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Abstract. Automated seizure detection in a home environment has
been of increased interest the last couple of decades. Heart rate-based
seizure detection is a way to detect temporal lobe epilepsy seizures at
home, but patient-independent classifiers showed to be insufficiently
accurate. This is due to the high patient-dependency of heart rate
features, whereas this method does not use patient-specific data.
Patient-specific classifiers take into account patient-specific data, but
often not enough patient data are available for a full robust patient-
specific classifier. Therefore a real-time adaptive seizure detection
algorithm is proposed here. The algorithm starts with a patient-
independent classifier, but gradually adapts to the patient-specific
characteristics while they are obtained on-the-run. This is done
by using real-time user feedback to annotate previously generated
alarms, causing an immediate update to the used support vector
machine classifier. Data annotated as seizures are automatically
removed from the updating procedure if their detection would lead to
too many false alarms. This is done in order to cope with potential
incorrect feedback. The adaptive classifier resulted in an overall
sensitivity of 77.12% and 1.24 false alarms per hour on over 2833 hours
of heart rate data from 19 patients with 153 clinical seizures. This is
around 30% less false alarms compared to the patient-independent
classifier with a similar sensitivity. This low-complex adaptive
algorithm is able to deal well with incorrect feedback, making it
ideal for a seizure warning system, that in the future will also include
complementary modalities to improve the performance.
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1. Introduction

Epilepsy is a neurological disease that affects around 1% of the people worldwide. For
around 30% of these patients, their disease can not be controlled by anti-epileptic
drugs. The question is how the quality of life of these patients can be improved
in their everyday life. One solution is to use an automated warning system, which
automatically detects an ongoing seizure and alarms the patients’ caregivers, so they
can give the patient the proper treatment. The key part of such a warning system is the
automated seizure detection. In literature, epileptic seizure detection is typically done
using the electroencephalogram (EEG), but obtaining EEG outside the hospital for
long-term monitoring is not comfortable for the patient (Schulze-Bonhage et al. 2010).
Therefore a lot of research has gone to automatically detect seizures using other easier
obtainable signals such as accelerometers (ACM), electromyogram (EMG) and heart
rate with wearable devices during the last couple of decades (Van de Vel et al. 2013).

Here, only the heart rate is used for seizure detection. Previous studies already
showed that ictal heart rate changes could be found during most seizures (Zijlmans
et al. 2002, Jansen & Lagae 2010). The ictal heart rate changes happen more frequently
in temporal lobe epilepsy (TLE) patients than in other patients (Leutmezer et al. 2003)
and are most often seen as expressions of strong sympathetic activations.

Most seizure detection algorithms using heart rate (and in general using all
modalities) from literature use so-called patient-independent classifiers (De Cooman
et al. 2017, Osorio 2014, Milosevic et al. 2016, Poh et al. 2012). They do not require
patient-specific data, making them directly usable in practice. However, due to the
large inter-patient variability in heart rate characteristics, these classifiers typically
lead to too much false alarms to be used in practice (De Cooman et al. 2017). This
issue can be solved by periodically changing the algorithm in order to change it to the
patient-specific characteristics, which is nowadays assumed to be done after manual
inspection. It is however very time-consuming and expensive to let a clinician evaluate
previously recorded data of each patient and annotate potential seizure episodes.
These annotations can only be made if they also contain reference video-EEG data,
which means that this procedure should be done in a protected environment, lowering
the usability in practice again.

Therefore, a real-time adaptive seizure detection algorithm is proposed here.
The algorithm starts initially with a patient-independent classifier. Several currently
available systems allow the usage of a prewarning, which allow the patient to indicate
whether a warning might be correct or not before actually warning the relatives. If
the patient can annotate it as a false alarm within a certain time limit (i.e. 10s), it
generates no alarm to the relatives, otherwise the relatives are alarmed. This patient
feedback can be used as annotations to these alarm data. The algorithm updates
itself with this information in real-time, adapting to the patient characteristics over
time. As patients might not be aware whether they actually had a seizure or not,
extra procedures are added to the updating procedure to increase the robustness
against incorrect user feedback. To our knowledge, this is the first paper that discusses
real-time adaptive seizure detection using user feedback during full day monitoring.
The proposed adaptive classifier can also be applied for seizure detection with other
modalities such as ACM and EMG or as part of a multimodal system.

