidence intervals.

4.2 Selection region in a misspecified setting

WhenM consists of misspecified models, calculating the selectionevent requires additional care. De-
fine ℓn,Mj

(y, θj) =
∑n

i=1 log fj,i(yi, θj). When modelMAIC is selected, then for allM ∈ M\MAIC ,
2[ℓn,MAIC{y, θ̂n(MAIC)} − ℓn,M{y, θ̂n(M)}] ≥ 2(|MAIC | − |M |). When both models,MAIC andM , are
correctly specified, the difference of log-likelihoods canbe characterized asymptotically by chi-squared
random variables. However, when there is misspecification this difference can diverge to+∞ or −∞,
depending on the assumptions about the models. For strictlynon-nested models the difference always
diverges (Vuong, 1989, Th. 5.1). When the selected model is always best, there is no restriction on
parameter estimators. See also Cox & Hinkley (1974, Sec. 9.3) for the asymptotic behavior of likeli-
hood ratio tests in non-nested settings. For overlapping models having some common parameters, the
log-likelihood difference converges to some random variable if one of the models is correctly specified,
and otherwise diverges. Under misspecification of all models, the only setting where the asymptotic
distribution can be used to characterize the selection event is for nested models under similarity of the
likelihoods (Vuong, 1989, Assumption A8). This means thatℓn,Mk

{y, ϑ∗
n(Mk)} = ℓn,Ml

{y, ϑ∗
n(Ml)}

for k, l = 1, . . . ,K. For an arbitrary set of models we impose the same similarityassumption and assume
thatM includes a modelMs = Msmall which is nested in all other models. If we were to perform a like-
lihood ratio test, under this assumption it would correspond to testing whether the smaller model can be
considered equal versus worse than the larger model (Vuong,1989, Lemma 7.1). We first compare each
model with the smallest model and then we use the obtained regions from each comparison to compute
the final selection region using pairwise comparisons. By imposing similarity, the calculated quantiles
to be used in the confidence regions are larger than without similarity since, as explained earlier, the
log-likelihood difference diverges otherwise and there isno restriction on the parameter estimators. For
all M ∈ M\Ms,

2[ℓn,M{y, θ̂n(M)} − ℓn,Ms{y, θ̂n(Ms)}]

= n{θ̂n(M)− ϑ∗
n(M)}⊤QM{ϑ∗

n(M)}{θ̂(M)− ϑ∗
n(M)}

−n{θ̂n(M)− ϑ∗
n(Ms)}

⊤Q{ϑ∗
n(Ms)}{θ̂n(Ms)− ϑ∗

n(Ms)}+ oP (1)

= n(θ̂n,M − ϑ∗
n,M)⊤WM,Ms(θ̂n,M − ϑ∗

n,M) + oP (1), (10)

whereWM,Ms is a block-diagonal matrix partitioned in the same way asΣ, with the diagonal block
referring to modelM equal toQM{ϑ∗

n(M)} and that referring to modelMs equal to−QMs{ϑ
∗
n(Ms)},
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and zero elsewhere. If the models are already nested, there is no need to compare each model with the
smallest model. The asymptotic counterpart of the selection event is

AMAIC (M) = {z ∈ Rm′
: z⊤Σ1/2(WMAIC ,Ms −WM,Ms)Σ

1/2z ≥ 2(|MAIC| − |M |),

M ∈ M\MAIC}. (11)

Proposition 4. Let the assumptions of Lemma 2 hold. For a set of models withAMAIC (M) from (11) it
holds that

lim
n→∞

sup
Gn∈Gn

sup
t∈R|MAIC |

∣∣P[n1/2{θ̂(MAIC)− ϑ∗(MAIC)} ≤ t | MAIC] (12)

−P{Σ1/2Z ≤ t | AMAIC (M)}
∣∣ = 0

As noted by Tibshirani et al. (2015), uniform convergence indistribution can be translated to uni-
formly valid confidence sets. The following proposition clarifies this statement. The proof is similar to
the proof of Proposition 4, using the fact that a continuous mapping preserves uniform convergence.

Proposition 5. Let the assumptions of Lemma 2 hold and let the set of modelsM contain a smallest
model which is nested in all models. Define the set

C∗(qα) = {θ ∈ R|MAIC | : n{θ̂(MAIC)− θ(MAIC)}
⊤ΣMAIC (ϑ

∗
MAIC

)−1{θ̂(MAIC)− θ(MAIC)} ≤ qα},

whereqa is determined by solving

P
{
[Z̃⊤ (MAIC)ΣMAIC (ϑ

∗
MAIC

)−1Z̃(MAIC) ≤ qα] ∩ {Z ∈ AMAIC (M)}
}

= P{Z ∈ AMAIC (M)}(1 − α).

Thenlimn→∞ supGn∈Gn
supα∈[0,1]

∣∣PGn{ϑ
∗(MAIC) ∈ C∗(qα) | MAIC} − (1− α)

∣∣ = 0.

5 Simulation study

5.1 Parameters in linear models

While the proposed method is applicable in general likelihood models, in order to compare it with exist-
ing methods, we present simulation results for linear models. Results for generalized linear models and
for other settings are placed in the Supplementary Material.

The data were generated from a regression modelYi =
∑10

j=1 ϑjxji + εi, i = 1, . . . , n, with
εi ∼ N(0, 1). The true value for the parameters isϑ⊤ = (2·25,−1·1, 2·43,−2·24, 2·5, 0⊤5 ), with 05 a
vector of all zeros with length 5. We setx1i = 1 and(x2i, . . . , x10,i)⊤ ∼ N(09,Ω) whereΩ is a positive
definite matrix with diagonal elements equal to 1 and off-diagonal entries equal to0·25. The sample size
is either 30 or 100.

Three different model sets were considered. Letζ iall be the selection matrix when the firsti parame-
ters are present in all models. We takeζ3all which is a27 × 10 matrix andζ6all which is24 × 10 matrix,
andζarb which contains 14 rows, arbitrarily chosen fromζ3all.

We are interested in inference for the parameters in the selected model. In order to facilitate the
comparison, the simulations were run until modelM with parameters(ϑ1, . . . , ϑ6, ϑ8) had been selected
3000 times. For each of those simulation runs the Fisher information matrix is estimated in the full model
by Ĵ(θ̂), leading to the submatrix̂JM (θ̂). When A5 does not hold one should use (5) to calculate the
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n method ϑj ζ3all ζ6all ζarb

30 PostAIC ϑ4 [−2·85,−1·64] 98 [−2·68,−1·78] 92 [−2·85,−1·64] 97
ϑ6 [−0·60, 0.62] 94 [−0·45, 0·45] 93 [−0·60, 0·62] 96
ϑ8 [−0·60, 0·61] 94 [−0·60, 0·60] 95 [−0·61, 0·62] 96

PoSI ϑ4 [−2·98,−1·51] 99 [−2·89,−1·57] 99 [−2·97,−1·52] 99
ϑ6 [−0·73, 0·75] 99 [−0·66, 0·66] 99 [−0·71, 0·73] 99
ϑ8 [−0·73, 0·74] 98 [−0·66, 0·67] 97 [−0·72, 0·73] 99

Naive ϑ4 [−2·67,−1·82] 89 [−2·68,−1·79] 91 [−2·66,−1·83] 89
ϑ6 [−0·42, 0·43] 69 [−0·44, 0·44] 92 [−0·41, 0·42] 71
ϑ8 [−0·42, 0·43] 70 [−0·44, 0·45] 75 [−0·41, 0·43] 71

100 PostAIC ϑ4 [−2·54,−1·94] 99 [−2·46,−2·02] 94 [−2·55,−1·93] 99
ϑ6 [−0·30, 0·31] 95 [−0·22, 0·22] 95 [−0·31, 0·32] 96
ϑ8 [−0·30, 0·31] 95 [−0·29, 0·30] 95 [−0·31, 0·31] 97

PoSI ϑ4 [−2·58,−1·90] 100 [−2·54,−1·94] 99 [−2·57,−1·90] 99
ϑ6 [−0·33, 0·34] 98 [−0·30, 0·30] 99 [−0·33, 0·34] 98
ϑ8 [−0·34, 0·34] 98 [−0·29, 0·31] 95 [−0·33, 0·34] 98

Naive ϑ4 [−2·46,−2·02] 93 [−2·46,−2·02] 93 [−2·46,−2·02] 92
ϑ6 [−0·22, 0·22] 66 [−0·22, 0·22] 94 [−0·21, 0·22] 67
ϑ8 [−0·22, 0·22] 66 [−0·22, 0·23] 69 [−0·22, 0·22] 65

Table 1: Simulation study with 3000 runs of AIC selection. Average confidence intervals and coverage
percentages forϑ4, ϑ6, ϑ8 using different selection matricesζ corresponding to different model setsM
and different sample sizesn for the proposed method, the method of Berk et al. (2013) and for a naive
approach that treats the selected model as given and ignoresselection.

confidence intervals. However, we used (3) instead, resulting in good approximations. Quantiles of the
limiting asymptotic distribution for each setting were obtained via simulation. See the Supplementary
Material for the code. In each simulation run we compute the lower and upper limit of the confidence in-
terval and report the averaged confidence intervals along with the coverage percentages. Table 1 presents
the results forϑ4, ϑ6 andϑ8. Results for the other parameters are not presented to save space.

