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Abstract. Boarding patients and the extra workload they introduce are a major concern in 

emergency departments. Not in the least because they confront the physicians with a challenging 

task: prioritizing between boarding patients and patients currently under treatment in the 

emergency department. The main contribution of this paper is the examination of different 

control policies for the physicians when needy boarding patients are added to the analysis. Using 

discrete-event simulation, three static control policies (first-come, first-served and always 

prioritizing either boarding patients or the other patients) and two dynamic control policies 

(using threshold values and accumulating priorities) are studied. For operational system 

performance, the recommended control policy is simple and straightforward: never prioritize 

boarding patients. However, in an emergency department setting, health-related performance 

measures also need to be considered: physicians cannot disadvantage one type of patients in 

favour of operational system performance. The result is a trade-off between operational system 

performance measures and health-related performance measures. Furthermore, we conclude that 

applying a first-come, first-served policy performs extremely well in a wide range of situations. 
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1. Introduction 

A serious issue often encountered in hospital emergency departments (EDs) is crowding. Crowding 

occurs when the demand for emergency resources exceeds the resources available in the ED (Moskop, 

Sklar, Geiderman, Schears & Bookman, 2009). This can cause several negative effects including longer 

waiting time and length of stay (LOS), lost hospital revenue, increased ambulance diversion, more 

patients that leave without being seen (LWBS), and even higher mortality rate (Hoot & Aronsky, 2008).  

One of the main contributors to crowding is inpatient boarding which results from the inability to 

transfer patients from the ED to the inpatient ward (IW) (Moskop et al., 2009). As a consequence, these 

boarding patients need to wait in the ED. While waiting, they require treatment from the ED staff and 

occupy beds which, as a consequence, cannot be used by newly arriving patients. In this way, boarding 

patients congest the ED. 

Although the importance of inpatient boarding is stated multiple times in the  operations research 

(OR) and operations management (OM) literature, very little research focuses on this topic (Saghafian, 

Austin & Traub, 2015). Furthermore, when boarding is included in the analysis, it is often assumed that 

boarding patients occupy beds in the ED, but do not require any other resources. However, in reality, 

boarding patients still need additional check-ups by ED physicians, can require time from ED nurses or 

occupy other ED equipment than beds (Armony, Israelit, Mandelbaum, Marmor, Tseytlin & Yom-Tov, 

2015). 

This paper intends to investigate the effect of this simplification by incorporating the additional 

check-ups required by boarding patients into the analysed system. Adding these required check-ups 

increases the workload of the physicians, but also raises an additional question. That is, after finishing 

a treatment, the physician needs to decide whether he or she will see a boarding patient or one of the 

other patients in the system. Since the treatment characteristics of these two kinds of patients differ, this 

decision has an important impact on system performance. Moreover, in an ED setting, prioritization 

decisions also have an outspoken health aspect that should not be neglected. Indeed, a hospital cannot 

ignore (a certain type of) patients in favour of operational system performance. This paper therefore 

considers two types of performance measures while examining different control policies for the 

physicians: operational system performance measures and health-related performance measures. 

The remainder of this paper is organized as follows. Section 2 provides an overview of the currently 

existing literature on this topic and Section 3 presents the methodology applied in this paper. Section 4 

describes the results by analysing and comparing different control policies. Finally, Section 5 presents 

the main conclusions and opportunities for future research. 

 

2. Literature review 

Inpatient boarding is also referred to in the literature as “access block” (Au et al., 2008; Luo, Cao, 

Gallagher & Wiles, 2013) or “bed block” (Rashwan, Abo-Hamad, & Arisha, 2015; Saghafian et al., 



2015). It is one of the key factors contributing to overcrowding and has a significant influence on 

patient’s LOS in the ED (Shi, Chou, Dai, Ding & Sim, 2016; Carmen, Defraeye & Van Nieuwenhuyse, 

2015). Furthermore, these longer ED stays increase hospital LOS, risk of hospital-acquired infections 

and mortality rates (Armony et al., 2015). Additionally, inpatient boarding is defined as the main cause 

of ambulance bypass which occurs when ambulances are forced to take their patients to another hospital 

because the ED is too crowded; e.g. Au et al. (2008) observe that access block is responsible for 76% of 

all ambulance bypass. Also non-boarding patients may suffer from delays in the transfer process; since 

boarding patients still require treatment while waiting to be admitted to the IW, the additional workload 

they put on ED staff may be significant as boarding patients take up to 11% of physician time in the ED 

(Armony et al., 2015).  

Surprisingly, however, when analysing the ED, inpatient boarding is often neglected or not the main 

focus of the study. Indeed, articles in the OR/OM literature concentrating on this specific topic are 

notably scarce (Saghafian et al., 2015). Relevant inpatient boarding articles are categorized according 

to two distinguishing features: the articles’ focus and methodology (Table 1). Firstly, although ED 

boarding occurs at the intersection of the ED and the IW, articles that take into account ED boarding 

usually focus either on the ED or on the IW. Secondly, given the wide range of OR/OM tools currently 

available, articles are categorized according to the methodology used in the analysis. 

Table 1: Overview of relevant inpatient boarding articles. 

Article Focus Methodology 

 

 

 

ED 

 

IW 

 

Simulation 

Queueing 

theory 

Statistical 

methods 

Data analysis 

Bair et al. (2010) X  X    

Carmen et al. (2014) X  X    

Carmen et al. (2015) X  X    

Crawford et al. (2014) X  X    

Saghafian et al. (2012) X  X X   

Au et al. (2008) X   X   

Bagust et al. (1999)  X X    

Mustafee et al. (2012)  X X    

Rashwan et al. (2015)  X X    

Shi et al. (2016)  X X X   

Luo et al. (2013)  X   X  

Armony et al. (2015)  X    X 

 

Root causes of inpatient boarding are usually sought in the IW. Shortage in the number of IW beds 

is often identified by hospital staff to be the number one cause of boarding (Mustafee et al., 2012). Other 

reasons for inpatient boarding are the inability to discharge IW patients in a timely manner (Rashwan et 

al., 2015; Crawford, Parikh, Kong & Thakar, 2014; Luo et al., 2013) and ED “batch admitting”, which 

occurs when several boarding patients are queued and admitted to the IW altogether at a time convenient 



to the staff (Luo et al., 2013). On the one hand, Armony et al. (2015) group plausible causes for ED-to-

IW delays into four main categories: inadequate synchronization between the ED and the IW, bad work 

methods, shortage in staff availability and lack of equipment availability. Shi et al. (2016), on the other 

hand, attribute boarding times to a mismatch between the daily number of arrivals and discharges and a 

mismatch between the discharge timing and hourly arrival pattern. Depending on which process or 

resource that is defined to be the main cause of inpatient boarding, the proposed improvement strategies 

differ. 

