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Abstract 

In the development of math ability, a large variability of performance in solving simple arithmetic 

problems is observed and has not found a compelling explanation yet. One robust effect in simple 

multiplication facts is the problem size effect, indicating better performance for small problems 

compared to large ones. Recently, behavioral studies brought to light another effect in multiplication 

facts, the interference effect. That is, high interfering problems (receiving more proactive interference 

from previously learned problems) are more difficult to retrieve than low interfering problems (in terms 

of physical feature overlap, namely the digits, De Visscher & Noël, 2014). At the behavioral level, the 

sensitivity to the interference effect is shown to explain individual differences in the performance of 

solving multiplications in children as well as in adults. The aim of the present study was to investigate the 

individual differences in multiplication ability in relation to the neural interference effect and the neural 

problem size effect. 

To that end, we used a paradigm developed by De Visscher, Berens, et al. (2015) that contrasts 

the interference effect and the problem size effect in a multiplication verification task, during functional 

magnetic resonance imaging (fMRI) acquisition. Forty-two healthy adults, who showed high variability in 

an arithmetic fluency test, participated in our fMRI study. In order to control for the general reasoning 

level, the IQ was taken into account in the individual differences analyses.  

Our findings revealed a neural interference effect linked to individual differences in 

multiplication in the left inferior frontal gyrus, while controlling for the IQ. This interference effect in the 

left inferior frontal gyrus showed a negative relation with individual differences in arithmetic fluency, 

indicating a higher interference effect for low performers compared to high performers. This region is 

suggested in the literature to be involved in resolution of proactive interference. Besides, no correlation 

between the neural problem size effect and multiplication performance was found. This study supports 

the idea that the interference due to similarities/overlap of physical traits (the digits) is crucial in 

memorizing arithmetic facts and in determining individual differences in arithmetic. 
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1. Introduction 

The successful development of mathematical competencies requires the acquisition of different 

types of mathematical knowledge. Among them, arithmetic facts are specifically learned in primary 

school and constitute a critical foundation for more complex mathematical learning (e.g., Kilpatrick, 

Swafford, & Findell, 2001). Through the repeated practice of meaningful strategies (McCloskey, 

Aliminosa, & Sokol, 1991) or through direct memorization, children progressively build an arithmetic 

facts network permitting them to efficiently retrieve—without relying on a computational procedure—

the answers of simple problems, such as 2 × 3 = 6 (Lemaire & Siegler, 1995; Siegler & Shipley, 1995). This 

arithmetic network enables the retrieval from long-term memory and is mainly composed of 

multiplication problems (Robinson et al., 2006; Roussel, Fayol, & Barrouillet, 2002; Thevenot, Castel, 

Danjon, & Fayol, 2015; Thevenot, Castel, Fanget, & Fayol, 2010). Despite long and specific practice at 

school, the performance in solving simple arithmetic problems shows remarkable individual differences 

in children as well as adults (e.g., Bailey, Littlefield, & Geary, 2012; De Visscher, Noël, & De Smedt, 2016; 

Dowker, 2005a, 2015; Geary, Hoard, & Bailey, 2012; Jordan, Hanich, & Kaplan, 2003; Lemaire & Siegler, 

1995; Vanbinst, Ceulemans, Ghesquière, & De Smedt, 2015). Some individuals, referred to as individuals 

with dyscalculia, even show life-long and persistent difficulties in the acquisition of these foundational 

competencies (Geary, 2004; Geary, Hoard, & Hamson, 1999; Jordan & Montani, 1997; Slade & Russel, 

1971). Corroborating these findings, individual differences in brain activity during arithmetic are 

observed in children (De Smedt, Holloway, & Ansari, 2011) and in adults (Grabner et al., 2007). As 

described here below, individual differences in arithmetic facts has been recently related to sensitivity to 

the proactive interference in multiplication, at the cognitive behavioral level (De Visscher & Noël, 2014). 

However, very little is known about the individual differences in multiplication facts related to the 

individual sensitivity to interference and to the problem size. The aim of this study is to further our 
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understanding of individual differences in multiplication ability and investigate the correlation of these 

differences with the sensitivity to the interference and to the size of the problems.  

In children as well as in adults, the size of the problem was shown to influence the performance 

(speed and accuracy), namely that small problems are better performed than large problems (Campbell 

& Xue, 2001). This problem size effect was largely described and reported as a substantial and robust 

effect in the literature (e.g. Zbrodoff & Logan 2005; De Brauwer et al. 2006). Recently, another important 

effect, based on physical similarities (i.e., the visual composition of the problem and its answer) in 

multiplication facts, has been brought to light–the interference effect. The theoretical principle is that 

arithmetic facts are associations of operands and answers that repeatedly use the same 10 elements, 

namely the digits from 0 to 9. More specifically, items that have been memorized can interfere with the 

process of memorization of a new item if this item is similar to the previously learned ones (proactive 

interference, Oberauer & Lange, 2008). The more features a problem shares with the previously learned 

ones, the weaker will be its memory trace. At the neural level, many studies investigated the effect of 

proactive interference in memory with mainly one paradigm that assesses the proactive interference 

coming from previous trials (recent-probe task, see Jonides & Nee, 2006). Overall the studies using this 

task or other tasks measuring proactive interference in memory repeatedly pointed to the left inferior 

frontal cortex. Based on the proactive interference theory, De Visscher and Noël (2014) developed a 

parameter assessing the proactive interference that each multiplication problem received throughout 

the learning of the multiplication tables, from table 2 to table 9. This parameter, based on the feature 

overlap between multiplications (digits), predicted the performance across multiplications beyond their 

problem size. In other words, the interference effect explained variance above and beyond the well-

known problem size effect, namely that small problems evoke faster reaction times and less errors 

compared to large problems (Campbell & Xue, 2001; De Brauwer, Verguts, & Fias, 2006a; Zbrodoff & 

Logan, 2005). More importantly, the individual differences in multiplication was related to the individual 
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sensitivity to this parameter (the individual slope), with lower sensitivity associated to better 

performance (De Visscher & Noël, 2014; De Visscher et al., 2016). In these studies, the general speed for 

solving multiplication was related to the sensitivity to the interference parameter in typically developing 

third grade, fourth grade and fifth grade children as well as in undergraduates. Moreover, 

hypersensitivity to the interference parameter was related to a certain profile of dyscalculia with 

circumscribed deficit in arithmetic facts knowledge (De Visscher & Noël, 2014; De Visscher & Noël, 2013; 

De Visscher, Szmalec, Van Der Linden, & Noël, 2015). Longitudinal data in fourth-grade children with 

poor or good arithmetic fluencies revealed that the sensitivity to the interference parameter was 

uniquely predicting the accuracy and speed in multiplication one year later.  