Confidence intervals from the method of Berk et al. (2013) arereported for sake of comparison. Their
target for inference is the so-called non-standard target (Bachoc et al., 2015), namely the best coefficients
within the selected model, not the standard target, the truevalues of the parameters (Berk et al., 2013,
equation (3.2)). Simulation results in Leeb et al. (2015) showed that the coverage probability of such
intervals for the standard target is lower than the nominal value for certain situations.

For ζ3all whereϑ4 andϑ5 are truly non-zero, the conditional confidence intervals for the proposed
method have simulated coverage probabilities higher than the nominal value 95%. This is because
AM (M3

all), Z
2
4 > 2 andZ2

5 > 2 in the constraint set, whileZ4 andZ5 are truly unconstrained when
takingAM(M3

all ∩ MO). Forϑ6 andϑ8 which are truly zero,Z2
6 > 2 andZ2

8 > 2 are correct con-
straints. One may expect conservative confidence intervalsfor ϑ6 andϑ8 because they are defined by
multiplication of the corresponding rows in̂J1/2

M (θ̂) by Z̃(M). The latter vector satisfies the constraints
AM (M3

all) rather thanAM(M3
all∩MO), so the distribution is longer-tailed than needed. For the current

simulation, the settings considered lead toĴ
1/2
M (θ̂) with small off-diagonal elements, so, the distribution

of an estimator is mainly determined by its correspondingZi. For ζ6all the coverages almost equal the
nominal values, especially forn = 100. Usingζarb leads to conservative confidence intervals for all pa-
rameters because of the additional constraints inAM (Marb), while theoretically the constraints should
beAM(Marb ∩MO).

The method of Berk et al. (2013) always yields conservative confidence intervals although there is
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no guarantee that it always leads to valid confidence intervals for the true parameters. Naive confidence
intervals forϑ4 have coverages almost equal to the nominal value while forϑ6 usingζarb andζ3all and for
ϑ8 in all settings the coverage percentages are around 70%. This is the result of wrongly treating the se-
lected model as given. For settings with small off-diagonalelements ofĴ1/2

M (θ̂), the confidence intervals
for the truly non-zero parameters are valid. Other simulation results are contained in the Supplementary
Material. We find that the proposed method can be used even in underparametrized situations, where
assumption A1 does not hold.

5.2 Linear combinations in linear models

The performance of the proposed method for linear combinations was investigated by simulations.
Let ϑ⊤ = (2.25,−1.1, 2.43,−1.24, 2.5, 0⊤8 ) be the true values for the parameters in a linear model,
with error standard deviation either 1 or 3. Four different selection matrices are considered,ζ iall, for
i ∈ {3, 5, 8, 10}, indicating that the firsti covariates are common to each model. The data generation
processes are as in Section 5.1. For this simulation, we do not control the selected model because we are
interested in a linear combination of the selected parameters. Table 2 shows the results. We compare the
post-selection intervals with the smoothed bootstrap confidence intervals (Efron, 2014) and the intervals
for post-selection predictions (Bachoc et al., 2015). The bootstrap samples consist ofn draws with re-
placement from the main data set and we replicate thisB = 1000 times. The non-ideal bootstrap when
the number of replications is not equal tonn biases the variance of the smoothed bootstrap estimator
upward, so we use the bias-corrected version (Efron, 2014, remark J). The post-selection intervals for
prediction have a target based on the selected model, so thismight be different from the true prediction.

The choice of models withζ3all as a selection matrix results in conservative confidence intervals due
to conditioning onAM(M3

all), similar to before. For this selection matrix, the confidence intervals by
the bootstrap method are shorter than by the proposed post-selection method. The bootstrap confidence
intervals are not directly based on the selected model for the original data because a model is selected
for each bootstrap sample.

The ideal situation is when the selection matrix isζ5all, since all truly non-zero parameters are then
forced to be in the model. The confidence intervals for the proposed method are always shorter than
those for the competing methods and their coverages are almost equal to the nominal value. Forζ8all
and ζ10all the situation is the same, though with wider intervals than with ζ5all for all methods, because
more parameters are forced to be in the model, which increases the variability of the predictions. These
confidence intervals are not wider than forζ3all. Thus the variability of the prediction is more affected
by the condition part than by forcing more variables into themodel. The post-selection method for
prediction (Bachoc et al., 2015) always leads to wider confidence intervals than the bootstrap method
and the proposed method.

The coverages of the confidence intervals for the proposed method are always close to or higher than
the nominal values, while the bootstrap method can have lower coverage probabilities than the nominal
values. Moreover, the bootstrap method for all possible models is computationally intensive, because it
needsB bootstrap samples and in each of them all candidate models are fit.

For the settingσ = 3 andn = 30 in ζ3all, we used the results in (9) instead of (8). In this setting
the probability of selecting an underparametrized model isnot zero due to a small sample size and large
variance. The average length of the confidence interval was 9.9 and the coverage was around 90% when
we used (8).
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ζ3all ζ5all ζ8all ζ10all

σ n method length cov. length cov. length cov. length cov.
1 30 PostAIC 3·11 97 2·61 95 2·90 94 3·08 94

Boot 3·67 92 3·32 92 3·31 92 3·79 92
PoSIp 4·38 100 4·39 100 5·36 100 6·00 100

100 PostAIC 1·42 98 1·17 95 1·30 96 1·37 95
Boot 1·25 94 1·25 94 1·30 94 1·33 93
PoSIp 1·83 100 1·83 100 2·20 100 2·42 100

3 30 PostAIC 11·76 98 7·82 94 8·68 94 9·24 94
Boot 11·46 92 9·95 92 9·94 92 11·37 92
PoSIp 12·65 99 13·16 100 16·08 100 17·99 100
PostAIC 4·25 98 3·50 95 3·90 96 4·12 95
Boot 3·77 94 3·74 94 3·90 94 4·00 93
PoSIp 5·47 100 5·48 100 6·60 100 7·26 100

Table 2: Simulation study with 3000 runs of selection with Akaike’s information criterion. Average
length of 95% confidence intervals and coverage percentages(cov.) for a linear combination of the
parameters for different methods and model sets using the selection matricesζ for different sample sizes.

6 Pima Indian diabetes data

We construct confidence intervals conditional on the selected model for a logistic regression model ap-
plied to the Pima Indian diabetes data set (Lichman, 2013). This data set consists of women at least 21
years old of Pima Indian heritage, living near Phoenix Arizona. We used 332 complete observations.
The response is 0 if a test for diabetes is negative and is 1 fora positive test. We use seven covariates in
the model, npreg: number of pregnancies, glu: plasma glucose concentration in an oral glucose tolerance
test, bp: diastolic blood pressure, skin: triceps skin foldthickness in millimeter, bmi: body mass index,
ped: diabetes pedigree function and age in years. See Smith et al. (1988) for more details about the data.

First, we consider bootstrap percentile and naive confidence intervals for the parameters in the full
model when no selection is involved, see Table 3(b). We used 5000 bootstrap runs, each resampling the
332 women uniformly with replacement. Several intervals contain zero, which shows the possibility of
using a smaller model.

Selection uses the setMall; an intercept is present in all models. This results in selecting four
variables: npreg, glu, bmi and ped. Table 3(a) presents the unconditional confidence intervals for these
parameters using the naive method with the post-selection confidence intervals that condition on the
model selected using the Akaike information criterion. Thenaive method ignores the selection procedure
which leads to the significance of the covariate ped, whereasthe proposed method, which takes the
selection uncertainty into account, concludes that this covariate is not individually significant at the 5%
level. For logistic regression, to the best of our knowledge, there are no other post-selection methods to
compare with.

7 Discussion and extensions

For one of the classic model selection methods, the Akaike information criterion (Akaike, 1973) we have
provided an approach to deal with the selection uncertaintyby performing inference conditional on the
selected model. Our results have demonstrated that this inference depends not only on the selected model,
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(a) Method npreg glu bmi ped
Naive [0·091, 0·269] [0·028, 0·049] [0·042, 0·129] [0·305, 2·050]

PostAIC [0·058, 0·299] [0·022, 0·054] [0·027, 0·142] [−0·027, 2·358]

(b) Method npreg glu bp skin bmi ped age
Naive [0·03, 0·26] [0·03, 0·05] [−0·03, 0·02] [−0·03, 0·05] [0·02, 0·14] [0·24, 2·00] [−0·02, 0·05]

Bootstrap [−0·003, 0·30] [0·03, 0·05] [−0·03, 0·16] [−0·03, 0·06] [0·02, 0·15] [0·005, 2·41] [−0·02, 0·07]

Table 3: (a) Confidence intervals for the Pima Indian diabetes data with nominal level 95% ignoring
(Naive) and including (PostAIC) model selection using Akaike’s information criterion. (b) 95% Naive
and bootstrap confidence intervals in the full model, without selection.

but also on the set of models from which the selection takes place, and on the smallest overparametrized
model. The dependence on the set of models is not surprising,though has not received much attention
so far.