Articles that study the consequences of inpatient boarding tend to model the system from an ED 

perspective. Performance measures considered in these studies are the rate of LWBS (Bair, Song, Chen 

& Morris, 2010) and ambulance bypass (Au et al., 2008). Even if boarding is not the main focus, ED 

studies should take this phenomenon into account to obtain realistic results (Carmen, Defraeye, Celik 

Aydin & Van Nieuwenhuyse, 2014; Carmen et al., 2015; Saghafian, Hopp, Van Oyen, Desmond & 

Kronick, 2012). 

Depending on the focus of the article, studies model either the ED or the IW in detail, but to the 

best of our knowledge, none model both the ED and the IW. With boarding being located at the 

intersection of the ED and IW, modelling it is complicated and it is often neglected. Furthermore, even 

when it is included in the study, it is usually modelled in a very basic way. On the one hand, when 

focusing on the IW, boarding patients are typically modelled as IW admissions which arrive according 

to a certain arrival process (Rashwan et al., 2015; Bagust, Place & Posnett, 1999; Luo et al, 2013). On 

the other hand, when using an ED focus, it is often assumed that boarding patients only occupy ED beds 

and do not need any further treatment in the ED (Crawford et al., 2014; Carmen et al., 2014; Carmen et 

al., 2015). However, data analysis (e.g. Armony et al., 2015) shows that boarding patients take up to 

11% of physician time in the ED. Neglecting this can considerably underestimate the staff’s workload. 

This paper aims to contribute to the existing literature by adding these additional treatments required by 

boarding patients to an ED-focused analysis.  

Another way to categorize the literature that concentrates on inpatient boarding is to classify articles 

based on the OR/OM methodologies used for investigating this topic (Table 1). Simulation is used for 

the main analysis (Saghafian et al., 2015; Zeltyn et al., 2011), or as an additional methodology to verify 

an analytical model by comparing the simulation output with empirical estimates or to conduct a 

sensitivity analysis on the outcome of the study (e.g. Shi et al., 2016). Simulation has been the preferred 

OR/OM tool to study ED operations for years (e.g. Bagust et al., 1999) since it is able to simulate a 

complex and stochastic environment and therefore it can capture the real system’s behaviour in a much 

better way (Saghafian et al., 2015; Rashwan et al., 2015). Also, it is cheaper and faster than performing 

real-time experimentation (Mustafee et al., 2012). Furthermore, using simulation gives the opportunity 

to run multiple replications of the same configuration, making the conclusions derived from the 

simulation outcomes more statistically reliable. However, the main drawback is the lack of generality 

over the wide range of different simulation studies (Günal & Pidd, 2010). Most of the time, simulation 



is used for modelling specific units and facilities, and these models are rarely reused in other similar 

studies.  

Alternative OR/OM methodologies used in the reviewed articles are queueing theory (Shi et al., 

2016; Saghafian et al., 2012; Au et al., 2008), statistical methods, including regression and functional 

principal component analysis, (Luo et al., 2013) and data analysis (Armony et al., 2015). An interesting 

observation is that two out of three articles using queueing theory do not rely solely on queueing theory, 

but combine it with simulation. So, it seems that taking into account inpatient boarding and solely relying 

on queueing theory for conducting the analysis is a rare combination. Saghafian et al. (2015) concurs 

that ignoring blocking issues in the ED is one of the four main deficiencies in queueing theory models 

commonly used when analysing ED patient flow. 

In contrast to the numerous articles that apply simulation, studies that use other OR/OM 

methodologies than simulation are remarkably rare. This is not surprising since adding inpatient 

boarding to the analysis makes it more realistic and accurate, but also more complex. With this rise in 

complexity, the need for an OR/OM methodology that can capture all these complex aspects of the ED 

also grows. As discussed before, simulation is particularly suitable for modelling such environments. 

Consequently, we will also rely on simulation in this paper when investigating and comparing different 

control policies for ED physicians. 

 

3. Methodology 

3.1. Problem setting 

Based on Carmen (2017), the ED is analysed from a patient flow perspective. In our flow network, 

patients can return to the physician for additional treatment several times (re-entrant patients) and 

boarding patients generate additional check-ups and thus extra workload (needy boarding patients). A 

schematic overview of this network is provided in Figure 1. 

 

Figure 1: Overview of ED model. 

A homogenous flow of patients arrives in the ED according to a Poisson distribution with rate λ. 

Looking at the relevant inpatient boarding articles in section 2, it is common to assume a Poisson arrival 



rate in an ED setting. Before starting the actual treatment process, they wait in the external queue until 

they obtain a bed, of which there are N. We assume all arriving patients have equal priority and no life-

threatening cases are present in the external queue; such cases are handled outside our model. After 

obtaining a bed, patients enter the internal queue in order to see one of the s physicians. This initial 

treatment process is exponentially distributed with mean 
1

𝜇1
 and it is assumed that any of the s physicians 

can treat any patient. 

After this treatment step, there are three ways in which patients can continue their treatment process. 