In the typical development, the sensitivity to both the interference parameter and the problem 

size were related to the general speed in multiplication in typically developing children and adults, noting 

that these two factors explained unique variance (De Visscher & Noël, 2014). In order to better 

understand the individual differences in multiplication fact performance, the current study aimed at 

contrasting the sensitivity to these two factors and search for neural evidence in relation with 

multiplication performance.  

Regarding the development of arithmetic fact knowledge, brain imaging data revealed that 

during arithmetic tasks younger children showed greater activation in the prefrontal cortex (dorsolateral 

and ventrolateral) and the anterior cingulate cortex, compared to older children (Rivera, Reiss, Eckert, & 

Menon, 2005). This was interpreted as higher demands on working memory and attentional resources 

for younger children. Interestingly, the younger children also showed larger activation in the 

hippocampus and dorsal basal ganglia, areas related to declarative and procedural memory systems. In 

particular, the left hippocampus was suggested to be involved in the learning phase of arithmetic facts, 

where greater activation for small problems compared to large ones, and for addition compared to 
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subtraction, was found in children 10-12 years (De Smedt, Holloway, & Ansari, 2011). Similarly, the 

increase of the use of retrieval in arithmetic was associated with increase activation in the prefrontal 

cortices as well as in the hippocampal regions (Cho et al., 2012; Cho, Ryali, Geary, & Menon, 2011), 

suggesting that these area subserved the learning of arithmetic facts. Finally through development, the 

left inferior parietal cortex, including the angular gyrus, shows an increase specialization in mental 

arithmetic (Rivera et al., 2005). 

The problem size and the interference effect seem to involve different representations in 

multiplication solving, namely and respectively the magnitude representation and the physical structure 

representation (De Visscher et al., 2016; Graham & Campbell, 1992). These effects have indeed been 

shown to activate distinct areas in a recent brain imaging study. In this study, De Visscher, Berens, Keidel, 

Noël, and Bird (2015) tested 20 healthy adults who were asked to solve single-digit multiplication 

problems during fMRI. A 2 × 2 factorial design was used to assess two main effects, namely the 

interference effect and the problem size effect. Various brain regions were modulated by the two effects, 

namely bilateral insula lobes, bilateral supplementary motor area and middle cingulate gyri as well as 

bilateral inferior frontal gyri. Aside from these common areas, the left angular gyrus was found to be 

specifically modulated by the interference effect, with higher activation for low interfering compared to 

high interfering problems. The left angular gyrus has been pointed out to subserve the automatic 

retrieval of arithmetic facts from memory (e.g. Ischebeck et al., 2006). Importantly, the brain activation 

of this region during multiplication problem solving has been shown to underlie individual differences in 

arithmetic. For instance, Grabner et al. (2007) reported stronger activation in the left angular gyrus for 

adults with high mathematical competence compared to those with low mathematical competence, for 

single-digit as well as for multi-digit multiplication problems.  Besides, the problem size effect was 

modulating the right or bilateral intra-parietal sulcus/i in adults (De Visscher, Berens, et al., 2015; 

Stanescu-Cosson, Pinel, van de Moortele, et al., 2000) and in children (De Smedt et al., 2011), area 
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known to be involved in magnitude processing (Dehaene, Piazza, Pinel, & Cohen, 2003a;  Price, Holloway, 

Rasanen, Vesterinen, & Ansari, 2007).  

The study of De Visscher, Berens, Keidel, Noël, and Bird, (2015) investigated the interference 

effect and the problem size effect in twenty healthy participants with homogeneous arithmetic fluency. 

The size and population of their sample did not enable the authors to investigate the individual 

differences in multiplication performance, which was the aim of the current study. By comparing the 

neural interference effect and problem size effect and investigate which one accounts best for 

multiplication performance, the current study aimed to further our understanding of individual 

differences in multiplication.  

To this end, we collected functional activation data from 42 healthy adults who showed high 

variability in an arithmetic fluency test. Participants were asked to perform a multiplication verification 

task during fMRI. The multiplication paradigm was based on a 2 × 2 factorial design contrasting the 

interference level (low vs high) and the problem size (small vs large), enabling us to investigate the 

interference effect, the problem size effect, and their interaction. In addition, multiplication fluency was 

assessed to explore how individual differences in multiplication fluency are related to the neural 

interference effect and the neural problem size effect. In order to study this relationship and dismiss an 

explanation in terms of general intelligence factor, a measure of the intellectual quotient was taken into 

account in the models.  

Regarding the problem size effect, one might predict differences of activation in the intraparietal 

sulci that are thought to sustain magnitude processing and that is modulated by the problem size effect 

(De Smedt, Holloway, & Ansari, 2011;  Dehaene, Piazza, Pinel, & Cohen, 2003; Stanescu-Cosson, Pinel, 

van De Moortele, et al., 2000). Regarding the interference effect, three hypotheses can be formulated 

from previous studies. Based on the discussed literature, we expect to find a positive association 
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between the interference effect and individual differences in multiplication in the angular gyrus, where a 

specific interference effect and individual differences were reported (De Visscher, Berens, Keidel, Noël, & 

Bird, 2015; Grabner, Ansari, Koschutnig, Reishofer, & Ebner, 2011). Alternatively, the higher interference 

effect in multiplication could be due to dysfunction of the medial temporal lobe, in particular the 

hippocampus, that is thought to sustain arithmetic fact learning (De Smedt, Holloway, & Ansari, 2011). 

Accordingly, a correlation between interference effect and multiplication score is expected in the 

hippocampus.  Finally, as suggested by De Visscher & Noël (2014), individual differences in the 

interference effect in multiplication might stem from structural or functional differences in the left 

inferior frontal gyrus, known to be involved in the resolution of proactive interference (e.g. Jonides & 

Nee, 2006). Accordingly, a correlation between the interference effect in the left inferior frontal gyrus 

and multiplication performance is expected. 