The three implemented approaches (patient-independent, patient-specific and
real-time adaptive) are described in section 3. The used datasets are discussed in
section 2. The results are shown and discussed in sections 4 and 5.
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2. Data Acquisition

Two different datasets are used in this study. The first dataset contains data obtained
from the University Hospital of Leuven (UZ Leuven), consisting of 17 patients with
TLE and 127 complex partial seizures during in total 918 hours of recording. This
dataset is only used for training as will be described in section 3.

The second dataset is the publicly available EPILEPSIAE database, which is used
for the evaluation of the different algorithms (Ihle et al. 2012). It contains data from
epilepsy centra from Freiburg (Germany), Coimbra (Portugal) and Paris (France).
Every patient has at least 5 clinical seizures during recordings of at least 92 hours
per patient. In total 19 patients with TLE are used from the EPILEPSIAE dataset
containing scalp EEG data, including in total 158 clinical seizures in 2833.4 hours of
single-lead electrocardiogram (ECG) data. Five seizure annotations were not used as
the ECG was temporarily turned off just before, during or just after the seizure. ECG
signals are measured on the chest with a sampling frequency of 256Hz. Seizures were
annotated by expert neurologists using the gold video-EEG standard, and grouped
in five categories: simple partial (SP), complex partial (CP), secondary generalized
(SG), unclassified (UC) and subclinical (SC) seizures. Only the clinical seizures are
examined here, as these are of most interest to detect in a home environment. The
EEG seizure onsets are used as reference if available, otherwise the clinical onsets are
used. An overview of the used datasets is given in the supplementary material.

3. Methodology

Three algorithmic methodologies are evaluated here: a patient-independent, a patient-
specific and an adaptive approach. These approaches are now explained in more detail.
All mentioned patient-specific data originates from the EPILEPSIAE database and
all mentioned patient-independent data originates from the UZ Leuven database.

3.1. Patient-independent seizure detection

The first method is the patient-independent (P-I) algorithm. No patient-specific data
are used in order to train the classifier of this algorithm, only data from other patients
(from the UZ Leuven dataset) are used. Therefore this type of classifier can be used
from the beginning of the monitoring period, making it very useful in practice.

3.1.1. Preprocessing and feature extraction Preprocessing and feature extraction are
done as in De Cooman et al. (2017) according to the following steps. First, the heart
rate is extracted from the acquired ECG signal. This is done by using a real-time R
peak detection algorithm based on a dynamic threshold on the derivative signal. Next,
a preprocessing step tries to detect the heart rate increases (HRI) in real-time. This
method is based on heart rate gradient analysis and thresholds on the peak heart rate,
HRI duration and the absolute increase of heart rate during the HRI. This procedure
(called HRI-EXTRACT ) is completely P-I. If such a strong HRI is detected, multiple
heart rate features are extracted from this HRI and from one minute before the HRI. In
De Cooman et al. (2014), it was already shown that the maximal heart rate gradient,
HRI duration and the pre-HRI Hjorth activity (Hjorth 1970) are the 3 best features to
use for automated P-I seizure detection with a linear support vector machine (SVM)
classifier. Therefore only these features are used for classification here.
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3.1.2. Classification Let {xi,yi} be the training data with xi ∈ Rd the input vector
containing the selected feature data, and yi ∈ {−1,+1} the corresponding output
values. Let classes +1 and -1 correspond to respectively non-seizure and seizure data
samples. By restricting ourselves to linear SVM, similarly as in De Cooman et al.
(2014), the classifier output ỹi of data point xi is then defined as ỹi = sign(wTxi + b)
with w ∈ Rd the weight vector and b ∈ R the scalar bias term. The unknown variables
w and b can be found by solving the following optimization problem (with adjustments
to remove the class imbalance):

min
w,b,ξ

1

2
wTw + C+

N∑
i=1|yi=+1

ξi + C−
N∑

i=1|yi=−1

ξi s.t.