First, with probability 𝑝1, patients need to return to the physician for additional treatment after a delay 

which is exponentially distributed with mean 
1

𝛿
. This delay represents any treatment step that does not 

require the physician’s presence like nurse treatments, lab tests, or scans. We assume that this treatment 

step has infinite capacity. Second, with probability (1 − 𝑝1)𝑝𝑏, patients need admission into the 

hospital, but there is no IW bed available for them. Therefore, they have to wait in the ED until they can 

be hospitalized in the IW. This boarding time is exponentially distributed with mean 
1

𝛽
. While waiting, 

boarding patients generate additional check-ups according to a Poisson distribution with rate 𝜇𝑏. The 

durations of these check-ups by the physician are exponentially distributed with mean 
1

𝜇2
. When a 

patient’s boarding time is over, he or she can go to the IW if, at that time, he or she is not seeing the 

physician or waiting for a check-up. Otherwise, the patient will be transferred to the IW immediately 

after returning from the physician. Last, with probability (1 − 𝑝1)(1 − 𝑝𝑏), patients leave the ED after 

treatment. 

With needy boarding patients, there are three kinds of patients waiting in the internal queue: patients 

that have just started their treatment process (thus patients that have just obtained a bed), patients that 

are returning from tests, and boarding patients. In this paper, the former two will be referred to as test 

patients. Consequently, two types of patients are analysed in our model: test and boarding patients. This 

distinction is made clear in the flow model displayed in Figure 1 by using different colours: red for test 

patients and blue for boarding patients.  

Given the different characteristics of test and boarding patients, the choice whether to give priority 

to one or another can have a significant impact on system performance. This paper determines control 

policies for the physician, thereby investigating and comparing several policies while taking into account 

various performance measures. The determined control policies will specify which patients should be 

prioritized in what situations. A distinction is made between static and dynamic control policies. In static 

control policies, physicians apply a prioritization rule independent from the system state. In dynamic 

control policies however, the system state dictates which type of patients gets priority in the internal 

queue. 

  



3.2. Scenarios 

Five scenarios, classified into static and dynamic control policies, are analysed and compared 

(Table 2).  

1. In the first scenario, physicians apply a first-come, first-served (FCFS) policy.  

2. In the second scenario, physicians always give priority to boarding patients. 

3. Alternatively, in the third scenario, physicians always give priority to test patients. 

4. The fourth scenario contains the first dynamic control policy, which uses a threshold policy 

similar to van Dijk and van der Sluis (2009). In this scenario, the physicians’ priority choice 

depends on a threshold rule. With 𝑚𝑛𝑏 the number of needy boarding patients in the internal 

queue, 𝜃𝑛𝑏 the threshold value of these needy boarding patients, 𝑚𝑏 the number of boarding 

patients in the system and 𝜃𝑏 the threshold value of these boarding patients, the threshold 

rule is as follows: Thr(𝜃𝑛𝑏, 𝜃𝑏) = priority is given to boarding patients if 𝑚𝑛𝑏 ≥

𝜃𝑛𝑏 𝑜𝑟 𝑚𝑏 ≥ 𝜃𝑏, otherwise, test patients get priority. For combinations of 𝜃𝑛𝑏 and 𝜃𝑏 

where 𝜃𝑛𝑏 ≥ 𝜃𝑏, the physicians’ prioritization choice depends solely on 𝜃𝑏. Consequently, 

combinations for which  𝜃𝑛𝑏 > 𝜃𝑏 are not relevant (they generate the same outputs as 

combinations for which 𝜃𝑛𝑏 = 𝜃𝑏) and we only investigate combinations where 𝜃𝑛𝑏 ≤ 𝜃𝑏.  

5. The fifth and final scenario implements an accumulating priority queue where a patient’s 

priority is a linear function of his or her waiting time in the internal queue (Fajardo & 

Drekic, 2017; Li & Stanford, 2016; Sharif, Stanford, Taylor & Ziedins, 2014; Stanford, 

Taylor & Ziedins, 2014). The rate 𝑧𝑖 at which the priority increases depends on the patient 

type i (𝑖 ∈ {𝑡, 𝑏} where t stands for test patients and b for boarding patients). The physician 

prioritizes the patient with the highest accumulated priority in the internal queue.  

Henceforth, the abbreviations in Table 2 will be used to refer to the different scenarios. 

Table 2: Overview of analysed scenarios. 

Scenario Control Policy Static (S)/ Dynamic (D) 

FCFS Test and boarding patients are served on a FCFS basis S 

B Boarding patients always get priority S 

T Test patients always get priority S 

TRH Priority depends on threshold rule D 

AP Accumulating priority D 

 

3.3. Modelling approach 

Arena Simulation Software® is used to build the flow network introduced in Section 3.1 and 

displayed in Figure 1. Since our aim is to study the ED in a steady-state, the graphical procedure of 

Welch (Mahajan & Ingalls, 2004) is used to determine the length of the warm-up period. After making 

100 replications for the FCFS scenario, each with a length of 150 hours, we calculate the cross-

replication averages of the utilization rates of physicians 𝜌𝑝ℎ𝑦𝑠 and beds 𝜌𝑏𝑒𝑑 for every 10 hours. Next, 



we calculate the moving averages over these periods using a window of 3. This means that we calculate 

the moving average 𝑀𝑡
̅̅̅̅  at period t as follows:  

∑ 𝑌𝑖̅
2𝑡−1
𝑖=1

2𝑡−1
       for t ≤ 3 

𝑀𝑡
̅̅̅̅  =                 with 𝑌𝑖̅ the cross-replication average of period i 

∑ 𝑌𝑖̅
𝑡+3
𝑖=𝑡−3

7
     for 3 < t ≤ 12 

As it is apparent from Figure 2, the moving averages of both utilization rates become relatively 

stable after 5 periods or 50 hours. Following the graphical procedure of Welch, the simulation model 

enters the steady state at that point. To build in extra safety, since the dynamic scenarios apply more 

complex priority rules, a warm-up period of 100 hours is used. 

 

Figure 2: Moving averages of 𝜌𝑝ℎ𝑦𝑠 and 𝜌𝑏𝑒𝑑. 

We use a replication length of 1100 hours of which the first 100 hours count as a warm-up period. 