The proposed method explicitly uses the overselection properties of Akaike’s information criterion.
For some selection properties under local misspecification, see Claeskens & Hjort (2004). For consistent
selection criteria, e.g., the Bayesian information criterion, other approaches should be used, though ef-
fects of the selection remain present (Leeb & Pötscher, 2005). Other selection methods that are similar to
Akaike’s information criterion can be approached in the same way. Consider, for example, selection in an
arbitrary set of models allowing for model misspecification, see Section 4, using Takeuchi’s information
criterion (Takeuchi, 1976)TIC(M) = 2ℓn{θ̂(M)} − 2tr{QM (ϑ∗)−1JM (ϑ∗)}. For most practical set-
tings the information matrices are estimated by their empirical counterpartŝQM (θ̂M ) andĴM (θ̂M ). We
rewrite (10) for an arbitrary set of models containingMs by replacing|M | with tr{QM (ϑ∗)−1JM (ϑ∗)}

and proceed to calculate the asymptotic distribution of theparameters conditioned on the constraint set.
Another such example is the generalized information criterion introduced by Konishi & Kitagawa

(1996). It considers functional estimators, such as M-estimators, and uses the influence function as part
of the criterion,GIC(M) = −2ℓn{θ̂(M)} + (2/n)

∑n
i=1 tr

{
Infl(Yi)(∂/∂θ

⊤
M ) log f(Yi; θ̂M )

}
. Under

some regularity conditions, the functional estimator has an asymptotic normal distribution, allowing to
extend the results in Section 4.

Mallows’ Cp (Mallows, 1973) for linear regression isCp(M) = σ̂−2σ̂2(M) + 2|M | − n whereσ̂2

is the estimated variance in the full model whileσ̂2(M) uses modelM . The model with the smallestCp

value is the best. In nested models one can easily show that whenn tends to infinity,Cp(M)−Cp(M
∗) ∼

χ2
q/q + 2q whereq = |M∗| − |M |. In the same manner as for the Akaike information criterion,one can

calculate the constraint set and hence the distribution of estimators for parameters in the selected model.
In forward stepwise selection, we start from a small model and embed it in a larger model containing

one additional parameter. This procedure continues until adding a parameter does not decrease the
Akaike information criterion. To be precise, in stept we embed modelMt in a number of bigger models,
each adding one parameter. DefineMt to be this set of models. ModelMt+1 ∈ Mt is selected when
this model has a smaller criterion value than modelMt and it has the smallest criterion value amongst
all models inMt. This means thatAIC(Mt+1) < AIC(Mt) and AIC(Mt+1) < AIC(M) for all M ∈

Mt \Mt+1. These inequalities can be translated to constraints. The constraint set is the collection of all
these constraints from all steps.

We explicitly dealt with low-dimensional parameters for which maximum likelihood estimators exist
and Akaike’s information crierion is well-defined. Other criteria are better suited for high-dimensional
parameters.
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Appendix

LetBK(ǫ) denote a sphere ina+K dimensions centered atϑ with radiusǫ, and denote its complementary
set byBc

K(ǫ).

A1 For eachǫ > 0, asn → ∞, supθ∈Bc
K
(ǫ){ℓn(θ)− ℓn(ϑ)}→ −∞ in probability.

A2 There exist anǫ0 > 0 such thatℓn(θ) is twice continuously differentiable inBK(ǫ0) for all n
large enough. Define the score vectorUn(θ) = (∂/∂θ)ℓn(θ) and the negative Hessian matrix
Qn(θ) = −(∂2/∂θ∂θ⊤)ℓn(θ).

A3 For some0 < ǫ1 < ǫ0 whenn → ∞, there exists a non-random positive definite continuous matrix
Q(θ), for θ in BK(ǫ1) such thatsupθ∈BK(ǫ) tr{Qn(θ)/n −Q(θ)}→0 in probability.

A4 As n → ∞, n1/2Un(ϑ) is asymptoticallyN{0, J(ϑ)}.

A5 Fori 6= j andMi,Mj ∈ MO, with the expectation with respect to the true distribution, Jij{θ(i), θ(j)} =

E({∂/∂θ(Mi)}[ℓn{θ(Mi)}]{∂/∂θ(Mj)
⊤}[ℓn{θ(Mj)}]) = 0|Mi|×|Mj|.

Assumptions A1–A4 are from Woodroofe (1982). Assumption A1leads to the consistency of maximum
likelihood estimators forθ in the model considered and its submodels. For the non-nested case A5
leads to a simplification (Vuong, 1989). In linear regression, assumption A5 is equivalent to having an
orthogonal design matrix.

The next lemma is an extension of Lemma A in Vuong (1989) to more than two models.

Lemma 3. Assume A1–A4. Fix any ordering of the models inMO and denoteo = |MO|. Asn →

∞, n1/2(θ̂Mo − ϑMo) = n1/2{θ̂′(M1)
⊤ − ϑ(M1)

⊤, . . . , θ̂′(Mo)
⊤ − ϑ(Mo)

⊤}⊤ → N{0,Σ(ϑ)} in
distribution.

Proof. Similar to Vuong (1989), a Taylor series expansions leads to

0 = n−1/2Un,Mi
(ϑ) +QMi

(ϑ)n1/2{θ̂′(Mi)− ϑ}+ oP (1), Mi ∈ MO.

By the multivariate central limit theorem, there is convergence in distribution, forn → ∞,

n−1/2(U⊤
n,M1

, . . . , U⊤
n,Mo

)⊤ → N(0,Σu) (13)

whereΣu is a partitioned matrix withijth block equal toJij(ϑ, ϑ). The distribution of the estimators
follows.

When the models are correctly specified,Jii(ϑ, ϑ) = JMi
(ϑ) = QMi

(ϑ). Lemma 3 is also valid
for misspecified models and for models not inMO. In such case the true parameter is replaced by the
pseudo-true parameter corresponding to the considered model.
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Proof of Proposition 1.We show that (1) equals

lim
n→∞

P([n1/2{θ̂′(p)− ϑ̃(p)} ≤ t̃(p)] ∩ [2ℓ∗n,p − 2p ≥ 2ℓ∗n,j − 2j, j ∈ {p0, p0 + 1, . . . ,K}])

P[2ℓ∗n,p − 2p ≥ 2ℓ∗n,j − 2j, j ∈ {p0, p0 + 1, . . . ,K}]
.

From Lemma 3 there is joint convergence of the estimators in the different models. Next, sinceℓ∗n,j is a

function of θ̂′(j), namely

ℓ∗n,j =
n

2
{θ̂′(p)− ϑ(p)}⊤Jp(ϑ){θ̂

′(p)− ϑ(p)}+ oP (1),

and since the probability of the event in the denominator is strictly positive, Slutsky’s theorem and the
continuous mapping theorem give joint convergence for boththe numerator and denominator of the above
expression to their asymptotic counterparts.

To obtain the selection set letSj = {s ∈ Ra+K : si = 0, for i = a + j, . . . , a + K} for j =

p0, . . . ,K. Woodroofe (1982) showed that(ℓ∗n,p0 , . . . , ℓ
∗
n,K) converges in distribution to(ℓ∗p0 , . . . , ℓ

∗
K)

asn → ∞, where forj = p0, . . . ,K, ℓ∗j = sups∈Sj
{s′Y − s′J(ϑ)s/2}, whereY ∼ N{0, J(ϑ)}. Then

ℓ∗j = 0.5
∑a+j

i=1 Z
2
i , for j = p0, . . . ,K, whereZ1, . . . , Za+j are independent and identically distributed

standard normal random variables. Lemma 1 and Assumptions A1–A4 imply thatn1/2J
1/2
j (ϑ){θ̂′(j) −

ϑ̃(j)} converges in distribution tõZ(j) asn → ∞. Parameters not in the selected model are set to zero,
which leads to the regionTp. SinceZ̃(p) and(Zp+1, . . . , ZK) are independent, and fort ∈ Tp,

Fp(t) = P{J−1/2
p (ϑ)Z̃(p) ≤ t̃(p) | Z ∈ Ap(Mnest)}

= P
[
J−1/2
p (ϑ)Z̃(p) ≤ t̃(p) |

⋂

j=p0,...,p−1

{

p∑

i=j+1

Z2
a+i > 2(p − j)}

]
. (14)

Proof of Corollary 2. From Proposition 1, witĥp0 = p, qα is equivalently found via

P
[
(

a+p∑

i=1

Z2
i ≤ qα) ∩

⋂

j=p0,...,p−1

{

p∑

i=j+1

Z2
a+i > 2(p − j)}

]
/P{Z̃(p) ∈ A(s)

p (Mnest)} = 1− α.

The denominator can be calculated by Lemma A1 in the Supplementary Material. To calculate the
numerator, we first find the joint density of(Wp, . . . ,Wp0+1,W1) whereWj =

∑a+p
i=a+j Z

2
i , W1 =∑p

i=1 Z
2
i andZ2

i ∼ χ2
1 for all i = 1, . . . , a+ p. So,Z2

a+i = Wi−1 −Wi for i = p0 + 1, . . . , p − 1 and
Z2
a+p = Wp with

∑a+p0
i=1 Z2

i = W1 −Wp0+1 ∼ χ2
a+p0 . The joint distribution of(Wp, . . . ,Wp0+1,W1)

is obtained via a transformation of the distribution of(Z2
a+p, Z

2
a+p−1, . . . , Z

2
a+p0+1,

∑a+p0
i=1 Z2

i ),

f(wp, . . . , wp0+1, w1) =
exp(−w1/2)w

−1/2
p (w1 − wp0+1)

−(a+p0)/2−1
∏p−p0+1

i=1 (wi − wi−1)
−1/2

2
a+p

2 {Γ(1/2)}p−p0Γ(a+p0
2 )

.

The region of integration follows fromA(s)
p (Mnest) and the fact thatWi ≤ Wj for i > j.

