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Neyens,a Christel Faes,a and Geert Verbekeb,a

1. Introduction

We are grateful to Dr. Inan for pointing out an issue with our original paper. Following up on this, we have identified

a few more and offer a solution. First, our paper is based on two sets of normally distributed random effects: one for

the probability component, the other for the count model component, that are assumed to be uncorrelated. This was not

mentioned in the original paper. Therefore, we now derive a version for the correlated random-effects case. Second, we

started from equating algebraic functions of the marginalized hierarchical model and a corresponding marginal model.

This, however, is generally not the right approach. Rather, a specific function (typically the mean) of the marginalized

hierarchical model should be equated to an algebraically convenient function (typically the mean that would result from a

marginally formulated model).

In Section 2, some relevant material pertaining to the non-zero-inflated case is presented. Sections 3 and 4 are devoted

to the zero-inflated and hurdle cases, respectively. The data of the original paper are re-analyzed and available in the form

of on-line Supplementary Materials. Importantly, the estimates and standard errors that change due to the corrections that

need to be applied can be found there.

2. The Non-zero-inflated Model

It is important to realize that the full model specification is of a conditional nature, and not of a marginal nature. Only the

marginal mean is assumed to be of a certain parametric form, not the entire marginal distribution. The only latitude comes

through the connector function. This means that in the marginal model one (in the non-zero-inflated cases) or two (in the

zero-inflated case) identifications can be done. We will illustrate this using the non-zero-inflated combined model.

The specification usually found is:

λc
ij = θij exp

(
∆ij + z′

ijbi

)
, (1)

λm
ij = exp

(
x′

ijξ
)
. (2)

We find this in Kassahun et al[1], but for example also in Molenberghs et al.[2] and in various earlier papers.
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The familiar integral equation, which dates back to the original authors of the marginalized multilevel model

(MMM)[3, 4, 5] is:

λm
ij =

∫ ∫
λc

ijf(θij)f(bi)dθijdbi, (3)

exp
(
x′

ijξ
)

=

∫ ∫
θij exp

(
∆ij + z′

ijbi

)
f(θij )f(bi)dθijdbi, (4)

x′
ijξ = lnE(θij) + ∆ij +

1

2
z′

ijDzij . (5)

Hence,

∆ij = x′
ijξ − lnE(θij) −

1

2
z′

ijDzij. (6)

Note that there is a minus sign missing in Kassahun et al.[1] in the equation following their equation (4). This goes back

to Molenberghs et al.[6] (their equation (38)). Also, in the same equation following equation (4) in Kassahun et al.[1],

it would be more common to write ln(α/β) for the logarithm of the mean of the gamma variable, but this is a matter of

convention.

In the above derivation, it should be kept in mind that the conditional model is assumed to be of a Poisson type, given

the random effects. The resulting marginal model is multivariate in nature but not of a Poisson type. Rather, it is a Poisson-

gamma-normal model, with a joint marginal distribution that is complex. Molenberghs, Verbeke, and Demétrio[6] gave

an expression in the form of a multi-indexed series expansion.

Thus, the correct logic is that the joint distribution of the model is specified through its hierarchical formulation. Once

this formulation is given, a parametric form is imposed on the univariate marginal mean functions. The fact that this is

even possible, results from the connector function.

To see this more clearly, and also to prepare for further developments, we restate the above, but in simplified notation.

The hierarchical model is then specified as:

P (Y = y|θ, b) = f(y|λc) =
e−λc

(λc)y

y!
, (7)

λc = θ exp(∆ + z′b), (8)

θ ∼ Gamma(α, β), (9)

b ∼ N(0, D). (10)

It then follows that

E(Y |θ, b) =
∞∑

y=0

y
e−λc

(λc)y

y!
= λc. (11)

Hence,

E[E(Y |θ, b)] = E(θ) exp

(
∆ +

1

2
z′Dz

)
. (12)

If we, once again, require this to be equal to exp(x′ξ), then we find

lnE(θ) + ∆ +
1

2
z′Dz = x′ξ,

leading to (6), as it should.

3. Zero-inflated Models

Continuing to use simplified notation, consider the ZI model first.

The conditional model specification is:

P (Y = y|θ, b) =

{
πc + (1 − πc)f(0|λc) y = 0,
(1 − πc)f(y|λc) y > 0,

(13)

πc = Φ(∆1 + z′
1b1), (14)

λc = θ exp(∆2 + z′
2b2), (15)

θ ∼ Gamma(α, β), (16)

b =

(
b1

b2

)
∼ N

[(
0
0

)
,

(
D11 D12

D21 D22

)]
. (17)
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It now follows:

E(Y |θ, b) = [πc + (1 − πc)f(0|λc)] · 0 +

∞∑

y=1

y
e−λc

(λc)y

y!
= (1 − πc)λc. (18)

Now, the above is of the same form that would result, had we specified a marginal Poisson model, i.e., a formulation of

the form

P (Y = y) =

{
π∗ + (1 − π∗)f(0|λ∗) y = 0,
(1 − π∗)f(y|λ∗) y > 0.