2. Method 

 

2.1 Participants 

Participants were 42 healthy right-handed adults (29 females). The participants’ age ranged from 

18 to 48 years (mean ± SD: 22 ± 5.6). All participants were healthy native German speakers without 

neurological diseases or learning disorders. They received either EUR 20 or course credit points (in case 

of psychology students) to compensate for their participation. The study was approved by the Ethics 

Committee of the Medical University of Graz. 

2.2 Materials and procedure 

2.2.1 Psychometric test session 
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All participants were recruited from a large pool of participants who had been screened some 

months before the present study. Participants performed several psychometric tests. Among these tests 

were an Arithmetic Fluency Test and an Intelligence test, which are directly relevant for the present 

study. The Arithmetic Fluency Test was developed by the Educational Neuroscience Laboratory at the 

University of Graz (Vogel et al., 2017) based on the French Kit Test (French, Ekstrom & Price, 1963). The 

test was designed to measure the fluency with which individuals can solve arithmetic problems, including 

multiplications, subtractions and additions. For this, arithmetic problems were grouped by operation on 

separate sheets. Participants had to solve as many problems as possible on each sheet within a given 

time limit. Overall, 64 single-digit multiplications (e.g., 5 x 7), 128 single-digit additions (e.g., 4 + 7) and 

128 subtractions with a minuend between 4-20 and a single-digit subtrahend (e.g., 16 - 8) were included. 

Participants were given 90 seconds for each of the three sheets/operations. In the present study, we 

focused on arithmetic fluency in multiplication as the single-digit multiplication problems are typically 

solved through fact retrieval operations (Campbell & Xue, 2001; Robinson et al., 2006; Roussel et al., 

2002; Thevenot et al., 2015, 2010). 

For assessing general intelligence, a short version of the Berlin Intelligence Structure Test (BIS-T; 

Jäger, Süß, & Beauducel, 1997) was administered. This test draws on three content components of 

intelligence (verbal, figural, and numerical) and, within the three content components, on four 

operational abilities (processing speed, memory, reasoning, and creativity). The applied short version of 

the BIS-T comprised 16 subscales, which were then aggregated to a score of general intelligence (IQ).   

From the participant pool, a sample of 42 participants was selected who revealed a large variability 

in arithmetic fluency but whose general intelligence score was within the average range (between 90 

and 110).  

2.2.2 fMRI test session 
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The fMRI design and procedure of the present study were similar to that used by De Visscher et 

al. (2015). In the scanner, participants had to perform a multiplication verification task (see Figure 1). 

Each trial started with a fixation asterisk for half a second followed by a multiplication problem displayed 

for 2 seconds. After an equal sign and a black screen (lasting 1 sec altogether) the potential answer of 

the problem was displayed for 2 seconds. Participants were instructed to calculate the problem before 

seeing the target. When the target answer was displayed, participants had to decide whether the answer 

was correct (by pressing the left response button) or incorrect (by pressing the right response button). In 

addition to the displayed answer, two tags remained on the screen in order to remind the participant of 

the key responses (a green/red “yes”/”no” was on the left/right bottom side of the screen). After each 

target, participants were prompted to answer the question of whether they retrieved the answer to the 

problem from memory or not. Participants affirmed this question by pressing the left response button, 

or denied it (if they used calculation strategies) by pressing the right response button. The inter-trial 

interval was jittered exactly as in De Visscher et al. (2015) and lasted between 2 and 16 seconds (mean ± 

SD: 6.34s ± 3.88s). 

 

 

Figure 1: Time-course of one trial of the multiplication verification task inside of the scanner. 

The experimental design was a 2 × 2 factorial design using the two variables of interest: 

proactive interference (i.e., interference parameters: high vs. low) and problem size (i.e., products: large 
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vs. small). The stimuli sets, order of presentation, inter-trial intervals and procedure were the same as in 

De Visscher et al. (2015). Multiplication problems were distributed into four conditions: small-low 

interfering, large-low interfering, small-high interfering and large-high interfering. From the 36 

multiplication problem with operands from 2 to 9 (without the commutative pairs), all problems that 

permit to adhere to an orthogonal design were selected. The final set of problems consisted of 6 items 

per condition (24 in total). This orthogonal design enabled us to investigate the unique contribution of 

each variable separately. Problems with 0 or 1 as operand were not included because they are known to 

be solved by rule-based strategies (Campbell & Xue, 2001). The stimuli list with the measure of the 

proactive interference weight (interference parameter) and the problem size (products) is provided in 

Supplementary material. The stimuli presentation followed a rapid event-related design. A script 

included in the AFNI package (Cox, 1996) was used to select an optimal combination of stimulus order 

and inter-trial interval (i.e. the one with the smallest amount of un-modeled variance, from the 10 000 

potential designs generated). Each problem was presented 6 times, resulting in 36 trials per condition 

and 144 trials in total. Three out of the six presentations were associated with the correct answer and 

three were associated with an operand-related incorrect answer (see Supplementary material). The 

order of the operands (large vs small operand first) was counterbalanced within and between runs, and 

across the six presentations of each stimulus. 

Functional data collection was carried out in one functional run (34 minutes). The experimental 

task was broken down into 6 blocks, with a short break in-between the blocks. Before participants were 

positioned in the scanner, they were familiarized with the task demands and asked to perform 5 practice 

trials. The practice trials did not contain any of the problems presented during the fMRI test session. 

Inside the scanner, a structural scan taking 5 min was acquired before the beginning of the experimental 

task.  
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2.2.3 MRI acquisition 

All images were acquired on a 3T Siemens Magnetom Prisma Fit scanner, using a 64-channel 

phased-array head coil. Functional images were acquired using a T2-weighted gradient-echo EPI 

sequence (TR = 2050 ms, TE = 25.0 ms, flip angle = 90°, FOV = 192 × 192 mm, matrix = 64 x 64). Each 

functional volume corresponded to 41 contiguous axial slices of 3 mm of thickness, acquired in a 

descending order. The voxel size of the functional volumes was 3 mm³. For purposes of co-registration 

and standardization to a template brain, a high-resolution (1 mm³) T1-weighted whole brain anatomical 

volume was collected using a Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) 

sequence.  