Proof of Lemma 1.Denote the smallest true model byMpars. For allM ′ 6∈ MO, by assumption A1,

P(MAIC = M ′) ≤ P

{
AIC∗(M ′) ≥ max

M∈MO

AIC∗(M)

}
≤ P

{
AIC∗(M ′) ≥ AIC∗(Mpars)

}

= P
[
ℓn{θ̂(M

′)} − |M ′| ≥ ℓn{θ̂(Mpars)} − |Mpars|
]

= P
[
ℓn{θ̂(M

′)} − ℓn{ϑ(Mpars)} − |M ′| ≥ ℓn{θ̂(Mpars)} − ℓn{ϑ(Mpars)} − |Mpars|
]

→ 0.
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Proof of Proposition 2.(i) DefineSj = {s ∈ Ra+K : si = 0, i /∈ M} andℓ∗n,Mi
= ℓn{θ̂(Mi)}− ℓn(ϑ)

whereMi ∈ MO. Similar to Proposition 1 we can show that forMi ∈ MO, ℓ∗n,Mi
→ 0.5

∑
j∈Mi

Z2
j in

distribution. Now, the condition part can be calculated by
∑

j∈M

Z2
j − 2|M | >

∑

j∈Mi

Z2
j − 2|Mi|, Mi ∈ MO\M,

which is equivalent toZ ∈ AM (MO).
(ii) By Lemma 3 there is joint convergence in distribution ofthe estimators in the different models.

The constraint set can be calculated by pairwise comparisons of theAIC∗ values. To do so, write

ℓn{θ̂(Mi)} = ℓn(ϑ) +
n

2
{θ̂(Mi)− ϑ}⊤QMi

(ϑ){θ̂(Mi)− ϑ}+ oP (1)

from which it follows thatℓ∗n,i =
n
2{θ̂(Mi)− ϑ}⊤QMi

(ϑ){θ̂(Mi)− ϑ}+ oP (1).

Then, sinceAIC∗(MAIC) ≥ AIC∗(Mi) is equivalent to2(ℓ∗n,AIC − ℓ∗n,i) ≥ 2(|MAIC | − |Mi|) it follows
that

n(θ̂MO
− ϑMO

)⊤WAIC,i(θ̂MO
− ϑMO

) + oP (1)− 2(|MAIC | − |Mi|) ≥ 0. (15)

By using Lemma 3 and the continuous mapping theorem, the asymptotic counterpart of (15) can be
written asZ⊤Σ1/2WAIC,iΣ

1/2Z ≥ 2(|MAIC |− |Mi|), Mi ∈ MO, which results in the stated selection
region and limiting distribution.

Proof of Proposition 3.(i) Using Theorems 1 and 2 of Sweeting (1980),

n1/2{θ̂′(M)− ϑ̃(M)}⊤J
1/2
M (ϑ)−→Z̃(M),

uniformly in distribution over the compact setΘ. This leads to havinglimn→∞ infϑ∈Θ Pϑ{ϑ ∈ Cα(ϑ)} =

1 − α. (ii) WhenMO is not known, we useAM (Marb) in (7) instead ofAM(Marb ∩ MO), which
defines the valuẽqα. SinceAM(Marb) ⊂ AM (Marb ∩MO), q̃α ≥ qα, which leads to a conservative
confidence region.

Proof of Lemma 2.For everyj = 1, . . . , J and every componentk of the vector̂θn,M(Mj), it holds that

n1/2([θ̂n,M(Mj)]k − [ϑ∗
n,M(Mj)]k) =

n∑

i=1

Q−1
Mj

{ϑ∗
n(Mj)}n

−1/2 ∂

∂θk
log fj,i{Yi, ϑ

∗
n(Mj)}+ oP (1).

By assumption (i), which is a Lindeberg assumption for allGn ∈ Gn, we obtain a uniform limiting
normality result for each of the components ofn1/2(θ̂n,M − ϑ∗

n,M). Under assumption (ii) the data are
in a so-called null triangular array format, to which Corollary 2 of Pollak (1972) applies, resulting in a
joint asymptotic normality for the vector combining all such components.

Proof of Proposition 4.Define the eventsB = [n1/2{θ̂(MAIC)− ϑ∗(MAIC)} ≤ t] and

C = ∩M∈M{n(θ̂M − ϑ∗
M)⊤(WMAIC ,Ms −WMi,Ms)(θ̂M − ϑ∗

M) ≥ 2(|MAIC | − |M |)} + oP (1).

Using the results of Lemma 2 and the continuous mapping theorem, the difference between

P[n1/2{θ̂(MAIC)− ϑ∗(MAIC)} ≤ t | M̂ = MAIC]P(B ∩ C)/P(C)

and P[
{
ΣMAIC (ϑ

∗
MAIC

)1/2Z̃(MAIC) ≤ t
}
∩ {Z ∈ AMAIC (M)}]/P{Z ∈ AMAIC (M)} converges uniformly

to 0.
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Supplementary Material: Asymptotic
post-selection inference for Akaike’s information
criterion
This supplement contains a rewriting of results of Woodroofe (1982), exact calculations for an example,
the selection matrix for one of the simulation settings and additional simulation results.

A Additional lemma

The following Lemma is adapted from Woodroofe (1982). The zero probability of underestimation is a
special case of our Lemma 1, while the exact expressions for overestimation are obtained by rewriting
the generalized arc-sine probabilities of Woodroofe (1982).

Lemma 4. Under assumptions (A1)–(A4), in the nested models case for the model order̂p0 selected such
that the Akaike information criterion is minimized for the corresponding model, it holds that

πp = lim
n→∞

P(p̂0 = p) =

{
0 if a ≤ p < p0,

gp−p0qK−p if p0 ≤ p ≤ K,

whereg0 = q0 = 1 and withRi = {(r1, . . . , ri) ∈ N
i : r1 + 2r2 + . . .+ iri = i}, aj = P(χ2

j > 2j),

gi =
∑

Ri





i∏

j=1

1

rj!

(
aj
j

)rj



 andqi =

∑

Ri





i∏

j=1

1

rj !

(
1− aj

j

)rj



 .

B A worked-out illustrative example

Let erf(x) = 2π−1/2
∫ x
0 exp(−w2) dw denote the ‘error function’ and let erfc(x) = 1− erf(x). Assume

∅ = M0 ⊂ . . . ⊂ M3 with the true valueϑ = (ϑ1, 0, 0)
⊤ and three situations for the3 × 3 matrix
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J−1/2(ϑ),

(a)



1 0 0

0 2 0

0 0 2


 , (b)



1 0 0

0 2 0.5

0 0.5 2


 , (c)




1 0.9 0.9

0.9 2 0.5

0.9 0.5 2


 .

The Akaike information criterion is used to select a model from the set of three nested modelsMnest =

{M1,M2,M3}. Consider the situation that the smallest value of the Akaike information criterion is
attained for the full model, thuŝp0 = 3. In this caseA3 = {(z1, z2, z3) : z

2
3 > 2, z23 + z22 > 4}. Using

Lemma A.4 withp0 = 1, K = 3 andp̂0 = 3 results inP (Z ∈ A3) = 0.08.
Let fj|3 denote the limiting density ofn1/2(θ̂j−ϑj) conditional on̂p0 = 3, then for case (a)f (a)

1|3 (t) =

φ(t) whereφ is the standard normal density function,

{0.16(2π)1/2}f
(a)
2|3 (t) =





exp(−t2/8)erfc
{
(2− t2/8)1/2

}
, t ∈ (−23/2, 23/2)

exp(−t2/8)erfc(1), t ∈ R\[−23/2, 23/2]

0 otherwise,

{0.16(2π)1/2}f
(a)
3|3 (t) =





exp(−t2/8)erfc
{
(2− t2/8)1/2

}
t ∈ (−4,−23/2) ∪ (23/2, 4)

exp(−t2/8) t ∈ (−∞,−4] ∪ [4,∞)

0 otherwise,

For case (b) where there is correlation between the second and third component of the estimator, we
only calculatef3|3, with similar results forf2|3. The limiting distribution ofn1/2(θ̂3 − ϑ3) conditional
on p̂0 = 3 is the distribution of the third row inJ−1/2(ϑ)Z3 which isT = 0·5Z2 + 2Z3. We define

g1(t) = erf{171/2 − t4(2/17)1/2},

g2(t) = erf{171/2 + t4(2/17)1/2},

g3(t) = erf{(2− 2t2/17)1/2}.

By tedious calculations, we find the distribution ofn1/2(θ̂3 − ϑ3) conditional onp̂0 = 3 as follows,

{0.08(34π)1/2}f
(b)
3|3(t) (16)

=





exp(−2t2/17) (2− g1(t)− g2(t)) t ∈ (−2−1/23, 2−1/23)

exp(−2t2/17) (2− g2(t)− g3(t)) t ∈ [2−1/23, 2−1/25)

exp(−2t2/17) (2− g1(t)− g3(t)) t ∈ (−2−1/25,−2−1/23]

exp(−2t2/17) (2− g1(t)− g2(t)− 2g3(t)) t ∈ (−17−1/2,−2−1/25] ∪ [2−1/25, 171/2)

exp(−2t2/17) (2− g1(t)− g2(t)) t ∈ (−∞,−17−1/2] ∪ [17−1/2,∞)

0 otherwise.

For case (c) we calculate forf3|3 the distribution ofW = T + 0·9Z1 whereT has a density function
as in (16). Hence for case (c),

f
(c)
3|3(w) =

∫

D(T )
f
(b)
3|3(t)φ0·9(w − t) dt, (17)

whereD(T ) is the domain of random variableT andφ0·9 is the density of a normal random variable with
standard deviation0·9.

