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Summary 

 

In livestock, uniformity of optimum traits is highly desirable because of its advantages 

throughout the production chain, such as an improved animal welfare, quality of the end product 

and automation of the process. Recent evidence in different livestock species confirms the 

existence of a genetic basis for environmental variance (𝑉𝐸). This implies the possibility to 

genetically select breeding animals towards an increased uniformity of their offspring. In this 

study, genetic parameters of 𝑉𝐸 were estimated using the double hierarchical generalized linear 

model (DHGLM) framework in R. This was done in pigs for the traits average daily gain from 

birth until a test period (ADG0) and during the test period (ADGtest) and age at slaughter (AGE). 

Results show 𝐺𝐶𝑉𝐸 values of 24-27%, meaning that one generation of selection can reduce the 

𝑉𝐸 of these traits with 24-27%. However, low ℎ𝑣
2 values (0.006-0.008) indicate that a large 

dataset is needed to obtain accurate estimated breeding values for 𝑉𝐸. For application in practice 

the accuracies need to be increased significantly. Furthermore, the use of adequate data 

transformation techniques for the estimation of the genetic correlation between mean and 

environmental variance appears necessary to counter scale effects. 
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Introduction 

 

The past decades, intensive and accurate selection on the mean of (re)production traits has 

resulted in trait levels which are challenging biological limits. For these traits, increasing 

uniformity while maintaining the optimal mean trait value is the way to cope with the increasing 

demands on animal welfare and robustness, reducing environmental impact, rising quality 

requirements and increasing automation (Merks et al., 2012; Mulder et al., 2008). Recent 

analysis indicated existence of a genetic basis for environmental variance (𝑉𝐸), making it 

possible to select animals for increased uniformity (Blasco et al., 2017; Khaw et al, 2016 ,Hill 

& Mulder, 2010; Sell-Kubiak et al., 2015). Uniformity in pigs presents several benefits to the 

pork chain. It can reduce the necessity to regroup piglets after weaning, avoiding stress and 

fights associated with a new social hierarchy. Uniform growing pigs will utilize their feed – 

which is based on an ‘average’ pig – more efficiently, decreasing emissions and as such 

providing an environmental benefit (Merks et al., 2012). Furthermore, it facilitates all-in all out 

systems, and on top of that, a farmer gets paid premiums for carcasses within certain weight 

ranges, leading to a direct economic benefit (Mulder et al., 2008). 

The main objective of this study is to estimate genetic parameters of 𝑉𝐸 (ℎ𝑣
2 and 𝐺𝐶𝑉𝐸), 

as well as vEBVs for growth traits in pigs by using double hierarchical generalized linear 

models (DHGLM). Furthermore, the genetic correlation between mean and 𝑉𝐸 (𝑟𝐴𝑚𝑣
) is 

estimated. 
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Material and methods  
 

Pig Dataset and growth traits 

 

The dataset contained 30,602 records from the period 2007-2016 of the crossbred offspring of 

1,446 Pietrain sires. Approximately 20 - 30 offspring were tested per sire, originating from at 

least 3 litters. Growth traits were average daily gain (ADG0) from birth to 70d, from 70d until 

slaughter (ADGtest) and age at slaughter (AGE; in days). Pigs were transported to the slaughter 

house at an intended end weight of about 115 kg which makes ADGtest and AGE in essence a 

measure for lifetime growth. 

 

Genetic parameters 

 

The estimated genetic parameters were the heritability of environmental variance (ℎ𝑣
2) and the 

genetic coefficient of variation for environmental variance (𝐺𝐶𝑉𝐸) based on the formulae of 

Mulder et al. (2007). The potential response of selection on the phenotypic variation (𝐺𝐶𝑉𝑃) 

was calculated as GCVP = 𝐺𝐶𝑉𝐸 ∗
𝜎𝐸

2

𝜎𝑝
2. Standard errors for ℎ𝑣

2, 𝐺𝐶𝑉𝐸 and 𝐺𝐶𝑉𝑃 were estimated 

based on Mulder et al. (2016). Genetic correlations between mean and 𝑉𝐸 (𝑟𝐴𝑚𝑣
) were estimated 

using the method of Calo (1973) and using Pearson correlation. 

 

Double hierarchical generalized linear model and model selection 

 

Genetic parameters were estimated using a sire model via the double hierarchical generalized 

linear models (DHGLM) framework using the extension of Felleki et al. (2012). The DHGLM 

is a bivariate linear mixed model consisting of a mean part with observations 𝑦 and a dispersion 

part (residual variance, denoted with the subscript d) with response variables 𝜓. The used 

DHGLM was: 
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In this equation 𝑋 and 𝑋𝑑 are design matrices for fixed effects whereas 𝑍, 𝑍𝑑, 𝑉, 𝑉𝑑, 𝑈 and 𝑈𝑑 

are design matrices for random effects. The additive genetic sire effects (𝑎𝑠𝑖𝑟𝑒, 𝑎𝑑𝑠𝑖𝑟𝑒
) were 

assumed to be normally distributed 
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where A is the additive genetic relationship matrix and it is assumed that 𝜎𝑠𝑖𝑟𝑒
2 =

1

4
𝜎𝑎

2 for both 

the mean as the dispersion part of the model. The additive genetic dam effects (𝑎𝑑𝑎𝑚, 𝑎𝑑𝑑𝑎𝑚
), 

the permanent environment effects (𝑝𝑒, 𝑝𝑒𝑑) and residual variances (𝑒, 𝑒𝑑) were respectively 

assumed to be distributed as follows (where 𝐼 stands for the identity matrix): 
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𝑊−1𝜎𝑒

