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The aim of this paper is to present the construction of exceptional Laguerre
polynomials in a systematic way and to provide new asymptotic results on
the location of the zeros. To describe the exceptional Laguerre polynomials,
we associate them with two partitions. We find that the use of partitions is
an elegant way to express these polynomials and we restate some of their
known properties in terms of partitions. We discuss the asymptotic behavior
of the regular zeros and the exceptional zeros of exceptional Laguerre
polynomials as the degree tends to infinity.

1. Introduction

Laguerre polynomials are one of the three classes of classical orthogonal
polynomials [1], next to Hermite and Jacobi polynomials. These classical
orthogonal polynomials are very well understood. In the past few years,
Laguerre polynomials are extended to exceptional Laguerre polynomials
[2–10], also sometimes called multi-indexed Laguerre polynomials [11–16].
The remarkable new feature of this generalization is that the exceptional
Laguerre polynomial does not exist for every degree, as was first discovered
by Gómez-Ullate et al. [3]. Because of this unusual property, these
polynomials were called exceptional. Remarkably, the exceptional Laguerre
polynomials may still form a complete orthogonal system [2, 17]. The
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orthogonality condition only holds for the admissible degrees and they are
complete in their natural Hilbert space setting.

Besides exceptional Laguerre polynomials, there are also exceptional
Hermite and exceptional Jacobi polynomials. Recently, Garcı́a-Ferrero et al.
classified exceptional orthogonal polynomials [18] and it turns out that
every system of exceptional orthogonal polynomials is related to one of
the classical orthogonal polynomials by a sequence of Darboux transforma-
tions [19, 20]. Hence, there are only three families: exceptional Hermite,
exceptional Laguerre, and exceptional Jacobi polynomials. These exceptional
polynomial systems appear in quantum mechanical problems as solutions in
exactly solvable models [21, 22] or in superintegrable systems [23].

From a mathematical point of view, there are two main questions. First,
there is the question about the classification of these polynomials. This
issue is basically solved in [18]. Second, there is the question about the
properties of the exceptional orthogonal polynomials. In particular, one
could wonder whether these polynomials have similar properties as their
classical counterparts. A noticeable difference is that orthogonal polynomials
only have real zeros, while the exceptional orthogonal polynomials can have
nonreal zeros.

The purpose of this paper is twofold. We give an overview of the
construction and classification of exceptional Laguerre polynomials using
the concept of partitions. Next, we derive asymptotic results about the zeros
of these polynomials. In many cases, the exceptional Laguerre polynomials
are a complete set of eigenpolynomials in an appropriate Hilbert space
where boundary conditions have to be taken into account. Although this is
an important issue, we do not consider it in this paper.

We construct the exceptional Laguerre polynomial via two partitions [24]
as we feel that this is the most natural setting for studying these poly-
nomials. Such a construction by partitions is already used for exceptional
Hermite polynomials, see, for example [25, 26]. In the Laguerre case, we
show how a pair of partitions can be used to construct exceptional Laguerre
polynomials and we give some of their properties. The properties are not
new as they can be found in various places in the literature with varying
notation. We find it useful to present it here in a systematic way. In some of
the existing literature, the exceptional Laguerre polynomials are classified as
type I, type II, and type III Xm-Laguerre polynomials, see, e.g. [7, 27]. This
classification captures only very specific cases for the exceptional Laguerre
polynomial. We show how to rewrite the Xm-Laguerre polynomials in our
approach using partitions, see Section 5.2.

The second aim of this paper is to address the question about the
asymptotic behavior of the zeros of the exceptional Laguerre polynomial.
This asymptotic behavior is studied in the Hermite case [26] where the
corresponding partition is chosen to be even. We use similar ideas in this
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paper to obtain the new results for the Laguerre case. Our results partially
answer the conjecture made in [26] that their result in the Hermite case
should hold in the Laguerre and Jacobi case as well. The behavior of
the zeros of some exceptional Laguerre polynomials is already studied in
the papers [27–29]. In these papers, only 1-step Darboux transformations
are considered whereas we deal with general r -step transformations, thereby
covering all possible cases.

The zeros are divided into two classes according to their location. The
zeros which lie in the orthogonality region are called the regular zeros,
while the others are called the exceptional zeros. Our first result is a lower
bound for the number of regular zeros. Next, we prove a generalization
of the Mehler–Heine theorem of Laguerre polynomials. We also show that
the counting measure of the regular zeros, suitably normalized, converges
to the Marchenko–Pastur distribution. This distribution is also the limiting
distribution of the scaled zeros of classical Laguerre polynomials. Finally,
we prove that each simple zero of the generalized Laguerre polynomial
attracts an exceptional zero of the exceptional Laguerre polynomial. The
condition that we need simple zeros is probably not a restriction. In
the Hermite case, it was conjectured by Veselov [30] that the zeros of
a Wronskian of a fixed set of Hermite polynomials are indeed simple,
except possibly at the origin. Likewise, we conjecture that the zeros of the
generalized Laguerre polynomial are simple too. An important difference
with Veselov’s conjecture is that we add a condition in our statement.
The zeros are not simple in full generality as we have explicit examples
where nonsimple zeros are obtained.

We organize this paper as follows. In Section 2, we introduce the
generalized and exceptional Laguerre polynomial by associating them with
two partitions. After defining them properly, we give an alternative proof to
derive the degree and leading coefficient of these polynomials in Section
3. In Section 4, we go on to discuss the most general construction of
generalized Laguerre polynomials. The most general construction involves
four types of eigenfunctions of the Laguerre differential operator, which
could be captured by four partitions. However, there is a procedure with
Maya diagrams to reduce it to only two types. We follow [31] who worked
out the reduction procedure for the Hermite case. The construction of the
exceptional Laguerre polynomials in the most general case is treated in
Section 5. In this section, we also give the relation between our approach
using partitions and Xm-Laguerre polynomials.

Finally, we state and prove the new results about the zeros of the
exceptional Laguerre polynomial in 6 and 7. These sections are divided into
the results according to the regular and exceptional zeros. We also state a
conjecture of simple zeros in 6 and give some remarks about it.
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Table 1
Eigenfunctions and Eigenvalues of (2)

Eigenfunction Eigenvalue

L (α)
n (x) −n

ex L (α)
n (−x) n + 1 + α

x−αL (−α)
n (x) −n + α

x−αex L (−α)
n (−x) n + 1

2. Exceptional Laguerre polynomials

We start from Laguerre polynomials to define generalized and exceptional
Laguerre polynomials where we introduce them by use of partitions. After
the necessary definitions, we state a few known results for these polynomials
and give an elementary duality property for the partitions. Most of the
results of this section can be found in [2, 32].

2.1. Laguerre polynomials

The Laguerre polynomial of degree n with parameter α ∈ R is given by the
Rodrigues formula

L (α)
n (x) = ex x−α

n!

dn

dxn

(
e−x xn+α) . (1)

For α > −1, they are orthogonal polynomials on [0,∞) with respect to the
positive weight function xαe−x ,∫ ∞

0
L (α)

n (x)L (α)
m (x)xαe−x dx = 0, for n �= m.

The Laguerre polynomial L (α)
n is an eigenfunction of the differential

operator

y �→ xy′′ + (α + 1 − x)y′. (2)

There are other eigenfunctions of this operator which have a polynomial part
and these are listed in Table 1. We will use these eigenfunctions to define
the generalized and exceptional Laguerre polynomial. As we see later, the
first two types of eigenfunctions are the most relevant ones for us.

We can transform the operator (2) into

y �→ −y′′ +
(

x2 + 4α2 − 1

4x2

)
y, (3)
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Table 2
Eigenfunctions and Eigenvalues of (3)

Eigenfunction Eigenvalue

ϕ
(α)
n (x) = e− 1

2 x2
xα+ 1

2 L (α)
n (x2) 4n + 2(1 + α)

ψ
(α)
n (x) = e

1
2 x2

xα+ 1
2 L (α)

n (−x2) −4n − 2(1 + α)
ϕ

(−α)
n (x) = e− 1

2 x2
x−α+ 1

2 L (−α)
n (x2) 4n + 2(1 − α)

ψ
(−α)
n (x) = e

1
2 x2

x−α+ 1
2 L (−α)

n (−x2) −4n − 2(1 − α)

in the sense that if y is an eigenfunction of (2), then xα+ 1
2 e− 1

2 x2
y(x2) is an

eigenfunction of (3). The corresponding eigenfunctions are given in Table 2
and we denote them by ϕ(α)

n and ψ (α)
n . The Laguerre polynomial L (α)

n itself
transforms into

ϕ(α)
n (x) = xα+ 1

2 e− 1
2 x2

L (α)
n (x2). (4)

From ϕ
(α)
n , we obtain the eigenfunction ψ (α)

n of (3) by changing x to i x in
(4). Two more eigenfunctions are obtained by changing α to −α. We arrive
at four sets of eigenfunctions with a polynomial part as shown in Table 2.
The operator (4) is in the Schrödinger form and it is convenient to apply a
Darboux–Crum (or a sequence of Darboux) transformation(s) to this form of
the operator [19, 20].

2.2. Generalized Laguerre polynomials

We will now define the generalized Laguerre polynomial. Let us, however,
point out that the term generalized Laguerre polynomial is also used for
the polynomial (1) with general parameter α, to distinguish it from the case
α = 0 (which is then called the Laguerre polynomial). We use generalized
Laguerre polynomial in analogy with generalized Hermite polynomial as for
example in [26].

For us, the generalized Laguerre polynomial is basically a Wronskian
of the eigenfunctions in Table 1 with an appropriate prefactor to make it
a polynomial. A Wronskian of a set of sufficiently differentiable functions
f1, . . . , fr is the determinant of the matrix ( d j−1

dx j−1 fi )1≤i, j≤r . We denote it by

Wr[ f1, . . . , fr ] = det

(
d j−1

dx j−1
fi

)
1≤i, j≤r

.

A generalized Laguerre polynomial is a Wronskian of r Laguerre polyno-
mials with the same parameter α, but with distinct degrees n1 > n2 > · · · >
nr ≥ 1. We label the generalized Laguerre polynomial by the partition
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λ = (λ1 ≥ · · · ≥ λr ), where λ j = n j − r + j for j = 1, . . . , r . Then,

�
(α)
λ := Wr

[
L (α)

n1
, . . . , L (α)

nr

]
(5)

is a polynomial of degree |λ| = ∑r
j=1 λ j . The fact that |λ| is the highest

degree can be easily seen by looking at the diagonal or antidiagonal.
The coefficient to x |λ| is nonzero because all the positive integers n j are
different. See Lemma 1 for a precise formula of the leading coefficient.
Note that we follow the convention that a partition is a weakly decreasing
sequence of positive integers, which is the common one in number theory
and combinatorics.

A more general approach is possible if we include other eigenfunctions
of the operator (2). Because we want to end up with polynomials, we only
include the eigenfunctions from Table 1. In general, we could include all
four types, but it turns out that it suffices to include only eigenfunctions
of the first two types, see Section 4. We consider two partitions λ and
μ of lengths r1 and r2 with corresponding degree sequences (n j )

r1
j=1 and

(m j )
r2
j=1,

λ = (λ1, . . . , λr1 ), n j = λ j + r1 − j, j = 1, . . . , r1,

μ = (μ1, . . . , μr2 ), m j = μ j + r2 − j, j = 1, . . . , r2.
(6)

We write r = r1 + r2 and

�
(α)
λ,μ := e−r2x · Wr [ f1, . . . , fr ] , (7)

where

f j (x) = L (α)
n j

(x), j = 1, . . . , r1, (8)

fr1+ j (x) = ex L (α)
m j

(−x), j = 1, . . . , r2. (9)

The prefactor e−r2x in (7) guarantees that �(α)
λ,μ is a polynomial. We see that

�
(α)
λ,∅ = �

(α)
λ .

DEFINITION 1. The polynomial �(α)
λ,μ defined in (7) is called the gen-

eralized Laguerre polynomial of parameter α associated with partitions λ
and μ.

When both partitions are empty, the generalized Laguerre polynomial is
the constant function 1.

Remark 1. As the Laguerre polynomial, the generalized Laguerre poly-
nomial is defined for every α ∈ R and the polynomial never vanishes
identically, because the functions f1, . . . , fr from (8) to (9) are always
linearly independent. As we can see from Table 1, combined with our
definition of �(α)

λ,μ, it is possible that for a particular choice of α, namely,
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α = −ni − m j − 1 for some i and j , two eigenvalues coincide. Neverthe-
less, the eigenfunctions are still linearly independent as one of them has an
exponential part, while the other one has not.

If we apply a few elementary properties of Laguerre polynomials (which
are stated further, see (48) and (49)), we can express the generalized
Laguerre polynomial (7) as∣∣∣∣∣∣∣∣∣∣∣

L (α)
n1 (x) . . . L (α)

nr1
(x) L (α)

m1 (−x) . . . L (α)
mr2

(−x)

(−1)L (α+1)
n1−1 (x) . . . (−1)L (α+1)

nr1 −1(x) L (α+1)
m1 (−x) . . . L (α+1)

mr2
(−x)

...
. . .

...
...

. . .
...

