
SIAM J. SCI. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 1, pp. A504–A528

ASYMPTOTIC-PRESERVING MONTE CARLO METHODS
FOR TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT∗

G. DIMARCO† , L. PARESCHI† , AND G. SAMAEY‡

Abstract. We develop a new Monte Carlo method that solves hyperbolic transport equations
with stiff terms, characterized by a (small) scaling parameter. In particular, we focus on systems
which lead to a reduced problem of parabolic type in the limit when the scaling parameter tends to
zero. Classical Monte Carlo methods suffer severe time step limitations in these situations, due to
the fact that the characteristic speeds go to infinity in the diffusion limit. This makes the problem a
real challenge, since the scaling parameter may differ by several orders of magnitude in the domain.
To circumvent these time step limitations, we construct a new, asymptotic-preserving Monte Carlo
method that is stable independently of the scaling parameter and degenerates to a standard proba-
bilistic approach for solving the limiting equation in the diffusion limit. The method uses an implicit
time discretization to formulate a modified equation in which the characteristic speeds do not grow
indefinitely when the scaling factor tends to zero. The resulting modified equation can readily be
discretized by a Monte Carlo scheme, in which the particles combine a finite propagation speed with
a time step dependent diffusion term. We show the performance of the method by comparing it with
standard (deterministic) approaches in the literature.
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1. Introduction. In many situations in which hyperbolic transport equations
intervene, such as neutron transport [14], radiative transfer [5, 10, 11], plasma physics
[6], or semiconductor simulation [42], the multiscale nature of the phenomena involved
causes large difficulties for the development of efficient numerical methods. In fact, the
scaling parameters that characterize the relevant time scales which determine the evo-
lution of such problems may differ by several orders of magnitude, making the problem
very stiff [14]. This stiffness limits the maximal time step that can be taken when
using an explicit discretization. In addition, in the limit when the scaling parameter
tends to zero, the equations that are used to model these phenomena may change
character, passing from a hyperbolic to a parabolic structure [3]. In the particular
setting of a diffusive scaling [3, 13] that is considered in this work, the characteristic
speeds of the hyperbolic system grow to infinity as the scaling parameter tends to
zero, causing severe CFL restrictions in standard explicit numerical methods, both in
deterministic (grid-based) and stochastic Monte Carlo (particle-based) approaches.

Thus, the first idea to deal with such systems consists in using implicit time
integration methods. Unfortunately, these techniques are possible to implement only
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for grid-based space discretizations. Moreover, the main drawback of such approaches
is that they often lead to large nonlinear systems that are very hard to invert due
to the high dimension of the equations involved. For this reason, it is desirable to
develop numerical methods that are not fully implicit yet are able to overcome the
computational cost caused by the stiffness by avoiding time step limitations related to
the scaling parameter. A particularly appealing class of schemes, developed for facing
these situations, is the so-called asymptotic-preserving schemes [4, 7, 9, 15, 23, 27, 28,
29, 30, 32, 33, 37, 39, 40], which degenerate to consistent discretization of the limiting
problem when the scaling parameter is set to zero. Recently, this approach has been
considered in the framework of implicit-explicit (IMEX) Runge–Kutta schemes with
the aim of deriving high order numerical methods that are accurate in all regimes,
i.e., regardless of the value of the scaling parameter [23, 7, 8, 22]. In particular,
these schemes also preserve the desired order of accuracy, even in the limit when the
scaling parameter tends to zero. Recently, via projective integration [25], fully explicit
methods for stiff hyperbolic transport equations also have been developed [36, 35, 34].

In this work, we concentrate on the development of asymptotic-preserving Monte
Carlo methods for solving hyperbolic transport equations in the diffusion limit. The
Monte Carlo approach represents a very popular method to deal with transport equa-
tions due to its flexibility and low computational cost [12, 5, 41, 46, 38]. However,
one of the main limitations of Monte Carlo methods is the difficulty to construct
schemes which work uniformly for all values of the scaling parameters [12, 46]. For
this reason, various modified Monte Carlo techniques have been recently proposed
in the case of the so-called hydrodynamic scaling [20, 21, 17, 44, 46, 47]. To the
best of our knowledge, up to now, a Monte Carlo scheme which is able to work uni-
formly in the diffusive scaling without causing severe time step limitations has not
been constructed. The main motivation for not using particle methods in this frame-
work is that the characteristic speeds grow to infinity in the diffusive limit. Thus,
the dominant technique to overcome this problem consists nowadays in employing
domain decomposition strategies, in which a Monte Carlo discretization of the hyper-
bolic transport equation is solved in regions in which the scaling parameter is large,
and the limiting equation is solved (deterministically) in regions where the scaling
parameter is small. These approaches have been largely studied for kinetic equations
both for the diffusive [2, 16, 32] and for the hydrodynamic scaling [18, 19]; see also,
e.g., [24] for related ideas. However, even if these methods are very efficient, they
are affected by some difficulties due to the fact that it is not always a simple task to
define the different regions of the domain in which the use of a macroscopic model is
fully justified.

In this paper, our main goal is to develop an asymptotic-preserving Monte Carlo
method in the diffusive scaling. The method does not rely on domain decomposition
strategies or on coupling with a deterministic discretization of the limiting equation.
Instead, to overcome the parabolic stiffness, the main ingredients are a suitable refor-
mulation of the original system based on an implicit time discretization [7, 8], which
leads to a modified equation where the characteristic speeds are bounded in terms of
the scaling parameters. An appropriate splitting strategy for this equation then per-
mits the construction of a Monte Carlo scheme that works independently of the value
of the scaling parameter and that automatically degenerates to a classical random
walk method for limiting the diffusion equation. The method is first constructed by
using the Goldstein–Taylor model [26] under the diffusive scaling. Successively, the
scheme is extended to the case of the kinetic radiative transport equation [14].

The remainder of this paper is organized as follows. In section 2, we discuss the de-
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velopment of the new Monte Carlo method in the case of the Goldstein–Taylor model.
First we introduce the model and its diffusion limit. We also recall the standard split-
ting method that leads to classical Monte Carlo schemes for kinetic equations. Next,
we introduce the new asymptotic-preserving Monte Carlo method. Subsequently, in
section 3, we extend our methodology to the case of the radiative transport equation.
After the introduction of the kinetic model in the diffusive scaling we again discuss its
diffusive limit and the corresponding classical Monte Carlo schemes. Then, we extend
the asymptotic preserving Monte Carlo scheme to the case of the radiative transport.
We present several numerical tests and analyze the performance of the new methods
in section 4. Finally, in section 5, we draw some conclusions and give an outlook on
future research directions.

2. Asymptotic-preserving Monte Carlo methods for the Goldstein–
Taylor model. In this section we discuss the construction of asymptotic-preserving
Monte Carlo methods using as a prototype problem the Goldstein–Taylor model in
the diffusive scaling. To this aim, we first introduce the prototype problem and em-
phasize the drawbacks of a standard Monte Carlo approach. Next, by means of a
suitable problem reformulation we construct our novel class of asymptotic-preserving
Monte Carlo methods.