{
yi(w

Txi + b) ≥ 1− ξi
ξi ≥ 0

(1)
in which ξi indicates the error on the classification of xi and

C+ =
N+ +N−

2 ∗N+
, C− = κ ∗ (N+ +N−)

2 ∗N−
(2)

with N+ and N− indicating the number of data points belonging to classes +1 and
-1. The factor κ (set to 2.5 according to De Cooman et al. (2017)) in C− increases
the impact of misdetecting seizure samples compared to non-seizure samples.

The classifier training procedure depends on the different methods described in
the following sections. The P-I classifier is trained on the entire UZ Leuven dataset.

3.2. Patient-specific seizure detection

The (semi-)patient-specific (P-S) approach follows a similar procedure as the P-I
method: The same preprocessing procedure and features are used here as in the P-I
approach, only a different classifier is used. This classifier is used to indicate what the
maximal performance could be for the adaptive approach (see section 3.3).

Because not enough P-S data is available in the EPILEPSIAE database to create
a fully P-S classifier, a mixed model is used here. Data from the specific test patient
(from the EPILEPSIAE database) is mixed with data from other patients (from the
UZ Leuven database) in order to train the classifier. Misclassification of P-S data
should have more impact on the optimization function (1), which is adapted into

min
w,b,ξ

1

2
wTw+C+

N∑
i=1|yi=+1

ωiξi+C
−

N∑
i=1|yi=−1

ωiξi with ωi =

{
λ : i ∈ PS
1 : i /∈ PS

(3)
with PS the collection containing the indices of the P-S data points in the collected
dataset. This way, more importance is given to the P-S data points with a factor λ,
which is set automatically by using leave-one-patient-out (LOPO) crossvalidation.

Training and testing of the P-S classifier is done using 5-fold crosstesting. The 4
folds of P-S data for training are mixed with P-I data from the UZ Leuven dataset to
train the classifier, and is then evaluated on the fifth fold.

3.3. Real-time adaptive seizure detection

The adaptive seizure detection classifier differs from the P-S classifier due to real-time
adaptation to the patient-specific characteristics, whereas the P-S classifier mentioned
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Figure 1. Overview of the proposed real-time adaptive seizure detector.

in section 3.2 is trained offline with P-S data. The adaptive algorithm originally starts
with the P-I classifier described in section 3.1. For each new P-S data point (thus for
each HRI detected by HRI-EXTRACT extracted in the EPILEPSIAE database) that
is detected, the adaptive classifier is immediately updated (see figure 1). Two SVM
parameters are updated here: the weight matrix w and the bias term b. From now
on we call wt and bt (t ≥ 1) the t-th value of w and b after adding data point xt
to the classifier. The initial values w0 and b0 are the parameter values as found
by the P-I classifier described in section 3.1. Although there exists an incremental
way to update an SVM (Poggio & Cauwenberghs 2001), this method is too complex
for real-time updating on limited hardware. Therefore, a simplified heuristic updating
approach is used, which adapts to the P-S data equally fast and with lower complexity.
This approach also includes procedures in order to lower the impact of incorrect user
feedback, which is required if the system is used in practice.

For each new data point, it is first evaluated whether this data point is possibly
caused by noise. This can occur if a noisy ECG segment leads to R peak detection
errors. This kind of data should not cause a classifier update as it does not represent
the real patient’s characteristics. A data point is assumed to be noisefree if less than
10% of all immediate heart rate values in the HRI differ more than 20% compared
to the previous immediate heart rate value. This metric thus gives an indication of
possible R peak detection errors. Ectopic heartbeats during a HRI happen only rarely
during ictal HRIs, so that this procedure did not lead to missing any ictal HRI.