In the naive approach, often out of convenience, one wronglyassumes that̂p0 is deterministic, not
random, and hence one constructs the confidence interval forthe parameters using an assumed asymp-
totic normal distribution of the maximum likelihood estimators. For instance, withJ−1/2

p (ϑ) as in (a),
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(a) (b) (c)

n1/2(θ̂1 − ϑ1
0)

−4 0 4

0.0

0.2

0.4

f1|3
(a) (t)

n1/2(θ̂2 − ϑ2
0)

−7 0 7

0.00

0.08

0.16

f2|3
(a) (t)

n1/2(θ̂3 − ϑ3
0)

−9 0 9

0.00

0.15

0.30

f3|3
(a) (t)

(d) (e)

n1/2(θ̂3 − ϑ3
0)

−9 0 9

0.0

0.2

0.4

f3|3
(b) (t)

n1/2(θ̂3 − ϑ3
0)

−9 0 9

0.0

0.1

0.2

f3|3
(c) (t)

Figure 3: Marginal asymptotic density ofn1/2(θ̂j−ϑj) conditional on̂p0 = 3whenp0 = 1 for j = 1, 2, 3

and for case (a) in panels (a)–(c), for the third component ofcase (b) in panel (d) and for that of case (c)
in panel (e). Dashed line: kernel density estimate using thesimulated values; solid line: exact asymptotic
density.

the naive 95% confidence interval forϑ3 is θ̂3 ± 1·96(2n−1/2). Clearly, this confidence interval does
not consider the uncertainty of model selection. Rather, weshould use the quantile of the symmetric
conditional distribution. The exact0·975% quantile is5·75 while the simulated one is5·77. Hence, the
conditional confidence interval iŝθ3 ± 5·75n−1/2, clearly showing the overoptimism in the meaning of
having a too narrow interval, when neglecting the model selection uncertainty. It should be noted that
for case (a) the limiting probability ofn1/2(θ̂3 − ϑ3) in [−23/2, 23/2] is zero. The density function is not
only bimodal, but also has quite some curvature. The simulation method captures these properties almost
perfectly. For this information matrix, the limiting probability of n1/2(θ̂3 − ϑ3) to be in [0, 2−1/23] is
equal to0·0141 while based on our sampling method, we find0·0139. Again, the naive confidence inter-
val θ̂3±1·96(4·25/n)1/2 is too narrow as compared to the conditional confidence interval θ̂3±5·93n−1/2

where5·93 is the exact0·975% quantile (5·94 based on the simulated distribution).
The diversity of the shape of the density functions after model selection is illustrated with case (c)

for n1/2(θ̂3 − ϑ3). The plot of the exact limiting density is based on numericalintegration from (17).
The97·5% quantile is equal to6·48, again larger than the unconditional value1·96(5·061/2) = 4·41.

For simultaneous confidence regions we computeqα in equation (3) in the paper via constrainedχ2

distributions. An exact calculation is possible when the difference between the number of selected and
true parameters is less than three. Table 4 presents the simulated 95% quantiles for some values ofp0
andp. Using these values in equation (3) in the paper gives coverages, showing close agreement with
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(p0, p) simulated quantile coverageχ2 quantile

(2,3) 10·78 95·0 7·81

(3,4) 12·29 94·8 9·49

(1,3) 12·17 94·9 7·81

(2,4) 13·76 94·8 9·49

(3,5) 15·36 94·9 11·07

(10,12) 25·28 95·0 21·03

(28,30) 47·97 94·9 43·77

Table 4: Simulated quantiles and their exact coverage percentages along with unconditional quantiles of
χ2 distributions.

the nominal value. The unconditional quantiles fromχ2 distributions are obviously too small, resulting
in too optimistic inference, that is, too low coverage probabilities.

C Selection matrix for Marb in Section 4

ζarb =




1 1 1 1 1 1 0 1 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0

1 1 1 1 0 0 0 1 0 0

1 1 1 1 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0

1 1 1 0 1 1 0 0 0 0

1 1 1 0 1 0 0 1 0 0

1 1 1 0 1 0 0 0 0 0

1 1 1 0 0 1 0 1 0 0

1 1 1 0 0 1 0 0 0 0

1 1 1 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0




14×10

.

D Effect of p0 on confidence intervals in nested models

This simulation study illustrates that in nested models considering the smallest model as the true model
leads to confidence intervals with higher coverage probabilities than the nominal value.

Takeθ = (2·25,−1·1, 2·43,−1·24, 2·5, 03)
⊤ as the true parameters in a linear regression model, thus

p0 = 5, a = 1 andK = 7. Mnest consists of 8 nested models; the smallest model contains only an
intercept, the biggest model is the model with all covariates. The sample size varies in{30, 100, 300}.
All other settings are as in Section4·1.

For each sample size we generate data until each of the model orders 5, 6, 7 and 8 has been selected
3000 times. While in this simulation we know the true order is5, we ignore this information by consid-
ering all possible values for the true order which are smaller or equal top̂0. A confidence interval for
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each parameter of the selected model is calculated. For example, whenp̂0 = 6, this means six intervals.
Confidence intervals for the post-selection method of Berk et al. (2013) are reported for comparison. The
confidence intervals and their coverage have been calculated as in Section 4.1.

Tables 5–?? present the confidence intervals forθ1, . . . , θ8 in different settings under different as-
sumptions forp0. For moderate and relatively large sample sizes, 100 and 300, when we assumep0 = 5

the simulation shows the validity of the proposed method foreach of the selected orderŝp. Smaller
values of the assumedp0 lead to wider intervals. Forn = 30 the coverage probabilities decrease by in-
creasinĝp which is due to a too small sample size for an accurate estimation of the full8×8 information
matrix. Whenp̂ = p0, the confidence intervals correspond to the naive confidenceintervals, which have
coverage probabilities close to the nominal value forθ1, . . . , θ5 while for the other parameters they fail
to produce the correct intervals by ignoring the constraints in the selection procedure.

p̂

n p0 5 6 7 8

30 1 [1·85, 2·66] 95 [1·85, 2·64] 94 [1·85, 2·64] 93 [1·86, 2·65] 93

2 [1·85, 2·65] 95 [1·85, 2·64] 94 [1·86, 2·64] 93 [1·87, 2·64] 92

3 [1·85, 2·65] 95 [1·86, 2·64] 93 [1·86, 2·64] 93 [1·87, 2·64] 92

4 [1·85, 2·65] 95 [1·86, 2·63] 93 [1·86, 2·64] 92 [1·87, 2·64] 92

5 [1·86, 2·64] 95 [1·86, 2·63] 93 [1·86, 2·63] 92 [1·87, 2·64] 91

6 - - [1·87, 2·63] 93 [1·87, 2·63] 92 [1·87, 2·63] 91

7 - - - - [1·87, 2·63] 91 [1·88, 2·63] 91

8 - - - - - - [1·88, 2·63] 90

PoSI [1·63, 2·87] 100 [1·65, 2·85] 99 [1·65, 2·85] 99 [1·67, 2·84] 99

100 1 [2·05, 2·45] 96 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 94
2 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 94
3 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 94
4 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 94
5 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·44] 95 [2·05, 2·45] 94
6 - - [2·05, 2·45] 95 [2·05, 2·44] 95 [2·05, 2·45] 94
7 - - [2·05, 2·44] 95 [2·05, 2·45] 94
8 - - - - [2·05, 2·45] 94

PoSI [1·93, 2·54] 100 [1·96, 2·54] 99 [1·96, 2·53] 99 [1·96, 2·54] 99

300 1 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95
2 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95
3 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95
4 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95
5 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95
6 - - [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95
7 - - - - [2·14, 2·36] 96 [2·14, 2·36] 95
8 - - - - - - [2·14, 2·36] 95

PoSI [2·09, 2·42] 100 [2·09, 2·41] 99 [2·09, 2·41] 100 [2·09, 2·41] 99

Table 5: Average simulated post-selection confidence intervals when Akaike’s information criterion is
used for selection, forθ1, together with the average coverage percentage for different scenarios and
different assumptions regardingp0, and the post-selection interval by Berk et al. (2013).
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p̂