2.1. The Goldstein–Taylor model in the diffusive limit. The Goldstein–
Taylor model [26] can be written as the following system of kinetic equations:

(2.1)

 ∂tf+ + V∂xf+ =
σ

2
(f− − f+) ,

∂tf− − V∂xf− =
σ

2
(f+ − f−) ,

where f± = f±(x, t) ≥ 0, x ∈ Ω ⊂ R, and t ∈ R+. The model describes the evolu-
tion of two sets of particles: particles with (constant) velocity V with density f+ and
particles with (constant) velocity −V with density f−. Equation (2.1) gives a phys-
ically intuitive description of the process: the left-hand side denotes transport with
the characteristic speeds ±V, whereas the right-hand side encodes random velocity
changes that can be interpreted as collisions: in both populations particles disappear
with a rate σ and reappear with the opposite velocity.

The diffusive scaling corresponds to taking V = 1/ε and σ = 1/ε2, where ε > 0 is
the scaling parameter. The scaled model reads

(2.2)


∂tf+ +

1

ε
∂xf+ =

1

ε2

(ρ
2
− f+

)
,

∂tf− −
1

ε
∂xf− =

1

ε2

(ρ
2
− f−

)
,

where we have introduced the mass density ρ(x, t) and the scaled momentum j(x, t)
defined as

(2.3) ρ = f+ + f−, j =
f+ − f−

ε
.

Now, using the above macroscopic variables system, (2.2) can be written equivalently
in the form

(2.4)

∂tρ+ ∂xj = 0,

∂tj +
1

ε2
∂xρ = − 1

ε2
j.
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The original kinetic variables are recovered through relations

(2.5) f+ =
ρ+ εj

2
, f− =

ρ− εj
2

.

Throughout the manuscript, we will systematically switch back and forth between
the systems (2.2) and (2.4). The motivation is that (2.2) is more convenient for
the development of the Monte Carlo solver whereas (2.4) permits us to compute the
diffusion limit simply using the leading order term.

In fact, as ε→ 0 from the second equation in (2.4) we obtain the local equilibrium

j = −∂xρ,

which, using the first equation (2.4), shows that the behavior of the solution, at least
formally, is governed by the heat equation

(2.6) ∂tρ = ∂xxρ.

2.2. A standard Monte Carlo method for the Goldstein–Taylor model.
To construct the Monte Carlo scheme, we define an ensemble of N particles {Xk(t),
Vk(t)}Nk=1, in which Xk(t) represents the position and Vk(t) the velocity of particle k
at time t. For each k, the velocity Vk(t) can take only two values, namely,

Vε± = ±1

ε
.

We will approximate the functions f+ (respectively, f−), representing the density of
particles with velocity Vε+ (respectively, Vε−), by an empirical distribution

µ+(x, t) =
mp

N

N∑
k=1

δ(x−Xk(t))δKr(Vε+ − Vk(t)),(2.7)

µ−(x, t) =
mp

N

N∑
k=1

δ(x−Xk(t))δKr(Vε− − Vk(t)),(2.8)

in which δ represents a Dirac delta, δKr a Kronecker delta, and the mass mp of an
individual particle is defined as

(2.9) mp =
1

N

∫
Ω

u(x, 0)dx.

Note that one can introduce a (possibly time-dependent) weight wk(t) to each particle
and consider the corresponding weighted empirical distributions. We will not pursue
this path here, as doing so does not affect the modified Monte Carlo schemes that are
the focus of this manuscript.

Remark 1 (from empirical distributions to space-discretized particle densities).

Given the ensemble of particles {Xk(t), Vk(t)}Nk=1, an approximation to the parti-
cle densities f±(x, t) can be obtained as a histogram by introducing a spatial mesh

with centers {xj}Jj=1 and mesh spacing ∆x and defining the stochastic approximation

f±(xj , t) by simply counting the particles inside the bin [xj −∆x/2, xj + ∆x/2]:

(2.10) f±(xj , t) =

∫ xj+∆x/2

xj−∆x/2

1 · dµ±(x, t).
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The density ρ(xj , t) can then be obtained as

(2.11) ρ(xj , t) = f+(xj , t) + f−(xj , t).

Clearly, many alternative approaches are available in the literature; see, e.g., [43, 38].
In particular, a popular alternative to the above-described histogram approach is
kernel density estimation [48].

To simulate the Goldstein–Taylor model, one needs to define a stochastic process
for the evolution of the ensemble {Xk(t), Vk(t)}Nk=1, such that the population dynamics
corresponds to (2.2). We introduce the discretized time tn = n∆t, with ∆t the time
step and n ≥ 0, and write the time-discretized particle states as Xn

k ≈ Xk(tn) and
V nk ≈ Vk(tn), respectively [45]. The standard Monte Carlo method for the Goldstein–
Taylor model (2.2) is based on a splitting between the transport and collision terms
[43, 45]:

1. Transport:

(2.12)
∂tf+ +

1

ε
∂xf+ = 0,

∂tf− −
1

ε
∂xf− = 0.

2. Collision:

(2.13)
∂tf+ =

1

ε2

(ρ
2
− f+

)
,

∂tf− =
1

ε2

(ρ
2
− f−

)
.

The splitting (2.12)–(2.13) provides a convenient strategy to define the evolution of
the particles: the transport step can be seen to affect the particle positions, leaving
the velocities untouched, whereas the collision step updates the velocities, leaving the
positions unaltered.

Transport step. During the transport step (2.12), each particle advances from
time tn over a time step of size ∆t by changing its position according to

(2.14) Xn+1
k = Xn

k + V nk ∆t.

This can easily be shown by inserting (2.7)–(2.8) in (2.12). Thus, after the transport
step, we obtain the intermediate empirical distributions,

µ̃n+(x) =
mp

N

N∑
n=1

δ(x−Xn+1
k )δKr(Vε+ − V nk ),(2.15)

µ̃n−(x) =
mp

N

N∑
n=1

δ(x−Xn+1
k )δKr(Vε− − V nk ),(2.16)

from which the intermediate particle densities f̃n±(xj) can be computed via (2.10).
Collision step. We consider now the solution of the collision step (2.13). First

observe that, during the collision step, the density ρ is constant. Hence, the density
after the full time step has already been obtained during the transport step, and
we have ρn+1 = ρ̃n. The effect of the collision step is thus to randomly change the
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velocities of a fraction of the particles from Vε+ to Vε−, and vice versa, without affecting
their positions. Thus, the density after the complete time step is given as

(2.17) ρn+1(x) = ρ̃n(x) = f̃n+(x) + f̃n−(x),

and its stochastic approximation follows from (2.10).
Now observe that since (2.13) is linear and local, its exact solution is known.