In each scenario, the number of replications equals 100. Using these settings, the half-widths of 𝜌𝑝ℎ𝑦𝑠 

and 𝜌𝑏𝑒𝑑 never exceed 0.36% in the analysed scenarios. 

In order to compare the different scenarios of Table 2, we rely on the 95% confidence intervals: 

scenarios significantly differ from each other when their 95% confidence intervals do not overlap. 

3.4. Input data 

An overview of the input used in the simulation model is given in Table 3. The estimates for 𝜇1, 𝛿 

and 𝑝1 are taken from Yom-Tov and Mandelbaum (2014), who obtained their parameters from real-life 

data. Based on data analysis of Armony et al. (2015), we set the boarding probability 𝑝𝑏 equal to 35%, 

the average boarding rate β to 
1

3
 patients per hour, the average rate at which boarding patients generate 

check-ups 𝜇𝑏 to 4 check-ups per hour and the average treatment rate of boarding patients 𝜇2 to 40 

patients per hour. λ, s and N are determined such that 𝜌𝑝ℎ𝑦𝑠 and 𝜌𝑏𝑒𝑑 are close to 80 % for the FCFS 

scenario. 
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Table 3: Input used in the simulation model. 

𝜇1 𝛿 𝑝1 𝑝𝑏 β 𝜇𝑏 𝜇2 λ s N 

12.37 1.31 0.7268 0.35 1

3
 

4 40 6.3 3 28 

 

4. Numerical results 

This section presents the obtained numerical results. The dynamic policies are analysed in Sections 

4.1, 4.2 and 4.3. We do not provide a separate section for the static control policies since these are 

included in the analysis of the dynamic control policies. The AP scenarios where 
𝑧𝑏

𝑧𝑡
 is set to 1, infinite 

and 0 equal the FCFS, B and T scenarios respectively. Also, TRH scenarios where 𝜃𝑛𝑏 =  𝜃𝑏 = 0 and 

where 𝜃𝑛𝑏 and  𝜃𝑏 are both set sufficiently high (so that they are never exceeded) equal the B and T 

scenarios respectively. Next, in Section 4.4, a comparison is made between the different scenarios 

introduced in Section 3.2. 

4.1. Effect of dynamic control policies on operational system performance measures 

We analyse the effect of the TRH scenario by varying threshold values 𝜃𝑛𝑏 and 𝜃𝑏. As explained 

in Section 3.2, only combinations for which 𝜃𝑛𝑏 ≤ 𝜃𝑏 are looked into. Also, since no further impact on 

performance measures is observed for 𝜃𝑛𝑏 ≥ 10 or 𝜃𝑏 ≥ 15, these combinations are not shown in the 

graphs. The effect of the AP scenario is analysed by varying 
𝑧𝑏

𝑧𝑡
 . This is done by altering 𝑧𝑏, while 

keeping 𝑧𝑡 constant and equal to 1. An overview and explanation of the analysed values of  
𝑧𝑏

𝑧𝑡
 are given 

in Table 4. 

Table 4: Overview and explanation of analysed values of  
𝑧𝑏

𝑧𝑡
. 

𝑧𝑏

𝑧𝑡
 

Explanation2 

0 T scenario 

0.2 𝑧𝑏 = 0.2 * 𝑧𝑡 

0.4 𝑧𝑏 = 0.4 * 𝑧𝑡 

0.6 𝑧𝑏 = 0.6 * 𝑧𝑡 

0.8 𝑧𝑏 = 0.8 * 𝑧𝑡 

1 FCFS scenario 

1.25 𝑧𝑡 = 0.8 * 𝑧𝑏 

1.67 𝑧𝑡 = 0.6 * 𝑧𝑏 

2.5 𝑧𝑡 = 0.4 * 𝑧𝑏 

5 𝑧𝑡 = 0.2 * 𝑧𝑏 

9999 B scenario 

                                                           
2 The values of  

𝑧𝑏

𝑧𝑡
 displayed on the x-axis in the graphs in this section are chosen such that on the left of  

𝑧𝑏

𝑧𝑡
 = 1 the formula 

𝑧𝑏 = α*𝑧𝑡 applies and on the right of  
𝑧𝑏

𝑧𝑡
 = 1 the formula 𝑧𝑡 = α*𝑧𝑏. Furthermore, α goes from 0 to 1 in steps of 0.2. 

Consequently, values of  
𝑧𝑏

𝑧𝑡
 on the left and right of  

𝑧𝑏

𝑧𝑡
 = 1 which are based on the same α (for example  

𝑧𝑏

𝑧𝑡
 = 0.2 and 

𝑧𝑏

𝑧𝑡
 = 5) 

are located equally far from 
𝑧𝑏

𝑧𝑡
 = 1 on the x-axis in the graphs. 



 

4.1.1. Waiting times 

From a patient’s operational perspective, the most important performance measure is the ED 

waiting time. The different waiting times are defined as follows. 

 Average total waiting time = average external queue waiting time + average total internal queue 

waiting time 

 Average total internal queue waiting time = (0.65 * average total internal queue waiting time of 

test patients) + (0.35 * average total internal queue waiting time of boarding patients)  3 

 Average total internal queue waiting time of test patients = average number of physician visits 

of test patients * average single internal queue waiting time of test patients4 

 Average total internal queue waiting time of boarding patients = average total internal queue 

waiting time of test patients + (average number of physician visits of boarding patients * average 

single internal queue waiting time of boarding patients) 

Furthermore, all calculated average waiting times are unconditional averages; even patients that did 

not have to wait and hence have a waiting time of 0 minutes are taken into account. 