(19)

On pages 7 (for the hurdle model) and 8 (for the ZI model) in Kassahun et al.[1] it appears that the entire models are

equated. Rather, what we are allowed to do, in line with earlier comments, is state that the marginal mean is of a specific

form, e.g.,

E(Y ) = (1 − πm)λm. (20)

The fact that calculating the mean form (19) results in the form (20) does not imply that the marginal model behind

(25)–(17) is equal to (20). In fact, as stated before, we know this is not true.

Nevertheless, equating the mean functions leads to the requirement:
∫ ∫

(1 − πc)λcf(θ)f(b)dθdb = (1 − πm)λm. (21)

While this appears straightforward, there is a caveat: πc and λc are connected through correlated random effects.

In the special but relevant case that b1 and b2 are uncorrelated, and hence that D12 = 0, we can solve the system:
∫

πcf(b1)db1 = πm, (22)

∫ ∫
λcf(b2)f(θ)db2dθ = λm. (23)

Now, (22) is the classical binary connector function integral equation; (23) is the counterpart for the Poisson case. These

lead to the solutions on page 4407 of Kassahun et al.[1].

Zero-inflated Models with Correlated Normal Random Effects

In case D12 6= 0, the integral equation takes the form:
∫ ∫ ∫

(1 − πc)λcf(θ)f(b1)f(b2|b1)dθdb1db2 = (1 − πm)λm. (24)

Given that

b2|b1 ∼ N
(
D21D

−1
11 b1, D̃ = D22 − D21D

−1
11 D12

)
,

and with some straightforward algebra, we obtain the following intermediate step:

E(θ)e∆2+ 1
2
z′

2
eDz2

∫
(1 − πc)ez

′

2D21D−1
11 b1f(b1)db1 = (1 − πm)λm.

This, in turn, leads to

E(θ)e∆2+ 1
2
z′

2D22z2

∫
(1 − πc)f(b1; µ = D12z2)db1.

Upon applying a final transformation (b̃1 = b1 − D12z2 ∼ N(0, D11)), we find that the Poisson connector remains the

same, but for the binary connector, we need to solve:

πc = Φ(∆1 + z′
1b̃1 + z′

1D12z2).

Of course, this is equal to the standard binary connector problem, but merely with a shift applied to ∆1, i.e.,

∆1 = −z′
1D12z2 +

√
1 + z′

1D11z1 · Φ
−1 [expit (x′

1γ
m)]

when the logit link is used, while for the probit link this is:

∆1 = −z′
1D12z2 +

√
1 + z′

1D11z1 · (x
′
1γ

m) .
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4. Hurdle Models

Dr. Gul Inan correctly states that there is a modification needed here. However, (5) in Dr. Inan’s text is not right because

we want to take the conditional mean over the entire distribution, not conditional on a value.

Using the same simplified notation as before, we now have:

P (Y = y|θ, b) =

{
πc y = 0,

(1 − πc) f(y|λc)
1−f(0|λc) y > 0,

(25)

with the rest of the model specified by (14)–(17). It now follows:

E(Y |θ, b) = πc · 0 +
1 − πc

1 − f(0|λc)

∞∑

y=1

f(y|λc) =
1 − πc

1 − f(0|λc)
· λc =

1 − πc

1 − e−λc
· λc. (26)

This is identical to the expression obtained by Dr. Inan.

Also here, we note that the marginal model is not of the form presented in the middle of page 4407 in Kassahun et al.[1]

but, in keeping with what is done earlier, we can require conditional mean (26) to take the same form marginally:

E(Y ) = (1 − πm) ·
λm

1 − e−λm
.

When b1 and b2 are independent, we find the classical connector integral equation for the binary component:

∫
πcf(b1)db1 = πm.

For the count connector function, we need to solve:

∫ ∫
λc

1 − e−λc
f(θ)f(b2)dθdb2 =

λm

1 − e−λm
.

More explicitly, ∫ ∫
θe∆2+z′

2b2

1− e
−

»
θe∆2+z′

2b2

– f(θ)f(b2)dθdb2 =
ex

′

2ξ

1 − e−ex
′

2ξ
.

This is the result of Dr. Inan. Dr. Inan’s proposal to solve this equation iteratively, through Newton-Raphson, is very

sensible. Of course, also here, a further modification is needed when the two normal random effects are correlated.

Hurdle Models With Correlated Normal Random Effects

In line with what we find in the zero-inflated case, we now have:

∫ ∫ ∫
Φ(∆1 + z′

1b1) ·
θe∆2+z′

2b2

1− e
−

»
θe∆2+z′

2b2

– f(θ)f(b1)f(b2|b1)dθdb1db2 = Φ(x′
1γ) ·

ex
′

2ξ

1 − e−ex
′

2ξ
.