When neglecting (for now) the stochastic particle discretizations (2.10), and using as
initial conditions the values of f+ and f− after the transport step, i.e., f̃n±(x), we have

(2.18)
fn+1

+ (x) = exp(−∆t/ε2)f̃n+(x) +
(
1− exp(−∆t/ε2)

) ρn+1(x)

2
,

fn+1
− (x) = exp(−∆t/ε2)f̃n−(x) +

(
1− exp(−∆t/ε2)

) ρn+1(x)

2
.

At the Monte Carlo level, the above formula can be interpreted as the convex combi-
nation of two probability distributions:

• With probability exp(−∆t/ε2), the speed of a particle does not change, and
the particle is left untouched.

• With probability
(
1− exp(−∆t/ε2)

)
the speed of a particle changes, and the

new velocity is chosen to be Vε+ or Vε− with equal probability.

Remark 2 (computational complexity in the diffusion limit). Even if there is no
time step restriction in the collision part of the algorithm (the step always represents
a convex combination of two distributions, regardless of the size of ∆t and ε), the
approach outlined above suffers severe time step restrictions when ε→ 0. In fact, the
main problem arises in the transport phase of the algorithm: when ε→ 0, the scaled
particle velocities diverge, since Vε+ → ∞ and Vε− → −∞. This means that we are
forced to take ∆t = O(ε), making the Monte Carlo solver unusable for small values
of ε in the diffusion limit.

While the standard Monte Carlo method suffers from a prohibitive computational
cost, we can observe that in the limit, the kinetic equation becomes equivalent to the
heat equation (2.6) and consequently a Monte Carlo method which solves this problem
is easily available. In this case, the Monte Carlo method consists in first assigning the
positions to N particles which approximates the function u(x, t = 0) = u0(x) at the
initial time by the empirical measure µ0

u(x)

(2.19) µ0
u(x) =

mp

N

N∑
n=1

δ(x−X0
k),

where the particle positions X0
k are sampled from the probability distribution with

density u0(x)/mp and the constant mp is defined as

(2.20) mp =
1

N

∫
Ω

u0(x)dx.

Successively, the position of the particles evolves in time according to

(2.21) Xk(tn + ∆t) = Xk(tn) +
√

2∆tξnk ,

where ξnk ∼ N (0, 1) is a standard normally distributed random number. Observing
that the Monte Carlo method (2.21) does not have time step limitations, one would
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like to construct a Monte Carlo scheme for the Goldstein–Taylor model (2.4) which
in the limit ε→ 0 degenerates to (2.21) without time step limitations induced by the
characteristic speeds. This property is refereed to as asymptotic-preserving property
and we discuss such a Monte Carlo scheme in the next section.

2.3. An asymptotic-preserving Monte Carlo method for the Goldstein–
Taylor model. In this section, we introduce a new Monte Carlo approach based on
a suitable reformulation of the original system. We first discuss a time discretization
that leads to a reformulated Goldstein–Taylor model (section 2.3.1). Subsequently,
we introduce our new scheme based on the reformulated system (section 2.3.2).

2.3.1. An implicit time-discrete reformulation. We start considering the
following fully implicit discretization for system (2.4):

(2.22)


ρn+1 − ρn

∆t
= −∂xjn+1,

ε2 j
n+1 − jn

∆t
= −

(
∂xρ

n+1 + jn+1
)
.

Now, solving the second equation for jn+1, one obtains

(2.23) jn+1 =
ε2

ε2 + ∆t
jn − ∆t

ε2 + ∆t
∂xρ

n+1

or, equivalently,

(2.24)
jn+1 − jn

∆t
+

1

ε2 + ∆t
∂xρ

n+1 = − 1

ε2 + ∆t
jn.

Plugging (2.23) into the first equation we get

ρn+1 − ρn

∆t
+

ε2

ε2 + ∆t
∂xj

n =
∆t

ε2 + ∆t
∂xxρ

n+1.

Finally, using the first equation of (2.22) and filling this into (2.24) we get the equiv-
alent form

(2.25)


ρn+1 − ρn

∆t
+

ε2

ε2 + ∆t
∂xj

n =
∆t

ε2 + ∆t
∂xxρ

n+1,

jn+1 − jn

∆t
+

1

ε2 + ∆t
∂xρ

n = − 1

ε2 + ∆t
jn +

∆t

ε2 + ∆t
∂xxj

n+1,

which, using the change of variables (2.5), can also be written as

(2.26)


fn+1

+ − fn+
∆t

+
ε

ε2 + ∆t
∂xf

n
+ =

∆t

ε2 + ∆t
∂xxf

n+1
+ +

1

ε2 + ∆t

(
ρn

2
− fn+

)
,

fn+1
− − fn−

∆t
− ε

ε2 + ∆t
∂xf

n
− =

∆t

ε2 + ∆t
∂xxf

n+1
− +

1

ε2 + ∆t

(
ρn

2
− fn−

)
.

Observe now that, by using

ρn+1 − ρn

∆t
= ∂tρ+O(∆t),

jn+1 − jn

∆t
= ∂tj +O(∆t),
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we obtain that system (2.25) is equivalent up to first order in ∆t to

(2.27)


∂tρ+

ε2

ε2 + ∆t
∂xj =

∆t

ε2 + ∆t
∂xxρ,

∂tj +
1

ε2 + ∆t
∂xρ = − 1

ε2 + ∆t
j +

∆t

ε2 + ∆t
∂xxj,

and in diagonal form

(2.28)


∂tf+ +

ε

ε2 + ∆t
∂xf+ =

∆t

ε2 + ∆t
∂xxf+ +

1

ε2 + ∆t

(ρ
2
− f+

)
,

∂tf− −
ε

ε2 + ∆t
∂xf− =

∆t

ε2 + ∆t
∂xxf− +

1

ε2 + ∆t

(ρ
2
− f−

)
.

Note that the left part of system (2.28) is hyperbolic with characteristic speeds

(2.29) λ±(∆t, ε) = ± ε

ε2 + ∆t
.

When ∆t→ 0 for a fixed ε, system (2.27) converges to the original system (2.4), while
the characteristic speeds converge to the usual ones, i.e.,

λ±(0, ε) = ±1

ε
.

On the other hand, for a fixed ∆t, the characteristic speeds λ+ and λ− are bounded
for any value of ε and converge to zero as ε→ 0, while the diffusion coefficient tends
to 1 in that limit. Consequently, the system becomes fully parabolic and converges
to the solution of the heat equation

(2.30) ∂tρ = ∂xxρ.

2.3.2. The asymptotic-preserving Monte Carlo method. We now intro-
duce a Monte Carlo scheme that solves the Goldstein–Taylor model (2.4) for all choices
of the time step ∆t and ε, without any ε-dependent time step restriction. The method
is based on the following splitting approach:

1. Transport-diffusion:

(2.31)


∂tf+ +

ε

ε2 + ∆t
∂xf+ =

∆t

ε2 + ∆t
∂xxf+,

∂tf− −
ε

ε2 + ∆t
∂xf− =

∆t

ε2 + ∆t
∂xxf−.