(−1)r−1 L (α+r−1)
n1−r+1 (x) . . . (−1)r−1 L (α+r−1)

nr1 −r+1(x) L (α+r−1)
m1 (−x) . . . L (α+r−1)

mr2
(−x)

∣∣∣∣∣∣∣∣∣∣∣
,

(10)

where we set L (α)
n (x) ≡ 0 whenever n ≤ −1. The expression (10) shows that

our definition of �(α)
λ,μ is the same as Durán’s definition [2, Formula (1.8)].

Using this expression, one can easily see that the degree of �(α)
λ,μ is at

most |λ| + ∑r2
i=1 mi . However, in this situation, there is a fair amount of

cancellation and we have the following result from Durán [2, Section 5].

LEMMA 1. Take α ∈ R. Then, �(α)
λ,μ is a polynomial of degree |λ| + |μ|

with leading coefficient given by

(−1)

r1∑
i=1

ni ·

∏
1≤i< j≤r1

(n j − ni )
∏

1≤i< j≤r2

(m j − mi )

r1∏
i=1

ni !
r2∏

i=1
mi !

,

which is independent of the parameter α.

Actually, Durán [2] first considers exceptional Meixner polynomials
and obtains Wronskians of Laguerre polynomials as limits of Casorati
determinants of Meixner polynomials. The degree statement for these latter
determinants follows from a quite general result of Durán and de la Iglesia
[33, Lemma 3.4]. In Section 3, we give a direct argument of the degree
reduction. Therefore, Lemma 1 is the Laguerre case of Proposition 1 where
we use that the leading coefficient of the Laguerre polynomial L (α)

n (x) is
given by (−1)n

n! .

The value at the origin of the generalized Laguerre polynomial �(α)
λ,μ can

be computed explicitly. Durán showed that this value is nonzero when the
parameter α is not a negative integer [2, Lemma 5.1]. By investigating this
lemma of Durán, we easily verify that the condition can be weakened.

LEMMA 2. Take α ∈ R such that the following conditions are satisfied,

α �= −1,−2, . . . ,− max{n1,m1},
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α �= −ni − m j − 1, i = 1, . . . , r1 and j = 1, . . . , r2.

Then, �(α)
λ,μ(0) �= 0.

The statement of Lemma 2 is not best possible, but an explicit formula-
tion of the values that are not allowed for α is rather complicated to write
down, and we not pursue this in this paper. The condition �(α)

λ,μ(0) �= 0 will
play a role in Corollary 1 in Section 6.2.

The two partitions play a similar role in (6) as is evident from the
following duality property.

LEMMA 3. For every α ∈ R and partitions λ and μ, we have

�
(α)
λ,μ(x) = (−1)

r1(r1−1)
2 + r2(r2−1)

2 �
(α)
μ,λ(−x). (11)

Proof. We use the following elementary Wronskian properties. Assume
that f1, . . . , fr , g, and h are sufficiently differentiable. Then,

Wr[g · f1, . . . , g · fr ] = (g(x))r · Wr[ f1, . . . , fr ], (12)

Wr[ f1 ◦ h, . . . , fr ◦ h](x) = (h′(x))
r (r−1)

2 · Wr[ f1, . . . , fr ](h(x)). (13)

Then, from (7) and (12) with g(x) = e−x , we have

�
(α)
λ,μ = er1x · Wr

[
e−x f1, . . . , e−x fr

]
,

where f1, . . . , fr are the functions from (8) to (9). By using (13) with
h(x) = −x , we obtain

�
(α)
λ,μ(x) = (−1)

r (r−1)
2 er1x · Wr

[
gr2+1, . . . , gr , g1, . . . , gr2

]
(−x),

where g j (x) = ex fr1+ j (−x) = L (α)
m j (x) for j = 1, . . . , r2 and gr2+ j (x) =

ex f j (−x) = ex L (α)
n j (−x) for j = 1, . . . , r1. Permuting the first r1 columns

with the last r2 columns gives an extra factor (−1)r1r2 . Therefore, the total
factor is

(−1)r1r2+ r (r−1)
2 = (−1)

r1(r1−1)
2 + r2(r2−1)

2 .

Hence, we obtain (11) in view of the definitions (7)–(9). �

Durán [2] gave sufficient conditions for �(α)
λ,μ to have no zeros on [0,∞).

In a follow-up paper, Durán and Pérez [17] proved that the obtained
conditions are also necessary. For their result, we need the notion of an even
partition.

DEFINITION 2. A partition λ = (λ1, . . . , λr ) with λr ≥ 1 is even if r is
even and λ2 j−1 = λ2 j for every j = 1, . . . , r

2 .

By convention, when r = 0, the (empty) partition is even.
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λ = (4, 2, 1)

Conjugation

λ′ = (3, 2, 1, 1)

Figure 1. The conjugate partition.

We state the following result for α > −1, even though Durán and Pérez
obtain a result for every α ∈ R.

LEMMA 4 ([2, 17]). Let α > −1. Then the polynomial �(α)
λ,μ has no zeros

on [0,∞) if and only if λ is an even partition.

Suppose α > −1. Combining Lemmas 4 and 3 gives us that �(α)
λ,μ has no

zeros on (−∞, 0] if and only if μ is an even partition. Moreover, �(α)
λ,μ has

no real zeros if and only if both λ and μ are even partitions.
Finally, we state an invariance property which was conjectured in [2]

and proven in [32]. This property is very conveniently stated in terms of
partitions, because it involves the conjugate partition. The partition λ′ is
called the conjugate partition of λ if

λ′
i = #{ j ∈ N | λ j ≥ i}, i = 1, . . . , λ1. (14)

If we use a graphical representation of a partition by means of a Young
diagram, then the Young diagram of the conjugate partition is obtained by
reflection in the main diagonal, as illustrated in Fig. 1.

LEMMA 5 (Theorem 6.1 in [32]). For every α ∈ R and partitions λ and μ,
we have

�
(α)
λ,μ(x) = (−1)

μ1(μ1−1)
2 +|λ|+|μ|+ r2(r2−1)

2 �
(−α−t)
λ′,μ′ (−x),

where

t = λ1 + μ1 + r1 + r2,

with the convention that λ1 = 0 if r1 = 0 (i.e., λ is the empty partition) and
μ1 = 0 if r2 = 0.

Lemma 5 will follow from Theorem 1 in Section 4. The proof is given in
Section 4.5.

2.3. Exceptional Laguerre polynomials

We fix the parameter α and two partitions λ and μ of lengths r1 and r2,
respectively. As before, we write r := r1 + r2. Furthermore, suppose that
the functions f1, . . . , fr are as in (8) and (9). We obtain the exceptional
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Laguerre polynomials by adding one Laguerre polynomial with the same
parameter α but with degree different from n1, . . . , nr1 to the Wronskian. If
we add the Laguerre polynomial of degree s, then this is

e−r2x · Wr
[

f1, . . . , fr , L (α)
s

]
, (15)

where we assume that s �∈ {n1, . . . , nr1}. Up to a possible sign factor, this
polynomial is the generalized Laguerre polynomial of parameter α associ-
ated with the partitions λ̃ and μ, where λ̃ is the partition corresponding
to the degrees n1, . . . , nr1 , and s. Because |λ̃| = |λ| + s − r1, we have, by
Lemma 1, that the degree of (15) is s + |λ| + |μ| − r1. By varying s, we
obtain polynomials of degrees that are in the degree sequence associated
with λ and μ that is defined as follows.

DEFINITION 3. The degree sequence associated with partitions λ and μ is

Nλ,μ = {n ∈ N ∪ {0} | n ≥ |λ| + |μ| − r1 and n − |λ| − |μ| �= λ j − j

for j = 1, . . . , r1}. (16)

For n ∈ Nλ,μ, we take s = n − |λ| − |μ| + r1 and this is a nonnegative
integer because of the first condition in (16). The second condition is
such that s �= n j for every j = 1, . . . , r1. This then leads to the following
definition of the exceptional Lauerre polynomials.

DEFINITION 4. The exceptional Laguerre polynomials of parameter α

associated with the two partitions λ and μ are given by

L (α)
λ,μ,n(x) = e−r2x · Wr

[
f1, . . . , fr , L (α)

s

]
, n ∈ Nλ,μ, (17)

where s = n − |λ| − |μ| + r1 and f1, . . . , fr are as in (8) and (9).

The definition is such that L (α)
λ,μ,n has degree n. There are |λ| + |μ|

degrees that do not occur, namely, those nonnegative integers outside of
Nλ,μ. They are called the exceptional degrees. The leading coefficient of

L (α)
λ,μ,n can be determined as in Lemma 1.

Remark 2. When both partitions are empty we obtain that L (α)
∅,∅,n(x) =

L (α)
n (x) for all x ∈ C. Hence, the exceptional Laguerre polynomial is a

generalization of the usual Laguerre polynomial.

Remark 3. Similarly to (17), we can define another exceptional Laguerre
polynomial by

L̃ (α)
λ,μ,n(x) = e−(r2+1)x · Wr

[
f1, . . . , fr , ex L (α)

s (−x)
]
, (18)

where we take s = n − |λ| − |μ| + r2 ≥ 0, and s �= m j for j = 1, . . . , r2.
Using the duality from Lemma 3, we can reduce this to the case (17)
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because

L̃ (α)
λ,μ,n(x) = (−1)

r1(r1+1)
2 + r2(r2+1)

2 L (α)
μ,λ,n(−x). (19)

If α > −1 and the partition λ is even, then the exceptional Laguerre
polynomials form a complete set of orthogonal polynomials on the positive
real line. This result is due to Durán and Pérez [2, 17].

LEMMA 6. Suppose α > −1. If λ is an even partition, then the
polynomials L (α)

λ,μ,n for n ∈ Nλ,μ are orthogonal on [0,∞) with respect to
the positive weight function

W (α)
λ,μ(x) = xα+r e−x(

�
(α)
λ,μ(x)

)2
, x > 0.

That is, if n,m ∈ Nλ,μ with n �= m, then

∫ ∞

0
L (α)
λ,μ,n(x)L (α)

λ,μ,m(x)W (α)
λ,μ(x)dx = 0.

Moreover, they form a complete orthogonal set in L2([0,∞),W (α)
λ,μ(x)dx).

The conditions α > −1 and λ an even partition are not best possible.
More general, but less easy to state, conditions can also be found in
[2, 17].

Remark 4. In the literature, one often refers to exceptional Laguerre
polynomials when these polynomials form an orthogonal complete set. In
our set-up, we defined a set of polynomials in (17) and named them as
exceptional Laguerre polynomials for every two partitions λ and μ and for
every choice of parameter α. For us, the exceptional Laguerre polynomials
form an orthogonal complete set of polynomials only in certain special
cases, such as given by Lemma 6.

3. The degree and leading coefficient of �
(α)
λ,μ

In this section, we give an alternative proof of Lemma 1. It follows from the
subsequent more general result that holds for arbitrary polynomials, and not
just for Laguerre polynomials.

PROPOSITION 1. Let r1, r2 be nonnegative integers and define r = r1 + r2.
Let R1, . . . , Rr be nonzero polynomials such that deg Ri �= deg R j whenever
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i �= j and 1 ≤ i, j ≤ r1 or r1 + 1 ≤ i, j ≤ r . Then the polynomial

�(x) = e−r2x · Wr
[
R1, . . . , Rr1, ex Rr1+1, . . . , ex Rr

]
(20)

has degree

deg� =
r∑

i=1

deg Ri −
(

r1

2

)
−

(
r2

2

)
. (21)

Moreover, if all polynomials Ri are monic, then the leading coefficient of �
is given by ∏

1≤i< j≤r1

(deg R j − deg Ri )
∏

1≤i< j≤r2

(deg Rr1+ j − deg Rr1+i ). (22)

We use the notation

� = �(R1, . . . Rr1 ; Rr1+1, . . . , Rr )

= e−r2x · Wr
[
R1, . . . , Rr1, ex Rr1+1, . . . , ex Rr

]
. (23)

The proof is by induction on the total sum of the degrees, and in the
induction we use the following lemma.

LEMMA 7. Let R1, . . . , Rr be polynomials, not necessarily of distinct
degrees. Then,

d

dx
�(R1, . . . Rr1 ; Rr1+1, . . . , Rr ) = �

(
R′

1, . . . , Rr1 ; Rr1+1, . . . , Rr

)
+ · · · +�

(
R1, . . . , R′

r1
; Rr1+1, . . . , Rr

) + �
(
R1, . . . , Rr1 ; R′

r1+1, . . . , Rr

)
+ · · · +�

(
R1, . . . , Rr1 ; Rr1+1, . . . , R′

r

)
. (24)

Proof. Because the Wronskian is multilinear in its arguments, we can
compute from (23)

d

dx
� = − r2�+ e−r2x · d

dx
Wr

[
R1, . . . , Rr1, ex Rr1+1, . . . , ex Rr

]
= − r2�+�

(
R′

1, . . . , Rr1 ; Rr1+1, . . . , Rr

) + · · ·
+�

(
R1, . . . , R′

r1
; Rr1+1, . . . , Rr

)
+�

(
R1, . . . , Rr1 ; Rr1+1 + R′

r1+1, . . . , Rr

) + · · ·
+�

(
R1, . . . , Rr1 ; Rr1+1, . . . , Rr + R′

r

)
.

From the multilinearity of � with respect to each of its arguments, we then
obtain (24). �

As a second preparation for the proof of Proposition (1), we state and
prove an identity that will be used to establish the formula (22) for the
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leading coefficient of �. We need the identity (25) for natural numbers, but
as the proof shows it is valid for arbitrary real or complex numbers.