3.3.1. Updating w If the new data point xt is assumed to be noisefree, wt can be
updated. In SVM, w can be written in the dual formulation as (Vapnik 1999)

w =

N∑
i=1

αiyixi. (4)

To lower the complexity of the updating procedure, we however stay in the primal
SVM problem, and thus do not use P-S αi (support vector values), but use the same
principle. Let w0 be the weight vector from the P-I classifier. If a P-S data point xt
causes a classifier update, wnnt (”nn” standing for ”not normalized”) is set to

wnnt = wnnt−1 + γtxtyt with γt =

{
1 : yt = −1

0.1 : yt = +1
(5)

and wnn0 = w0. The γ parameter replaces the original α parameter here. For simplicity,
γt can only take 2 values, which are chosen to have a similar ratio as the maximum
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values the α values can get in the P-I classifier (see equation (2), αi ≤ Ci). That way
the γ parameters get larger values for the seizure samples as well. Normally only data
points causing an error have αi 6= 0 in SVMs. Similarly, the update of wt only occurs
here if |wTt−1xt + bt−1| ≤ 1. This way, also strong outliers will not cause an update of
w, increasing the robustness of the SVM updates.

To optimally benefit from the knowledge from the P-I classifier, the adaptive
classifier should not deviate too much from it. It can be assumed that each P-S
classifier shows sufficient resemblance with the P-I classifier. Therefore, wt is restricted
so that its norm doesn’t change more than σ compared to w0 (||wt − w0|| < σ):

wt = w0 +
σ

||wnnt − w0||
(wnnt − w0) (6)

This is an assumption that is also used in transfer learning approaches (Yang
et al. 2007), which benefit optimally from a reference classifier (here the P-I classifier)
in order to get a stable classifier with limited training data. By including it in
the adaptive approach, the classifier remains more stable and reliable during all
classifier updates. The value of σ is automatically set for each patient using LOPO
crossvalidation on all patients of the EPILEPSIAE database except the test patient.
If no update occurs after xt, wt is set to wt−1.

3.3.2. Updating b Once w is updated, the bias term b also needs to be updated. bt
can be found by choosing the value that leads to the minimal sum of errors ξi, with

ξi = max(yi(w
T
t xi + b′), 0), 1 ≤ i ≤ N (7)

The errors ξi are only evaluated for b′ ∈ [bt−1 − ε, bt−1 + ε] to lower the complexity,
preferring a smooth transition from P-I towards P-S classification. Parameter ε should
be a small value to maintain a smooth classifier transition (empirically set as 0.1). The
errors are only evaluated for a fixed number of data points N , which is a mixture of
P-I and P-S data. Every time a new P-S data point is annotated, a P-I data point
from the same class is removed from memory and computation. This is done in order
to limit the computation and memory requirements of the updating procedure.

Let Eb′ be the averaged error caused by constant term b′

Eb′ =

∑N
i=1|yi=+1 ωiξi∑N
i=1|yi=+1 ωi

+ 1.5 ∗
∑N
i=1|yi=−1 ωiξi∑N
i=1|yi=−1 ωi

(8)

The weights ωi give extra weight to the P-S data points as in (3). The class imbalance
is removed by using weighted averages of both classes. The experimentally found
factor 1.5 gives seizure data more impact on the b update. The new bt is then set as

bt = arg min
b′

Eb′ (9)

After this update, the classification rule for the next data point xt+1 then becomes

ỹ(xt+1) = sign(wTt xt+1 + bt) (10)

The usage of annotations in the updating procedure has two main drawbacks.
First, the annotations made by the user might be incorrect, leading to bad classifier
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updates. Secondly, short seizures are too hard to detect with heart rate-based seizure
detection as they lead to very short HRIs, making it hard to differentiate them
from non-epileptic HRIs. They are often also of less importance for real-time seizure
detection applications due to their low risk for injuries. Therefore they should not be
given the same importance as longer seizures during the update procedure, certainly
because the adaptive approach might base its model with just 1 P-S seizure. In order
to remove the impact of these issues, an extra procedure is able to detect most of these
smaller or incorrectly annotated ictal HRIs. If the output wTt xi + bt (with annotation
yi = −1) of xi (P-S data point) is larger than 20% of the outputs from the already
collected P-S non-seizure data points, ωi is set to 0 in equation (8) in order to remove
it from updating, as it is unclear whether it really represents seizure data, or might be
an atypical seizure for that patient. In this case, the data point annotated as a seizure
resembles non-epileptic P-S data too much and is therefore unlikely to be accurately
detectable with the proposed method. Therefore it is removed from the updating
procedure. Incorrectly annotated data should not cause a classifier update, and too
short seizures leading to too much false alarms after a potential update should not
cause a drastic change in the classifier.

