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INTRODUCTION

As statistical data sets grow larger and larger, the availability of fast and efficient
algorithms becomes ever more important in practice. Classical methods are often
easy to compute, even in high dimensions, but they are sensitive to outlying data
points. Robust statistics develops methods that are less influenced by abnormal
observations, often at the cost of higher computational complexity. Many robust
methods, especially those based on ranks, are closely related to geometric or combi-
natorial problems. An early overview of relations between statistics and geometry
was given in [Sha76].

Recently many other (mostly multivariate) statistical methods have been de-
veloped that have a combinatorial or geometric character and are computationally
intensive. Techniques of computational geometry appear to be very well suited for
the development of fast algorithms. Over the last two decades, especially the notion
of statistical depth received considerable attention from the computational geome-
try community. In this chapter we mainly concentrate on depth and multivariate
medians, and in Section 58.3 we list other areas of statistics where computational
geometry has been of use in constructing efficient algorithms, such as cluster anal-
ysis.

58.1 MULTIVARIATE RANKING

A data set consisting of n univariate points is usually ranked in ascending or de-
scending order. Univariate order statistics (i.e., the ‘kth smallest value out of n’)
and derived quantities have been studied extensively. The median is defined as the
order statistic of rank (n + 1)/2 when n is odd, and as the average of the order
statistics of ranks n/2 and (n+2)/2 when n is even. The median and any other or-
der statistic of a univariate data set can be computed in O(n) time. Generalization
to higher dimensions is, however, not straightforward.

Alternatively, univariate points may be ranked from the outside inward by
assigning the most extreme data points depth 1, the second smallest and second
largest data points depth 2, etc. The deepest point then equals the usual median
of the sample. The advantage of this type of ranking is that it can be extended to
higher dimensions more easily. This section gives an overview of several possible
generalizations of depth and the median to multivariate settings. Surveys of sta-
tistical applications of multivariate data depth may be found in [LPS99], [ZS00],
and [Mos13].
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GLOSSARY

Bagdistance: Generalized norm on R
d based on halfspace depth regions.

Bagplot: Bivariate generalization of the boxplot based on depth regions.

Breakdown value: The smallest fraction of contaminated data points that can
move the estimator arbitrarily far away.

Centerpoint: Any point with halfspace depth > ⌈n/(d+ 1)⌉.

Deepest fit: Median hyperplane based on regression depth.

Depth: The outside-inward “rank” of a point (not necessarily a data point).

Depth region: The set of all points with depth > k is called the kth depth
region Dk.

Median: The point with maximal depth. When this point is not unique, the
median is taken to be the centroid of the depth region with highest depth.

Tukey median: Median based on halfspace depth.

HALFSPACE LOCATION DEPTH

Let Xn = {x1, . . . ,xn} be a finite set of data points in R
d. The Tukey depth or

halfspace depth (introduced by [Tuk75] and further developed by [DG92]) of any
point θ in R

d (not necessarily a data point) determines how central the point is
inside the data cloud. The halfspace depth of θ is defined as the minimal number
of data points in any closed halfspace determined by a hyperplane through θ:

hdepth(θ;Xn) = min
‖u‖=1

#{i;uτxi > uτθ}.

Thus, a point lying outside the convex hull of Xn has depth 0, and any data point
has depth at least 1. Figure 58.1.1 illustrates this definition for d = 2.

FIGURE 58.1.1

Illustration of the bivariate halfspace depth.
Here θ (which is not a data point itself ) has
depth 1 because the halfspace determined by u

contains only one data point.
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The set of all points with depth > k is called the kth depth region Dk. The
halfspace depth regions form a sequence of nested polyhedra. Each Dk is the
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Chapter 58: Computation of robust statistics 1539

intersection of all halfspaces containing at least n − k + 1 data points. Moreover,
every data point must be a vertex of one or more depth regions. When the innermost
depth region is a singleton, that point is called the Tukey median. When the
innermost depth region is larger than a singleton, the Tukey median is defined as
its centroid. This makes the Tukey median unique by construction. Note that the
Tukey median does not have to be a data point.

Note that the depth regions give an indication of the shape of the data cloud.
Based on this idea one can construct the bagplot [RRT99], a bivariate version of the
univariate boxplot. Figure 58.1.2 shows such a bagplot. The cross in the white disk
is the Tukey median. The dark area is an interpolation between two subsequent
depth regions, and contains 50% of the data. This area (the “bag”) gives an idea
of the shape of the majority of the data cloud. Inflating the bag by a factor of
3 relative to the Tukey median yields the “fence” (not shown), and data points
outside the fence are called outliers and marked by stars. Finally, the light gray
area is the convex hull of the non-outlying data points.