Figure 3 shows that prioritizing test patients (high threshold values 𝜃𝑛𝑏 and 𝜃𝑏 or low values for 
𝑧𝑏

𝑧𝑡
) 

minimizes total waiting time. This impact is a combination of two opposite movements: a positive effect 

on the external queue waiting time and a negative effect on the total internal queue waiting time (Figure 

4). 

a)                              

 

  

                                                           
3 Probability of boarding 𝑝𝑏 = 0.35. 
4 The average single internal queue waiting time is the average internal queue waiting time of one physician visit. 
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Figure 3: Average total waiting time for a) different threshold values 𝜃𝑛𝑏  and 𝜃𝑏  and b) different values of  
𝑧𝑏

𝑧𝑡
. TRH scenarios 

where 𝜃𝑛𝑏 =  𝜃𝑏 = 0 and where 𝜃𝑛𝑏  = 10 and  𝜃𝑏 = 15 equal the B and T scenarios respectively. AP scenarios where 
𝑧𝑏

𝑧𝑡
 is set to 

1, 9999 and 0 equal the FCFS, B and T scenarios respectively. 

a) 

 

b) 

 

Figure 4: Average external queue and total internal queue waiting time for a) different threshold values 𝜃𝑛𝑏  and 𝜃𝑏  and b) 

different values of 
𝑧𝑏

𝑧𝑡
. TRH scenarios where 𝜃𝑛𝑏  =  𝜃𝑏 = 0 and where 𝜃𝑛𝑏  = 10 and  𝜃𝑏 = 15 equal the B and T scenarios 

respectively. AP scenarios where 
𝑧𝑏

𝑧𝑡
 is set to 1, 9999 and 0 equal the FCFS, B and T scenarios respectively. 
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On the one hand, the average external queue waiting time is favourably impacted by giving more 

priority to test patients (Figure 4). The intuition behind this is that every time test patients have seen a 

physician, they release a bed with probability (1 − 𝑝1)(1 − 𝑝𝑏). Hence, prioritizing boarding patients 

has a negative impact on the external queue waiting time; all test patients stay longer in the internal 

queue and occupy beds for a longer time, preventing patients waiting in the external queue from entering 

the system. Boarding patients, on the contrary, have a fixed boarding time. Prioritizing test patients only 

increases the time a bed is occupied for boarding patients that are blocked in the internal queue. So, 

whereas prioritizing boarding patients increases the time a bed is occupied for all test patients, 

prioritizing test patients only increases this time for boarding patients that are blocked. 

On the other hand, prioritizing test patients negatively impacts the average total internal queue 

waiting time (Figure 4). To get more insight into this impact, we must turn our attention to the average 

total internal queue waiting time of test and boarding patients (Figure 5), the average single internal 

queue waiting time of test and boarding patients (Figure 6) and the average number of physician visits 

of test and boarding patients (Figure 7). 

a) 

 

b) 

 

Figure 5: Average total internal queue waiting time of test and boarding patients for a) different threshold values 𝜃𝑛𝑏  and 𝜃𝑏  

and b) different values of  
𝑧𝑏

𝑧𝑡
. TRH scenarios where 𝜃𝑛𝑏  =  𝜃𝑏 = 0 and where 𝜃𝑛𝑏  = 10 and  𝜃𝑏 = 15 equal the B and T scenarios 

respectively. AP scenarios where 
𝑧𝑏

𝑧𝑡
 is set to 1, 9999 and 0 equal the FCFS, B and T scenarios respectively. 
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a) 

 
b) 

 
Figure 6: Average single internal queue waiting time of test and boarding patients for a) different threshold values 𝜃𝑛𝑏  and 𝜃𝑏  

and b) different values of  
𝑧𝑏

𝑧𝑡
. TRH scenarios where 𝜃𝑛𝑏  =  𝜃𝑏 = 0 and where 𝜃𝑛𝑏  = 10 and  𝜃𝑏 = 15 equal the B and T scenarios 

respectively. AP scenarios where 
𝑧𝑏

𝑧𝑡
 is set to 1, 9999 and 0 equal the FCFS, B and T scenarios respectively. 
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b) 

 

Figure 7: Average number of physician visits of test and boarding patients for a) different threshold values 𝜃𝑛𝑏  and 𝜃𝑏  and b) 

different values of  
𝑧𝑏

𝑧𝑡
. TRH scenarios where 𝜃𝑛𝑏  =  𝜃𝑏 = 0 and where 𝜃𝑛𝑏  = 10 and  𝜃𝑏 = 15 equal the B and T scenarios 

respectively. AP scenarios where 
𝑧𝑏

𝑧𝑡
 is set to 1, 9999 and 0 equal the FCFS, B and T scenarios respectively. 

As can be seen from Figure 6, there is a clear trade-off between the single internal queue waiting 

times of test and boarding patients; lowering the average waiting time of test patients unavoidably 

increases the average waiting time of boarding patients. This is not surprising, since evidently, giving 

more priority to one type of patients harms the other type. 

Remarkably, in Figure 6, the average internal queue waiting time of boarding patients in their best-

case scenario (B scenario) is lower than that of test patients in their best-case scenario (T scenario). 

Likewise, boarding patients’ average internal queue waiting time in their worst-case scenario (T 

scenario) is higher than that of test patients in their worst-case scenario (B scenario). This can be 

explained by the difference in physician treatment time between the two types of patients. Test patients 

require more time and hence keep the physician longer occupied. Consequently, a patient waiting for a 

test patient to be finished has to wait longer than a patient waiting for a boarding patient. Boarding 

patients’ waiting time is therefore extended more when priority is given to test patients than the other 

way around which explains the difference in average internal queue waiting time in the worst-case 

scenarios. A parallel reasoning can be applied to explain the difference observed in the best-case 

scenarios. When priority is given to boarding patients, these need to wait until the boarding patients that 

arrived before them in the internal queue are finished. The same holds for test patients when they are 

prioritized. Since boarding patients’ average treatment time is shorter than that of test patients, the 

former benefit more from receiving priority. These differences in best- and worst-case scenarios clarify 

why altering 𝜃𝑛𝑏 and 𝜃𝑏 or 
𝑧𝑏

𝑧𝑡
 has a larger impact on the total internal queue waiting time of boarding 

patients than on that of test patients (Figure 5). This, in turn, explains why prioritizing test patients 

increases the total internal queue waiting time (Figure 4). Though, looking at Figure 6, one would expect 