3.3.3. Feedback procedure The real-time SVM updates require the availability of the
annotations yt of each P-S data point xt. They are made by the patients or their
caregivers for all P-S HRIs that are detected by HRI-EXTRACT, not only the HRIs
that cause an alarm. We assume the feedback procedure to go as follows in practice:

• An alarm is generated: The user gives feedback about the alarm correctness. If
no response is given within a given time period (i.e. 10s), the alarm is assumed
to be correct as the patient is not able to cancel the alarm during a seizure.

• A seizure is missed: The user can indicate that a seizure is recently missed. In
this case, the algorithm can keep information about the HRIs of the last hour.
These HRIs are then marked as potential seizure HRIs. The procedure to remove
falsely annotated seizure HRIs eliminates most of the falsely annotated seizure
HRIs for SVM updating. If no such ictal HRI is found, no classifier update occurs.

• A non-seizure HRI is correctly ignored: If the procedure for a missed seizure is
not activated, the HRI is annotated as non-seizure and the classifier is updated.

3.4. Evaluation criteria and additional tests

All classifiers are evaluated only on the EPILEPSIAE database. Four metrics are
used for evaluating seizure detection algorithms. The sensitivity (Se) indicates the
percentage of detected seizures. The number of false alarms per hour (FP/h) shows
how often a FP is generated in time, whereas the positive predictive value (PPV)
indicates the percentage of correct detections. The detection delay indicates the time
difference between the seizure onset and the moment of detection. A seizure is said to
be detected if an alarm is generated between 60 s prior to the seizure onset and 90 s
after the seizure onset (De Cooman et al. 2017). Different alarms within one minute
are clustered as one alarm. The patient feedback is assumed to be 100% accurate
unless specifically mentioned otherwise. To evaluate the impact of incorrect feedback,
an additional test is performed when a certain percentage of user feedback is incorrect.
For each percentage, 40 runs were simulated in which P-S data was randomly chosen
to be incorrectly annotated with the corresponding probability. In order to prove
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Table 1. Overview of the results of the different seizure detection classifiers.

Method Se (%) FP/h PPV (%)

Preprocessing procedure (HRI-EXTRACT ) 84.31 3.63 1.24
Patient-independent approach 78.43 1.73 2.39
Patient-specific approach 76.47 1.09 3.67
Adaptive approach 77.12 1.24 3.25
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Figure 2. Sensitivity and FP/h results per patient for the different classifiers.

that the adaptive classifier performs better than the P-I classifier, paired t-tests (with
corresponding confidence intervals (CI)) are performed on Se, FP/h and PPV.

4. Results

4.1. Performance of the different seizure detection classifiers

Table 1 gives an overview of the results of the different real-time seizure detection
approaches on the EPILEPSIAE database. 84.31% of the seizures were detected
with the preprocessing procedure HRI-EXTRACT, which indicates the percentage
of seizures with ictal strong HRIs. The P-I classifier resulted in a sensitivity of 78.43%
with on average 1.73 FP/h. Seizures were detected on average 18s after seizure onset.
The P-S approach resulted in only 1.09 FP/h with a similar sensitivity performance.
By using the adaptive approach, only on average 1.24 FP/h were found, again with
a similar sensitivity as the P-S approach. This is a drop of nearly 30% of false
alarms compared to the P-I classifier. Figure 2 shows the results per patient for the 3
approaches. The results for the false alarm rate (FAR) (p<10−3, CI [-0.81,-0.26]) and
PPV (p<10−4, CI [0.74%,1.57%]) from the adaptive classifier prove to be significantly
better than those of the P-I classifier, but not for Se (p=0.38, CI [-3.71%,1.48%]).
Both P-S and adaptive classifier resulted in an average detection delay of around 19s.