 

2.3 fMRI-Data analyses 

The preprocessing and statistical analyses of MRI data were carried out using SPM8 (Wellcome 

Department of Imaging Neuroscience, London, UK). Individual functional data sets were slice-time 

corrected, then spatially realigned to the first volume and corrected for distortions in order to adjust for 

field inhomogeneity of the scanner (using the Realign and Unwarp function in SPM). The resulting 

volumes were registered to the anatomical scan and standardized through the application of the 

calculated transform between the MNI template brain and the anatomical scan using the DARTEL 

toolbox (Ashburner, 2007). The Echo-Planar Imaging (EPI) images were eventually smoothed with an 8 

mm Full Width at Half Maximum (FWHM) Gaussian kernel. In order to remove low frequency 

modulations, a 128 seconds high-pass filter was applied. The structural scans were normalized to 

produce a mean image that is used to display statistical data with group level statistics (using DARTEL 

toolbox). The Juelich atlas from the Anatomy Toolbox in SPM (Eickhoff et al., 2005) was used to assign 

anatomical labels to significant brain regions. 
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A first-level model of the fMRI data was calculated in accordance with the general linear model 

(GLM) principles, grouping the correctly verified problems into the four experimental conditions. Seven 

additional regressors of no interest were modeled, including the 6 rigid-body movement parameters 

derived from the image realignment procedure and the error trials of the arithmetic task. The HRF 

amplitude as well as the temporal and dispersion derivatives were calculated on a voxel-wise basis. The 

window of interest corresponded to the time window during which participants were actively 

computing/retrieving the answer of the problem, namely from the onset of the problem presentation 

until the proposed answer. Following the procedure of De Visscher et al. (2015), this period of interest 

was specified as a 3 sec long boxcar function, and was convolved with SPM’s canonical hemodynamic 

response function (HRF).  

For the second level analyses, each individual’s HRF amplitude estimates from the four 

experimental conditions were entered into a 2 (interference: high vs. low) × 2 (problem size: small vs. 

large) repeated measures ANOVA, permitting to examine group-wide BOLD differences as a function of 

interference level and problem size. In order to explore individual differences, regression models were 

carried out separately on the problem size effect and the interference effect, with the multiplication 

fluency measure.  For the group effect analyses, we report effects that survived whole-brain family wise 

error (FWE) corrected thresholds at the peak level (p < .05). For the individual differences analyses, no 

cluster survived whole-brain FWE corrected thresholds at the peak level (p < .05). We therefore used an 

initial uncorrected (p<.001) threshold and report effect that survived whole-brain FWE corrected 

threshold of p < .05 at the cluster level, which is a more liberal but acceptable threshold that effectively 

controls for a 5% rate of false positives (see Eklund, Nichols, & Knutsson, 2016).  

Subsequently, we calculated Bayes factors in the areas modulated by the interference effect or 

by the problem size effect in order to test the specificity of these areas for each effect. While 
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investigating the areas modulated by the interference effect, the absence of problem size effect in the 

area was the null hypothesis. In contrary, while investigating the areas modulated by the problem size 

effect, the absence of interference effect in the area was the null hypothesis. The rationale used for 

interpreting the Bayes factors followed that of Dienes (2011b), considering a Bayes factor above 3 as 

substantial evidence for the null hypothesis. 

 

3. Results 

 

3.1 Behavioral data of the psychometric test session 

The descriptive statistics for the psychometric tests are described in Table 1.  

Table 1. Descriptive statistics of the behavioral measures.  

N = 42 Minimum Maximum Mean SD 

Multiplication fluency 15 64 43.71 14.77 

General intelligence (IQ) 91.53 109.60 100.55 4.41 

 

3.2 Behavioral data of the fMRI task 

3.2.1 Effects of interference and problem size  

The average accuracy on the multiplication verification task was 97% (SD = 2.9). During the task, 

participants reported a retrieval strategy in 83% (SD = 17.9) of the trials. The average percentage of 

correct responses (%CR) for each condition is displayed in Figure 2.   

A repeated-measures ANOVA with the within-subjects variables Interference level (low vs high) 

and Problem size (small vs large) was run on the %CR. A main effect of Interference level revealed higher 

performance for low interfering (M = 98.45, SD = 2.67) problems than for high interfering problems (M = 

95.97, SD = 5.58; F(1,41) = 14.640, p < .001, ηp² = .263). A main effect of Problem size was shown, with 
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higher performance for small (M = 98.45, SD = 2.77) compared to large problems (M = 95.97, SD = 5.53; 

F(1,41) = 20.560, p < .001, ηp² = .334). In addition, a significant interaction was found (F(1,41) = 9.797, p 

= .003, ηp² = .193), indicating a higher interference effect for large problems than for small ones (see 

Figure 2). 

  

 

Figure 2: Left graph: Mean percentage of correct responses in the multiplication verification task according to the 

conditions, contrasting the interference level (low vs high) and the problem size (small vs large). Right graph: Mean 

percentage of retrieval for each condition, contrasting the level of interference (low vs high) and the size of the problem 

(small vs large). 

Regarding the percentage of retrieval, the same repeated-measures ANOVA as above was run 

and revealed a main effect of Interference, indicating more retrieval for low interfering problems (M = 

88.33, SD = 20.00) than for high interfering problems (M = 78.54, SD = 24.37, F(1,41) = 28.549, p < .001, 

ηp² = .410). Similarly, a main effect of Problem size emerged, with higher retrieval rate for small (M = 

91.57, SD = 17.20) compared to large problems (M = 75.30, SD = 24.74, F(1,41) = 39.080, p < .001, ηp² 

= .488). Finally, a significant interaction showed a larger interference effect on retrieval frequency in 

large problems compared to small problems (F(1,41) = 11.041, p = .002,  ηp² = .212). The average 

percentage of retrieval per condition is displayed in Figure 2. 
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3.3 Imaging data 

Using the same paradigm, De Visscher et al. (2015) reported that the problem size effect was 

specifically modulating the right intra-parietal sulcus in typical adults, area known to be involved in 

magnitude processing (Dehaene et al., 2003a; Price et al., 2007). Aside from the problem size effect, the 

interference effect was specifically modulating the left angular gyrus, which has been suggested to be 

related to automatic retrieval (Grabner et al., 2011). In order to investigate whether the current data 

replicate the previous findings of De Visscher et al., (2015), we first explored the data at the group level, 

assessing the interference effect, the problem size effect and their interaction, by means of a 2 

(Interference level: high vs low) × 2 (Problem size: large vs small) ANOVA (see Figure 3). We report 

effects that survived whole-brain family wise error (FWE) corrected thresholds at the peak level (p < .05). 