2. Collision:

(2.32)


∂tf+ =

1

ε2 + ∆t

(u
2
− f+

)
,

∂tf− =
1

ε2 + ∆t

(u
2
− f−

)
.

Now, as we did with the standard Monte Carlo method in section 2.2, we approximate
the functions f+ and f− by a finite set of particles {Xk(t), Vk(t)}Nk=1, which correspond
to the empirical measures (2.7) and (2.8). The velocities Vk(t) now can take the two
values

Vε± = ± ε

ε2 + ∆t
,

which are bounded for any value of ε and are such that Vε± → 0 as ε → 0. Recall
that we can then reconstruct a histogram approximation of the distributions f± on a
mesh via (2.10).
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Transport-diffusion step. To solve the transport-diffusion step (2.31), we observe
that the particle velocities now scale with ε/(ε2 + ∆t) and that the diffusion corre-
sponds to a Brownian motion with coefficient ∆t/(ε2 + ∆t). Thus, particles move
according to

(2.33) Xn+1
k = Xn

k + ∆tV nk +

√
2

∆t2

ε2 + ∆t
ξnk , 1 ≤ k ≤ N,

in which ξni ∼ N (0, 1) is a standard normally distributed random variable. The
velocity of the particles does not change in this step, and we again have the interme-
diate empirical distributions (2.15) and (2.16), from which the intermediate particle
densities f̃n±(xj) can be computed via (2.10).

Collision step. We consider now the collision step (2.32). As in the standard
Monte Carlo method in section 2.2, the density ρ is constant. The effect of this step
is to randomly change the velocities of a fraction of the particles from Vε± to Vε∓,
keeping the positions untouched. By solving (2.32) with the forward Euler method
we get

(2.34)


fn+1

+ − f̃n+
∆t

=
1

ε2 + ∆t

(
ρn+1

2
− f̃n+

)
,

fn+1
− − f̃n−

∆t
=

1

ε2 + ∆t

(
ρn+1

2
− f̃n−

)
.

This forward Euler discretization leads to the following convex combination:

(2.35)


fn+1

+ =
ε2

ε2 + ∆t
f̃n+ +

∆t

ε2 + ∆t

ρn+1

2
,

fn+1
− =

ε2

ε2 + ∆t
f̃n− +

∆t

ε2 + ∆t

ρn+1

2
.

Compared with collision step (2.18) in the standard Monte Carlo method, the only
change is a slightly changed collision rate, i.e., a slightly different probability of a
velocity change. At the Monte Carlo level, (2.35) is thus again interpreted as follows:

• With probability ε2/(ε2 + ∆t), the speed of a particle does not change, and
the particle is left untouched.

• With probability ∆t/(ε2 + ∆t), the speed of a particle changes, and the new
velocity is chosen to be Vε+ or Vε− with equal probability.

It is easy to see the asymptotic-preserving property of the new method. In fact,
the time step of the transport-diffusion step is now independent of ε. In particular,
in the limit ε→ 0 we get a standard Brownian motion for the heat equation

(2.36) Xn+1
k = Xn

k +
√

2∆tξnk , 1 ≤ k ≤ N.

Remark 3.
• The Goldstein–Taylor model is equivalent to the telegrapher’s equation; other

probabilistic approaches can be derived using this latter form [1, 31]. Note,
however, that in the diffusion limit the time step in the above approaches has
to be taken of the size of ε and therefore the methods are not asymptotic-
preserving.
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• For deterministic solvers, other form of asymptotic-preserving splitting for
the diffusion limit have been proposed [7, 29, 30, 32, 39, 40]. However, these
splittings do not possess a clear probabilistic interpretation and it is not
immediate to use them in a Monte Carlo setting.

• We emphasize here that the resulting Monte Carlo scheme does not need
any CFL restriction. In the numerical simulation we will typically assume
∆t = O(∆x), where ∆x is the mesh used for the reconstruction, for accuracy
considerations.

3. Asymptotic-preserving Monte Carlo methods for the radiative trans-
port. In this section we show how to generalize the above approach to the radiative
transport equation [10, 11] under the diffusive scaling.

3.1. The radiative transport equation. Let f(x, v, t) be the probability den-
sity distribution for particles at space point x ∈ Rdx , at time t traveling in direction
v ∈ Ω ⊆ Rdv , with

∫
Ω
dv = S. Particles undergo two types of interactions: scattering,

with scattering coefficient σs(x), and absorption, with absorption coefficient σa(x).
Under the diffusive scaling, f solves the radiative transfer equation

(3.1) ∂tf +
v

ε
· ∇xf =

1

ε2
(σsρ− σf) +G,

where σ(x) = σs(x) + ε2σa(x) is the total transport coefficient, G(x) is the source
term, ε > 0 is proportional to the mean free path, and

(3.2) ρ(x, t) =
1

S

∫
Ω

fdv′

is the position density.
To study the process in the diffusive limit when ε tends to zero, we use the

expansion in ε of the distribution function

(3.3) f = f (0) + εf (1) + ε2f (2) + . . .

and we introduce it in (3.1). Then, considering terms of the same order in ε, we get
at the leading order

(3.4) f (0)(x, v, t) =
1

S

∫
Ω

f (0)dv′ = ρ(x, t),

where ρ(x, t) represents the density of the gas. Then, to the first order in ε, we get

(3.5) v · ∇xf (0) =
σs
S

∫
Ω

f (1)dv′ − σsf (1).

Now, writing the balance equation in terms of ε of (3.1), one gets

(3.6) ∂tρ+ v · ∇xf (1) =
σs
S

∫
Ω

f (2)dv′ − σsf (2) − σaρ+G

and the integration in velocity space yields

(3.7) ∂tρ+
1

S

∫
Ω

(v · ∇xf (1))dv = −σaρ+G.
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Now, assuming σs positive and strictly bounded away from zero, since one has from
(3.5) that

(3.8) f (1) = − 1

σs
v · ∇xρ+

1

S

∫
Ω

f (1)dv′ = − 1

σs
v · ∇xρ+ ρ(1),

we finally obtain the equation

(3.9) ∂tρ =
1

S

∫
Ω

v · ∇x
(
v

σs
· ∇xρ

)
dv − σaρ+G = D∇x ·

(
1

σs
∇xρ

)
− σaρ+G,

where D is the so-called diffusion coefficient which, for example, takes the value
D = 1/3 in one-dimensional slab geometry and D = 1/2 when Ω is a unit circle in
two dimensions.

Remark 4. In what follows we assume for notational simplicity σ, σs, and σa
constants; however, the method applies in the general case where the cross sections
depend on x.