The purpose of the adaptive approach is to adapt to the P-S characteristics over
time. Figure 3(a) shows the average FAR per 12 hours for the three approaches for
two patients. For patient 1, the adaptive classifier starts with a FAR close to the
P-I classifier. When more data is collected from the test patient, the results start
to converge towards P-S performance, which is accomplished around 5 days after the
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Figure 3. Illustration of convergence for the adaptive classifier. (a) Average
FP/h per 12 hours of recording in function of time for patients 1 and 10 for the
three different approaches. (b) Example of the SVM parameter convergence for
patient 10. The different lines in the wt figure indicate the terms for the 3 features.

start of the recording. In case of patient 10, a similar pattern can be seen, but the
adaptive classifier is able to show even a lower FAR than the P-S version after 4
days. A similar figure is shown in the supplementary material of this paper with the
FAR averaged over all patients, illustrating that on average also improvement can be
found over time. Figure 3(b) shows the SVM parameter convergence for patient 10,
which reaches a nearly stable SVM classifier after 4 days of recording. The time of
convergence typically depends on when sufficient P-S seizure data was collected.

4.2. Seizure sensitivity

Figure 4(a) gives an overview of the percentage of detected seizures for the different
seizure types for both HRI-EXTRACT and the adaptive seizure detection approach.
In the results for HRI-EXTRACT, it can be seen that ±84% of the SP, CP and UC
seizures have significant ictal HRIs. All 4 generalized seizures show ictal strong HRIs.

The overall sensitivity however dropped by using the adaptive classifier. Mostly
extra SP and UC seizures are missed by this procedure, resulting in a bigger difference
in sensitivity for the CP and SG seizures compared to the SP and UC seizures.

Seizure duration also has an impact on the sensitivity. Figure 4(b) shows the
sensitivity of the seizures based on their seizure duration for HRI-EXTRACT and the
adaptive approach. The longer the seizure lasts, the higher the chance of detecting
it with the adaptive classifier. The seizures that are missed extra in comparison with
HRI-EXTRACT are mostly relatively short seizures (< 60s).

4.3. Impact of incorrect user feedback on real-time adaptive seizure detection

For now the assumption was made that all given user feedback was correct. In practice
however, this will not be the case. Figure 5(a) shows the effect if only a certain
percentage of user feedback is correct. From 10% correct feedback on, the PPV value
increases slowly towards optimal PPV performance. The sensitivity does not change
much for different feedback percentages, but mainly the FAR changes drastically.
However, the overall effect of incorrect user feedback is rather limited. Figure 5(b)
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Figure 4. Impact factors on seizure sensitivity for HRI-EXTRACT and the
proposed adaptive seizure detection classifier. (a) Impact of seizure type on
sensitivity. The numbers between brackets indicate the number of seizures per
type. (b) Impact of seizure duration on sensitivity. (c) Boxplots of the seizure
duration for each seizure type analyzed in the dataset.

shows the impact of incorrect user feedback for both the proposed updating procedure
and the standard updating procedure (Poggio & Cauwenberghs 2001). If the standard
SVM updating procedure is used with 100% correct feedback, 78.43% sensitivity is
achieved with 1.48 FP/h and 2.78% PPV, which is 0.24 FP/h more and 0.47% PPV
less than with the proposed updating method. The performance of the standard
updating procedure decreases very fast with only 0.1% incorrect user feedback, and
with 10% incorrect feedback the PPV is already equally bad as for the preprocessing
procedure HRI-EXTRACT. The proposed method however only shows a small drop
in PPV here, with still a PPV of 3.05% at 10% incorrect user feedback.