The exact same model on the retrieved correct trials only reached the same conclusions, and is reported 

in the Supplemental material. 

 

3.3.1 Effects of interference and problem size: group level analyses 

 Main effect of interference 

Regarding the interference effect, we report both the contrasts high > low interfering and low > 

high interfering (see Table 2). The main effect of interference is represented in red in Figure 3. High 

interfering problems showed higher BOLD response than low interfering problems in a large cluster 

comprising the right/left superior medial gyri, posterior-medial frontal cortex, middle frontal gyri, 

anterior and middle cingulate cortex. The same contrast revealed modulation of BOLD response 

bilaterally in the insula lobes, inferior frontal gyri, caudate nuclei, left intraparietal sulcus, right superior 

orbital gyrus, and left middle frontal gyrus. The reverse contrast (low > high) showed higher BOLD 
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response for low interfering problems compared to high interfering problems in the right inferior parietal 

lobule, left/right mid orbital gyri, and right angular gyrus.  

We investigated the specificity of the areas modulated by the interference effect, by calculating 

Bayes factors with the null hypothesis being the absence of problem size effect in these areas. All brain 

areas that showed higher BOLD response to high interfering problems compared to low interfering ones 

also exhibited substantial evidence in favor of a problem size effect (all Bayes factors  < 0.001), except for 

the right AG. In contrast, the cluster in the right angular gyrus that showed higher BOLD response for low 

compared to high interfering problems, showed no evidence of a problem size effect (Bayes factor of 

3.64, which is 3.64 times in favor of the null hypothesis (Dienes, 2011a)).   

Table 2. 

Main effect of Interference (pFWE[peak] < .05, k > 4) 
Peak voxel 

MNI Coordinates 
[x,y,z] 

BA 
 
k 

 
t 

 
Z 

Contrast High > Low      
Left/right superior medial gyri 
Left/right posterior-medial frontal cortices 
Left/right middle frontal gyri 
Left/right anterior and middle cingulate cortices 
Left insula lobe (area 44) 
Right insula lobe 
Left inferior frontal gyrus (area 44/45) 
Right caudate nucleus 
Left caudate nucleus 
Left intraparietal sulcus (hIP3/hIP1/hIP2) 
Right superior orbital gyrus (area Fo3) 
Left middle frontal gyrus (area Fp1) 
Right inferior frontal gyrus 
Left intraparietal sulcus (hIP3)  

[0, 21, 45] 
 
 
 

[-30, 24, 0] 
[33, 24, 0] 

[-42, 21, 27] 
[15, 9, 9] 
[-9, 9, 6] 

[-39, -45, 42] 
[24, 42, -15] 
[-33, 54, 12] 
[45, 30, 24] 

[-27, -69, 39] 

R 8 
 
 
 

L 13 
R 13 
L 9 

R 48 
L 48 
L 40 
R 11 
L 10 
R 9 
L 39 

714 
 
 
 

306 
146 
458 
62 
57 
123 
15 
61 
40 
18 

10.00 
 
 
 

9.19 
8.50 
7.06 
6.29 
6.03 
5.84 
5.75 
5.44 
5.33 
5.06 

Inf 
 
 
 

Inf 
7.72 
6.58 
5.95 
5.72 
5.56 
5.48 
5.21 
5.11 
5.06 

Contrast Low > High      
Right inferior parietal lobule (area PFt, PFop, PF, PFcm) 
Left/right mid orbital gyri (area s24, s32) 
Right angular gyrus (area PGa (IPL)) 

[60, -27, 27] 
[6, 27, -9] 
[60, -54, 9] 

R 40 
R 32 
R 37 

164 
87 
69 

6.60 
6.19 
6.03 

6.20 
5.86 
5.72 

 

Main effect of problem size 
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The main effect of problem size is represented in green in Figure 3 and in Table 3. Similarly to 

interference effect (high > low), higher BOLD response was found for large problems compared to small 

ones in a large cluster comprising the right/left superior medial gyri, posterior-medial frontal cortex, 

middle frontal gyri, anterior and middle cingulate cortex. Also similar to high > low contrast,  the large > 

small contrast modulated the BOLD response bilaterally in the insula lobes, in the right inferior frontal 

gyrus, left caudate nucleus, left intraparietal sulcus, and left middle frontal gyrus. Aside from these 

common areas, the problem size contrast revealed a modulation of the BOLD response in the right 

intraparietal sulcus, in the left and right cerebelli, left inferior temporal gyrus, left/right superior frontal 

gyrus, right superior orbital gyrus and right posterior medial frontal cortex. 

The reverse contrast, with higher BOLD response for small problems compared to large problems, 

was found only in the right mid orbital gyrus.  

We investigated the specificity of the areas modulated by the problem size effect, by calculating 

Bayes factors with the null hypothesis being the absence of interference effect in these areas. None of 

these areas showed strong evidence in favor of the specificity of the problem size effect (all Bayes factors 

< 0.12, one cluster in the left inferior temporal gyrus with Bayes factor = 1.04, and one cluster in right 

superior orbital gyrus Bayes factor = 1.50, which are anecdotal evidence in favor of the null hypothesis). 

Table 3.  