However now, the denominator under the integrand implies that simplification is less straightforward, and hence a Newton-

Raphson approach for the pair (∆1, ∆2) is an obvious way forward. Note that in the zero-inflated case, we were able to

derive intuitive expressions for ∆1 and ∆2, but these are not unique, given that there is one integral equation with two

tuning parameters. Here, one can at best hope to find an algebraic expression for ∆1, because even in the uncorrelated

random effects case, there is no closed form for the count connector. Therefore, we can simply set one of the two equal to

zero, ∆1 ≡ 0, say, and then solve the reduced integral equation for ∆2.

5. Concluding Remarks

In summary, the issues discussed are as follows.

First, one should not formulate the entire marginal model, unlike in Kassahun et al.[1] (pp. 4407–4408), but only use a

convenient marginal mean formulation and equate it to the marginal mean as derived from the fully formulated hierarchical

4 www.sim.org Copyright c© 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 00 1–S.2
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model. It is fine to use this model as inspiration to derive a marginal mean function, but no more than that. Dr. Inan’s work

is not inconsistent with this observation, but it is not explicitly mentioned. Also, Dr. Inan’s equation (5) is better replaced

by a more conventional derivation of the marginal mean.

Second, neither the original proposal nor Dr. Inan’s derivation is entirely correct when the normal random effects are

correlated. Dr. Inan’s work is correct for uncorrelated random effects. The original proposal is correct in the zero-inflated

case (not in the hurdle case) when the random effects are uncorrelated.

Third, for correlated random effects, we have derived the correction for the ZI case. It is algebraically a minor

modification in the ZI case, but nevertheless one that needs to be made and that has important implications for computation.
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Neyens, Christel Faes, and Geert Verbeke

Supplementary Materials

A. Data Analysis

Here, we re-analyze both case studies using the marginalized ZI models. Fitting the marginalized hurdle model with

correlated normal random effects is very computationally intensive because it requires solving integral equations iteratively

for each observation, even for medium size datasets. Therefore, we exemplify the analyses using the marginalized zero-

inflated model with correlated normal random effects.

A.1. IRC Data

The data were analyzed using the zero-inflation models ZI(PNG)`, ZI(PNG)p, MZI(PNG)` and MZI(PNG)p. Results are

shown in Table A.1. Estimates slightly change from the ones of Kassahun et al.[1] in Table II. The conclusions are:

• Comparing ZI(PNG)`, ZI(PNG)p, and their marginalized counterpart, the intercept ξ0 seems to differ as a result

of the marginalization, while the other estimates corresponding to the count part appear similar. This follows from

the nature of the connector function. However, estimates corresponding to the zero-inflation component, such as

γ0, γ1, γ2, γ3, and d2 show some difference. This is expected from the change of link function.

• The marginalized models lead to estimates of increased precision. In terms of parameter significance, all models

suggest that standard deviations of the random intercepts of the positive counts and the excess zeros, overdispersion

parameter, zero-inflation intercept, and zero-inflation coefficients of village and season are statistically significant.

In addition, the correlation parameter ρ is negative and statistically significant across models.

Note that there is quite some difference in some parameter estimates (intercepts) between the non-marginalized and

marginalized versions, even though the likelihood values at maximum do not change. This is in line with theory, because

a pair of models is identical in fit, but with parameters expressed on a different scale: conditional on random effects versus

marginalized over random effects. For count data, the difference is typically strong for intercept type parameters, while

for binary data all parameters would be affected ([2]).

Given that the MH(PNG)` and MH(PNG)p models were not fitted, we interpreted the estimates using the MZI(PNG)`
model. However, these do not change compared to the ones presented on page 4406 of Kassahun et al.[1]. The MZI(PNG)`
as shown in Table A.1 suggests that village at risk had higher expected A. gambiae log-counts (0.9808, p < 0.0001) as

compared with the controls. Furthermore, log-counts in the wet season were higher than in the dry season (2.2404, p <
0.0001). However, no statistically significant association was observed for the time effect (p = 0.9585); the same is true for

the village-time interaction (p = 0.6566). The zero-inflation estimate corresponding to village (γ̂2 = −0.8914, p < 0.0001)

with exp(γ̂) = 0.41 implies that the odds of zeros in the at-risk villages is nearly one third of what is expected in the control

villages. In addition, it was found that the odds of zeros in the wet season is much smaller than that of the dry season

(γ̂3 = −1.2095, p < 0.0001). The correlation of the random effects is negative and significant (ρ̂ = −0.4322, p = 0.0417),

suggesting the presence of a strong negative association between the count and zero-inflation processes.