LEMMA 8. Let x1, . . . , xr be r pairwise different numbers, i.e., xi �= x j

for i �= j . Then the following holds,

r∑
k=1

⎛
⎜⎜⎝xk

r∏
j=1
j �=k

x j − (xk − 1)

x j − xk

⎞
⎟⎟⎠ =

r∑
k=1

xk −
(

r

2

)
. (25)

Proof. We prove this by induction on r . When r = 1, the identity is
trivially true. Thus, take r > 1. We claim that

r∑
k=1

xk

r∏
j=1
j �=k

x j − xk + 1

x j − xk
=

r−1∑
k=1

xk

r−1∏
j=1
j �=k

x j − xk + 1

x j − xk
+ xr − (r − 1) (26)

from which the identity (25) follows by applying the induction hypothesis on
the right-hand side of the equality. Thus, it remains to show that (26) holds
true. We start by splitting the sum into two parts

r∑
k=1

xk

r∏
j=1
j �=k

x j − xk + 1

x j − xk
= xr

r−1∏
j=1

x j − xr + 1

x j − xr
+

r−1∑
k=1

xk

r∏
j=1
j �=k

x j − xk + 1

x j − xk
. (27)

Consider xr as a variable, we then have the partial fraction decomposition

xr

r−1∏
j=1

x j − (xr − 1)

x j − xr
= Bxr + C +

r−1∑
k=1

Ak

xr − xk
(28)

for some nonzero constants B,C , and

Ak = −xk

r−1∏
j=1

(x j − xk + 1)

r−1∏
j=1
j �=k

(x j − xk)

, k = 1, . . . , r − 1.

From the fact that
x j − (xr − 1)

x j − xr
= 1 + 1

x j − xr
,

we see that
r−1∏
j=1

x j − (xr − 1)

x j − xr
= 1 +

r−1∑
j=1

1

x j − xr
+ O

(
1

x2
r

)
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and thus B = 1 and C = −(r − 1). Therefore, we can rewrite (28) as

xr

r−1∏
j=1

x j − (xr − 1)

x j − xr
= −

r−1∑
k=1

xk

r−1∏
j=1

(x j − xk + 1)

r∏
j=1
j �=k

(x j − xk)
+ xr − (r − 1). (29)

If we now look at the product
∏r−1

j=1(x j − xk + 1), it is clear that this is
the same as j runs from 1 to r − 1 excluding k as for j = k we have that
x j + xk + 1 = 1. Moreover, as

1

xr − xk + 1
= 1 − xr − xk

xr − xk + 1
,

by adding j = r in the product, we can rewrite (29) as

xr

r−1∏
j=1

x j − (xr − 1)

x j − xr
= −

r−1∑
k=1

xk

r∏
j=1
j �=k

x j − xk + 1

x j − xk

+
r−1∑
k=1

xk

r−1∏
j=1
j �=k

x j − xk + 1

x j − xk
+ xr − (r − 1).

If we plug this value in (27), we obtain (26) which ends the proof of the
lemma. �

Now, we are ready for the proof of Proposition 1.

Proof of Proposition 1. Let R1, . . . , Rr be an arbitrary sequence of
monic polynomials, and let � = �(R1, . . . , Rr1, Rr1+1, . . . , Rr ) be as in (20).
We are going to prove that

deg� ≤
r∑

i=1

deg Ri −
(

r1

2

)
−

(
r2

2

)
(30)

with equality if and only if the degree condition of Proposition 1 is satisfied.
In that case, we show that the leading coefficient is given by (22). If � ≡ 0,
then we take deg� = −∞.

If R1, . . . , Rr1 or Rr1+1, . . . , Rr are linearly dependent, then � ≡ 0 and
then (30) is automatically satisfied. Thus, we assume that R1, . . . , Rr1 are
linearly independent, as well as Rr1+1, . . . , Rr . By permuting entries in the
Wronskian, we may also assume that

deg Ri ≤ deg Ri+1, for i = 1, . . . , r1 − 1,

deg Rr1+i ≤ deg Rr1+i+1, for i = 1, . . . , r2 − 1.
(31)
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Another choice would be that the degrees are decreasing as we did so
far. However, the choice we make does not influence the result of the
proposition as the leading coefficient (22) captures this choice.

We will then use induction on the number N = ∑r
k=1 deg Rk − (r1

2

) − (r2

2

)
.

Under the above assumptions, the smallest possible number N = 0 is
reached when deg Ri = i − 1 for i = 1, . . . , r1 − 1 and deg Rr1+i = i − 1 for
i = 1, . . . , r2 − 1. The first r1 columns in the Wronskian (20) then have an
upper triangular form and we find by expanding

� =
(

r1∏
i=1

(deg Ri )!

)
e−r2x · Wr

[
ex S1, . . . , ex Sr2

]
where Sj = e−x ( d

dx )r1 (ex Rr1+ j ). Note that Sj is a monic polynomial with
deg Sj = deg Rr1+ j = j − 1 for j = 1, . . . , r2. Using (12), we have

e−r2x · Wr
[
ex S1, . . . , ex Sr2

] = Wr
[
S1, . . . , Sr2

] =
r2∏

j=1

(deg Rr1+ j )!.

Thus,

� =
r1∏

i=1

(deg Ri )!
r2∏

j=1

(deg Rr1+ j )!

which is a constant, so that the degree condition (21) is satisfied. Also, the
constant is equal to (22), as can be easily verified. This completes the proof
of the base step of the induction.

In the induction step, we take N > 0 and we assume that the statement
is true whenever the sum of the degrees of the polynomials is at most
N − 1 + (r1

2

) + (r2

2

)
.

We take polynomials R1, . . . , Rr with
∑r

k=1 Rk = N + (r1

2

) + (r2

2

)
. We

assume R1, . . . , Rr1 and Rr1+1, . . . , Rr2 are linearly independent and without
loss of generality we also assume (31). If equality holds somewhere in (31),
then we perform a column operation on the Wronskian to reduce the degree
of one of the polynomials. Then, from the induction hypothesis, it follows
that (30) holds with strict inequality. The coefficient of x N is thus zero, and
this agrees with the formula (22).

Thus, we may assume

deg Ri < deg Ri+1, for i = 1, . . . , r1 − 1,

deg Rr1+i < deg Rr1+i+1, for i = 1, . . . , r2 − 1.
(32)

The identity (24) expresses d
dx�(R1, . . . , Rr1 ; Rr1+1, . . . , Rr2 ) as as sum of r

terms, each of which is an �-polynomial built out of polynomials whose
total degree is N − 1 + (r1

2

) + (r2

2

)
. According to the induction hypothesis,
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the degree of each of these terms is at most N − 1. Thus, deg�′ ≤ N − 1
and (30) follows after an integration step.

To determine the coefficient of x N , we first compute the coefficient of
x N−1 in each of the terms in the right-hand side of (24). We denote
xk = deg Rk for k = 1, . . . , r1, and yk = deg Rr1+k for k = 1, . . . , r2. By the
induction hypothesis, the coefficient of x N−1 of the kth term is

xk

r1∏
j=1
j �=k

x j − (xk − 1)

x j − xk

∏
1≤i< j≤r1

(x j − xi )
∏

1≤i< j≤r2

(y j − yi ), k = 1, . . . , r1,

(33)
while the coefficient for the (r1 + k)th term is

yk

r1∏
j=1
j �=k

y j − (yk − 1)

y j − yk

∏
1≤i< j≤r1

(x j − xi )
∏

1≤i< j≤r2

(y j − yi ), k = 1, . . . , r2.

(34)
Note that (33) is also valid if deg R1 = 0, or if deg R′

k = deg Rk−1, for some
k = 2, . . . , r1, because in these cases (33) vanishes, as it should. Likewise,
(34) is also valid if deg Rr1+1 = 0, or if deg R′

r1+k = deg Rr1+k for some
k = 2, . . . , r2.

Adding (33) and (34), and using Lemma 8, we find that the coefficient of
x N−1 in �′ is(

r1∑
k=1

xk −
(

r1

2

)
+

r2∑
k=1

yk −
(

r2

2

)) ∏
1≤i< j≤r1

(x j − xi )
∏

1≤i< j≤r2

(y j − yi ).

Now, recall
r1∑

k=1

xk +
r2∑

k=1

yk =
r∑

k=1

deg Rk = N +
(

r1

2

)
+

(
r2

2

)
.

Therefore, the coefficient of x N−1 of �′ is

N
∏

1≤i< j≤r1

(x j − xi )
∏

1≤i< j≤r2

(y j − yi ),

and after integration we find that the coefficient of x N of � is equal to
(22). The coefficient is nonzero and therefore � has degree N as claimed
in (21). This completes the proof of the induction step, and Proposition 1 is
proved. �

Using similar ideas, we can prove the following proposition that we will
use in Lemma 10. It applies to a more general situation, but it only gives
an upper bound on the degree of the polynomial, and it does not give
information on the leading coefficient.
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PROPOSITION 2. Take two nonnegative integers r1, r2 and define r =
r1 + r2. Let R1, . . . , Rr be polynomials. Take nonnegative integers 0 ≤ l1 <

l2 < · · · < lr . Consider the polynomial

Q(x) = e−r2x

∣∣∣∣∣∣∣∣∣∣

R(l1)
1 · · · R(l1)

r1

(
ex Rr1+1

)(l1) · · · (ex Rr )(l1)

R(l2)
1 · · · R(l2)

r1

(
ex Rr1+1

)(l2) · · · (ex Rr )(l2)

...
...

. . .
...

R(lr )
1 · · · R(lr )

r1

(
ex Rr1+1

)(lr ) · · · (ex Rr )(lr )

∣∣∣∣∣∣∣∣∣∣
. (35)

Then, the degree of Q is at most
∑r

i=1 deg Ri − ∑r1
i=1 li − (r2

2

)
.

Proof. The proof is similar to (part of) the proof of Proposition 1. We
only need to observe that similar to (24), we now have

Q′ = Q(R′
1, . . . , Rr1 ; Rr1+1, . . . , Rr ) + · · · + Q(R1, . . . , R′

r1
; Rr1+1, . . . , Rr )

+ Q(R1, . . . , Rr1 ; R′
r1+1, . . . , Rr ) + · · · + Q(R1, . . . , Rr1 ; Rr1+1, . . . , R′

r )

with the (hopefully obvious) notation that Q(R1, . . . , Rr1 ; Rr1+1, . . . , Rr ) is
the polynomial (35) based on the polynomials R1, . . . , Rr , and with the
same sequence l1 < l2 < · · · < lr . �

4. Construction of the generalized Laguerre polynomial

In this section, we will discuss the construction of the generalized Laguerre
polynomial. In particular, we show that it is sufficient to include only the
first two types of eigenfunctions of Table 1 in the Wronskian. To this end,
we start from a Wronskian including all four types and show that, up to a
constant, this equals a Wronskian containing only the first two types as in
(7). Hence, in the general setup, we start from eigenfunctions f1, . . . , fr of
the Laguerre differential operator (2) where

f j (x) = L (α)
n j

(x), j = 1, . . . , r1, (36)

fr1+ j (x) = ex L (α)
m j

(−x), j = 1, . . . , r2, (37)

fr1+r2+ j (x) = x−αL (−α)
m ′

j
(x), j = 1, . . . , r3, (38)

fr1+r2+r3+ j (x) = ex x−αL (−α)
n′

j
(−x), j = 1, . . . , r4, (39)

with r1 + r2 + r3 + r4 = r , n1 > n2 > · · · > nr1 ≥ 0, m1 > m2 > · · · >
mr2 ≥ 0, m ′

1 > m ′
2 > · · · > m ′

r3
≥ 0, and n′

1 > n′
2 > · · · > n′

r1
≥ 0. The re-

sult of this section is that there are partitions λ and μ, an integer t , and a
constant C such that

e−(r2+r4)x x (α+r1+r2)(r3+r4) · Wr [ f1, f2, . . . , fr ] (x) = C�(α−t)
λ,μ (x).
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The fact that we only need two types of eigenfunctions instead of all four
possibilities is essentially stated in for example [12,14,34]. However, explicit
equalities were never derived. In [34], Takemura discusses the reduction
in the Jacobi case and concludes that similar methods must work for the
Laguerre case as well. We derive these explicit identities in this section. We
use the same ideas to describe this procedure as in the recent paper [31]
where the authors discuss pseudo-Wronskians of Hermite polynomials.

To describe how λ, μ, and t are obtained from all the indices, it is useful
to introduce Maya diagrams.

4.1. Maya diagrams

A Maya diagram M is a subset of the integers that contains a finite number
of positive integers and excludes a finite number of negative integers. We
visualize it as an infinite row of boxes which are empty or filled. We order
these boxes by corresponding them to the set of integers and therefore we
define an origin. To the right of the origin, there are only finitely many
filled boxes. Each of these filled boxes corresponds to a nonnegative integer
n ≥ 0. All filled boxes to the right of the origin are labeled by a finite
decreasing sequence

n1 > n2 > · · · > nr1 ≥ 0,

where r1 is the number of filled boxes to the right of the origin. If r1 = 0,
then the sequence is empty.