Main effect of Problem size (pFWE[peak] < .05, k > 4) 
Peak voxel 

MNI Coordinates 
[x,y,z] 

BA 
 
k 

 
t 

 
Z 

Contrast Large > Small      
Left/right superior medial gyrus 
Left/right posterior-medial frontal cortices 
Left/right middle frontal gyrus 
Left/right anterior and middle cingulate cortices 
Left insula lobe (area 45,44) 
Right insula lobe 
Left intraparietal sulcus (hIP1/hIP3) 
Right inferior frontal gyrus 

[-3, 24, 42] 
 
 
 

[-30, 21, -3] 
[30, 24, 0] 

[-36, -57, 45] 
[45, 27, 27] 

L 8 
 
 
 

L 13 
R 13 
L 39 
R 9 

497 
 
 
 

874 
153 
854 
289 

8.47 
 
 
 

7.96 
7.46 
7.39 
7.17 

7.70 
 
 
 

7.31 
6.91 
6.86 
6.68 
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Left caudate nucleus, thalamus 
Right intraparietal sulcus (hIP3/hIP1/hIP2) 
Left middle frontal gyrus (Area Fp1) 
Right cerebellum (lobule VI, lobule VIIa Crus I)/left lobule VI 
Left inferior temporal gyrus (area FG4, FG2) 
Left cerebellum (lobule VIIa Crus I, lobule VI, area FG2) 
Left superior frontal gyrus 
Right superior frontal gyrus 
Right superior orbital gyrus (FP1) 
Right posterior medial frontal cortex 

[-12, 3, 12] 
[36, -54, 45] 
[-39, 54, 9] 
[9, -81, -27] 

[-51, -54, -12] 
[-33, -63, -27] 
[-18, 15, 66] 
[30, 12, 63] 
[24, 63, -3] 
[15, 12, 66] 

L 48 
R 39 
L 10 

- 
L 37 

- 
L 6 
R 6 
R 10 
R 6 

296 
341 
171 
96 
44 
28 
19 
8 
5 
6 

7.04 
6.35 
6.33 
6.28 
5.86 
5.15 
5.09 
4.96 
4.93 
4.92 

6.57 
5.99 
5.98 
5.94 
5.58 
4.95 
4.90 
4.78 
4.76 
4.75 

Contrast Small > Large      
Right mid orbital gyrus (area s32, Fp2, s24, left area s32) [6, 39, -12] R 11 33 5.34 5.12 

 

  

 

L L L R R R 

L L L R R R 
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Figure 3: Main effect of interference (red blobs), main effect of problem size (green blobs) and overlap (yellow blobs) on the 

mean structural scan of the group (irrespective of the direction). From left to right, the MNI coordinates of the corresponding 

brain section are [-1.6, 19.6, 5.6], [0.8, -59.5, 44.4], [60.6, -29.2, 4.8].  

 

Interaction between interference and problem size 

There was no significant interaction between Interference and Problem size at the predefined 

FWE correction p < .05 threshold at peak level—even at a lowered threshold of p < .001 (uncorrected) 

with FWE correction at cluster level. 

3.3.2 Individual differences 

3.3.2.1 Interference effect  

In order to investigate how individual differences in arithmetic fluency were related to the neural 

interference effect, a whole-brain regression model on the low versus high interfering contrast was 

computed with the multiplication fluency and the IQ score (regressor of no interest) as covariates. With a 

FWE corrected threshold (p < .05) at the peak-level, the analyses revealed no area. Subsequently we ran 

the same model with an initial uncorrected threshold p < .001, and reported clusters surviving FWE 

corrected p < .05 threshold, which is a more liberal but acceptable threshold that effectively controls for 

a 5% rate of false positives (see Eklund, Nichols, & Knutsson, 2016). This analysis revealed only one 

significant cluster, the left inferior frontal gyrus, extending to the left precentral gyrus (MNI [-45, 24, 21], 

k = 212, t = 4.68, Z = 4.14, see Figure 4).  The data show that the adults with higher arithmetic knowledge 

show less neural interference effect within the left inferior frontal gyrus (see Figure 4). 
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Figure 4: Left: Individual interference effect correlation with simple arithmetic performance, in the left inferior frontal gyrus, 

extending to the precentral cortex. The MNI coordinates of the corresponding brain section are [-40.1, 24.1, 18.0] and [-36.1, 

27.0, 17.7]. Middle: Individual betas in the left inferior frontal gyrus for low and high interfering conditions according to the 

multiplication fluency score. Right: Interference effect (high minus low interfering betas) in the left inferior frontal gyrus 

according to the multiplication fluency score. 

 

3.3.2.2 Problem size effect  

 In order to investigate how individual differences in arithmetic fluency are related to the neural 

problem size effect, a whole-brain regression model on the small versus large interfering contrast was 

computed with the multiplication fluency and the IQ score (regressor of no interest) as covariates. With a 

voxel-wise threshold of p < .05 FWE corrected, results did not show any significant area for this model. 

Using a more liberal but acceptable threshold (initial uncorrected threshold p < .001, FWE corrected p 

< .05 cluster-wise threshold), no significant area was found.  
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4. Discussion 

In the typical and atypical development of math ability, a large variability of performance in 

solving simple arithmetic problems is observed and has not found a compelling explanation yet. Thus far, 

most of behavioral and neuroimaging studies focused on the global performance in arithmetic fluency, 

mainly contrasting different arithmetic operations, different problem-solving strategies, or different 

problem sizes (De Smedt et al., 2011; Grabner et al., 2011; Grabner et al., 2009; Menon, 2014b; Peters & 

De Smedt, 2017). However, behavioral studies showed that the performance is also influenced by the 

proactive interference created during the arithmetic fact learning (in terms of physical feature overlap, 

namely the digits, (De Visscher & Noël, 2014; De Visscher et al., 2016)). At the neural level, both the 

problem size and the proactive interference level were distinguished as two separate effects in 

multiplication facts, taking place respectively in the right intraparietal sulcus and in the left angular gyrus 

(De Visscher et al., 2015). In this previous study, the individual differences in multiplication related to 

both the interference and problem size effect was not investigated given the small and homogeneous 

sample used. The aim of the present work was therefore to investigate the individual differences in 

multiplication ability related to neural mechanisms of the sensitivity to interference and problem size. 

 To that aim, we used a paradigm developed by De Visscher, Berens, et al. (2015) that contrasts 

the interference effect and the well-known problem size effect in a multiplication verification task. The 

behavioral data of our participants confirmed both the interference effect and the problem size effect, 

namely that larger problems and high interfering problems were more error-prone than the small and 

the low interfering problems. These results corroborates the findings of De Visscher and Noël (2014) 

showing a robust interference and problem size effect in third and fifth graders as well as 

undergraduates.  
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When addressing the question of individual differences, the left inferior frontal gyrus showed a 

modulation of activation due to the interference effect related to multiplication fluency, with higher 

neural interference effect in that region for lower performers compared to higher performers. 