5. Discussion

5.1. Comparison between the different approaches

If the P-I classifier is retrained on the UZ Leuven dataset in order to get the same
sensitivity as the adaptive classifier on the validation dataset, the P-I classifier results
in 77.78% sensitivity with 1.63 FP/h on the EPILEPSIAE database. This is an
increase of almost 0.4 FP/h with a nearly identical sensitivity compared to the adaptive
classifier. The adaptive classifier also shows results close to the assumed maximal P-S
performance of the adaptive classifier, leading to on average only 0.15 FP/h more than
the P-S performance. The adaptive approach indeed shows results that come close to
P-S optimal performance after less than one week of recorded data with around 3-5
seizures. This shows that the used procedure to adapt to the patient characteristics
leads to a nearly as efficient classifier as the P-S classifier, which is normally adapted
offline by a neurologist or nurse. This procedure is thus more time and cost effective
than the standard way of personalization. The proposed annotation procedure does
not cause any extra burden to the patient if it is added to a system that already
uses prewarnings. This adaptive approach just takes into account information that is
already available in such systems, and will also lead to a lower FAR in practice.

Figure 2 shows the results for the different approaches for every patient. In most
cases the FAR for the adaptive classifier lies between the FAR of the P-I and P-S
classifiers with similar sensitivity results. For some patients the FAR is even lower
for the adaptive classifier than for the P-S classifier. The reason for this is that
the P-S classifier does not have a procedure to remove short or abnormal seizures
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Figure 5. Impact of incorrect feedback on the performance. (a) Effect of different
percentages of incorrect user feedback on sensitivity, FP/hour rate and PPV for
the proposed adaptive seizure detection approach. The variation in performance
between different runs is shown by the variation bars. (b) Comparison of the PPV
values for the proposed updating procedure and the traditional SVM updating
procedure in case 0, 0.1, 0.5, 1, 5 and 10% of user feedback is incorrect.

from the training set, whereas such a procedure was implemented for the adaptive
approach. This procedure removed seizures that were unlikely to be detected from
the training set, as adding them to the classifier would lead to an underestimate of the
SVM boundary, leading to too many false alarms then strictly necessary. Normally
atypical seizure HRIs would only have limited effect during SVM training if sufficient
P-S seizures are already collected, but in the incremental approach it can occur that
only one (abnormal) seizure might be available for a long time. By making this choice
based on the collected non-seizure HRI data, this decision can be made much faster
with sufficient accuracy. A second cause for this is that by making the assumption
that the adaptive classifier should have a wt sufficiently similar to the P-I w0, a better
classifier is found with the adaptive classifier. In some cases, training the P-S classifier
led to strong changes in w compared to the P-I w0, which often resulted in a slightly
worse performance. An example of this can also be seen in figure 3(a), for which after
4 days the adaptive classifier becomes better than the P-S classifier due to overtraining
of P-S classifier on several SP seizures which are too hard to detect.

5.2. Seizure sensitivity

Figure 4 shows that the sensitivity changed for both seizure duration and seizure
type. In order for a seizure to be accurately detectable using the heart rate, the
seizure should indeed last long enough, so that the seizure HRIs can be sufficiently
different from non-seizure HRIs (De Cooman et al. 2017, Hampel et al. 2016). Both
reasons are however correlated in this database as shown in figure 4(c). Both CP and
SG seizures were on average longer than SP and UC seizures, making them easier to
detect with heart rate-based seizure detection. This is not only applicable between
patients, but also within patients. An example of this can be found in patient 10, for
which all CP seizures are detected, but all SP seizures were missed.

There is not only variability between seizure types, but also between patients.
Most patients show to have sensitivities of 70-100%, but for 2 patients the sensitivity
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was lower than 40% for all approaches. For patient 3, all ictal HRIs showed to be
insufficiently strong compared to inter-ictal HRIs, causing all seizures to be removed
from the update procedure as they were marked as too short. Therefore this patient
has a similar high FAR as the P-I approach. Patient 18 often had ictal bradycardia
(sometimes following a small HRI), with an ictal ideoventricular rhythm, which is a
potentially life threatening heart condition. Although these seizures were not detected
by the algorithm due to the lack of a strong HRI, it shows the benefits of monitoring
the heart rate in epileptic patients in a home environment, as it allows to detect heart
failure (if additional algorithms are applied) (Van de Vel et al. 2016).

5.3. Impact of incorrect user feedback on performance

Patients might not be aware that they had a seizure, or might not be certain about
it. If they do not have somebody accompanying them to indicate whether they indeed
had a seizure or not, this could potentially lead to incorrect user feedback.