To the left of the origin, there are only finitely many empty boxes. Each
empty box corresponds to a negative integer k < 0. We link this negative
integer to a nonnegative integer n′ = −k − 1 ≥ 0. We obtain a second finite
decreasing sequence

n′
1 > n′

2 > · · · > n′
r4

≥ 0,

which labels the positions of the empty boxes to the left of the origin, and
r4 is the number of those boxes. The Maya diagram is encoded by these two
sequences

M :
(
n′

1, n′
2, . . . , n′

r4
| n1, n2, . . . , nr1

)
. (40)

For example, consider the following Maya diagram M .

. . .

empty boxes

. . .

filled boxes

0−1

The boxes on the right correspond to the finite decreasing sequence
(7, 5, 4, 3, 0). The empty boxes on the left likewise correspond to (6, 5, 3, 2),
and therefore
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M : (6, 5, 3, 2 | 7, 5, 4, 3, 0).

Remark 5. In Theorem 1, we extend the decreasing sequence n1 > n2 >

· · · > nr1 to an infinite decreasing sequence n1 > n2 > · · · > nr1 > nr1+1 >

nr1+2 > · · · giving the positions of all the filled boxes. Thus,
if j ≥ r1 + 1, then n j < 0. In our example, we get (7, 5, 4, 3, 0,
−1,−2,−5,−8,−9,−10, · · · ).

We say that a Maya diagram M̃ is equivalent to M if M̃ is obtained from
M by moving the position of the origin. Hence, the sequence of filled and
empty boxes remains unchanged. For example, the Maya diagram M̃

. . .

empty boxes

. . .

filled boxes

0−1

is equivalent to M because M̃ = M − 3, i.e., the origin is moved three steps
to the right. In this example, M̃ is given by

M̃ : (9, 8, 6, 5, 1, 0 | 4, 2, 1, 0).

It is clear from this example that the total length of both sequences in
the encoding of equivalent Maya diagrams needs not be the same. The total
length of M is 9, while it is 10 for M̃ .

A canonical choice for the position of the origin is to have it such that all
boxes to the left are filled, while the first box to the right is empty. In the
example, it would be

. . .

empty boxes

. . .

filled boxes

0−1

with the encoding

M̃ = M + 7 : (∅ | 14, 12, 11, 10, 7, 6, 5, 2) .

Because there are no empty boxes on the left, we only have one decreasing
sequence, say (∅ | n1, n2, . . . , nr ) with nr ≥ 1. It is associated with a
partition as before, which we denote it by

λ = λ(M). (41)

In our example, λ(M) = (7, 6, 6, 6, 4, 4, 4, 2).
We use

t = t(M) (42)

to denote the shift M → M̃ = M + t that we have to apply to M to take it
into this canonical form. If M is encoded by (40) with r4 ≥ 1, then

t(M) = n′
1 + 1



20 N. Bonneux and A. B. J. Kuijlaars

and in that case t(M) ≥ 1. If r4 = 0, then t(M) ≤ 0.
Another possible choice for the position of the origin is to have it in such

a way that the number of empty boxes to the left is the same as the number
of filled boxes to the right. It is easy to see that there is a unique such
position and in our example it is

. . .

empty boxes

. . .

filled boxes

0−1

with encoding

M − 1 : (7, 6, 4, 3 | 6, 4, 3, 2).

This coincides with the Frobenius representation of the partition λ(M).
We can also put the origin so that all the boxes to the right are empty,

and the first box to the left is filled. In the example, it is

. . .

empty boxes

. . .

filled boxes

0−1

This has an encoding (n′
1, n′

2, . . . , n′
s | ∅) with n′

s ≥ 1. Then,

λ′
j = n′

j − s + j, j = 1, . . . , s

is the partition that is conjugate to λ, see (14).
This is all we need about Maya diagrams. A more thorough introduction

to Maya diagrams can be found in for example [31]. More information
about the Frobenius representation is covered in [35].

4.2. The result

Now, we are able to state the main result of this section about the
construction of the generalized Laguerre polynomial.

THEOREM 1. Let f1, . . . , fr be as in (36)–(39), and let

M1 :
(
n′

1, . . . , n′
r4

| n1, . . . , nr1

)
,

M2 :
(
m ′

1, . . . ,m ′
r3

| m1, . . . ,mr2

)
,

(43)

be two Maya diagrams built out of the degrees of the Laguerre polynomials
appearing in (36)–(39). Let λ = λ(M1) and μ = λ(M2) be the two partitions
that are associated with M1 and M2 as described above, and let t1 = t(M1),
t2 = t(M2) as in (42).

Then, there is a constant C = C(α,M1,M2) such that

e−(r2+r4)x x (α+r1+r2)(r3+r4) · Wr [ f1, . . . , fr ] (x) = C�(α−t1−t2)
λ,μ (x)
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where the constant C is given by

C(α,M1,M2) = (−1)d
r1∏

j=1

r3∏
k=1

(
m ′

k − α − n j

) r2∏
j=1

r4∏
k=1

(
n′

k − α − m j

)

×
r1∏

j=1

r4∏
k=1

(
n j + n′

k + 1
) r2∏

j=1

r3∏
k=1

(
m j + m ′

k + 1
)
, (44)

and

d =

⎧⎪⎪⎨
⎪⎪⎩

d0 if r3 = r4 = 0,
d0 + d1 if r3 = 0 and r4 ≥ 1,
d2 if r3 ≥ 1 and r4 = 0,
d1 + d2 if r3 ≥ 1 and r4 ≥ 1.

(45)

with

d0 = |t2|r2 − |t2|(|t2| + 1)

2
,

d1 = r4(r4 − 1)

2
+ r1r4 +

(
n′

1 + 1 − r4
)(

n′
1 + 2 + r4

)
2

+
n′

1+1−r4∑
i=1

nr1+i ,

d2 = r2
(
m ′

1 + 1
) + (

m ′
1 + 1

)(
m ′

1 + 1 − r3
) +

m ′
1+1−r3∑
i=1

mr2+i .

Here, we used the infinite decreasing sequences (ni )∞i=1 and (mi )∞i=1 which
give the positions of all filled boxes, see Remark 5.

The constant (44) is nonzero, if and only if

α �= m ′
i − n j , for i = 1, . . . , r3, j = 1, . . . , r1,

α �= n′
i − m j , for i = 1, . . . , r4, j = 1, . . . , r2.

(46)

Indeed, if α does not satisfy these conditions, �(α)
M1,M2

vanishes identically
because in such a case, two functions in the Wronskian are multiples of
each other and therefore the Wronskian is zero. If (46) is satisfied, then
�

(α)
M1,M2

is a polynomial of degree |λ(M1)| + |λ(M2)|.
We prove this theorem as follows. First, we show that there is a reduction

possible when 0 appears in the encoding of one of the Maya diagrams.
Second, we describe the shifting process to reduce M1 to M1 + t1 and M2 to
M2 + t2. This is handled in the upcoming two subsections.

Remark 6. In (1), we defined the generalized Laguerre polynomial using
the first two types of eigenfunctions of Table 1. Theorem 1 tells us that if
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we use the four types of eigenfunctions, we can always reduce to the first
two types of eigenfunctions.

One could make other choices and shift the Maya diagrams in another
way. Then, the generalized Laguerre polynomial is reduced to only two
types of eigenfunctions which are not necessarily the first two types as
in (1). For example, it is possible to reduce to type one and type three.
However, one type of eigenfunctions should be from type one (36) or type
four (39), while the other should be from type two (37) or type three (38).
The reductions to other combinations can be derived in the same way as
Theorem 1.

4.3. Reduction procedure

We use the notation

�
(α)
M1,M2

(x) = e−(r2+r4)x x (α+r1+r2)(r3+r4) · Wr [ f1, . . . , fr ] (x) (47)

where f1, . . . , fr are as in (36)–(39), as before. The following elementary
properties of the derivatives will be used in the proof of Lemma 9

d

dx

(
L (α)

n (x)
) = −L (α+1)

n−1 (x), (48)

d

dx

(
ex L (α)

n (−x)
) = ex L (α+1)

n (−x), (49)

d

dx

(
x−αL (−α)

n (x)
) = (n − α)x−α−1L (−α−1)

n (x), (50)

d

dx

(
x−αex L (−α)

n (−x)
) = (n + 1)x−α−1ex L (−α−1)

n+1 (−x). (51)

A reduction is possible if 0 appears in the encoding of one of the Maya
diagrams.

LEMMA 9. Let M1 and M2 be given by (43).

(a) If nr1 = 0, then,

�
(α)
M1,M2

=
(

r3∏
i=1

(
m ′

i − α
) r4∏

i=1

(
n′

i + 1
))
�

(α+1)
M1−1,M2

. (52)

(b) If n′
r4

= 0, then,

�
(α)
M1,M2

= (−1)r1+r2+r4−1

(
r1∏

i=1

(ni + 1)
r2∏

i=1

(mi + α)

)
�

(α−1)
M1+1,M2

. (53)
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(c) If mr2 = 0, then,

�
(α)
M1,M2

= (−1)r2−1

(
r3∏

i=1

(
m ′

i + 1
) r4∏

i=1

(
n′

i − α
))
�

(α+1)
M1,M2−1. (54)

(d) If m ′
r3

= 0, then,

�
(α)
M1,M2

= (−1)r1+r2

(
r1∏

i=1

(ni + α)
r2∏

i=1

(mi + 1)

)
�

(α−1)
M1,M2+1. (55)

Proof. We give the proof of part (b). The other proofs are similar or, in
case of part (a), even simpler.

Assume n′
r4

= 0. Then, fr (x) = ex x−α. We take the factor ex x−α out of
the Wronskian by means of the identity (12), and we expand the Wronskian
determinant along the last row, to obtain

�
(α)
M1,M2

(x) = (
ex x−α)r

e−(r2+r4)x x (α+r1+r2)(r3+r4) · Wr
[
e−x xα f1, . . . , e−x xα fr−1, 1

]
= (−1)r−1

(
ex x−α)r

e−(r2+r4)x x (α+r1+r2)(r3+r4)

× Wr

[
d

dx

(
e−x xα f1

)
, . . . ,

d

dx

(
e−x xα fr−1

)]
.

We use the identities

d

dx

(
e−x xα f j

) = d

dx

(
e−x xαL (α)

n j
(x)

)
= (n j + 1)xα−1e−x L (α−1)

n j +1 (x), j = 1, . . . , r1,

d

dx

(
e−x xα fr1+ j

) = d

dx

(
xαL (α)

m j
(−x)

)
= (m j + α)xα−1L (α−1)

m j
(−x), j = 1, . . . , r2,

d

dx

(
e−x xα fr1+r2+ j

) = d

dx

(
e−x L (−α)

m ′
j

(x)
)

= −e−x L (−α+1)
m ′

j
(x), j = 1, . . . , r3,

d

dx

(
e−x xα fr1+r2+r3+ j

) = d

dx

(
L (−α)

n′
j

(−x)
)

= L (−α+1)
n′

j −1 (−x), j = 1, . . . , r4 − 1,

which follow from (48) to (51).
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Let M̃1 = M1 + 1 and let f̃ 1, . . . , f̃ r̃ be the functions associated with
Maya diagram M̃1 and parameter α̃ = α − 1. We also use r̃1 = r1, r̃2 = r2,
r̃3 = r3, r̃4 = r4 − 1, and r̃ = r − 1. The above identities show that

d

dx

(
e−x xα f j

) = C j e
−x xα−1 f̃ j , j = 1, . . . , r − 1,

where C j = n j + 1, for j = 1, . . . , r1, Cr1+ j = m j + α, for j = 1, . . . , r2,
Cr1+r2+ j = −1 for j = 1, . . . , r3, and Cr1+r2+r3+ j = 1 for j = 1, . . . , r4 − 1.

We take the constant factor C j out of the j th column of the Wronskian,
for each j = 1, . . . , r , and then take out the common factor e−x xα−1 by
means of the identity (12). This leads to a prefactor (e−x xα−1)r−1 and thus

�
(α)
M1,M2

(x) = c1
(
ex x−α)r (

e−x xα−1
)r−1

e−(r2+r4)x x (α+r1+r2)(r3+r4)

× Wr
[

f̃ 1, . . . , f̃ r−1
]

= c1e−(r2+r4−1)x x (α+r1+r2)(r3+r4)−r+1 · Wr
[

f̃ 1, . . . , f̃ r−1
]

where

c1 = (−1)r−1
r4−1∏
j=1

C j = (−1)r1+r2+r4−1
r1∏

j=1

(n j + 1)
r2∏

j=1

(m j + α).

Hence, (53) follows because

(α + r1 + r2)(r3 + r4) − r + 1 = (α − 1 + r1 + r2)(r3 + r4 − 1)

= (α̃ + r̃1 + r̃2)(r̃3 + r̃4). �

4.4. Shifting process

First, assume that t1 ≤ 0 and t2 ≤ 0. Then, r3 = r4 = 0, r1 ≥ |t1| − 1 with
nr1− j = j , for j = 0, . . . , |t1| − 1 and r2 ≥ |t2| − 1 with mr2− j = j , for
j = 0, . . . , |t2| − 1. Therefore, we can apply (52) |t1| times and (55) |t2|
times. We find that

�
(α)
M1,M2

= C(α)�(α−t1−t2)
M1+t1,M2+t2

,

where

C(α) = (−1)

|t2 |∑
i=1

r2−i = (−1)d0 . (56)

Second, assume that t1 > 0 and denote

M̃1 = M1 + 1 :
(
ñ′

1, . . . , ñ′
r̃4

| ñ1, . . . , ñr̃1

)
.