Importantly in the current study, the general reasoning ability was taken into account and controlled for 

in the analyses. Our results are in line with findings showing individual differences in arithmetic fluency 

related to modulation of the left inferior frontal gyrus (Berteletti, Prado, & Booth, 2014). While the left 

inferior frontal gyrus was commonly seen as part of the classical language areas of the left hemisphere 

on which the arithmetic fact retrieval rely (Dehaene & Cohen, 1995), this region is also known to be 

involved in proactive interference resolution (Jonides & Nee, 2006). For instance, a patient with a 

circumscribed lesion in the left inferior frontal gyrus showed heightened sensitivity to proactive 

interference compared to other patients with other frontal lesions (Thompson-Schill et al., 2002). More 

precisely, the left inferior frontal gyrus is suggested to be involved in resisting proactive interference 

stemming from previous trials (Jonides & Nee, 2006; Thompson-Schill et al., 2002). The sensitivity to the 

inference effect in multiplication leads to lower multiplication performance, and this relation is observed 

in the region involved in interference resolution and selection of the relevant information. Nonetheless, 

the current study do not permit to directly test the idea that sensitivity-to-interference in memory 

provoke difficulties in memorizing items that have a high level of similarity between them, as 

multiplication facts do. Further studies are required to address that hypothesis with a behavioral 

measure of sensitivity-to-interference in memory. 

Importantly, in the present study no individual differences in the neural problem size effect were 

related to arithmetic fluency. While the problem size effect is robust and well-recognized, its potential 

for explaining individual differences at the neural level seems to be low. It has to be noted that the way 

problem size is defined varies a lot across studies and depends on the arithmetic operation (Campbell & 

Xue, 2001; De Brauwer et al., 2006a; Zbrodoff & Logan, 2005). In the current study, the size is 
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determined by the products of the problem (small products for small problems versus large products for 

large problems).  Very few studies investigated the problem size and its link with individual differences in 

arithmetic. One brain imaging study in 10-12-year-old-children by  De Smedt et al. (2011) showed higher 

activation of the intraparietal sulci in children with low arithmetic fluency for small problems compared 

to children with high arithmetic fluency. In this study, problems were defined as small when the product 

of the operands was below or equal to 25, and as large when the product of the operands was above 25. 

Additions and subtractions were used, and subtraction size was determined by the reverse relation with 

additions. It is therefore difficult to compare our results to these or other results since arithmetic 

operations are different, the problem size is defined differently, and any of these studies took the 

interference effect into account together with the problem size effect.  

At the behavioral level, De Visscher & Noël (2014b) showed that both the problem size and the 

interference effect predicted the performance across multiplications but that mainly the sensitivity to 

the interference effect was related to impairment in solving multiplication while the sensitivity to the 

problem size was not. As supported by the behavioral study of De Visscher et al. (2016), the interference 

effect is more related to retrieval and memory issue, while the problem size could stem from many 

different reasons (the frequency, the magnitude of the answers or the distribution of answers, the 

strategy used, the neighboring consistency; (Ashcraft & Christy, 1995; Campbell, 1995; LeFevre, Sadesky, 

& Bisanz, 1996; Siegler, 1988; Verguts & Fias, 2005).  

The group level analyses are overall in line with the results of De Visscher, Berens, Keidel, Noël, 

and Bird (2015). Increased BOLD response for low interfering problems compared to high interfering 

ones was found in the right angular gyrus, and this area did not show modulation by the problem size 

effect. This is partly corroborating the results of De Visscher, Berens, et al., (2015), in which this contrast 

revealed the left angular gyrus in the main model that was including all trials. It has to be noted that the 
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right angular gyrus also showed specific modulation by the interference effect in the model including the 

retrieved trials only (see Appendix C in De Visscher, Berens, Keidel, Noël, & Bird, 2015, Bayes factor of 

2.30 which is close to substantial evidence in favor of the null hypothesis (absence of problem size effect). 

This Bayes factor was computed after publication). The left angular gyrus is commonly thought to be 

involved in verbally-mediated process and to contribute to arithmetic retrieval (Dehaene et al., 2003a). 

In opposition with our predictions, the left angular gyrus was not significantly modulated by the 

interference level. Nonetheless, the right angular gyrus was modulated by the interference effect, area 

that is suggested to contribute to visuo-spatial fact retrieval (Arsalidou & Taylor, 2011). Despite less 

attention for the right angular gyrus, both angular gyri are known to be related to retrieval of arithmetic 

problems, in adults with more activation for trained than for untrained problems, (Grabner et al., 2009) 

and in children for retrieval compared to procedural strategies based on verbal report (Polspoel, Peters, 

Vandermosten, & De Smedt, 2017; Tschentscher & Hauk, 2014).  

Similarly to De Visscher, Berens, et al. (2015), higher BOLD responses for large problems 

compared to small ones were found in bilateral intraparietal sulci, however the specificity of the right 

intraparietal sulcus was not confirmed in the current study (no strong evidence from the Bayes factors in 

favor of the null hypothesis regarding the interference effect in these regions). These slight discrepancies 

might due to the differences in the sample selection that included participants with different levels of 

arithmetic fluency in this current study compared to a more homogeneous sample in De Visscher, Berens, 

et al. (2015). Also, cultural differences in the educational system or language differences might have 

slightly influenced the results. However, the overall main effects are similar and constitute a replication 

of the differences between the problem size and the interference effect at the brain modulation level. 

Other brain areas were similarly modulated by both the interference and problem size effect. 

Higher BOLD response for the high interfering problems and large problems were found compared to the 
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low interference and small ones respectively. These common brain areas are frequently reported in the 

literature on arithmetic (e.g., Arsalidou & Taylor, 2011): superior medial gyri, posterior-medial frontal 

cortices, middle frontal gyri, anterior and middle cingulate cortices, insula lobes, caudate nuclei, inferior 

parietal lobes, superior or mid orbital gyri. All these areas were also found in De Visscher et al. (2015), 

except the caudate nuclei. Most of these areas have been previously associated with domain-general 

(e.g., task difficulty) rather than with domain-specific processing mechanisms (e.g., numerical processing, 

Fox et al., 2005; Sunaert, Van Hecke, Marchal, & Orban, 2000).  