3.2. A standard Monte Carlo scheme for the radiative transport. Let
us now discuss a standard Monte Carlo method for solving the radiative transport
equation, highlighting the limitations of this approach when close to the diffusive
limit. The starting point is, as for the two-speed case, a time splitting scheme for
(3.1) (where for simplicity we set the source term G(x) = 0). It reads as follows:

1. Transport:

(3.10) ∂tf +
1

ε
v · ∇x = 0.

2. Collision:

(3.11) ∂tf =
σs
ε2

(ρ− f) .

3. Absorption:

(3.12) ∂tf = −σaf.

We again approximate the distribution by an empirical distribution, using a finite
set of particles with positions and velocities {Xk(t), Vk(t)}Nn=1. The particle velocities
are given as

Vk(t) =
Ṽk(t)

ε
, Ṽk ∈ Ω.

Defining the mass mp of an individual particle as

(3.13) mp =
1

N

∫
R

∫
Ω

f(x, v, t = 0)dvdx,

we obtain the empirical distribution

(3.14) µ(x, v, t) =
mp

N

N∑
n=1

δ(x−Xk(t))δ(v − Vk(t)),

in which δ is again the Dirac delta.
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Remark 5 (empirical particle densities in phase space). We restrict ourselves for
simplicity to the one-dimensional case in both x and v. In analogy with the two-speed
case, we can introduce a mesh and compute a histogram on the phase space mesh with
cell centers xj and v` and mesh widths ∆x and ∆v as

(3.15) f(xj , v`, t) =

∫ xj+∆x/2

xj−∆x/2

∫ v`+∆v/2

v`−∆v/2

1 · dµ(x, v, t).

An empirical position density is then obtained as

(3.16) ρ(xj , t) =

∫ xj+∆x/2

xj−∆x/2

∫
Ω

1 · dµ(x, v, t).

We can now describe the Monte Carlo method that corresponds to transport and
collisions of the particles. In what follows we will neglect the presence of the source
term G which can be easily included in the method.

Transport. As in the two-speed case, each particle advances from time tn over a
time interval of length ∆t during the transport step (3.10) by changing its position
according to

(3.17) Xn+1
k = Xn

k + V nk ∆t.

This can be shown by inserting (3.14) inside (3.10).
We then have an intermediate empirical distribution:

(3.18) µ̃n(x, v) =
mp

N

N∑
n=1

δ(x−Xn+1
k )δ(v − V nk ),

from which the intermediate particle density f̃n(xj , v`) can be computed using (3.15).
Collision. Next, we solve the collision process (3.11) without absorption

(3.19) ∂tf =
σs
ε2

(ρ− f) ,

which corresponds to

f̃n+1(x, v) = exp

(
−σs∆t

ε2

)
f̃n(x, v) +

(
1− exp

(
−σs∆t

ε2

))
ρ̃n(x).(3.20)

At the Monte Carlo level, the above formula can be interpreted in the following way:
• With probability exp

(
−σs∆t/ε2

)
, the speed of a particle does not change.

• With probability
(
1− exp

(
−σs∆t/ε2

))
, the speed of a particle changes to a

new value Vk = Ṽk/ε, in which Ṽk is a random value with uniform probability
in the domain Ω.

Absorption. We consider now the solution of the absorption step (3.12). Unlike
the two-speed case, due to absorption the density ρ(x, t) is not conserved.

In a time step ∆t, we solve the absorption process

(3.21) ∂tf = −σaf,

which allows us to compute

fn+1(x, v) = exp (−σa∆t) f̃n+1(x, v).(3.22)

The above process is easily realized, assuming that with probability 1− exp (−σa∆t),
the particle gets absorbed and disappears from the simulation.



A516 G. DIMARCO, L. PARESCHI, AND G. SAMAEY

Remark 6 (mesh-based approach). We may consider a method based on a mesh
in space. We define the density of the particles in the center of the cells, ρ(xj , t) =
(
∫

Ω
f(xj , v, t)dv

′)/S, and solve (3.11) in xj , j = 1, . . . ,M , with M the number of
mesh points. In order to compute the integral of the distribution function in the cell
centers different techniques can be used. The simplest first order space reconstruction
in one dimension, the same as that used for the two-speed case, is given by (3.16).

Concerning the asymptotic behavior for small values of ε the same remark can
be made as in the two-speed case (see Remark 2): in the limit when ε tends to zero,
the main computational bottleneck is due to the transport phase, where the transport
speeds approach infinity and hence infinitely small time steps would be required.

Also for the radiative transfer equation, a standard Monte Carlo method for the
diffusion equation (3.9) can be derived. In the one-dimensional case, if we neglect
the source term and the absorption, it consists in initializing the system by creating

an ensemble of particles
{
X0
k

}N
n=1

that are sampled according to the local density
ρ(x, t = 0), and then by advancing in a time step ∆t following the equation

(3.23) Xn+1
k = Xn

k +

√
2
D

σs
∆tξnk ,

where ξnk ∼ N (0, 1) is a standard normally distributed random number. Thus, we
want to construct an asymptotic-preserving Monte Carlo method for radiative trans-
fer (3.1) that automatically degenerates to the above described Monte Carlo method
without any time step restriction induced by the unbounded increasing particle speed
when ε→ 0.

3.3. An asymptotic-preserving Monte Carlo method for the radiative
transport. In this section, we generalize the reformulation discussed in section 2.3
for the Goldstein–Taylor model (2.4) to the case of the radiative transfer model (3.1).
We start by reformulating the radiative equation by using the even and odd formalism
and by introducing a suitable time discretization (section 3.3.1). In section 3.3.2, we
then make use of this reformulation for constructing our new scheme.

3.3.1. The reformulated radiative transport equation. In order to empha-
size the analogies with the Goldstein–Taylor model we consider radiative transport
equation (3.1) without source term G(x) = 0, i.e.,

(3.24) ∂tf +
v

ε
· ∇xf =

1

ε2
(σsρ− σf) =

σs
ε2

(ρ− f)− σaf

with

ρ(x, t) =
1

S

∫
Ω

f(x, v′, t)dv′.

We first rewrite the radiative transfer equation as

(3.25)

∂tf+ +
v

ε
· ∇xf+ =

σs
ε2

(ρ− f+)− σaf+,

∂tf− −
v

ε
· ∇xf− =

σs
ε2

(ρ− f+)− σaf−,

where now f+(x, v, t) = f(x, v, t) and f−(x, v, t) = f(x,−v, t). This permits us to
define the even and odd parities
(3.26)

r(x, v, t) =
1

2
(f+(x, v, t) + f−(x, v, t)) , j(x, v, t) =

1

2ε
(f+(x, v, t)− f−(x, v, t)) .
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Then, r(x, v, t) and j(x, v, t) satisfy the following equivalent system:

(3.27)

∂tr + v · ∇xj =
σs
ε2

(ρ− r)− σar,

∂tj +
v

ε2
· ∇xr = −σs

ε2
j + σaj.