There are two situations, depending on whether the box immediately to the
left of the origin in M1 is filled or not.
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� If it is empty, then n′
r4

= 0, r̃4 = r4 − 1, r̃1 = r1, and

M̃1 :
(
n′

1 − 1, . . . , n′
r4−1 − 1 | n1 + 1, . . . , nr1 + 1

)
. (57)

� If it is filled, then ñr1+1 = 0, r̃4 = r4 r̃1 = r1 + 1, and

M̃1 :
(
n′

1 − 1, . . . , n′
r4

− 1 | n1 + 1, . . . , nr1 + 1, 0
)
. (58)

In both cases, a reduction procedure is possible, because either n′
r4

= 0 or
ñr1+1 = 0. If n′

r4
= 0, we use (53) and if ñr1+1 = 0, we use (52) but with

M1 + 1 instead of M1 and α − 1 instead of α, i.e.,

�
(α)
M1,M2

=
(

r3∏
i=1

(
m ′

i − α + 1
) r4∏

i=1

n′
i

)−1

�
(α−1)
M1+1,M2

. (59)

Continuing in this way, we go from M1 to M1 + t1, to arrive at a Maya
diagram with no empty boxes on the left. We find

�
(α)
M1,M2

= C1(α)�(α−t1)
M1+t1,M2

for some constant C1(α). Now, we perform a second step where we shift M2

to M2 + t2. Hence, in a similar way, we find for some constant C2(α)

�
(α−t1)
M1+t1,M2

= C2(α)�(α−t1−t2)
M1+t1,M2+t2

.

Hence,

�
(α)
M1,M2

= C1(α)C2(α)�(α−t1−t2)
M1+t1,M2+t2

,

which means in terms of the partitions λ and μ that indeed

�
(α)
M1,M2

= C(α)�(α−t1−t2)
λ,μ , (60)

where C(α) = C1(α)C2(α).
Third, when t2 > 0, we first shift the Maya diagram M2 to M2 + t2. Next,

we transpose M1 to M1 + t1 and we find that 60 also holds.
The constant C(α) can be found by keeping track of all the prefactors we

find along the way. There is a fair amount of cancellation taking place. In
particular, every factor that we would find in the denominator also appears
somewhere in a numerator. It leads to the formula (44). However, knowing
(44), we can also verify it by induction on the value of T = |t1| + |t2|.

If t1 = t2 = 0, then r3 = r4 = 0, and all products in (44) are empty and
d0 = 0. We then find C(α) = 1 as it should be.

Take T > 0 and assume the formula (44) is correct whenever |t1| + |t2| =
T − 1. Assuming |t1| + |t2| = T , we have a number of cases to consider.
Note that we may assume that t1 > 0 or t2 > 0 as the situation where
t1, t2 ≤ 0 is derived in (56) which also covers t1 = t2 = 0.

(a) t1 > 0 and M̃1 = M1 + 1 is given by (57),
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(b) t1 > 0 and M̃1 = M1 + 1 is given by (58),
(c) t2 > 0 and M̃2 = M1 + 1 is similar as (57),
(d) t2 > 0 and M̃2 = M1 + 1 is similar as (58).

As the ideas are similar for each case, we only treat case (b). In that case,
we have (59) and thus

C(α,M1,M2) = C(α − 1,M1 + 1,M2)

(
r3∏

i=1

(
m ′

i − α + 1
) r4∏

i=1

n′
i

)−1

. (61)

By the induction hypothesis,

C(α − 1,M1 + 1,M2) = (−1)d̃
r̃1∏

j=1

r3∏
k=1

(m ′
k − (α − 1) − ñ j )

×
r2∏

j=1

r̃4∏
k=1

(ñ′
k − (α − 1) − m j )

r̃1∏
j=1

r4∏
k=1

(ñ j + ñ′
k + 1)

×
r2∏

j=1

r3∏
k=1

(m j + m ′
k + 1) (62)

with the parameters r̃1 = r1 + 1, r̃4 = r4, ñ j = n j + 1 for j = 1, . . . , r1,
ñr1+1 = 0, and ñ′

j = n′
j − 1 for j = 1, . . . , r4, as they are associated with

M̃1, see (58). The first three double products appearing in (62) are

r̃1∏
j=1

r3∏
k=1

(
m ′

k − (α − 1) − ñ j

) =
r1∏

j=1

r3∏
k=1

(m ′
k − α − n j )

r3∏
k=1

(
m ′

k − (α − 1)
)
,

r2∏
j=1

r̃4∏
k=1

(
ñ′

k − (α − 1) − m j

) =
r2∏

j=1

r4∏
k=1

(
n′

k − α − m j

)
,

r̃1∏
j=1

r̃4∏
k=1

(
ñ j + ñ′

k + 1
) =

r1∏
j=1

r4∏
k=1

(
n j + n′

k + 1
) r4∏

k=1

n′
k .

Combining this with (61) and (62), we obtain (44) up to the sign. So far,
we only have to proof that (−1)d̃ = (−1)d . The number d̃ depends on M̃1

and M2 where d depends on M1 and M2. Trivially, d̃0 = d0 and d̃2 = d2 as
they are independent of the first Maya diagram. The induction hypothesis
gives us

d̃1 = r̃4
(
r̃4 − 1

)
2

+ r̃1r̃4 +
(
ñ′

1 + 1 − r̃4
)(

ñ′
1 + 2 + r̃4

)
2

+
ñ′

1+1−r̃4∑
i=1

ñr̃1+i



Exceptional Laguerre Polynomials 27

= r4(r4 − 1)

2
+ (r1 + 1)r4 +

(
n′

1 − r4
)(

n′
1 + 1 + r4

)
2

+
n′

1−r4∑
i=1

(nr1+1+i + 1).

The box to the left of the origin of M1 is filled and hence nr1+1 = −1.
Therefore,

d̃1 = r4(r4 − 1)

2
+ r1r4 + r4 +

(
n′

1 + 1 − r4
)(

n′
1 + 2 + r4

)
2

− n′
1 − 1

+ n′
1 − r4 +

n′
1−r4∑
i=1

nr1+1+i

= r4(r4 − 1)

2
+ r1r4 +

(
n′

1 + 1 − r4
)(

n′
1 + 2 + r4

)
2

+
n′

1+1−r4∑
i=1

nr1+i .

Hence, d̃1 = d1 such that (−1)d̃ = (−1)d . This ends the proof of Theorem 1.

4.5. Proof of Lemma 5

From the previous subsections, it should be clear that we can play with
the Maya diagrams to obtain several results. For example, Lemma 5 can be
viewed as a special case of Theorem 1.

Proof of Lemma 5. Take the following Maya diagrams,

M1 :
(
n′

1, . . . , n′
r4

| ∅) ,
M2 :

(
m ′

1, . . . ,m ′
r3

| ∅) , (63)

where n′
r4

�= 0 if r4 ≥ 1 and m ′
r3

�= 0 if r3 ≥ 0. In this situation, we have
that

�
(α)
M1,M2

(x) = e−r4x xα(r3+r4) · Wr[ f1, . . . , fr ]

where r = r3 + r4 and f1, . . . , fr are as in (38)and (39) with r1 = r2 = 0.
Using (12) with g(x) = x−α, and comparing with (7), we get that

�
(α)
M1,M2

= �
(−α)
μ′,λ′ . (64)

where μ′ and λ′ are the conjugate partitions. We apply Theorem 1 to the
left-hand side, where we note that all double products are empty because
r1 = r2 = 0, and at the same time use Lemma 3 to interchange the two
partitions in the right-hand side of (64). We end up with

(−1)d1+d2�
(α−t)
λ,μ (x) = (−1)

r3(r3−1)
2 + r4(r4−1)

2 �
(−α)
λ′,μ′(−x). (65)
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In this special situation, we have

d1 = |λ| + r4(r4 − 1)

2
,

d2 = |μ| + (m ′
1 + 1 − r3)(m ′

1 − r3)

2
.

The value m ′
1 + 1 − r3 is the number of empty boxes to the left of the origin

of M2 and therefore it is equal to the length of the partition μ, which we
denote here by r (μ). Similarly, we have r (λ) as the length of the partition λ.
We also note that μ1 = r3, and then (65) reduces to

�
(α−t)
λ,μ (x) = (−1)

μ1(μ1−1)
2 +|λ|+|μ|+ r (μ)(r (μ)−1)

2 �
(−α)
λ′,μ′(−x). (66)

This is the result of Lemma 5 if we replace α by α + t .
However, it remains to check that the value of t used in Lemma 5

agrees with the one from Theorem 1 for the special case (63). In
Theorem 1, we have t = t1 + t2 with t1 = t(M1) and t2 = t(M2). For the
Maya diagrams (63), this is t1 = n′

1 + 1 and t2 = m ′
1 + 1. In Lemma

5, we have t = λ1 + μ1 + r (λ) + r (μ). And indeed, it holds true that
λ1 + r (λ) = n′

1 + 1 and μ1 + r (μ) = m ′
1 + 1. This completes the proof of

the lemma. �

5. Construction of the exceptional Laguerre polynomial

Exceptional Laguerre polynomials are often denoted as Xm-Laguerre poly-
nomials. In this section, we prove that the exceptional Laguerre polynomial
defined in (17) using two partitions captures the most general format and
we give explicit identities with respect to the definitions of Xm-Laguerre
polynomials.

5.1. Exceptional Laguerre polynomial revisited

The exceptional Laguerre polynomial is obtained by adding one eigenfunc-
tion to the Wronskian of the generalized Laguerre polynomial. We defined
two kinds of exceptional Laguerre polynomials in (17) and (18). They
are related by (19) and therefore we only considered (17). In general, we
could take f1, . . . , fr as in (36)–(39) and add one more function into the
Wronskian where this function is one of the four types. By the reduction
procedure, we can always reduce each set up to definition (17) as stated
in the following proposition. Therefore, our definition of the exceptional
Laguerre polynomial (17) covered all possibilities. Recall that λ′ is the
conjugated partition of λ.
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PROPOSITION 3. Let f1, . . . , fr as in (36)–(39) and take two Maya
diagrams M1,M2 as in (43). Let λ = λ(M1) and μ = λ(M2) be the
partitions that are associated with these Maya diagrams and let r (λ) and
r (μ) denote the length of these partitions. Let t1 = t(M1), t2 = t(M2) as in
(42). Take s ≥ 0.

(a) If s �= ni for i = 1, . . . , r1, then n := s + t1 + |λ| + |μ| − r (λ) ∈ Nλ,μ

and

e−(r2+r4)x x (α+r1+1+r2)(r3+r4) · Wr[ f1, . . . , fr , L (α)
s (x)](x) = C1L (α−t1−t2)

λ,μ,n (x),

for some constant C1.
(b) If s �= mi for i = 1, . . . , r2, then n := s + t2 + |λ| + |μ| − r (μ) ∈

Nμ,λ and

e−(r2+1+r4)x x (α+r1+r2+1)(r3+r4) · Wr[ f1, . . . , fr , ex L (α)
s (−x)](x)

= C2L (α−t1−t2)
μ,λ,n (−x),

for some constant C2.
(c) If s �= m ′

i for i = 1, . . . , r3 then n := s + m1 + 1 + |λ| + |μ| −
r (μ′) ∈ Nμ′,λ′ and

e−(r2+r4)x x (α+r1+r2)(r3+1+r4) · Wr[ f1, . . . , fr , x−αL (−α)
s (x)](x)

= C3L (−α′)
μ′,λ′,n(x),

where α′ = α + n1 + m1 + 2 and for some constant C3.
(d) If s �= n′

i for i = 1, . . . , r4 then n := s + n1 + 1 + |λ| + |μ| − r (λ′) ∈
Nλ′,μ′ , then

e−(r2+r4+1)x x (α+r1+r2)(r3+r4+1) · Wr[ f1, . . . , fr , ex x−αL (−α)
s (x)](x)

= C4L (−α′)
λ′,μ′,n(−x),

where α′ = α + n1 + m1 + 2 and for some constant C4.

Proof.

(a) By Theorem 1, we can shift the origin in both Maya diagrams to
its canonical choice corresponding to both partitions λ and μ. By
this process, L (α)

s (x) shifts to L (α−t1−t2)
s+t1 (x). Therefore, we end up

with definition (17) and the degree is given by n = s + t1 + |λ| +
|μ| − r (λ) ∈ Nλ,μ. Note that the two conditions of n ∈ Nλ,μ reduce
to s + t1 ≥ 0 and s �= ni for i = 1, . . . , r1. The second condition is
fulfilled by assumption and the first condition is trivially true by
construction.
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(b) We apply the same procedure as in (a). In this case, the last function
in the Wronskian ex L (α)

s (−x) shifts to ex L (α−t1−t2)
s+t2 (−x). Hence, we

end up with definition (18) with degree s + t2 + |λ| + |μ| − r (μ) ∈
Nμ,λ. By (19), interchanging the partitions gives definition (17) up to
a possible sign change.