n p0 5 6 7 8

30 1 [−1.59,−0·61] 97 [−1·58,−0·63] 95 [−1·57,−0·62] 95 [−1·58,−0·63] 93

2 [−1·55,−0·65] 95 [−1·55,−0·66] 94 [−1·54,−0·65] 92 [−1·55,−0·66] 91

3 [−1·55,−0·66] 95 [−1·55,−0·67] 93 [−1·54,−0·66] 92 [−1·54,−0·66] 91

4 [−1·54,−0·66] 95 [−1·54,−0·67] 93 [−1·54,−0·66] 92 [−1·54,−0·67] 91

5 [−1·53,−0·67] 94 [−1·54,−0·68] 93 [−1·53,−0·67] 92 [−1·54,−0·67] 90

6 − − [−1·53,−0·69] 92 [−1·53,−0·67] 91 [−1·53,−0·67] 90

7 − − − − [−1·52,−0·68] 91 [−1·53,−0·68] 90

8 − − − − − − [−1·52,−0·69] 89

PoSI [−1·78,−0·42] 100 [−1·77,−0·44] 99 [−1·76,−0·43] 99 [−1·77,−0·44] 99

100 1 [−1·34,−0·86] 97 [−1·34,−0·86] 96 [−1·34,−0·86] 96 [−1·34,−0·86] 96

2 [−1·32,−0·87] 96 [−1·32,−0·88] 95 [−1·32,−0·88] 94 [−1·32,−0·87] 95

3 [−1·32,−0·88] 96 [−1·32,−0·88] 95 [−1·32,−0·88] 94 [−1·32,−0·87] 95

4 [−1·32,−0·88] 95 [−1·32,−0·88] 94 [−1·32,−0·88] 94 [−1·32,−0·87] 95

5 [−1·31,−0·88] 95 [−1·32,−0·88] 94 [−1·32,−0·88] 94 [−1·32,−0·88] 95

6 − − [−1·32,−0·88] 94 [−1·32,−0·88] 93 [−1·32,−0·88] 95

7 − − − − [−1·32,−0·88] 93 [−1·32,−0·88] 94

8 − − − − − − [−1·32,−0·88] 94

PoSI [−1·41,−0·78] 99 [−1·42,−0·78] 99 [−1·42,−0·78] 99 [−1·42,−0·78] 99

300 1 [−1·24,−0·96] 98 [−1·24,−0·96] 97 [−1·24,−0·97] 97 [−1·24,−0·96] 96

2 [−1·23,−0·98] 97 [−1·23,−0·97] 96 [−1·23,−0·97] 95 [−1·23,−0·97] 95

3 [−1·23,−0·98] 97 [−1·22,−0·97] 96 [−1·23,−0·98] 95 [−1·23,−0·97] 95

4 [−1·22,−0·98] 97 [−1·22,−0·97] 96 [−1·23,−0·98] 95 [−1·23,−0·97] 95

5 [−1·22,−0·98] 96 [−1·22,−0·98] 96 [−1·23,−0·98] 95 [−1·23,−0·97] 95

6 − − [−1·22,−0·98] 95 [−1·23,−0·98] 95 [−1·23,−0·97] 95

7 − − − − [−1·23,−0·98] 95 [−1·22,−0·97] 94

8 − − − − − − [−1·22,−0·98] 94

PoSI [−1·28,−0·93] 100 [−1·28,−0·92] 99 [−1·28,−0·92] 99 [−1·28,−0·92] 99

Table 6: Average simulated post-selection confidence intervals forθ2, together with the average coverage
percentage for different scenarios and different assumptions regardingp0. Also given are the results of
the post-selection interval by Berk et al. (2013).

E PostAIC confidence intervals for linear combinations in nested models

Four different scenarios for the true parameters are considered,

Scenario 1 : θ = (2·25,−1·1, 2·43,−1·24, 2·5)⊤,

Scenario 2 : θ = (2·25,−1·1, 2·43,−1·24, 2·5, 03)
⊤,

Scenario 3 : θ = (2·25,−1·1, 2·43,−1·24, 2·5, 012)
⊤,

Scenario 4 : θ = (2·25, 07)
⊤.

In Scenario 1 the largest model is the true model. Scenarios 2and 3 are dealing with the true model
somewhere in between but with different numbers of candidate models and redundant variables. In
Scenario 4 the smallest model is the true model. The error standard deviation varies in the set{0·5, 1, 3}
and other settings for data generation process are the same as in the previous section. We useMnest

to select a model which is used to make a confidence interval for x⊤θ, with x an out-of-sample new
observation. We run the simulation 3000 times for all settings.

Table?? presents the average length of the intervals over 3000 runs with their coverage percentages
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p̂

n p0 5 6 7 8

30 1 [1·90, 2·96] 99 [1·92, 2·94] 96 [1·92, 2·93] 95 [1·94, 2·93] 95

2 [1·94, 2·92] 98 [1·96, 2·91] 95 [1·95, 2·90] 94 [1·97, 2·91] 93

3 [1·98, 2·87] 97 [1·99, 2·87] 93 [1·98, 2·87] 92 [2·00, 2·87] 91

4 [1·99, 2·87] 96 [2·00, 2·87] 93 [1·99, 2·86] 92 [2·00, 2·87] 91

5 [2·00, 2·86] 96 [2·00, 2·86] 92 [1·99, 2·86] 91 [2·00, 2·87] 91

6 − − [2·01, 2·85] 92 [1·99, 2·85] 91 [2·01, 2·86] 91

7 − − − − [2·00, 2·85] 90 [2·01, 2·86] 90

8 − − − − − − [2·02, 2·85] 90

PoSI [1·75, 3.11] 100 [1·77, 3.10] 99 [1·76, 3.09] 99 [1·78, 3.10] 99

100 1 [2·17, 2·69] 99 [2·17, 2·69] 98 [2·17, 2·68] 97 [2·17, 2·68] 97

2 [2·19, 2·67] 98 [2·19, 2·67] 97 [2·19, 2·67] 96 [2·19, 2·67] 96

3 [2·21, 2·65] 96 [2·21, 2·65] 95 [2·21, 2·65] 95 [2·20, 2·65] 94

4 [2·21, 2·65] 96 [2·21, 2·65] 95 [2·21, 2·65] 94 [2·20, 2·65] 94

5 [2·21, 2·65] 95 [2·21, 2·65] 95 [2·21, 2·65] 94 [2·20, 2·65] 94

6 − − [2·21, 2·64] 94 [2·21, 2·65] 94 [2·21, 2·65] 94

7 − − − − [2·21, 2·65] 94 [2·21, 2·65] 94

8 − − − − − − [2·21, 2·65] 94

PoSI [2·12, 2·75] 100 [2·11, 2·74] 99 [2·11, 2·75] 99 [2·11, 2·75] 99

300 1 [2·28, 2·58] 98 [2·28, 2·58] 98 [2·29, 2·58] 97 [2·29, 2·57] 98

2 [2·29, 2·57] 97 [2·29, 2·57] 97 [2·30, 2·57] 96 [2·29, 2·57] 97

3 [2·30, 2·55] 96 [2·30, 2·56] 95 [2·31, 2·56] 95 [2·30, 2·56] 95

4 [2·30, 2·55] 96 [2·30, 2·55] 95 [2·31, 2·56] 95 [2·30, 2·56] 95

5 [2·31, 2·55] 95 [2·31, 2·55] 95 [2·31, 2·56] 95 [2·30, 2·56] 95

6 − − [2·31, 2·55] 95 [2·31, 2·56] 95 [2·30, 2·56] 95

7 − − − − [2·31, 2·56] 95 [2·31, 2·56] 95

8 − − − − − − [2·31, 2·56] 95

PoSI [2·25, 2·60] 99 [2·25, 2·61] 99 [2·25, 2·61] 99 [2·25, 2·61] 99

Table 7: Average simulated post-selection confidence intervals forθ3, together with the average coverage
percentage for different scenarios and different assumptions regardingp0. Also given are the results of
the post-selection interval by Berk et al. (2013).

for the proposed method, the post-selection prediction method and the smoothed bootstrap method for
different settings. In scenario 4 where the true model is thesmallest model, the asymptotic method gives
accurate results as expected. Forn = 30, the bootstrap method underestimates the confidence intervals
(low coverages) except in scenario 4 in which it gives acceptable coverage probabilities but the length
of these intervals is about1·5 times larger than those of the proposed method. In scenarios1 and 2 for
n = 100 the bootstrap coverages are a bit lower than 95% but still acceptable and the lengths are smaller
than from the proposed method, which is conservative. For scenarios 3 and 4 the proposed method
performs better than the other methods, especially for highvalues ofσ. The post-selection prediction
intervals are always wider and their coverage probabilities are always close to one. The reason for this is
that this method does not specify the specific selection procedure and in this simulation study, we used
the corresponding code that assumes that all subsets of a largest model are used in the selection.
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p̂