Statist. Med. 2010, 00 1–S.2 Copyright c© 2010 John Wiley & Sons, Ltd. www.sim.org S.1
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Table A.1. IRC data: parameter estimates (standard deviation) for the regression coefficients in (1)ZI(PNG)`,

(2)MZI(PNG)`,ZI(PNG)p, (2)MZI(PNG)p link for zero-inflation.

Effect Parameter Estimate(s.e.) Estimate(s.e.)

ZI(PNG)` MZI(PNG)`
Intercept ξ0 -0.0085(0.1639) 0.0389(0.1595)

Time ξ1 0.0061(0.0988) 0.0051(0.0983)

Village ξ2 0.9824(0.1688) 0.9808(0.1683)

Season ξ3 2.2418(0.0982) 2.2404(0.0979)

Village × time ξ4 -0.0524(0.1163) -0.0517(0.1160)

Overdispersion α 1.4472(0.1126) 1.4388(0.1111)

Std. dev. random intercept count d1 0.2856(0.0677) 0.2824(0.0667)

Inflation intercept γ0 2.2771(0.1634) 1.9131(0.1564)

Inflation time γ1 0.0172(0.0568) 0.0129(0.0493)

Inflation village γ2 -1.0145(0.1486) -0.8914(0.1279)

Inflation season γ3 -1.3816(0.1039) -1.2095(0.0914)

Std. dev. random intercept inflation d2 0.8597(0.0814) 0.511(0.0472)

Corr. random effects ρ -0.4583(0.2058) -0.4322(0.2105)

−2log-likelihood 12,817 12,815

AIC 12,843 12,841

ZI(PNG)p MZI(PNG)p
Intercept ξ0 -0.0080(0.1640) 0.03097(0.1598)

Time ξ1 0.0098(0.0989) 0.0105(0.0989)

Village ξ2 0.9816(0.1687) 0.983(0.1687)

Season ξ3 2.2426(0.0983) 2.2427(0.0983)

Village × time ξ4 -0.0553(0.1164) -0.0561(0.1164)

Overdispersion α 1.4442(0.1119) 1.4442(0.1119)

Std. dev. random intercept count d1 0.2835(0.0669) 0.2837(0.0670)

Inflation intercept γ0 1.3387(0.0936) 1.1347(0.0886)

Inflation time γ1 0.0152(0.0340) 0.0135(0.0303)

Inflation village γ2 -0.5954(0.0879) -0.5300(0.0772)

Inflation season γ3 -0.8099(0.0592) -0.7209(0.0527)

Std. dev. random intercept inflation d2 0.5119(0.0474) 0.5119(0.0474)

Corr. random effects ρ -0.4394(0.2097) -0.4397(0.2096)

−2log-likelihood 12,817 12,817

AIC 12,843 12,843

A.2. Jimma Longitudinal Family Survey of Youth

Table A.2 shows the results of fitting the ZI(PN-)` and MZI(PN-)` models. As before, the estimates are almost the same

than the ones presented in Kassahun et al.[1] in Table VI. Therefore, the findings are the same:

• The marginalized model appears relatively superior in precision. However, estimates corresponding to the count part

remain similar, and this is not surprising given the smaller random-effects variance.

• The standard deviation of the random intercept inflation changes substantially among conditional and marginal

model, leading to non-negligible differences in the zero-inflation estimates as well.

S.2 www.sim.org Copyright c© 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 00 1–S.2
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Table A.2. Jimma Longitudinal Family Survey of Youth: parameter estimates (standard deviation) for the regression

coefficients in (1)ZI(PN-)`, (2)MZI(PN-)`

Effect Parameter Estimate(s.e.) Estimate(s.e.)

ZI(PN-)` MZI(PN-)`
Intercept ξ0 0.8620(0.1440) 0.8686(0.1441)

Time ξ1 0.0673(0.0179) 0.0672(0.0179)

Sex ξ2 0.0840(0.0272) 0.0841(0.0273)

Age ξ3 0.0288(0.0092) 0.0288(0.0092)

Std. dev. random intercept count d1 0.1197(0.0321) 0.1198(0.0321)

Inflation intercept γ0 2.2627(0.3858) 2.001(0.3486)

Inflation time γ1 0.1862(0.0463) 0.1632(0.0416)

Inflation sex γ2 -0.4227(0.0731) -0.3803(0.0654)

Inflation age γ3 -0.0605(0.0251) -0.0539(0.0225)

Std. dev. random intercept inflation d2 0.8010(0.0689) 0.4719(0.0403)

Corr. random effects ρ -0.1329(0.2888) -0.1320(0.2946)

−2log-likelihood 13,242 13,242

AIC 13,264 13,264

Statist. Med. 2010, 00 1–S.2 Copyright c© 2010 John Wiley & Sons, Ltd. www.sim.org S.3
Prepared using simauth.cls

Page 8 of 8Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