2 0
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𝑊 and 𝑊𝑑 are weight matrices (𝑊 = 𝛷−1 = 𝑑𝑖𝑎𝑔 (𝑒𝑥𝑝(�̂�)
−1

), 𝑊𝑑 = 𝑑𝑖𝑎𝑔 (
1−ℎ

2
)) which are 

used in the iterating algorithm of the DHGLM model (Mulder et al., 2016). Different models 

were tested and compared for each considered growth trait. Model selection was based upon 

the estimation of the adjusted profile h-likelihood (APHL). To compare models and to consider 

the number of variance parameters (t), APHL is combined with Akaike’s information criterion 

(AIC): models with a lower AIC value were considered to be more adequate. 

 

𝐴𝐼𝐶 = 𝐴𝑃𝐻𝐿 + 2𝑡          (7) 

 

The DHGLM model was run via the hglm package in R. Estimation of AIC-values was included 

in this model and genetic parameters were also calculated using R.  

 

Results and discussion 

 

Moderate to high heritabilities were estimated for the mean part of model (table 1).  

  

Table 1. Variance components for the mean part of the model for the different growth traits. 

Variance Component ADG0 ADGtest AGE 

sire1 (se) 489.4 (26.3) 648.3 (36.7) 12.9 (0.7) 

dam (se) 595.2 (23.7) 638.9 (27.9) 12.8 (0.6) 

Permanent environment (se) 586.6 (49.9) 1741.4 (139.8) 36.5 (2.9) 

Residual variance2 (se) 1400.1 (12.6) 2851.2 (25.5) 59.4 (0.5) 

Additive genetic (se) 1957.6 (105.1) 2593.2 (146.6) 12.9 (2.9) 

ℎ𝑚
2  (se)2 0.64 (0.030) 0.44 (0.024) 0.42 (0.024) 

1 Additive genetic variance of the sire component is calculated as 
1

4
∗ 𝜎𝑎

2 (additive genetic) 
2 Calculated based on the model with the homogenous residual variance 

 

 For 𝑉𝐸 , genetic coefficients of variation were similar between traits, with a 𝐺𝐶𝑉𝐸 of 

0.241-0.265 and 𝐺𝐶𝑉𝑃 of 0.110-0.129. Hence, changing 𝑉𝐸 with one genetic standard deviation 

can decrease the environmental variance of these traits with 24-27% and the phenotypical 

variance with 11-13% indicating a great potential to improve the uniformity of growth traits in 

pigs. However, values of ℎ𝑣
2 ranged from 0.006-0.008. Consequently, accuracy of mass-

selection to improve the uniformity will be low, unless a significant amount of information is 

available. Ibáñez-Escriche et al. (2008) calculated genetic parameters of 𝑉𝐸 in purebred 

Landrace pigs (weight at slaughter at 175d). Their results (𝐺𝐶𝑉𝐸 of 0.34 and ℎ𝑣
2 of 0.011) were 

comparable to our findings. 

 

Table 2. Variance components for the environmental variance part of the model for the 

different growth traits. 

Variance Component ADG0 ADGtest AGE 

sire1 (se) 0.015 (0.002) 0.017 (0.002) 0.018 (0.002) 



dam (se) 0.019 (0.002) 0.010 (0.002) 0.010 (0.002) 

Permanent environment (se) 0.024 (0.003) 0.065 (0.006) 0.065 (0.007) 

Residual variance2 (se) 1.144 (0.010) 1.185 (0.010) 1.174 (0.010) 

Additive genetic (se) 0.058 (0.008) 0.067 (0.009) 0.070 (0.010) 

ℎ𝑣
2 (se) 0.006 (0.001) 0.008 (0.001) 0.008 (0.001) 

𝐺𝐶𝑉𝐸 (se) 0.241 (0.017) 0.259 (0.018) 0.265 (0.018) 

𝐺𝐶𝑉𝑃 (se) 0.110 (0.008) 0.126 (0.009) 0.129 (0.009) 

1 Additive genetic variance of the sire component is calculated as 
1

4
∗ 𝜎𝑎

2 (additive genetic) 

 

The genetic correlation between mean and environmental variance (𝑟𝐴𝑚𝑣
) is a crucial parameter 

and Pearson correlations (0.12-0.21) and Calo correlations (0.25-0.38) were positive, 

suggesting that an increase of the mean trait level is genetically correlated with an increased 𝑉𝐸 

(or decreased uniformity). However, ADGtest and AGE presented some conflicting results. The 

expectation was that 𝑟𝐴𝑚𝑣
 in absolute value would be approximately the same, but the true 

values should have an opposite sign. The origin for these positive 𝑟𝐴𝑚𝑣
 could lie in scale effects: 

a larger mean value leading to a greater variance. This needs further investigation and data 

transformation techniques, e.g. Box-Cox transformation, could be necessary to obtain an 

adequate estimation of 𝑟𝐴𝑚𝑣
. 

 

Conclusion 

 

We estimated genetic parameters of 𝑉𝐸 for growth traits in a terminal line of pigs and the results 

show a great potential to improve the uniformity of growth traits in pigs. However, the low 

accuracy for selection on uniformity is still an obstacle towards its implementation in current 

breeding programs. Furthermore, possible scale effects need to be investigated to arrive at 

robust estimation of the genetic correlation between mean and environmental variance.  
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