n p0 5 6 7 8

30 1 [−1·81,−0·66] 99 [−1·79,−0·70] 97 [−1·78,−0·71] 96 [−1·76,−0·72] 96

2 [−1·78,−0·69] 98 [−1·76,−0·72] 97 [−1·75,−0·73] 96 [−1·74,−0·74] 95

3 [−1·74,−0·74] 97 [−1·72,−0·76] 95 [−1·72,−0·76] 95 [−1·71,−0·77] 93

4 [−1·68,−0·80] 95 [−1·68,−0·81] 93 [−1·68,−0·80] 92 [−1·67,−0·80] 90

5 [−1·67,−0·81] 95 [−1·67,−0·81] 93 [−1·68,−0·81] 92 [−1·67,−0·81] 90

6 − − [−1·66,−0·82] 92 [−1·67,−0·81] 92 [−1·67,−0·81] 90

7 − − − − [−1·66,−0·82] 91 [−1·66,−0·81] 89

8 − − − − − − [−1·66,−0·82] 89

PoSI [−1·92,−0·56] 100 [−1·91,−0·57] 99 [−1·91,−0·57] 99 [−1·90,−0·58] 99

100 1 [−1·53,−0·95] 99 [−1·51,−0·96] 99 [−1·51,−0·97] 98 [−1·51,−0·97] 97

2 [−1·51,−0·97] 98 [−1·50,−0·98] 98 [−1·50,−0·98] 98 [−1·49,−0·98] 97

3 [−1·49,−0·99] 98 [−1·48,−0·99] 97 [−1·48,−1·00] 97 [−1·48,−1·00] 96

4 [−1·46,−1·02] 95 [−1·46,−1·02] 96 [−1·46,−1·02] 95 [−1·46,−1·02] 94

5 [−1·45,−1·02] 95 [−1·46,−1·02] 95 [−1·46,−1·02] 95 [−1·46,−1·02] 94

6 − − [−1·45,−1·02] 95 [−1·46,−1·02] 95 [−1·46,−1·02] 94

7 − − − − [−1·45,−1·02] 95 [−1·46,−1·02] 94

8 − − − − − − [−1·46,−1·02] 94

PoSI [−1·55,−0·92] 100 [−1·55,−0·92] 99 [−1·55,−0·92] 99 [−1·56,−0·92] 99

300 1 [−1·40,−1·08] 99 [−1·40,−1·08] 99 [−1·40,−1·09] 99 [−1·40,−1·09] 98

2 [−1·39,−1·09] 98 [−1·39,−1·09] 98 [−1·39,−1·09] 98 [−1·39,−1·10] 98

3 [−1·38,−1·10] 98 [−1·38,−1·10] 97 [−1·38,−1·10] 97 [−1·38,−1·11] 97

4 [−1·36,−1·11] 96 [−1·37,−1·12] 96 [−1·37,−1·11] 95 [−1·37,−1·12] 95

5 [−1·36,−1·12] 96 [−1·37,−1·12] 96 [−1·37,−1·12] 95 [−1·37,−1·12] 95

6 − − [−1·36,−1·12] 95 [−1·37,−1·12] 95 [−1·37,−1·12] 95

7 − − − − [−1·36,−1·12] 95 [−1·37,−1·12] 95

8 − − − − − − [−1·37,−1·12] 95

PoSI [−1·41,−1·06] 99 [−1·42,−1·06] 99 [−1·42,−1·06] 99 [−1·42,−1·06] 99

Table 8: Average simulated post-selection confidence intervals forθ4, together with the average coverage
percentage for different scenarios and different assumptions regardingp0. Also given are the results of
the post-selection interval by Berk et al. (2013).

F Poisson regression

To investigate the performance of the proposed method in generalized linear models, we consider Poisson
regression where the response values are generated from

Yi = Pois
{
exp(

10∑

j=1

θjxji)
}
, i = 1, · · · , n,

x1i = 1 and forj = 2, . . . , 10, xji are generated independently from Uniform[−1, 1]. The sample size
varies as before andθ = (1·25,−1·1, 1·43,−1·24, 1·5, 05)

⊤. Three different selection matrices are consid-
ered,ζi, i ∈ {1, 3, 5} which force the firsti covariates in the model. There were no under-parametrized
models selected, also for the small sample size. The simulation runs until for each setting the model
(θ1, . . . , θ5, θ7, θ9)

⊤ had been selected 3000 times. The confidence intervals for the superfluous param-
eters are presented in Table??.

The results for the proposed method are similar as in the previous examples. Forζ5 the simulated
coverage probabilities show the validity of the proposed method. Because this selection matrix considers
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p̂

n p0 5 6 7 8

30 1 [1·81, 3.20] 100 [1·91, 3.09] 98 [1·93, 3.06] 97 [1·95, 3.05] 96

2 [1·84, 3.17] 100 [1·94, 3.06] 98 [1·95, 3.04] 96 [1·97, 3.03] 95

3 [1·87, 3.14] 99 [1·97, 3.03] 97 [1·98, 3.01] 095 [2·00, 3.00] 94

4 [1·92, 3.09] 99 [2·01, 2·99] 96 [2·02, 2·98] 93 [2·03, 2·97] 93

5 [2·07, 2·94] 95 [2·07, 2·93] 93 [2·06, 2·93] 91 [2·07, 2·93] 91

6 − − [2·08, 2·92] 92 [2·07, 2·93] 90 [2·07, 2·93] 90

7 − − − − [2·07, 2·92] 89 [2·07, 2·92] 90

8 − − − − − − [2·08, 2·92] 90

PoSI [1·82, 3.19] 100 [1·83, 3.17] 99 [1·83, 3.17] 99 [1·84, 3.16] 99

100 1 [2·15, 2·85] 100 [2·20, 2·80] 99 [2·21, 2·79] 99 [2·22, 2·78] 98

2 [2·17, 2·83] 100 [2·22, 2·79] 99 [2·22, 2·78] 98 [2·23, 2·77] 98

3 [2·18, 2·82] 100 [2·23, 2·77] 98 [2·24, 2·76] 98 [2·24, 2·75] 97

4 [2·21, 2·79] 99 [2·25, 2·75] 97 [2·26, 2·74] 96 [2·26, 2·74] 96

5 [2·28, 2·72] 95 [2·28, 2·72] 95 [2·28, 2·72] 94 [2·28, 2·72] 94

6 − − [2·29, 2·72] 94 [2·28, 2·72] 94 [2·28, 2·72] 93

7 − − − − [2·28, 2·72] 94 [2·28, 2·72] 93

8 − − − − − − [2·28, 2·71] 93

PoSI [2·18, 2·82] 100 [2·19, 2·82] 99 [2·18, 2·82] 99 [2·18, 2·81] 99

300 1 [2·30, 2·70] 100 [2·33, 2·67] 99 [2·34, 2·67] 99 [2·34, 2·66] 99

2 [2·31, 2·69] 100 [2·34, 2·66] 99 [2·34, 2·66] 99 [2·35, 2·66] 98

3 [2·32, 2·68] 100 [2·35, 2·65] 99 [2·35, 2·65] 98 [2·35, 2·65] 98

4 [2·34, 2·67] 99 [2·36, 2·64] 98 [2·36, 2·64] 97 [2·36, 2·64] 97

5 [2·38, 2·62] 96 [2·37, 2·62] 95 [2·37, 2·63] 95 [2·38, 2·63] 95

6 − [2·38, 2·62] 95 [2·38, 2·63] 95 [2·38, 2·63] 95

7 − − − [2·38, 2·62] 95 [2·38, 2·63] 95

8 − − − − − [2·38, 2·63] 95

PoSI [2·33, 2·68] 100 [2·32, 2·68] 99 [2·32, 2·68] 99 [2·32, 2·68] 99

Table 9: Average simulated post-selection confidence intervals forθ5, together with the average coverage
percentage for different scenarios and different assumptions regardingp0. Also given are the results of
the post-selection interval by Berk et al. (2013).

all the non-zero parameters in the model and all truly zero parameters are under selection, the coverage
probabilities are close to 95%. Other selection matrices lead to more conservative confidence intervals for
the parameters due to conditioning on the selected model. The naive unconditional confidence intervals
are always tighter than those of the proposed method and their coverage probabilities are much lower
than the nominal value.

G Under-parametrized model selection

As discussed before, for small sample sizes it might happen that a model with less parameters than the
true model is selected. If this happens, the proposed methodcan still be used, although assumption A1
does not hold. Consider the true value for parameters in linear regressionθ = (0·25,−0·1, 0·43,−0·24, 0·5, 05)

⊤,

sample size 30, error standard deviation equal to 2 and all other settings are as before. With the same
notation as in the previous example, the selection matrix isζ1. We focus on three models which are
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p̂

n p0 6 7 8

30 1 [−0·70, 0·71] 99 [−0·61, 0·61] 98 [−0·57, 0·59] 97

2 [−0·68, 0·69] 99 [−0·59, 0·59] 97 [−0·55, 0·57] 96

3 [−0·65, 0·66] 98 [−0·56, 0·56] 97 [−0·53, 0·54] 95

4 [−0·62, 0·63] 96 [−0·53, 0·53] 95 [−0·50, 0·52] 93

5 [−0·57, 0·58] 94 [−0·49, 0·49] 93 [−0·47, 0·48] 91

6 [−0·42, 0·43] 73 [−0·43, 0·43] 88 [−0·42, 0·44] 88

7 − − [−0·42, 0·42] 87 [−0·42, 0·43] 87

8 − − − − [−0·41, 0·42] 86

PoSI [−0·66, 0·68] 98 [−0·67, 0·67] 99 [−0·65, 0·67] 98

100 1 [−0·36, 0·36] 99 [−0·31, 0·31] 99 [−0·30, 0·30] 98

2 [−0·35, 0·35] 99 [−0·30, 0·30] 98 [−0·29, 0·29] 97

3 [−0·34, 0·33] 98 [−0·29, 0·29] 98 [−0·28, 0·28] 96

4 [−0·32, 0·32] 97 [−0·27, 0·27] 97 [−0·26, 0·26] 95

5 [−0·29, 0·29] 95 [−0·25, 0·25] 95 [−0·24, 0·24] 93

6 [−0·22, 0·21] 72 [−0·22, 0·22] 90 [−0·22, 0·22] 90

7 − − [−0·22, 0·22] 89 [−0·22, 0·22] 90

8 − − − − [−0·22, 0·22] 90

PoSI [−0·32, 0·31] 96 [−0·32, 0·32] 99 [−0·32, 0·32] 98

300 1 [−0·21, 0·20] 100 [−0·18, 0·18] 99 [−0·17, 0·17] 99

2 [−0·20, 0·20] 99 [−0·17, 0·17] 99 [−0·17, 0·16] 99

3 [−0·19, 0·19] 99 [−0·16, 0·16] 99 [−0·16, 0·16] 98

4 [−0·18, 0·18] 98 [−0·15, 0·15] 98 [−0·15, 0·15] 97

5 [−0·17, 0·17] 96 [−0·14, 0·14] 96 [−0·14, 0·14] 95

6 [−0·12, 0·12] 74 [−0·12, 0·13] 92 [−0·13, 0·13] 92

7 − − [−0·12, 0·12] 91 [−0·13, 0·12] 92

8 − − − − [−0·13, 0·12] 92

PoSI [−0·18, 0·18] 97 [−0·18, 0·18] 99 [−0·18, 0·18] 99

Table 10: Average simulated post-selection confidence intervals forθ6, together with the average cover-
age percentage for different scenarios and different assumptions regardingp0. Also given are the results
of the post-selection interval by Berk et al. (2013).

represented in the selection matrix and contain the following parameters,

model 1 : (θ1, θ3)

model 2 : (θ1, θ5)

model 3 : (θ1, θ2, θ5).