(c) We shift both origins of the Maya diagrams to the right in such a
way that all boxes to the right are empty, and the first box to the left
is filled: n1 + 1 steps for the first Maya diagram and m1 + 1 steps
for the second. This choice is related to the conjugated partition. Set
α′ = α + n1 + m1 + 2. Similar as in Theorem 1, up to a constant, we
arrive at

e−(r (λ′)+1)x xα
′(r (λ′)+r (μ′)+1) · Wr

[
g1, . . . , gr (λ′), gr (λ′)+1, . . . , gr (λ′)+r (μ′), g

]
where

g j (x) = ex x−α′
L (−α′)

n̄ j
(−x), j = 1, . . . , r (λ′),

gr (λ′)+ j = x−α′
L (−α′)

m̄ j
(x), j = 1, . . . , r (μ′)

for some nonnegative integers n̄ j , m̄ j and

g(x) = ex x−α′
L (−α′)

s+m1+1(x)

because the function ex x−αL (−α)
s (x) is shifted to ex x−α′

L (−α′)
s+m1+1(x). Hence,

all functions in the Wronskian consist of a common factor x−α′
which

cancels out by the factor in front of the Wronskian by (12). Next, we can
interchange the functions g j such that we end up with definition (17) where
the degree is s − m1 − 1 + |λ′| + |μ′| − r (μ′) and the parameter is −α′. The
identity follows as |λ′| = |λ|.

(d) The steps are similar to (c); however, we end up with definition (18).
By (19), the result follows. �

5.2. Xm-Laguerre polynomials

In the literature, exceptional Laguerre polynomials are often denoted as
Xm-Laguerre polynomials where m is the number of exceptional degrees
[3–8, 10, 11, 21–23, 27–29]. In our set-up, this number of exceptional degrees
is given by

m = |N0 \ Nλ,μ| = |λ| + |μ|, (67)

where Nλ,μ is the degree sequence (16). Hence, to obtain exactly m
exceptional degrees, we have to take the partitions λ and μ in such a way
that (67) is satisfied. A few of these possibilities are studied in detail and
referred as type I, type II, and type III exceptional Laguerre polynomials.
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In [7], these polynomials are denoted by L I,α
m,n, L I I,α

m,n , L I I I,α
m,n where m is the

number of exceptional degrees, n is the degree of the polynomial, α is a
parameter, and the Roman number relates to the corresponding type. The
definitions of these polynomials are given below. As these three types only
cover a small part of all exceptional Laguerre polynomials, we do not prefer
this terminology and notation. The approach with partitions is more general
and covers all cases, as we have shown.

We show how the L I,α
m,n, L I I,α

m,n , L I I I,α
m,n exceptional Laguerre polynomials

are expressed in terms of partitions.

PROPOSITION 4. Let m ≥ 0 be fixed. We have the following identities,

L I,α
m,n = −L (α−1)

∅,(m),n, n ≥ m, (68)

L I I,α
m,n = (−1)

m(m+3)
2 (2m − n − α − 1) · L (α−m)

∅,(1,...,1),n, n ≥ m, (69)

L I I I,α
m,n = −n · L (α−m)

(1,...,1),∅,n n > m. (70)

The partition (1, . . . , 1) in (69) and (70) consists of m values 1. Its Young
diagram consists of one single column of length m. The partition (m) in
(68) is its conjugate partition, and its Young diagram consists of one row of
length m.

The identities of Proposition 4 are derived below, see (71), (75), and (77),
and were verified with Maple for the examples given in the appendices of
[7, 27]. For the remaining of this subsection, let m be fixed.

Type I exceptional Laguerre polynomial. The polynomial is given by

L I,α
m,n(x) :=

∣∣∣∣∣ L (α)
m (−x) −L (α)

n−m−1(x)
L (α−1)

m (−x) L (α−1)
n−m (x)

∣∣∣∣∣
for n ≥ m, see [7, Formula (3.2)]. If we interchange the rows in this
determinant and use the derivatives (48) and (49), we obtain that

L I,α
m,n = −e−x · Wr

[
f1, L (α−1)

n−m

]
,

where

f1(x) = ex L (α−1)
m (−x).

Hence, by definition (17),

L I,α
m,n = −L (α−1)

∅,(m),n, (71)

where λ = ∅ and μ = (m). By Lemma 6, these type I Xm-Laguerre
polynomials form a complete set on the positive real line with respect
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to the measure xαe−x

(�(α−1)
∅,(m) )2

if α − 1 > −1. Moreover, the generalized Laguerre

polynomial is related to a classical Laguerre polynomial, i.e.,

�
(α−1)
∅,(m) (x) = L (α−1)

m (−x)

for all x ∈ C which follows directly by definition (7).

Type II exceptional Laguerre polynomial. This polynomial is defined
as

L I I,α
m,n (x) :=

∣∣∣∣∣ x L (−α−1)
m (x) −L (α+1)

n−m (x)
(m − α − 1)L (−α−2)

m (x) L (α+2)
n−m−1(x)

∣∣∣∣∣
for n ≥ m, see [7, Section 4]. If we use (48) and (50), we can rewrite this
polynomial as

L I I,α
m,n = −xα+2 · Wr [ f1, f2] , (72)

where

f1(x) = x−α−1L (−α−1)
m (x),

f2(x) = L (α+1)
n−m (x).

The eigenfunction f2 corresponds to (36) and f1 to (38). Now the idea
is that we apply Theorem 1 to transfer the eigenfunction f2 to a set
of eigenfunctions related to (37). In fact, we transpose the second Maya
diagram to its canonical choice (41), i.e., M2: (m|∅) → (∅|m,m − 1, . . . , 1).
This process is obtained by shifting the origin m + 1 steps to the left and
therefore the parameter α + 1 decreases by m + 1. We also get extra factors
while doing these steps. Encode the first Maya diagram M1 : (∅|n − m)
which is already in the canonical choice, we get that

L I I,α
m,n = �

(α+1)
M1,M2

= (−1)
m(m+1)

2 (2m − n − α − 1) ·�(α−m)
λ(M1),λ(M2), (73)

where the first equality follows by interchanging f1 and f2 in (72) and
the second equality is obtained by applying Theorem 1. As a final step,
we want the first function in the Wronskian of �(α+1)

λ(M1),λ(M2) to be the last
eigenfunction such that we obtain the same order as in definition (17).
Therefore, we interchange the functions in the Wronskian which leads to an
extra factor (−1)m , i.e.,

�
(α−m)
λ(M1),λ(M2) = (−1)m · L (α−m)

∅,(1,...,1),n, (74)
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where the length of the partition μ is given by m such that r = m. If we
combine (73) and (74), we end up with

L I I,α
m,n = (−1)

m(m+3)
2 (2m − n − α − 1) · L (α−m)

∅,(1,...,1),n. (75)

Hence, by Lemma 6, these type II Xm-Laguerre polynomials form an
orthogonal complete set on the positive real line with respect to the measure

xαe−x

(�(α−m)
∅,(1,...,1))

2
if α − m > −1. The generalized Laguerre polynomial can be

written as a Laguerre polynomial, i.e.,

�
(α−m)
∅,(1,...,1) ≡ (−1)

m(m+1)
2 L (−α−1)

m , (76)

which follows by Theorem 1.

Type III exceptional Laguerre polynomial. The type III exceptional
Laguerre polynomial is obtained in [7, Section 5] and is defined as

L I I I,α
m,n (x) :=

∣∣∣∣∣ x L (−α−1)
m (−x) −L (α+1)

n−m−1(x)
(m + 1)L (−α−2)

m (−x) L (α+2)
n−m−2(x)

∣∣∣∣∣
for n > m, while for n = 0 this polynomial is defined as the constant
function 1. We can use the derivatives (48) and (51) to obtain

L I I I,α
m,n = −xα+2e−x · Wr [ f1, f2] ,

for n > m and where

f1(x) = x−α−1ex L (−α−1)
m (−x),

f2(x) = L (α+1)
n−m−1(x).

The function f1 corresponds to (39). Similar as in the type II case,
we shift the (first) Maya diagram to its canonical form by Theorem 1,
i.e., M1: (m|n − m − 1) → (∅|n,m,m − 1, . . . , 1). Hence, we end up with
only eigenfunctions of category (36). As a last step, we transpose the
first eigenfunction to the end of the Wronskian such that the order of
the degrees is the same as in definition (17), i.e. (n,m,m − 1, . . . , 1) →
(m,m − 1, . . . , 1, n). Combining all extra factors, we obtain the identity

L I I I,α
m,n = −n · L (α−m)

(1,...,1),∅,n, (77)

for n > m and where the length of the partition λ is given by m such
that r = m. Lemma 6 tells us that these type III Xm-Laguerre polynomials
form an orthogonal complete set to the measure xαe−x

(�(α−m)
(1,...,1),∅)2

if m is even

and α − m > −1. The generalized Laguerre polynomial can be written as a
Laguerre polynomial, i.e.,

�
(α−m)
(1,...,1),∅(x) = (−1)m L (−α−1)

m (−x)
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for all x ∈ C which follows by Theorem 1 or by applying identity (11) on
(76).

6. Zeros of exceptional Laguerre polynomials: new results

In this section, we state our new results according to the zeros of
exceptional Laguerre polynomials. From now on, we assume that α ∈ R

and the two partitions λ and μ are fixed. As before, the length of the
partition λ is r1 and for μ it is r2. Let r = r1 + r2. Throughout, we also
use (n1, . . . , nr1 ) and (m1, . . . ,mr2 ) as in (6). Our definition of exceptional
Laguerre polynomials generalizes the Xm-Laguerre polynomials considered
in [7, 28] and our results on zeros are generalizations of some of the results
in these papers, see [28, Sections 3 and 4] and [7, Section 5.5].

6.1. Number of positive real zeros

Under the conditions of Lemma 6, the polynomials are a complete orthogo-
nal system, and they are also eigenfunctions for a Sturm–Liouville problem
on [0,∞). From general Sturm–Liouville theory, see, for example [36], the
number of positive real zeros of L (α)

λ,μ,n is given by

|{m ∈ Nλ,μ : m < n}|. (78)

Moreover, all these zeros are simple. Hence, the number of simple positive
real zeros is nondecreasing and increases to infinity when n tends to infinity.
When we only consider a Wronskian of Laguerre polynomials, i.e., r1 = 0
or r2 = 0, then the number of positive real zeros is determined in [37] for
almost every α ∈ (−1,∞). It is given by the alternating sum of the elements
in the partition.

The value of L (α)
λ,μ,n at the origin can be computed as in a way similar to

the generalized Laguerre polynomial case. It is nonzero when α > −1 which
is assumed in Lemma 6. Hence, for n large enough, there are n − |λ| − |μ|
simple zeros in the orthogonality region (0,∞) and these zeros are called
the regular zeros of L (α)

λ,μ,n . We denote them by

0 < x (α)
1,n < x (α)

2,n < · · · < x (α)
n−|λ|−|μ|,n.

The remaining |λ| + |μ| zeros are in C \ [0,∞) and these are the excep-
tional zeros. We denote them by

z(α)
1,n, z(α)

2,n, . . . , z(α)
|λ|+|μ|,n.

If the conditions of Lemma 6 are not satisfied, the number of positive
real zeros cannot be determined by Sturm–Liouville theory. It is even
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possible that there is a zero at the origin. Therefore, we make the following
definition.

DEFINITION 5. For n ∈ Nλ,μ, we use N (n) to denote the number of zeros

of L (α)
λ,μ,n in (0,∞) including multiplicity. We call these zeros the regular

zeros of L (α)
λ,μ,n. The remaining n − N (n) zeros are called the exceptional

zeros.

We omitted the partitions λ,μ and the parameter α in our notation of
N (n) because it should be clear what they are. Obviously, we have that
0 ≤ N (n) ≤ n. As stated before, under the conditions of Lemma 6, the
number of regular zeros N (n) is given by (78).

A first result is that we have a lower bound for N (n) and moreover the
number of simple regular zeros tends to infinity as the degree n tends to
infinity.

THEOREM 2. Let α + r > −1. Then, for n ∈ Nλ,μ, we have

n − 2(|λ| + |μ|) − r2 ≤ N (n). (79)

Moreover, the number of simple positive real zeros of L (α)
λ,μ,n increases to

infinity as n tends to infinity.

Now, we are able to state our asymptotic results. These results justify the
conjecture [26, Conjecture 1.1] for exceptional Laguerre polynomials. We
prove that the regular zeros of the exceptional Laguerre polynomial have the
same asymptotic behavior as the zeros of their classical counterpart and the
exceptional zeros converge to the (simple) zeros of the generalized Laguerre
polynomial.

6.2. Mehler–Heine asymptotics

For Laguerre polynomials, we have the Mehler–Heine asymptotics for all
α ∈ R, see Theorem 6. This result can be generalized to exceptional
Laguerre polynomials. We use Jν to denote the Bessel function of the first
kind of order ν ∈ R [38].

THEOREM 3. Take α ∈ R, then one has

lim
n→∞

(−1)r

nα+r
L (α)
λ,μ,n

( x

4n

)
= �

(α)
λ,μ(0)2α+r x− α+r

2 Jα+r (
√

x), (80)

uniformly for x in compact subsets of the complex plane.

The function x− α+r
2 Jα+r (

√
x) is an entire function in the complex plane

with an infinite number of zeros on the positive real line in case α + r
> −1, and no other zeros. All zeros are simple. Therefore, if we apply
Hurwitz theorem [1, Theorem 1.91.3], we obtain the following convergence
property for the regular zeros.