The inverse transformation of (3.26) is easily seen to be

(3.28) f+(x, v, t) = r(x, v, t) + εj(x, v, t), f−(x, v, t) = r(x, v, t)− εj(x, v, t).

In order to construct an implicit reformulation of the problem we first split the system
into three parts as

(3.29) (I)

{
∂tr + v · ∇xj = 0,

∂tj +
v

ε2
· ∇xr = −σs

ε2
j,

(3.30) (II)

{
∂tr =

σs
ε2

(ρ− r) ,

∂tj = 0,

and

(3.31) (III)

{
∂tr = −σar,
∂tj = 0.

The first step (I) now has the same structure as the Goldstein–Taylor model and
we can follow the approach developed in section 2.3.1. We consider the implicit
discretization of (3.29) as

(3.32)


rn+1
∗ − rn

∆t
+ v · ∇xjn+1

∗ = 0,

jn+1
∗ − jn

∆t
+

v

ε2
· ∇xrn+1

∗ = −σs
ε2
jn+1
∗ ,

where rn+1
∗ and jn+1

∗ denote the solutions of this first step.
Solving for jn+1

∗ one gets

(3.33) jn+1
∗ =

ε2

ε2 + σs∆t
jn − ∆t

ε2 + σs∆t
v · ∇xrn+1

∗

or, equivalently,

(3.34)
jn+1
∗ − jn

∆t
+

1

ε2 + σs∆t
v · ∇xrn+1

∗ = − σs
ε2 + σs∆t

jn.

Equation (3.33) can be plugged into the first equation of (3.32) to give

(3.35) rn+1
∗ = rn −∆tv · ∇x

(
ε2

ε2 + σs∆t
jn − ∆t

ε2 + σs∆t
v · ∇xrn+1

∗

)
.

Now, using the first equation of (3.32) in (3.34) gives
(3.36)
rn+1
∗ − rn

∆t
+

ε2

ε2 + σs∆t
v · ∇xjn =

∆t

ε2 + σs∆t
v · ∇x

(
v · ∇xrn+1

∗
)
,

jn+1
∗ − jn

∆t
+

1

ε2 + σs∆t
v · ∇xrn =

∆t

ε2 + σs∆t
v · ∇x

(
v · ∇xjn+1

∗
)
− σs
ε2 + σs∆t

jn.
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The second part of the splitting, (3.30), can be discretized similarly with an implicit
method to give

(3.37)


rn+1
∗∗ − rn+1

∗
∆t

=
σs

ε2 + σs∆t

(
ρn+1
∗∗ − rn+1

∗
)
,

jn+1
∗∗ − jn+1

∗
∆t

= 0,

where ρn+1
∗∗ = ρn+1

∗ since the density remains unchanged during this step. We observe
now that (3.36)–(3.37) are, up to an error O(∆t), equivalent to a time splitting of the
reformulated system


∂tr +

ε2

ε2 + σs∆t
v · ∇xj =

∆t

ε2 + σs∆t
v · ∇x (v · ∇xr) +

σs
ε2 + σs∆t

(ρ− r) ,

∂tj +
1

ε2 + σs∆t
v · ∇xr =

∆t

ε2 + σs∆t
v · ∇x (v · ∇xj)−

σs
ε2 + σs∆t

j.

(3.38)

Using the back transformation (3.28), equation (3.38) can be written also as


∂tf+ +

ε

ε2 + σs∆t
v · ∇xf+ =

∆t

ε2 + σs∆t
v · ∇x (v · ∇xf+) +

σs
ε2 + σs∆t

(ρ− f+) ,

∂tf− −
ε

ε2 + σs∆t
v · ∇xf− =

∆t

ε2 + σs∆t
v · ∇x (v · ∇xf−) +

σs
ε2 + σs∆t

(ρ− f−) .

(3.39)

Note that for fixed values of ε, the above equations revert to the original system
(3.27) or (3.24) in the limit when the time step ∆t tends to zero when the absorption
coefficient σa = 0. Let us observe that up to an error of order O(∆t) system (3.38)
or (3.39) plus the third step of the splitting (3.31) represent a first order in time
approximation of the original radiative transfer equation. On the other hand, for all
∆t > 0, system (3.38) or (3.39) together with (3.31) is an O(∆t) approximation with
bounded eigenvalues for every choice of ∆t of the original system. In particular, for
every finite time step, the system tends to the limiting diffusion equation (3.9) in the
limit when ε tends to zero.

Remark 7 (micro-macro decomposition). As an alternative to the odd-even split-
ting above, one could also consider a micro-macro splitting; see, e.g., [32, 39]. Let us
illustrate the approach in one space dimension and with σs = σa = 1 for simplicity.
In that case, we write

(3.40) f(x, v, t) = ρ(x, t) + εg(x, v, t)

with ρ defined as before, from which we naturally derive that
∫ 1

−1
g(x, v, t)dv = 0.

Inserting this expansion in (3.24) and averaging over velocity space, we get the system

(3.41)

 ∂tρ+ ∂x〈vg〉 = 0,

∂tg +
1

ε2
v∂xρ+

1

ε
∂x (vg − 〈vg〉) = − 1

ε2
g,

in which we introduced the notation 〈·〉 = (1/2)
∫ 1

−1
· dv to denote the average over

velocity space. It can easily be checked that (3.41) is equivalent to the original kinetic
equation (3.24). Following a similar reasoning as above, one can obtain up to O(∆t)
the modified equation
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(3.42)


∂tρ+

ε2

ε2 + ∆t
∂x〈vg〉 =

∆t

ε2 + ∆t
〈v2〉∂xxρ,

∂tg +
1

ε2 + ∆t
v∂xρ+

ε

ε2 + ∆t
∂x (vg − 〈vg〉) = − 1

ε2 + ∆t
g.

Equation (3.42) satisfies the same desirable properties as (3.39) or (3.38): it converges
to the original equation (3.24) for fixed ε as ∆t tends to zero and to the limiting heat
equation (3.9) as ε tends to zero for fixed ∆t. Thus, (3.42) may also serve as the basis
for an asymptotic-preserving particle scheme; see Remark 8.

3.3.2. The asymptotic-preserving Monte Carlo method. In this para-
graph, we show how the reformulation (3.38) permits us to develop a Monte Carlo
scheme that is not limited by the stiffness of (3.1) in the limit when ε tends to 0.
The Monte Carlo method is based on the following splitting of the reformulated sys-
tem (3.38):

1. Transport and diffusion:

(3.43)


∂tf+ +

ε

ε2 + σs∆t
v · ∇xf+ =

∆t

ε2 + σs∆t
v · ∇x (v · ∇xf+) ,

∂tf− −
ε

ε2 + σs∆t
v · ∇xf− =

∆t

ε2 + σs∆t
v · ∇x (v · ∇xf−) .

2. Collision:

(3.44)


∂tf+ =

σs
ε2 + σs∆t

(ρ− f+),

∂tf− =
σs

ε2 + σs∆t
(ρ− f−).