the increase in total internal queue waiting time to be much higher than observed in Figure 4.  However, 

we also need to consider how many times the patients visit the physician (Figure 7). On the one hand, 

since boarding patients have a fixed boarding time, prioritizing them increases their number of physician 
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visits. Indeed, every time a boarding patient returns from the physician and his boarding time is not over 

yet, he generates a new check-up at rate 𝜇𝑏. This in turn mitigates the positive effect of prioritizing 

boarding patients on the total internal queue waiting time. On the other hand, since test patients return 

to the physician with probability 𝑝1, independent from the applied control policy, prioritizing them does 

not impact their physician visits at all. Furthermore, whereas test patients’ total internal queue waiting 

time represents 65% of the total internal queue waiting time in Figure 4, boarding patients’ total internal 

queue waiting time only accounts for 35%. Combining these two aspects provides an explanation for 

the relatively small increase in total internal queue waiting time as seen in Figure 4. 

So, taking this altogether, the more priority is given to test patients, the more the total waiting time 

decreases. This effect is the result of a trade-off between a decrease in external queue waiting time and 

an increase in total internal queue waiting time. However, the effect on external queue waiting time is 

more outspoken and is therefore the key driver of the evolution in total waiting time. 

Although overall the same effect on waiting times is observed for the two dynamic control policies, 

there is also a clear difference between them. In the TRH scenario, each of the curves follows an S-

shape. Starting from a control policy that extremely favours one type of patients, slightly varying 𝜃𝑛𝑏 

and 𝜃𝑏 only has a small effect on waiting times. For instance, when using threshold values far below the 

average number of needy boarding patients 𝑚𝑛𝑏 and boarding patients 𝑚𝑏, the conditions for prioritizing 

boarding patients are almost always fulfilled. Only sporadically, 𝑚𝑛𝑏 and 𝑚𝑏 go below these threshold 

values. Consequently, priority is rarely given to test patients, explaining the limited effect on waiting 

times. A similar reasoning holds when applying high threshold values (𝜃𝑛𝑏 and 𝜃𝑏 far above the averages 

of 𝑚𝑛𝑏 and 𝑚𝑏). Not surprisingly, the largest impact is observed when varying threshold values 𝜃𝑛𝑏 

and 𝜃𝑏 around the averages of 𝑚𝑛𝑏 and 𝑚𝑏. The waiting times in the AP scenario, however, follow a 

much more fluent pattern. This is explained by the factors on which we rely to determine who gets 

priority. On the one hand, in the AP scenario, the prioritization depends on two factors: a patient’s 

priority rate 𝑧𝑖 and his internal queue waiting time. Consequently, when patient type i has the highest 

priority rate, a patient of type j can nevertheless receive priority if his internal queue waiting time is 

sufficiently high. On the other hand, in the TRH scenario, we solely rely on the threshold values 𝜃𝑛𝑏 

and 𝜃𝑏. As a result, when patients of type i are prioritized, a patient of type j will not receive priority as 

long as 𝑚𝑛𝑏 and 𝑚𝑏 do not change significantly. Even though this patient’s internal queue waiting time 

may be unacceptably high, priority is not switched. This difference between the two dynamic policies 

has two important consequences when implementing these policies in practice. Firstly, an AP policy can 

better approach the desired value of performance measures since varying the priority rates has a more 

fluent effect than varying the threshold values used in a TRH policy. Secondly, when extremely 

prioritizing one type of patients, the other patient type suffers more in terms of excessive waiting times 

when using a TRH policy. 

 



4.1.2. Utilization rates 

Next, we turn our attention to the utilization rates of physicians 𝜌𝑝ℎ𝑦𝑠 and beds 𝜌𝑏𝑒𝑑 (Figure 8), 

where a similar pattern is observed as for the average total waiting time. Giving more priority to test 

patients (high threshold values 𝜃𝑛𝑏 and 𝜃𝑏or low values for 
𝑧𝑏

𝑧𝑡
) results in lower utilization rates. The 

effect on 𝜌𝑝ℎ𝑦𝑠 is explained by the effect of the physicians’ prioritization decision on the number of 

physician visits of test and boarding patients. As explained in Section 4.1.1, prioritizing boarding 

patients increases their number of physician visits, putting more workload on the physicians. On the 

contrary, a test patient’s number of physician visits is independent from the applied control policy. 

Consequently, prioritizing boarding patients increases 𝜌𝑝ℎ𝑦𝑠. The effect on 𝜌𝑏𝑒𝑑 is explained by the 

impact on the time during which test and boarding patients occupy beds. As mentioned in Section 4.1.1, 

prioritizing boarding patients increases this time for all test patients. However, prioritizing test patients 

only increases the time a bed is occupied for boarding patients that are blocked in the internal queue. 

a) 

 

b) 

 

Figure 8: Average utilization rates for a) different threshold values 𝜃𝑛𝑏  and 𝜃𝑏  and b) different values of  
𝑧𝑏

𝑧𝑡
. TRH scenarios 

where 𝜃𝑛𝑏 =  𝜃𝑏 = 0 and where 𝜃𝑛𝑏  = 10 and  𝜃𝑏 = 15 equal the B and T scenarios respectively. AP scenarios where 
𝑧𝑏

𝑧𝑡
 is set to 

1, 9999 and 0 equal the FCFS, B and T scenarios respectively. 
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So, considering operational system performance measures like waiting times and utilization rates, 

we can define an optimal and easy-to-use control policy for the physicians: test patients always get 

priority in the internal queue. However, this disregards the fact that boarding patients who already have 

higher hospital mortality risk (Carr, Hollander, Baxt, Datner & Pines, 2010) are not receiving the best 

medical treatment for their condition and are not as closely monitored as in the IW (Armony et al., 

2015). Therefore, only looking at operational system performance measures when determining a 

physicians’ control policy may be inadequate. A similar conclusion is made by Decouttere and Vandaele 

(2014) who state that solely focusing on operational system performance measures is insufficient in a 

health care environment and that other, perhaps conflicting, performance measures need to be taken into 

account. An analysis of health-related performance measures concentrating on boarding patients’ 

medical conditions seems necessary. Since the operational system performance measures incentivize 

giving priority to test patients, their medical risk is minimal and is therefore not explicitly looked at. 