36 N. Bonneux and A. B. J. Kuijlaars

COROLLARY 1. Assume α + r > −1. For a positive integer k and n ∈
Nλ,μ large enough, let x (α)

k,n denote the kth positive real zero of L (α)
λ,μ,n, see

also Theorem 2. If �(α)
λ,μ(0) �= 0, then we have

lim
n→∞

√
4nx (α)

k,n = jα+r,k,

where jα+r,k is the kth positive zero of the Bessel function Jα+r .

6.3. Weak macroscopic limit of the regular zeros

Whenever α + r > −1, the number of regular zeros N (n) tends to infin-
ity as n tends to infinity by Theorem 2. The weak scaling limit of the
zero-counting measure of the regular zeros is the Marchenko–Pastur distri-

bution 1
2π

√
4−x

x dx . This is a generalization of its classical counterpart, see
Theorem 7.

THEOREM 4. Take α ∈ R such that α + r > −1. Let 0 < x (α)
1,n ≤ · · · ≤

x (α)
N (n),n denote the regular zeros of the exceptional Laguerre polynomial

L (α)
λ,μ,n where n ∈ Nλ,μ. Then, for every bounded continuous function f on

the positive real line,

lim
n→∞

1

N (n)

N (n)∑
j=1

f

(
x (α)

j,n

N (n)

)
= 1

2π

∫ 4

0
f (x)

√
4 − x

x
dx . (81)

6.4. Convergence of the exceptional zeros

If α + r > −1, then the exceptional zeros are attracted by simple zeros of
the generalized Laguerre polynomials. We use z1, . . . , z|λ|+|μ| to denote the

zeros of the generalized Laguerre polynomial �(α)
λ,μ.

THEOREM 5. Take α ∈ R such that α + r > −1. Let z j be a simple

zero of the generalized Laguerre polynomial �(α)
λ,μ where z j ∈ C \ [0,∞).

Then, this zero z j attracts an exceptional zero of the exceptional Laguerre

polynomial L (α)
λ,μ,n as n tends to infinity at a rate O(n−1/2). That is, for n

large enough, we have

min
k=1,...,n−N (n)

∣∣∣z j − z(α)
k,n

∣∣∣ < c√
n
, (82)

for some positive constant c and where z(α)
1,n, . . . , z(α)

n−N (n),n denote the

exceptional zeros of the exceptional Laguerre polynomial L (α)
λ,μ,n with

n ∈ Nλ,μ.
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Figure 2. Zeros of the generalized (stars) and exceptional (open circles) Laguerre
polynomial associated with λ = (3, 2), μ = (4, 2, 2), α = 1, and n = 25.

In the situation of Lemma 6, we have that exceptional Laguerre poly-
nomials form a complete set of orthogonal polynomials. Then, we know
that N (n) = n − |λ| − |μ|, if n is large enough, and that the zeros of the
generalized Laguerre polynomial �(α)

λ,μ are all in C \ [0,∞). If each of these
|λ| + |μ| zeros is simple, it follows from Theorem 5 that, for large n,
each zero z j attracts exactly one exceptional zero of L (α)

λ,μ,n . Hence, we can
relabel the zeros of the exceptional Laguerre polynomial in such a way that
z(α)

j,n is close to z j and

z(α)
j,n = z j + O

(
1√
n

)
as n → ∞.

Our results are numerically verified. In Fig. 2, we plotted the zeros where
we set α = 1, λ = (3, 2), and μ = (4, 2, 2). The 13 zeros of the generalized
Laguerre polynomial, which are indicated by a star, are all simple. The open
circles are the zeros of the corresponding exceptional Laguerre polynomial
of degree 25. Note that there is one zero of the generalized Laguerre
polynomial on the positive real line. Hence, the conditions of Theorem 5 are
not satisfied. Nevertheless, it seems that this positive real zero attracts two
exceptional zeros.

6.5. Conjecture of simple zeros

We do not have a proof that the zeros of �(α)
λ,μ are simple, but we offer this

as a conjecture, based on numerical evidence.
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CONJECTURE 1. Take α > −1 and let λ be an even partition. Then the
zeros of the generalized Laguerre polynomial �(α)

λ,μ are simple.

In Theorem 5, we stated that the simple zeros of the generalized
Laguerre polynomial attract an exceptional zero of the exceptional Laguerre
polynomial. This result is comparable to the Hermite case [26, Theorem
2.3]. For the Hermite case, it was conjectured by Veselov [30, Section 6]
that all zeros are simple. More concretely, he conjectured that the zeros of
a Wronskian of Hermite polynomials are all simple, except possibly at the
origin. As already said, we expect a similar conjecture to be true in our case,
see Conjecture 1. However, an important difference with the Hermite case
is that we need a condition for λ,μ, and α to be satisfied. We require a
condition because of the following examples:

�
(5)
(3,1),∅(x) = 1

8
(x − 6)3(x − 14), �

(−2)
(2,2),∅(x) = 1

12
x4,

�
(− 7

4 )
(1),(2)(x) = −1

2

(
x + 3

4

)3

, �
(− 13

4 )
(3),(3)(x) = − 1

36

(
x2 + 15

16

)3

.

It is clear that each of these generalized Laguerre polynomials has a
nonsimple zero, either real or nonreal. Numerical simulations seem to
suggest that every time that the exceptional Laguerre polynomials form
a complete orthogonal system, the corresponding generalized Laguerre
polynomial has simple zeros. This is the case when the conditions in
Conjecture 1 are satisfied. Moreover, the conjecture holds true for type II
exceptional Laguerre polynomials, see [28, Proposition 4.3].

7. Zeros of exceptional Laguerre polynomials: proofs

In this section, we give the proofs of the new results which were stated in
the previous section.

7.1. Proof of the lower bound of the regular zeros

In this section, we prove Theorem 2. The proof is based on the following
lemma.

LEMMA 10. Let n ∈ Nλ,μ and take α ∈ R. Then the exceptional Laguerre

polynomial L (α)
λ,μ,n is a linear combination of the Laguerre polynomials

L (α+r )
n , L (α+r )

n−1 , . . . , L (α+r )
n−t where

t = 2(|λ| + |μ|) + r2

is independent of n.
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Proof. Set s = n − |λ| − |μ| + r1 and consider L (α)
λ,μ,n which is defined in

(17). By expanding the Wronskian determinant along the last column, one
obtains

L (α)
λ,μ,n(x) =

r∑
j=0

Q j (x)
d j

dx j
L (α)

s (x), (83)

where Q j is a polynomial such that

deg Q j ≤ |λ| + |μ| − r1 + min{ j, r1}, (84)

which is independent of n. This upper bound for the degree follows
from Proposition 2. Note that Q0 = (−1)r2�

(α+1)
λ̃,μ

where λ̃i = λi − 1 for

i = 1, . . . , r1 and Qr = �
(α)
λ,μ. For both polynomials, the upper bound of the

degree is attained because of Lemma 1.
The derivative of a Laguerre polynomial is again a Laguerre polynomial

of lower degree, but with a shifted parameter, i.e.,

d j

dx j
L (α)

s (x) = (−1) j L (α+ j)
s− j (x), (85)

see, e.g. [1, Formula (5.1.14)]. Thus, (83) becomes

L (α)
λ,μ,n(x) =

r∑
j=0

Q j (x)(−1) j L (α+ j)
s− j (x). (86)

It is possible to express the Laguerre polynomial as a sum of other Laguerre
polynomials with shifted parameters,

L (α)
n (x) =

l∑
k=0

(−1)k

(
l

k

)
L (α+l)

n−k (x),

which holds for every positive integer l and α ∈ R, see [1, Formula
(5.1.13)]. Using this in (86) with n = s − j and l = r − j , we obtain

L (α)
λ,μ,n(x) =

r∑
j=0

Q j (x)(−1) j
r− j∑
k=0

(−1)k

(
s − j

k

)
L (α+r )

s− j−k(x)

=
r∑

j=0

Q̃ j (x)L (α+r )
s− j (x), (87)

where Q̃ j is a certain polynomial of degree

deg Q̃ j ≤ |λ| + |μ| − r1 + min{ j, r1}. (88)

Next, we use the three-term recurrence satisfied by the Laguerre polyno-
mials from which it follows that x L (α+r )

k is a linear combination of the
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polynomials of degrees k + 1, k, and k − 1. Using the recurrence repeatedly,
we see that Q̃ j L (α+r )

s− j is a linear combination of Laguerre polynomials L (α+r )
k

with k in the range

s − j − deg Q̃ j ≤ k ≤ s − j + deg Q̃ j .

For j = 0, . . . , r we have by the definitions of s and t and the degree bound
(88) that

s − j − deg Q̃ j ≥ s − r − (|λ| + |μ|) = n − t

and

s − j + deg Q̃ j ≤ s + (|λ| + |μ|) − r1 = n.

Thus, for each j = 0, . . . , r , we have that Q̃ j L (α+r )
s− j is a linear combination

of L (α+r )
k with n − t ≤ k ≤ n and the lemma follows because of (87). �

Remark 7. In [26], there is an analogous result for exceptional Hermite
polynomials, see Lemma 4.1. However, the statement and proof of this result
in [26] contain a mistake. The exceptional Hermite polynomial of degree
n associated with a partition λ is a linear combination of the Hermite
polynomials Hn, . . . , Hn−t where t = 2|λ|, while it is stated in [26] that
t = |λ| + r , where r is the length of λ. This mistake, however, does not
affect the further results in [26].

With Lemma 10, we can prove Theorem 2.

Proof of Theorem 2. From Lemma 10 and the orthogonality of the
polynomials L (α+r )

k on [0,∞), which holds because α + r > −1, we obtain∫ ∞

0
Q(x)L (α)

λ,μ,n(x)xα+r e−x dx = 0, (89)

whenever Q is a polynomial of degree < n − t where the number t is as
in Lemma 10. This forces L (α)

λ,μ,n to have at least n − t zeros in (0,∞)
with odd multiplicity. Otherwise, we can construct a polynomial of degree
< n − t in such a way that QL (α)

λ,μ,n does not change sign in (0,∞) and this
would contradict (89). Thus,

N (n) ≥ n − t = n − 2(|λ| + |μ|) − r2.

Moreover, the number of zeros with odd multiplicity is bounded by this
number n − t . The number of zeros with multiplicity at least 3 is trivially
bounded by n

3 . Hence, the number of simple regular zeros is at least 2n
3 − t

and therefore tends to infinity as n tends to infinity. �
There is another consequence of Lemma 10 that we state here for future

reference.
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COROLLARY 2. Take α ∈ R such that α + r > −1. Let n ∈ Nλ,μ such

that n > 2(|λ| + |μ|) + r2. Let 0 < a(α+r )
1,n < a(α+r )

2,n < · · · < a(α+r )
n,n denote the

real and simple zeros of the Laguerre polynomial L (α+r )
n . Then, at least

n − 2(|λ| + |μ|) − r2 intervals (a(α+r )
k,n , a(α+r )

k+1,n), where 1 ≤ k < n, contain a

zero of the exceptional Laguerre polynomial L (α)
λ,μ,n.

Proof. This follows from Lemma 10 as was shown by Beardon and
Driver [39, Theorem 3.2] for arbitrary orthogonal polynomials on the real
line. �

The lower bound in Theorem 2 also follows immediately from
Corollary 2.

7.2. Proof of Mehler–Heine asymptotics

Mehler–Heine asymptotics describe the behavior of orthogonal polynomials
near the edges of their support. For the Laguerre polynomials, this reads as
follows [1, Theorem 8.1.3].

THEOREM 6. Take α ∈ R, then one has

lim
n→∞

1

nα
L (α)

n

( x

4n

)
= 2αx− α

2 Jα
(√

x
)
, (90)

uniformly for x in compact subsets of the complex plane.

According to Theorem 3, a similar asymptotic behavior holds for the
exceptional Laguerre polynomials as we are now going to prove.

Proof of Theorem 3. Set s = n − |λ| − |μ| + r1 and write L (α)
λ,μ,n(x) as in

(83). Clearly, if we do the expansion of (17) along the last column, we find
Qr = �

(α)
λ,μ, and therefore

L (α)
λ,μ,n(x) =

r−1∑
j=0

Q j (x)
d j

dx j
L (α)

s (x) +�
(α)
λ,μ(x)

dr

dxr
L (α)

s (x), (91)

where Q j is a polynomial of degree at most |λ| + |μ| − r1 + min{ j, r1}
which does not depend on n.

The limit (90) also holds if we replace L (α)
n by L (α)

s , where s = n − c for
some constant c. Thus,

lim
n→∞

1

nα
L (α)

s

( x

4n

)
= 2αx− α

2 Jα
(√

x
)
, (92)

uniformly for x in compact subsets of the complex plane. Because of
the uniform convergence, (92) can be differentiated with respect to x any
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number of times. Hence, for every nonnegative integer j ,

lim
n→∞

1

4 j nα+ j

(
d j

dx j
L (α)

s

)( x

4n

)
= d j

dx j

(
2αx− α

2 Jα
(√

x
))
. (93)

In particular, (
d j

dx j
L (α)

s

)( x

4n

)
= O(nα+ j )

as n → ∞ uniformly for x in compacts. In fact, the previous equality can
also be obtained directly because the derivative of the Laguerre polynomials
is again a Laguerre polynomial (85) and therefore we can apply (90) with
the correct parameter.