In conclusion, our findings bring new understanding on individual differences in multiplication ability, 

related to the neural sensitivity to the interference effect and to the problem size effect.  Our results 

revealed a neural interference effect linked to individual differences in multiplication in the left inferior 

frontal gyrus, while controlling for the IQ. This interference effect in multiplication found in the left 

inferior frontal gyrus showed a negative relation with individual differences in arithmetic fluency, 

indicating a higher interference effect for low performers compared to high performers. This region is 

known to be involved in resolution of proactive interference. Besides, no correlation between the neural 

problem size effect and multiplication ability was found. Our results support the idea that the 

interference due to similarities/overlap of physical traits (the digits) is crucial in memorizing arithmetic 

facts and in determining individual differences in arithmetic.   
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5. Supplementary material 

 

Appendix A. Stimuli list of the multiplication verification task. 

 

Appendix B. 2x2 factorial analyses on retrieved correct trials only 

 The same model has been run on the retrieved trials only, with the same threshold (FWE 

corrected, p < .05 voxel-wise). 

 Main effect of interference 

Main effect of Interference (pFWE[peak] < .05, k > 4) 
Peak voxel 

MNI Coordinates 
[x,y,z] 

BA 
 
k 

 
t 

 
Z 

Contrast High > Low      
Left/right superior medial gyrus 
Left/right posterior-medial frontal cortices 
Left/right middle frontal gyrus 
Left/right anterior and middle cingulate cortices 
Left insula lobe (area 44) 
Right insula lobe 
Left inferior frontal and precentral gyri (area 45/44) 
Right caudate nucleus 
Right superior orbital gyrus (area Fo3)  

[0, 21, 45] 
 
 
 

[-33, 21, 0] 
[33, 24, 0] 
[-45, 9, 33] 
[12, 15, 3] 

 [24, 42, -15] 

R 8 
 
 
 

L 13 
R 13 
L 8 

R 48 
R 11 

331 
 
 
 

186 
36 
263 
12 
6 

8.39 
 
 
 

7.91 
6.57 
5.80 
5.51 
5.05 

7.62 
 
 
 

7.26 
6.17 
5.52 
5.27 
4.86 

Contrast Low > High      
Right inferior parietal lobule (area PFt, PFop, PF, PFcm) 
Left/right mid orbital gyrus (area s24, s32) 

[60, -27, 27] 
[3, 33, -9] 

R 40 
R 11 

99 
45 

5.99 
5.97 

5.68 
5.67 

 LOW INTERFERING  HIGH INTERFERING 

 Problem Problem  

size 

(product) 

Interference 

level 

False answer 

 (distance with 

the correct 

answer) 

 Problem Problem 

size 

(product) 

Interference 

level 

False answer 

(distance with 

the correct 

answer) 

SMALL 2 × 7 = 
9 × 2 = 
5 × 5 = 
4 × 4 = 
2 × 8 = 
2 × 6 = 

14 

18 

25 

16 

16 

12 

4 

7 

3 

5 

7 

3 

12 (2) 

16 (2) 

30 (5) 

20 (4) 

18 (2) 

10 (2) 

 3 × 6 = 
5 × 4 = 
4 × 3 = 
4 × 6 = 
3 × 7 = 
8 × 3 = 

18 

20 

12 

24 

21 

24 

8 

8 

10 

12 

13 

13 

15 (3) 

16 (4) 

15 (5) 

28 (4) 

24 (3) 

21 (3) 

LARGE 6 × 6 = 
6 × 5 = 
5 × 9 = 
9 × 9 = 
5 × 7 = 
7 × 7 = 

36 

30 

45 

81 

35 

49 

4 

6 

6 

6 

7 

7 

30 (6) 

36 (6) 

40 (5) 

72 (9) 

40 (5) 

56 (7) 

 3 × 9 = 
9 × 4 = 
8 × 5 = 
7 × 8 = 
6 × 7 = 
4 × 8 = 

27 

36 

40 

56 

42 

32 

9 

9 

9 

9 

22 

25 

24 (3) 

32 (4) 

45 (5) 

63 (7) 

48 (4) 

28 (4) 
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Right angular gyrus (area PGa (IPL)) [63, -51, 9] R 37 30 5.30 5.08 

 

 Main effect of problem size 

Main effect of Problem size (pFWE[peak] < .05, k > 4) 
Peak voxel 

MNI Coordinates 
[x,y,z] 

BA 
 
k 

 
t 

 
Z 

Contrast Large > Small      
Left/right superior medial gyrus 
Left/right posterior-medial frontal cortices 
Left/right middle frontal gyrus 
Left/right anterior and middle cingulate cortices 
Left insula lobe (area 45,44) 
Right insula lobe 
Left intraparietal sulcus (hIP1/hIP3) 
Left inferior frontal and precentral gyri (area 45, 44) 
Left caudate nucleus, thalamus 
Right middle frontal gyrus 
Left middle frontal gyrus (Area Fp1) 
Left precuneus (area 7P, 7A) 
Right intraparietal sulcus (hIP3/hIP1, hIP2) 
Right caudate nucleus 
Right cerebellum (lobule VI, lobule VIIa Crus I) 

[3, 21, 45] 
 
 
 

[-30, 21, -3] 
[30, 24, 0] 

[-39, -54, 48] 
[-48 ,21, 30] 
 [-12, 3, 15] 
[48, 33, 21] 
[-39, 54, 12] 
[-6, -66, 45] 
[33, -66, 45] 
[9, -81, -27] 

[9, 3, 6] 

R 8 
 
 
 

L 13 
R 13 
L 39 
L 9 

L 48 
R 9 
L 10 
L 7 

R 39 
- 
- 

191 
 
 
 

63 
42 
269 
242 
48 
75 
21 
27 
105 
15 
15 

7.10 
 
 
 

6.58 
6.07 
5.83 
5.78 
5.76 
5.44 
5.36 
5.30 
5.24 
5.17 
5.07 

6.61 
 
 
 

6.18 
5.75 
5.54 
5.50 
5.48 
5.21 
5.13 
5.08 
5.02 
4.96 
4.88 

Contrast Small > Large      
Right mid orbital gyrus (area s32, s24, left area s24, s32) [3, 33, -9] R 11 16 5.04 4.85 

 

 Interaction between interference and problem size 

Similarly to the full model, there was no interaction between Interference and Problem size. 
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