3. Absorption:

(3.45)

{
∂tf+ = −σaf+,

∂tf− = −σaf−.

We are now ready to introduce the Monte Carlo method. We again approximate
the distribution by an empirical distribution, using a finite set of particles with posi-
tions and velocities {Xk(t), Vk(t)}Nn=1; see also (3.14). The particle velocities are now
given as

Vk(t) =
ε

ε2 + σs∆t
Ṽk(t), Ṽk ∈ Ω,

and the mass of an individual particle is given by (3.13).
Transport and diffusion. The transport and diffusion step (3.43) can be handled

by observing that (3.43) represents a population of particles, each one moving accord-
ing to

(3.46) Xn+1
k = Xn

n + ∆tV nk +

√
2

∆t2 (V nk )
2

ε2 + σs∆t
ξnk , 1 ≤ n ≤ N,

where Xn+1
k indicates the new position of the particle after the transport and ξnk ∼

N (0, 1) are independent standard normally distributed random numbers. The ve-
locities of the particles do not change in this step, and we have the intermediate
empirical distribution (3.18), from which an intermediate particle density f̃n(xj , v`)
can be computed using for example (3.15) in the one-dimensional case.
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Collision. We consider now the solution of the collision step (3.44). Let us ob-
serve that the collision step preserves the density ρ, since we consider a situation
without absorption. Thus, collision does not affect particle positions. We can write
the solution of (3.44) using the original implicit formulation as

(3.47)


f̃n+1

+ =
ε2

ε2 + σs∆t
f̃n+ +

σs∆t

ε2 + σs∆t
ρ̃n+1,

f̃n+1
− =

ε2

ε2 + σs∆t
f̃n− +

σs∆t

ε2 + σs∆t
ρ̃n+1.

At the Monte Carlo level, the above formulas can be interpreted in the following way:
• With probability ε2/(ε2 + σs∆t), the speed of a particle does not change.
• With probability σs∆t/(ε

2 + σs∆t), the speed of a particle changes to a new
value Vk = ε

ε2+σs∆t Ṽk, in which Ṽk is a random value with uniform probability
in the domain Ω.

Absorption. We consider now the solution of the absorption step (3.45). This step
is analogous to the step already discussed in section 3.2. However, instead of using
the exact solution of (3.45) to construct the Monte Carlo method, for consistency
with the previous steps we use a first order implicit time discretization. This reads

(3.48)


fn+1

+ =
1

1 + σa∆t
f̃n+1

+ ,

fn+1
− =

1

1 + σa∆t
f̃n+1
− .

Let us observe that this step modifies the total mass of the system, i.e., ρn+1 =
ρ̃n+1/(1 + σa∆t). At the Monte Carlo level, the above formulas can be simply inter-
preted as follows: with probability σa∆t/(1 + σa∆t) a particle is removed from the
domain.

When ε→ 0 and in the case without absorption, as for the case of the Goldstein–
Taylor model, the scheme automatically reduces to a standard Monte Carlo scheme
for the diffusion equation,

(3.49) Xn+1
k = Xn

n +

√
2∆t (V nk )

2
ξnk , 1 ≤ n ≤ N,

i.e., the scheme satisfies the asymptotic-preserving property. In fact, in this limit, the
scheme degenerates to the solution of the first step in which the transport speed is
zero. The relaxation step clearly does not play any role in this limit. In the case with
absorption, in the same limit, the scheme degenerates to a Monte Carlo method for
the diffusion reaction equation.

Remark 8 (derivation based on the micro-macro decomposition). One can also
derive a particle scheme starting from the micro-macro decomposition (3.40); see
Remark 7. The modified equation (3.42) then leads to an asymptotic-preserving
Monte Carlo scheme that is very similar to the scheme derived above. The only
difference is that the transport and diffusion step (3.46) then reads

(3.50) Xn+1
k = Xn

n + ∆tV nk +

√
2

∆t2D

ε2 + ∆t
ξnk , 1 ≤ n ≤ N,

with D = 〈v2〉. In (3.50), the diffusive correction is performed with the diffusion
coefficient of the limiting heat equation (3.9) and not with a diffusion coefficient that
depends on the velocity of the particle.
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4. Numerical experiments. In this section we discuss several numerical
tests with the aim of demonstrating the behavior and the performance of the new
asymptotic-preserving Monte Carlo scheme detailed in the previous sections. We
start by discussing the case of the Goldstein–Taylor model and we end with the ra-
diative transport problem. For all the tests considered we compare our scheme with a
finite volume asymptotic-preserving method, the one described in [8]. The reference
method is based on an implicit-explicit time discretization which makes it uncondi-
tionally stable with respect to the scaling parameter ε, the sole stability conditions
being dictated by the diffusive or the hyperbolic regime. The boundary conditions
are applied following [30].

4.1. The Goldstein–Taylor model.

4.1.1. Accuracy test. In the first test we study the numerical convergence of
the method on a smooth solution with respect to ε. The initial data is

ρ = sin(2xπ/L), j = 0, 0 < x < 1,

and periodic boundary conditions are employed. The same problem is run with four
different values of the scaling parameter ε, i.e., ε = 10−1, 5×10−2, 10−3, 10−4. For each
value we use the asymptotic-preserving Monte Carlo method with ∆tk = 0.5∆tk−1,
k = 2, 3, 4, and ∆t1 = 0.5∆x. We measure the L1 norm of the error ‖ρ∆tk−1

− ρ∆tk‖,
k = 2, 3, 4, for a fixed mesh in space ∆x = 1/50 and using 100 samples on average per
cell. The results are averaged over 5×105 different realizations to make the statistical
error smaller than the error in time and space. The error curves are reported in
Figure 4.1. As expected, the method preserves first order accuracy uniformly with
respect to ε.

4.1.2. A Riemann problem. We consider the following Riemann problem with
initial data:

ρL = 2.0, jL = 0 0 < x < 1,

ρR = 1.0, jR = 0 1 < x < 2.

-2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7
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Fig. 4.1. Goldstein–Taylor. Numerical convergence test. L1 norms of the errors for the density
and for different values of the scaling parameter ε as a function of the time step.
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Fig. 4.2. Goldstein–Taylor. Numerical solution at time t = 0.25 in the rarefied regime ε = 0.7
with ∆t = 0.01 and ∆x = 0.02. The mass density u (top) and the flow v (bottom) are shown (red
circles) together with a reference solution (blue continuous line). In the left panels the solution of
the Monte Carlo scheme with 1000 particles per cell on average is shown; in the right panels the
converged solution is represented.