Hence, the limiting behavior of

1

nα+r
L (α)
λ,μ,n

( x

4n

)
is determined by the last term in (91) only. We find from (91) and (93) with
j = r ,

lim
n→∞

1

nα+r
L (α)
λ,μ,n

( x

4n

)
= �

(α)
λ,μ(0)4r dr

dxr

(
2αx− α

2 Jα
(√

x
))
.

Because of the identity for Bessel functions

d

dx

(
x− α

2 Jα(
√

x)
) = −1

2
x− α+1

2 Jα+1(
√

x)

we obtain the desired result (80). �
Next, we apply Hurwitz’s theorem to obtain the asymptotic convergence

for the regular zeros as stated in Corollary 1. We need the assumption that
�

(α)
λ,μ(0) �= 0 so that the right-hand side of (80) is not identically zero.

Proof of Corollary 1. Applying Hurwitz’s theorem to (80) gives us that
those zeros of L (α)

λ,μ,n( x
4n ) that do not tend to infinity tend to the zeros of

x−(α+r )/2 Jα+r (
√

x) as n tends to infinity. All these limiting zeros are simple
and lie on the positive real line.

Because the zeros are simple, Hurwitz’s theorem also says that each zero
of Jα+r (

√
x) attracts exactly one zero of L (α)

λ,μ,n( x
4n ) as n → ∞. This zero

has to be real for large enough n, because its complex conjugate is a zero as
well and if it were not real for large n, then two zeros of L (α)

λ,μ,n( x
4n ) would

approach the same simple zero of Jα+r (
√

x). �

7.3. Proof of the weak macroscopic limit of the regular zeros

In this section, we prove that the limit behavior of the zero-counting
measure of the regular zeros of the exceptional Laguerre polynomials is



Exceptional Laguerre Polynomials 43

given by the Marchenko–Pastur distribution. It is a generalization of the
following well-known limit of the zero-counting measure for Laguerre
polynomials, see, e.g. [40, Theorem 1].

THEOREM 7. Let 0 < a(α)
1,n < a(α)

2,n < · · · < a(α)
n,n < ∞ denote the zeros of

the Laguerre polynomial L (α)
n where α > −1. Then, for any bounded

continuous function f : [0,∞) → R, it is true that

lim
n→∞

1

n

n∑
j=1

f

(
a(α)

j,n

n

)
= 1

2π

∫ 4

0
f (x)

√
4 − x

x
dx . (94)

Knowing Theorem 7, we prove Theorem 4 in essentially the same way
as Theorem 2.2 in [26], which dealt with the semicircle law for the scaled
zeros of exceptional Hermite polynomials.

Proof of Theorem 4. Suppose α + r > −1. Take n ∈ Nλ,μ such that n >

2(|λ| + |μ|) + r2. Let 0 < a(α+r )
1,n < a(α+r )

2,n < · · · < a(α+r )
n,n denote the zeros of

the Laguerre polynomial L (α+r )
n . From Lemma 10 and Corollary 2, it follows

that at least n − 2(|λ| + |μ|) − r2 intervals (a(α+r )
j,n , a(α+r )

j+1,n), where 1 ≤ j < n,

contain a zero of the exceptional Laguerre polynomial L (α)
λ,μ,n .

For any choice of ξ j,n ∈ (a(α+r )
j,n , a(α+r )

j+1,n) for every j = 1, . . . , n − 1, we
get that the limit (94) is still satisfied, i.e.,

lim
n→∞

1

n − 1

n−1∑
j=1

f

(
ξ j,n

n

)
= 1

2π

∫ 4

0
f (x)

√
4 − x

x
dx .

For n large, we can take ξ j,n to be equal to a zero of of L (α)
λ,μ,n for at least

n − 2(|λ| + |μ|) − r2 values of j . By dropping the other indices in the sum,
the limit will not be affected as f is bounded. Next, one can extend the
sum by including the remaining positive real zeros of L (α)

λ,μ,n because their
number remains bounded as n increases. Hence, we obtain (81). �

7.4. Proof of the convergence of the exceptional zeros

In this section, we prove Theorem 5 which deals with the convergence of
the exceptional zeros. Recall the weight

W (α)
λ,μ(x) = xα+r e−x(

�
(α)
λ,μ(x)

)2
(95)

that appeared in Lemma 6 for x ∈ (0,∞). In this section, we view (95) as
a meromorphic function in C \ {0} with poles at the zeros of �(α)

λ,μ. We also
consider a general parameter α ∈ R and partitions λ and μ. We will need
the following property.
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LEMMA 11. Take α ∈ R. For every n ∈ Nλ,μ, we have that(
L (α)
λ,μ,n

)2
W (α)
λ,μ

has zero residue at each of its poles in C \ {0}.
Proof. We apply a Darboux–Crum transformation to the differential

operator (2) with eigenfunctions ϕ(α)
n1 , . . . , ϕ

(α)
nr1
, ψ

(α)
m1 , . . . , ψ

(α)
mr2

, see Table 2 in
Section 2.1. It leads to a new differential operator

y �→ −y′′ + Vλ,μy (96)

with potential

Vλ,μ(x) = x2 + 4α2 − 1

4x2
− 2

d2

dx2
log

(
Wr

[
ϕ(α)

n1
, . . . , ϕ(α)

nr1
, ψ (α)

m1
, . . . , ψ (α)

mr2

])
.

(97)
The differential operator (96) has eigenfunctions of the form

Wr
[
ϕ

(α)
n1 , . . . , ϕ

(α)
nr1
, ψ

(α)
m1 , . . . , ψ

(α)
mr2
, ϕ

(α)
s

]
Wr

[
ϕ

(α)
n1 , . . . , ϕ

(α)
nr1
, ψ

(α)
m1 , . . . , ψ

(α)
mr2

] , (98)

where s ≥ 0 and s �= n j for every j = 1, . . . , r1.
Using (12) and (13), we can express the Wronskian in (97) as a

Wronskian for the functions f1, . . . , fr from (8) to (9), and it follows from
(7) that

Wr
[
ϕ(α)

n1
, . . . , ϕ(α)

nr1
, ψ (α)

m1
, . . . , ψ (α)

mr2

]
= 2

r (r−1)
2 xαr+ r2

2 e− r
2 x2
�

(α)
λ,μ(x2).

Hence,

Vλ,μ(x) = x2 + 2r + 4(α + r )2 − 1

4x2
− 2

d2

dx2
log

(
�

(α)
λ,μ(x2)

)
. (99)

Similarly, the eigenfunction (98) can be written as:

2r xα+ 1
2 +r e− 1

2 x2 L (α)
λ,μ,n(x2)

�
(α)
λ,μ(x2)

(100)

if we choose n ∈ Nλ,μ and s = n − |λ| − |μ| + r1.
We now use the fact that the operator (96) has trivial monodromy at

every point p ∈ C \ {0}, see [18, Proposition 5.21]. This means that any
eigenfunction of (96) is meromorphic around p.

From (99), we see that p �= 0 is a pole of Vλ,μ if and only if p2 is a zero

of �(α)
λ,μ. If p2 is a zero of order dp ≥ 0, then

Vλ,μ(x) = 2dp(x − p)−2 + O(1) as x → p.
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By Proposition 3.3 of [41], we then have that 2dp = νp(νp + 1) for
some positive integer νp. Moreover, every eigenfunction f has a Laurent
expansion around p

f (x) = (x − p)−νp

∞∑
j=0

f j (x − p) j

with f2 j−1 = 0 for j = 1, . . . , νp. This property implies that f 2 has zero
residue at x = p.

This in particular holds for the eigenfunction (100) and thus

x2α+1+2r e−x2

(
L (α)
λ,μ,n(x2)

�
(α)
λ,μ(x2)

)2

= x
(
L (α)
λ,μ,n(x2)

)2
W (α)
λ,μ(x2) (101)

has zero residue at each of its poles in C \ {0}. Now, let p2 ∈ C \ {0} be a
pole of (L (α)

λ,μ,n)2W (α)
λ,μ. The residue is given by

1

2π i

∮
γp2

(
L (α)
λ,μ,n(z)

)2
W (α)
λ,μ(z) dz, (102)

where γp2 is a small circle going around p2 in counterclockwise direction.
By a change of variables z �→ z2, we obtain that the residue is equal to

1

π i

∮
γp

z
(
L (α)
λ,μ,n(z2)

)2
W (α)
λ,μ(z2)dz

with γp around p, and p is a pole of (101). This integral is zero,
because (101) has zero residues, and we see that (102) is zero. The lemma
follows. �

Note that if we replace ϕ(α)
s by ψ (α)

s in (98), we obtain other eigenfunc-
tions of the differential operator (96). These eigenfunctions can be written in
terms of L̃ (α)

λ,μ,n(x2) and �(α)
λ,μ(x2). Now, we are able to prove the asymptotic

behavior of the exceptional zeros.

Proof of Theorem 5. Let z j be simple zero of �(α)
λ,μ where z j ∈ C \

[0,∞). Then, z j is a double pole of W (α)
λ,μ and by (11)

(x − z j )
2
(
L (α)
λ,μ,n(x)

)2
W (α)
λ,μ(x) = C0 + C1(x − z j ) + O

(
(x − z j )

2
)

as x → z j

(103)
for a certain constant C0 and C1 = 0. We may assume C0 �= 0, otherwise z j

is a zero of L (α)
λ,μ,n as well and then (82) is clearly satisfied.

Because C0 �= 0, we can take an analytic logarithm of (103) in the
neighborhood of z j , and because C1 = 0, its derivative vanishes at z j . The
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logarithmic derivative of the left-hand side of (103) is

2

x − z j
+ 2

N (n)∑
k=1

1

x − x (α)
k,n

+ 2
n−N (n)∑

k=1

1

x − z(α)
k,n

+ α + r

x
− 1 − 2

|λ|+|μ|∑
k=1

1

x − zk

(104)
where, as before, 0 < x (α)

1,n ≤ · · · ≤ x (α)
N (n),n are the regular zeros and z(α)

1,n,

. . . , z(α)
n−N (n),n are the exceptional zeros of the exceptional Laguerre polyno-

mial and z1, . . . , z|λ|+|μ| are the zeros of �(α)
λ,μ. Thus, (104) vanishes because

x → z j , and it gives us the identity

N (n)∑
k=1

1

z j − x (α)
k,n

+
n−N (n)∑

k=1

1

z j − z(α)
k,n

= 1

2
− α + r

2z j
+

|λ|+|μ|∑
k=1
k �= j

1

z j − zk
. (105)

On the interval [0, 1], the number of zeros of L (α+r )
n grows roughly like

c
√

n as n tends to infinity for some positive constant c, see [1, Theorem
6.31.3]. Because of Corollary 2, the same holds true for the number of zeros
of L (α)

λ,μ,n in [0, 1]. We now distinguish between z j being real and z j being
nonreal.

Case 1: Im(z j ) �= 0.

As the nonreal roots of polynomials with real coefficients come in
conjugate pairs, we may assume that Im(z j ) > 0. The imaginary part of the
first sum in the left-hand side of (105) simplifies to

Im

(
N (n)∑
k=1

1

z j − x (α)
k,n

)
= −

N (n)∑
k=1

Im(z j )∣∣z j − x (α)
k,n

∣∣2 .
All terms in this sum have the same sign, namely, the sign of Im(z j ) which
is positive. Therefore, by restricting the sum to the zeros which are in the
interval [0, 1] and using the fact that there are at least c

√
n such zeros, we

have that for n large enough

Im

(
N (n)∑
k=1

1

z j − x (α)
k,n

)
< −

�c
√

n�∑
k=1

Im(z j )∣∣z j − x (α)
k,n

∣∣2
< −c1

√
n

for some constant c1 > 0. To obtain the second inequality, we used that for
x (α)

k,n ∈ [0, 1], ∣∣z j − x (α)
k,n

∣∣2 ≤ max
{|z j − 1|2, |z j |2

}
, (106)
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where the right-hand side is independent of n.
The right-hand side of (105) does not depend on n. Therefore, to balance

the terms, one has that for n large enough

Im

(
n−N (n)∑

k=1

1

z j − z(α)
k,n

)
> c1

√
n.

This is a finite sum and the number of terms is bounded by 2(|λ| + |μ|) − r2

because of Theorem 2. Thus, there is at least one term that is also of order√
n. Hence, there is a constant c2 > 0 such that for every large enough n

there exists a zero z(α)
k,n with

Im

(
1

z j − z(α)
k,n

)
> c2

√
n. (107)

The fact that Im( 1
z ) < 1

|z| implies that from (107), we find

∣∣z j − z(α)
k,n

∣∣ < 1

c2
√

n
,

which ends the proof in this case.

Case 2: Im(z j ) = 0.

Because z j �∈ [0,∞), by assumption, we then have that z j is an element
of the negative real axis. We can give a similar argument as in case 1;
however, one has to consider the real part of (105) and (106) needs to be
replaced by

z j − x (α)
l,n ≥ z j − 1.

The two cases complete the proof of inequality (82) and the theorem
follows. �
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4. D. GÓMEZ-ULLATE, N. KAMRAN, and R. MILSON, An extension of Bochners problem:
Exceptional invariant subspaces, J. Approx. Theory 162:987–1006 (2010).
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Birkhäuser Verlag, Basel, 2005.
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