4.2. Effect of dynamic control policies on health-related performance measures 

4.2.1. Boarding times 

To investigate the impact of the dynamic control policies on boarding patients’ medical conditions, 

we first look at the average boarding time and its underlying drivers: the average total non-needy time 

and total needy time of boarding patients (Figure 9). 

The physicians’ prioritization choice has a negligible effect on boarding time. For instance, altering 

between the two most extreme control policies only changes the average boarding time 0.0549 hours or 

3.3 minutes. This is the extra average time a boarding patient spends in the ED, on top of his or her fixed 

boarding time, because of blocking. That is, the patient is allowed to enter the IW, but is still waiting 

for or receiving physician treatment, preventing him or her from leaving the ED. Hence, blocking on 

average increases a boarding patient’s stay in the ED with only 1.8%. 

The average total needy time, on the contrary, is very sensitive to changes in 𝜃𝑛𝑏 and 𝜃𝑏 or 
𝑧𝑏

𝑧𝑡
; it 

doubles when test patients are prioritized. Likewise, the total non-needy time decreases. This is an 

important finding, since boarding patients’ medical conditions are worse when they are in a needy state. 

Therefore, the substantial increase in boarding patients’ needy time might lead to severe health issues. 

However, it is very difficult to define the threshold value of total needy time above which boarding 

patients are at high medical risk. Indeed, the needy time both includes internal queue waiting time and 

physician treatment time. When seeing a physician, a boarding patient is not at risk anymore. Remember 

that in our model, check-ups required by boarding patients can only be executed by physicians. Also, 

boarding patients’ medical conditions are not constantly critical during their time in the internal queue. 

Only when this waiting time exceeds a certain threshold, boarding patients experience high medical risk. 

To further explore this insight, we next turn our attention to the boarding patients’ risk percentage. 

  



a) 

 

b) 

 

Figure 9: Average boarding time, total non-needy time and total needy time of boarding patients for a) different threshold 

values 𝜃𝑛𝑏  and 𝜃𝑏  and b) different values of  
𝑧𝑏

𝑧𝑡
. TRH scenarios where 𝜃𝑛𝑏  =  𝜃𝑏 = 0 and where 𝜃𝑛𝑏  = 10 and  𝜃𝑏 = 15 equal 

the B and T scenarios respectively. AP scenarios where 
𝑧𝑏

𝑧𝑡
 is set to 1, 9999 and 0 equal the FCFS, B and T scenarios respectively. 

4.2.2. Boarding patients’ risk percentage 

We define boarding patients’ risk percentage as the percentage of boarding patients in the internal 

queue that has to wait longer than τ minutes before seeing a physician. Based on Bergs et al. (2014) and 

Freund, Vincent-Cassy, Bloom, Riou and Ray (2013), we set τ to 15 minutes. 

Altering the control policy may have a disastrous effect on boarding patients’ risk percentage 

(Figure 10). For instance, switching from always prioritizing boarding patients to always prioritizing 

test patients increases this percentage from 0% to 10%. Hence, boarding patients suffer badly from 

control policies that mainly prioritize test patients. This confirms our insight that only looking at 

operational system performance measures when deciding on the physicians’ control policy is 

inadequate. 
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a) 

 

b) 

 

Figure 10: Boarding patients’ risk percentage for a) different threshold values 𝜃𝑛𝑏  and 𝜃𝑏  and b) different values of  
𝑧𝑏

𝑧𝑡
. TRH 

scenarios where 𝜃𝑛𝑏  =  𝜃𝑏 = 0 and where 𝜃𝑛𝑏  = 10 and  𝜃𝑏 = 15 equal the B and T scenarios respectively. AP scenarios where 
𝑧𝑏

𝑧𝑡
 is set to 1, 9999 and 0 equal the FCFS, B and T scenarios respectively. 

4.3. Recommended dynamic control policies 

To balance the trade-off between operational system performance measures and health-related 

performance measures, we recommend the following procedure. First and foremost, the hospital needs 

to decide on the target boarding patients’ risk percentage it is willing to accept. In this paper, we look at 

four target risk percentages: 1%, 3%, 5.5% and 8%. Thereafter, using simulation, this percentage is used 

to set threshold values 𝜃𝑛𝑏 and 𝜃𝑏 and priority rates 𝑧𝑏 and 𝑧𝑡 for which operational system performance 

measures are optimized, while the target boarding patients’ risk percentage is not exceeded. An overview 

of the recommended TRH and AP control policies is given in Table 5. 
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Table 5: Overview of recommended TRH and AP control policies. 

Target boarding patients’ risk 

percentage 

Recommended TRH control policy Recommended AP control policy 

1% 𝜃𝑛𝑏  = 2, 𝜃𝑏  = 15 𝑧𝑏 = 1.25, 𝑧𝑡 = 1 

3% 𝜃𝑛𝑏  = 3, 𝜃𝑏  = 14 𝑧𝑏 = 0.80, 𝑧𝑡 = 1 

5.5% 𝜃𝑛𝑏  = 4, 𝜃𝑏  = 15 𝑧𝑏 = 0.50, 𝑧𝑡 = 1 

8% 𝜃𝑛𝑏  = 5, 𝜃𝑏  = 15 𝑧𝑏 = 0.25, 𝑧𝑡 = 1 

 

4.4. Comparison of scenarios 

As pointed out before, it is important to look at two aspects simultaneously: the system performance 

aspect and the health aspect. We therefore analyse the different scenarios in terms of operational system 

performance measures (waiting time and utilization rates) and health-related performance measures 

(boarding patients’ risk percentage) (Figure 11). To get a better view of the best performing scenarios, 

we add the efficient frontiers5. Furthermore, the 95% confidence intervals are added in order to compare 

the scenarios. As mentioned in Section 3.3, scenarios differ significantly from each other if their 95% 

confidence intervals do not overlap. The legend used in Figure 11 is shown in Table 6. 