The simulations were run until each of these models had been selected 3000 times. Table?? illustrates
that the proposed method is able to provide conditional confidence intervals even in possibly under-
parametrized models. The naive method’s simulated coverage percentages are shown between parenthe-
ses. For model 3, the naive method performs poorly in terms ofcoverage.

H Naive method fails for the truly non-zero parameters

Inference for the truly non-zero parameters can fail because in the limit the estimators are defined as
a multiplication of the corresponding row in̂J1/2

M (θ̂) to Z̃(M) with Z̃(M) ∈ AM(M). So, if one of
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p̂

n p0 7 8

30 1 [−0·71, 0·72] 98 [−0·61, 0·63] 97

2 [−0·69, 0·70] 98 [−0·60, 0·61] 96

3 [−0·67, 0·67] 97 [−0·57, 0·59] 96

4 [−0·65, 0·65] 96 [−0·55, 0·56] 95

5 [−0·61, 0·62] 94 [−0·52, 0·53] 93

6 [−0·57, 0·57] 90 [−0·48, 0·49] 89

7 [−0·42, 0·42] 58 [−0·42, 0·43] 82

8 − − [−0·41, 0·42] 81

PoSI [−0·66, 0·66] 96 [−0·66, 0·67] 98

100 1 [−0·37, 0·37] 99 [−0·32, 0·33] 98

2 [−0·36, 0·36] 99 [−0·31, 0·32] 98

3 [−0·35, 0·35] 98 [−0·30, 0·31] 97

4 [−0·33, 0·34] 97 [−0·29, 0·29] 96

5 [−0·32, 0·32] 96 [−0·27, 0·28] 94

6 [−0·29, 0·30] 92 [−0·25, 0·25] 91

7 [−0·21, 0·22] 48 [−0·22, 0·22] 84

8 − − [−0·21, 0·22] 83

PoSI [−0·31, 0·32] 95 [−0·32, 0·32] 98

300 1 [−0·21, 0·21] 99 [−0·18, 0·18] 99

2 [−0·21, 0·21] 99 [−0·18, 0·18] 99

3 [−0·20, 0·20] 98 [−0·17, 0·17] 98

4 [−0·19, 0·19] 97 [−0·16, 0·16] 97

5 [−0·18, 0·18] 95 [−0·15, 0·15] 95

6 [−0·17, 0·17] 92 [−0·14, 0·14] 93

7 [−0·12, 0·12] 49 [−0·13, 0·13] 85

8 − − [−0·12, 0·12] 85

PoSI [−0·18, 0·18] 93 [−0·18, 0·18] 98

Table 11: Average simulated post-selection
confidence intervals forθ7, together with the
average coverage percentage for different sce-
narios and different assumptions regardingp0.
Also given are the results of the post-selection
interval by Berk et al. (2013).

p̂

n p0 8

30 1 [−0·75, 0·71] 97

2 [−0·74, 0·69] 97

3 [−0·72, 0·67] 96

4 [−0·70, 0·65] 95

5 [−0·67, 0·62] 94

6 [−0·64, 0·59] 92

7 [−0·59, 0·54] 87

8 [−0·44, 0·39] 46

PoSI [−0·68, 0·64] 94

100 1 [−0·38, 0·38] 99

2 [−0·37, 0·37] 98

3 [−0·36, 0·36] 98

4 [−0·35, 0·35] 97

5 [−0·34, 0·34] 96

6 [−0·32, 0·32] 93

7 [−0·30, 0·30] 87

8 [−0·22, 0·22] 39

PoSI [−0·32, 0·32] 92

300 1 [−0·22, 0·22] 99

2 [−0·21, 0·21] 99

3 [−0·21, 0·21] 99

4 [−0·20, 0·20] 98

5 [−0·19, 0·19] 96

6 [−0·18, 0·18] 93

7 [−0·17, 0·17] 87

8 [−0·12, 0·13] 38

PoSI [−0·18, 0·18] 89

Table 12: Average simulated post-selection confi-
dence intervals forθ8, together with the average cov-
erage percentage for different scenarios and differ-
ent assumptions regardingp0. Also given are the
results of the post-selection interval by Berk et al.
(2013).

the Zis is constrained and the corresponding element for thisZi in Ĵ
1/2
M (θ̂) is relatively big for one

parameter, then the distribution of that parameter is highly effected by thatZi.
Consider the settings in Section 4.1 but hereΩ is defined as

Ωij =





0·95 i = 3, j = 4, . . . , 9

0·95 j = 3, i = 4, . . . , 9

1 i = j

0·25 otherwise

We use the functionnearPD in R to find the nearest positive definite matrix for thisΩ and use that
matrix to generate the covariates. Forn = 100, andζ3all the naive confidence interval’s coverage forθ4
is only 0·60 while for the proposed method it is0·96.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
σ n method length coverage length coverage length coverage length coverage

0·5 30 PostAIC 1·17 98 1·26 99 1·72 97 0·57 94
Bootstrap 0·78 90 0·98 91 6.51 89 0·87 93

PoSIp 1·31 99 1·60 100 2·91 100 0·84 100

100 PostAIC 0·59 99 0·63 99 0·66 98 0·28 95
Bootstrap 0·42 93 0·50 94 0·68 95 0·42 96

PoSIp 0·63 100 0·74 100 0·96 100 0·39 99

300 PostAIC 0·34 99 0·35 99 0·37 98 0·15 95
Bootstrap 0·24 95 0·29 95 0·38 96 0·24 97

PoSIp 0·35 99 0·41 100 0·52 100 0·22 99

1 30 PostAIC 2·39 98 2·53 99 3.45 97 1·13 94
Bootstrap 1·57 90 1·96 91 13.01 89 1·74 93

PoSIp 2·62 99 3.19 100 5.82 100 1·69 100

100 PostAIC 1·19 99 1·25 99 1·33 98 0·55 95
Bootstrap 0·84 93 1·00 94 1·37 95 0·85 96

PoSIp 1·26 100 1·47 100 1·92 100 0·78 99

300 PostAIC 0·67 99 0·71 99 0·74 98 0·31 95
Bootstrap 0·49 95 0·58 95 0·75 96 0·49 97

PoSIp 0·71 99 0·82 100 1·04 100 0·44 99

3 30 PostAIC 6.98 98 7.56 98 10·32 97 3.40 94
Bootstrap 4.79 90 5.91 91 39.04 89 5.23 94

PoSIp 7.82 99 9.53 99 17.43 100 5.06 100

100 PostAIC 3.57 99 3.76 99 4.00 98 1·65 95
Bootstrap 2·51 95 2·98 94 4.10 95 2·54 96

PoSIp 3.79 100 4.14 100 5.74 100 2·35 99

300 PostAIC 2·02 99 2·12 99 2·22 99 0·93 95
Bootstrap 1·46 95 1·73 95 2·25 96 1·46 97

PoSIp 2·12 99 2·46 100 3.11 100 1·31 99

Table 13: Simulated average length of 95% confidence intervals and the coverage percentages for a linear
combination of the parameters for different methods in nested models.

n method θj ζ1 ζ3 ζ5

30 PostAIC θ7 [−0·46, 0·48] 98 [−0·44, 0·45] 96 [−0·42, 0·43] 94

θ9 [−0·47, 0·48] 97 [−0·45, 0·46] 96 [−0·42, 0·43] 95

Naive θ7 [−0·29, 0·31] 56 [−0·30, 0·31] 56 [−0·30, 0·31] 56

θ9 [−0·30, 0·31] 55 [−0·30, 0·31] 55 [−0·30, 0·31] 55

100 PostAIC θ7 [−0·18, 0·18] 97 [−0·17, 0·17] 96 [−0·17, 0·17] 95

θ9 [−0·18, 0·17] 96 [−0·17, 0·17] 96 [−0·17, 0·16] 95

Naive θ7 [−0·12, 0·12] 64 [−0·12, 0·12] 64 [−0·12, 0·12] 64

θ9 [−0·12, 0·12] 60 [−0·12, 0·12] 60 [−0·12, 0·12] 60

300 PostAIC θ7 [−0·09, 0·09] 97 [−0·09, 0·09] 97 [−0·09, 0·09] 95

θ9 [−0·09, 0·09] 97 [−0·09, 0·09] 97 [−0·09, 0·08] 96

Naive θ7 [−0·06, 0·06] 67 [−0·06, 0·06] 66 [−0·06, 0·06] 67

θ9 [−0·07, 0·06] 67 [−0·07, 0·06] 66 [−0·07, 0·06] 67

Table 14: Averaged simulated confidence intervals and the simulated coverage percentages for parame-
ters in Poisson regression.
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model 1 model 2 model 3

θ1 [−0·54, 1·05] 96(0·96) [−0·53, 1·04] 96(95) [−0·52, 1·01] 94(93)

θ2 − − − − [−1·52, 0·71] 96(74)

θ3 [−0·26, 1·86] 98(92) − − − −

θ5 − − [−0·22, 1·89] 98(93) [−0·20, 1·98] 98(88)

Table 15: Average simulated PostAIC confidence intervals and their coverage percentage using a possibly
under-parametrized selected model (coverage percentage of the naive intervals).