The impact of incorrect feedback showed to be limited if enough feedback was
correct. The robustness against incorrect feedback is obtained by making 2 changes
to normal SVM updates. The first one is the use of the restriction ||wt − w0|| during
the updates. This avoids the adaptive classifier to become worse than the original P-I
classifier by assuming that in the P-S approach still most of the information of the P-I
approach applies (i.e. a longer HRI leads to a higher seizure probability). That way,
the classifier still gives a mediocre performance even if all feedback is incorrect.

The second change was the addition of the rule to remove data points xi with
yi = −1 from updating bt if the output wtxi + bt−1 was higher than 20% of the
non-seizure P-S data. This not only limits the impact of feedback errors, but also
limits the impact of short seizures, again leading to a better performance. As in the
real-time adaptive approach only 1 seizure can be available to adapt to, this step can
be crucial for a robust but fast adaptation. The impact of annotating a seizure HRI
as non-seizure is limited due to the large amount of non-seizure data, leading to a
limited change in the classifier update. Figure 5(b) shows these changes did not only
make the adaptive classifier more robust against incorrect feedback, it also gave better
results than the normal SVM updating procedure in case of 100% feedback accuracy.

By incorporating a heuristic updating approach, the complexity of the updating
procedure is much lower than for the standard SVM updating procedure described in
(Poggio & Cauwenberghs 2001). Therefore this approach is more usable for real-time
updating with limited hardware. Although it was only evaluated here on linear SVM,
it can also be applied to other kernels if an estimation of the kernel function is used.

5.4. General discussion and future work

Section 4.3 shows that although giving correct feedback is important for optimal
performance, the adaptive approach was able to cope well with large percentages of
incorrect feedback. In cases of doubt, patients giving incorrect feedback will not have
a drastic effect on the performance, which would be the case with normal updating
procedures. A procedure is added here to automatically check if trying to add this
seizure data to the SVM model would result in too many false alarms. This way, the
model takes care of removing data caused by too short seizures, as they are very hard
to detect using only the heart rate and are less important to detect due to their lower
risk for injuries. These procedures make the algorithm more useful in practice in case
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no video-EEG is available to give true data annotations, which is ideal for usage in a
home environment using wearable devices.

The adaptive approach showed to adapt to the P-S heart rate characteristics.
Each patient has its own heart rate variability, both ictal and interictal, and
incorporating this P-S information leads to an improved performance compared to
the P-I performance. However, the results can still be further improved. One of the
drawbacks of the system is that we try to get a P-S optimal performance while using
features that showed to be good for P-I use. Better results might be obtained by
also including features that work better in a P-S setting, such as for example the
achieved ictal peak heart rate or the modified cardiac sympathetic index (De Cooman
et al. 2015, Jeppesen et al. 2015). This is however left for future work.

Despite the increased performance and usability of the heart rate-based seizure
detection approach, the unimodal performance is still too low in order to be used
successfully in practice. One of the reasons is the fact that the ECG is sensitive to
motion artifacts, making it hard to accurately measure the heart rate from it. In order
to accomplish better results, it is required to add additional signal modalities. Previous
studies showed that using data from only 1 signal modality for automated seizure
detection in a home environment are often insufficient in order to obtain performance
that allows usage in practice (Milosevic et al. 2016, Poh et al. 2012). ACM and/or
EMG sensors for example can be of great added value for the detection of strong
convulsive seizures (Milosevic et al. 2016, Conradsen et al. 2012). Implementation of
a similar adaptive approach for these modalities could also increase their unimodal
performance. A combination of several adaptive approaches on different modalities
will lead to a much stronger detection algorithm which is advised to be used in practice.

6. Conclusion

An adaptive seizure detection algorithm using only heart rate information is
proposed. The initial patient-independent classifier was adapted to the patient-specific
characteristics by using new patient-specific data points which are annotated with user
feedback. The adaptive approach showed to rapidly increase in performance, while
also being robust against potential incorrect feedback. This algorithm not only leads
to a better performance, but also leads to better usability of such a system in practice.
Features from other modalities will also be incorporated in the model in future work.
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