The trade-off in Figure 11 is clear; operational system performance measures can only be improved 

at the expense of boarding patients’ medical risk. This confirms the intuition we derived in previous 

sections. Moreover, even though the improvement in operational system performance may not be 

statistically significant, the deterioration in boarding patients’ medical conditions mostly is. Or, in other 

words, whereas operational system performance is more robust regarding changes in control policy, 

boarding patients’ medical risk is extremely sensitive to it. 

Comparing the two dynamic control policies for each of the defined target boarding patients’ risk 

percentages, we observe a difference in accuracy. Indeed, an AP policy manages to approach these risk 

percentages more precisely. The reason being that, when using a TRH control policy, threshold values 

must be integer numbers. Consequently, these can only be altered in discrete steps of one, which in turn 

also changes the risk percentage in a discrete way. In the AP scenario however, priority rates can be 

altered in a much more precise way, resulting in a higher level of accuracy. This implies that an AP 

control policy can respect the constraint on boarding patients’ medical conditions while using a higher 

risk percentage. Or, in other words, an AP control policy can yield higher operational system 

performance for the same target boarding patients’ risk percentage. Indeed, given the trade-off defined 

above, a higher risk percentage results in improved operational system performance. Following this 

reasoning, one might suggest that an AP control policy outperforms a TRH control policy. However, as 

Figure 11 shows, this is not the case. Looking at the 95% confidence intervals, we can see that the two 

dynamic control policies do not differ significantly from each other for any of the operational system 

                                                           
5 The efficient frontier is the set of optimal scenarios that realize the best operational system performance for a defined level 

of boarding patients’ risk percentage. 



performance measures. This leads us to conclude that both dynamic control policies can be used to reach 

the desired target boarding patients’ risk percentage while optimizing operational system performance. 

We also derive from Figure 11 that a simple, static FCFS policy can serve as an alternative for the 

dynamic policies in several situations. For a target boarding patients’ risk percentage of 3%, the 

outcomes of the FCFS scenario do not significantly differ from those using dynamic control policies. 

Hence, here, we recommend using a FCFS policy, since it is much easier to apply in practice. Also, in 

the case of a target risk percentage of 5.5%, the FCFS scenario still performs well. Only one out of three 

operational system performance measures differs significantly from the dynamic control policies and 

this difference is not very large. Physicians that highly value an “easy-to-use” control policy may 

therefore prefer the FCFS policy despite its slightly weaker operational system performance. Only for 

more extreme risk percentages (that is, 1% and 8%), the FCFS policy is not adequate. 

Tabel 6: Legend used in Figure 11. 

Marker Scenario Target boarding patients’ risk 

percentage 

 FCFS N/A 

 
B N/A 

 
T N/A 

 
TRH 1% 

 
TRH 3% 

 
TRH 5.5% 

 
TRH 8% 

 
AP 1% 

 
AP 3% 

 
AP 5.5% 

 
AP 8% 

 

  



a)  

 
b) 

  

c) 

  

Figure 11: Overview of scenarios in terms of a) average total waiting time, b) average 𝜌𝑝ℎ𝑦𝑠 and c) average 𝜌𝑏𝑒𝑑 compared to 

boarding patients’ risk percentage. 
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5. Conclusion and insights 

This paper analyses the prioritization decision of physicians between test and boarding patients in 

an ED. It does so by analysing and comparing three static (FCFS, B and T) and two dynamic (TRH and 

AP) control policies for various performance measures using discrete-event simulation. 

The main contribution of this paper is that it quantitatively demonstrates the relevance of 

incorporating needy boarding patients into the analysis and the importance of defining a control policy 

for the ED physicians. These are two areas often neglected in current literature. When incorporating 

needy boarding patients, the prioritization decision has significant consequences for system 

performance. We claim that an important trade-off exists between operational system performance 

measures (like waiting times and utilization rates) and health-related performance measures (like 

boarding patients’ risk percentage). This trade-off illustrates that defining a control policy for the ED 

physicians is far from trivial and that no single optimal control policy exists. Rather, the optimal control 

policy depends on the target boarding patients’ risk percentage the hospital is willing to accept. 

Theoretically speaking, the two dynamic control policies can be used to obtain any desired target 

boarding patients’ risk percentage while optimizing operational system performance. However, 

important differences exist between these two control policies. Firstly, an AP policy is able to match the 

desired value of performance measures better since the priority rates can be altered in a much more 

precise way than the thresholds used in the TRH policy. Next, when extremely prioritizing one type of 

patients, the other patient type suffers more in terms of excessive waiting times when using a TRH 

policy. Another important finding is that it is not always necessary to use a complicated dynamic control 

policy. Indeed, a simple static FCFS policy turns out to perform extremely well for a wide range of 

imposed targets on boarding patients’ risk percentage. Moreover, a FCFS policy is extremely easy to 

use in practice. Consequently, it is only worthwhile to put effort into the implementation of a dynamic 

control policy when an extremely high or low value of target boarding patients’ risk percentage is 

desired. 

Following these results, several options for future research emerge. First of all, when studying the 

TRH scenario, we assume that priority is switched immediately when the threshold rule dictates so. 

However, this is only possible in practice when the number of needy boarding patients in the internal 

queue and the total number of boarding patients in the system are constantly monitored, for instance by 

an IT system. This brings along high implementation costs and the hospital may therefore prefer to check 

these numbers manually at predefined time intervals. The effect of the length of these checking intervals 

on the performance of the TRH policy might be an interesting research topic. Secondly, we observed 

the importance of considering health-related performance measures in our analysis. Although neglecting 

these measures might lead to disastrous actions, including them is often a challenging task. Therefore, 

future research might address such performance measures in EDs in more detail and explore how to 

make the trade-off between these measures and other system performance measures. Finally, several 



assumptions are made in this paper (see Section 3.1). Further research might study systems that relax 

some of these assumptions. 
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