The test is run both in the diffusive, i.e., ε = 10−5, as well as the hyperbolic regime,
i.e., ε = 0.7. This test models the behaviors of two semi-infinite rods having different
initial temperatures and put into contact at initial time. The boundary conditions
are of Dirichlet type and fix the density ρL(x = 0, t) and ρR(x = 2, t) and the flux
jL(x = 0, t) and jR(x = 2, t) for all times. An analogous problem has been studied in
[29]. In Figures 4.2 and 4.3 the solution obtained with the Monte Carlo method with
N = 100 mesh points is reported together with a reference solution which employs the
same number of mesh points. In the simulations shown, the time step is ∆t = 0.5 ∆x.
Top images show the density profiles, while bottom images show the flux profiles. Left
images show the solution computed with an average of 1000 particles per cell, while
right images show the converged solutions in terms of the number of particles. The
convergence of the density function is much faster than the convergence of the fluxes.
This is due to the definition of density and flux functions: the first is defined as sum
of positive and negative mass particles, while the second is defined as the difference of
the number of positive and negative particles divided by the scaling parameter ε. This
means that when ε becomes very small the convergence of the flux function becomes
very hard. This can be observed in Figure 4.3 on the bottom right, for which still
some fluctuations are present even if the density is fully converged. In both cases, the
numerical solutions match the reference solution very well.
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Fig. 4.3. Goldstein–Taylor. Numerical solution at time t = 0.03 in the rarefied regime ε = 10−5

with ∆t = 0.01 and ∆x = 0.02. The mass density u (top) and the flow v (bottom) are shown (red
circles) together with a reference solution (blue continuous line). In the left panels the solution of
the Monte Carlo scheme with 1000 particles per cell on average is shown; in the right panels the
converged solution is represented.

4.2. The radiative transport.

4.2.1. One-dimensional case. We consider two transport problems in slab
geometry. The first problem has the following initial and boundary data:

x ∈ [0, 1], σS = 1, ε = 10−8, σA = 0,

f(x = 1, v, t) = 0, f(x = 0, v, t) = 1, f(x, v, t) = 0 ∀x ∈ (0, 1).

The test is run in the diffusive regime, i.e., ε = 10−8. An analogous problem has been
studied, for instance, in [30]. In Figure 4.4, the solution obtained with the Monte
Carlo method with N = 80 mesh points is reported together with a reference solution
which employs the same number of points. The images show the solution at different
instants of time, namely, t = 0.01, t = 0.05, and t = 0.15. The top images show
the density profiles, while the bottom images show the flux profiles. The left images
report a solution obtained with 1000 particles on average per cell, while the right
images report the converged solution. As for the two-speed case, the flux function
is measured by the difference of positive and negative particles speed divided by the
scaling factor ε. This means that in the pure diffusive regimes these are difficult to
obtain by means of particle schemes due to the very fine resolution demanded. The
time step is fixed to ∆t = 0.5 ∆x. The scheme is able to furnish correct solutions even
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Fig. 4.4. Radiative transport (test 1). Numerical solutions at time t = 0.01, t = 0.05, and
t = 0.15 in the diffusive regime ε = 10−8 with ∆t = 5 × 10−3 and ∆x = 0.01. The mass density
ρ (top) and the flow j (bottom) are shown. Red circles for t = 0.01, red diamonds for t = 0.05,
and red squares for t = 0.15. Blue continuous, dash-dotted, and dotted lines for reference solutions.
Left pictures report the solution obtained with 1000 particles on average per cell, while right pictures
report the converged solutions.

for choices of time and space steps which are much larger than the scaling parameter
ε. The second problem considered has the following initial and boundary data [30]:

x ∈ [0, 11], f(x = 0, v, t) = 5, f(x = 11, v, t) = 0,

σS = 0, σA = 1, ε = 1, x ∈]0, 1],

σS = 1, σA = 0, ε = 0.01, x ∈ [1, 11].

In the purely absorbing region the solution decays exponentially, whereas in the purely
scattering region the solution is diffusive. The solution is computed by using N = 80
mesh points for both the Monte Carlo and the reference solution and it is run until
a stationary solution is reached. For the intermediate states 100 particles per cell
are used on average. The time step is that of the diffusive region, i.e., ∆t = 0.5∆x.
Time average techniques have been used to reduce the statistical noise by averaging
successive solutions once the steady state is reached. At the interface between the
two regions, for the particles which cross the interface, the transport and the diffusion
coefficients are the ones on the left of the interface before the particle reaches this point
and the ones on the right after the interface has been reached. The numerical scheme
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Fig. 4.5. Radiative transport (test 2). Steady state numerical solution ε = 1 in the rarefied
region, ε = 0.01 in the dense region. Red circles for the Monte Carlo solution, blue continuous line
reference solution.

gives a good description of the internal layer and of the solution in the absorption
and diffusive regions as shown in Figure 4.5.

4.2.2. Two-dimensional case. We consider one transport problem in two di-
mensions in space and velocity space in bounded domain [0, 2]2. As initial data we
consider a uniform distribution function f such that

∫
fdv = 1 in a central circular

region of radius 0.2, while
∫
fdv = 0.125 outside of this region. In Figure 4.6 on

the top left such initial data is shown. The transport coefficients are set to σs = 1
everywhere without absorption, i.e., σa = 0. The scaling coefficient ε is discontinuous
ranging from 0.1 to 0.01 and it is represented in Figure 4.6 on the top right. The
number of cells in space is 80 × 80, while the time step is ∆t = 0.5∆x and the final
time of the simulation is fixed to T = 0.002. The boundary conditions are of Dirichlet
type. The solution obtained with the Monte Carlo method is reported together with a
deterministic solution which employs the same number of points in space and 20× 20
in velocity space in Figure 4.6 respectively on the bottom left and bottom right. The
number of particles is on average 2000 per cell. The images show that the Monte
Carlo method proposed is able to well describe a varying relaxation regime without a
time step dependent on the scaling parameter ε2.

5. Discussion and conclusions. A new class of Monte Carlo schemes for solv-
ing transport equations in the diffusive limit has been presented. The approach is
based on a reformulation of the original equations in order to obtain a modified sys-
tem in which characteristic speeds do not arbitrarily grow when the scaling parameter
goes to zero. The idea is to introduce a suitable implicit time discretization for the
original model that permits one to derive an equivalent system (up to a first order
error in time) with bounded characteristic speeds. The resulting Monte Carlo schemes
are unconditionally stable with respect to the scaling parameter and degenerate au-
tomatically in the limit to a classical Brownian Monte Carlo solver for the diffusive
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Fig. 4.6. Radiative transport in two dimensions. Initial density profile, top left; ε profile, top
right. Numerical solution at time t = 0.025 for the asymptotic preserving Monte Carlo method,
bottom left. Numerical solution at time t = 0.025 for a reference solution, bottom right. The Monte
Carlo scheme employs 2000 particles per cell in average.

equation without any time step limitations. In the last part, several numerical tests
were performed which show the ability of the method to deal with different situations
from rarefied to diffusive regimes. In a future extension of this methodology to other
diffusion limits, like semiconductor kinetic equations, and the construction of hybrid
schemes which combine the Monte Carlo solver with a deterministic solver for the
limiting diffusion equation, will be considered.
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