FIGURE 58.1.2

Bagplot of the heart and spleen size of 73 hamsters.
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More generally, in the multivariate case one can define the bagdistance [HRS15b]
of a point x relative to the Tukey median and the bag. Assume that the Tukey
median lies in the interior of the bag, not on its boundary (this excludes degenerate
cases). Then the bagdistance is the smallest real number λ such that the bag inflated
(or deflated) by λ around the Tukey median contains the point x. When the Tukey
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median equals 0, it is shown in [HRS15b] that the bagdistance satisfies all axioms of
a norm except that ||ax|| = |a|||x|| only needs to hold when a > 0. The bagdistance
is used for outlier detection [HRS15a] and statistical classification [HRS15b].

An often used criterion to judge the robustness of an estimator is its breakdown
value. The breakdown value is the smallest fraction of data points that we need
to replace in order to move the estimator of the contaminated data set arbitrarily
far away. The classical mean of a data set has breakdown value zero since we can
move it anywhere by moving one observation. Note that the breakdown value of
any translation equivariant estimator can be at most 1/2. This can be seen as
follows: if we replace half of the data points by a far-away translation image of the
remaining half, the estimator cannot know which were the original data.

The Tukey depth and the corresponding median have good statistical proper-
ties. The Tukey median T ∗ is a location estimator with breakdown value εn(T

∗;Xn)
> 1/(d + 1) for any data set in general position. This means that it remains in a
predetermined bounded region unless n/(d+1) or more data points are moved. At
an elliptically symmetric distribution the breakdown value becomes 1/3 for large
n, irrespective of d. Moreover, the halfspace depth is invariant under all nonsingu-
lar affine transformations of the data, making the Tukey median affine equivariant.
Since data transformations such as rotation and rescaling are very common in statis-
tics, this is an important property. The statistical asymptotics of the Tukey median
have been studied in [BH99].

The need for fast algorithms for the halfspace depth has only grown over the
years, since it is currently being applied to a variety of settings such as nonpara-
metric classification [LCL12]. A related development is the fast growing field of
functional data analysis, where the data are functions on a univariate interval (e.g.
time or wavelength) or on a rectangle (e.g. surfaces, images). Often the function
values are themselves multivariate. One can then define the depth of a curve (sur-
face) by integrating the depth over all points as in [CHSV14]. This functional depth
can again be used for outlier detection and classification [HRS15a, HRS15b], but it
requires computing depths in many multivariate data sets instead of just one.

CENTERPOINTS

There is a close relationship between the Tukey depth and centerpoints, which have
been long studied in computational geometry. In fact, Tukey depth extends the
notion of centerpoint. A centerpoint is any point with halfspace depth> ⌈n/(d+1)⌉.
A consequence of Helly’s theorem is that there always exists at least one centerpoint,
so the depth of the Tukey median cannot be less than ⌈n/(d+ 1)⌉.

OTHER LOCATION DEPTH NOTIONS

1. Simplicial depth ([Liu90]). The depth of θ equals the number of simplices
formed by d+ 1 data points that contain θ. Formally,

sdepth(θ;Xn) = #{(i1, . . . , id+1); θ ∈ S[xi1 , . . . ,xid+1
]}

where S[xi1 , . . . ,xid+1
] is the closed simplex with vertices xi1 , . . . ,xid+1

. The
simplicial median is affine equivariant with a breakdown value bounded above
by 1/(d + 2). Unlike halfspace depth, its depth regions need not be convex,
as seen e.g. in the example in [Mos13].
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2. Oja depth ([Oja83]). This is also called simplicial volume depth:

odepth(θ;Xn) =
(

1 +
∑

(i1,...,id)

{volume S[θ,xi1 , . . . ,xid ]}
)−1

.

The corresponding median is also affine equivariant, but has zero breakdown
value.

3. Projection depth. We first define the outlyingness ([DG92]) of any point θ
relative to the data set Xn as

O(θ;Xn) = max
‖u‖=1

|uτθ −medi{u
τxi}|

MADi{uτxi}
,

where the median absolute deviation (MAD) of a univariate data set
{y1, . . . , yn} is the statistic MADi{yi} = medi|yi − medj{yj}|. The outly-
ingness is small for centrally located points and increases if we move toward
the boundary of the data cloud. Instead of the median and the MAD, also
another pair (T, S) of a location and scatter estimate may be chosen. This
leads to different notions of projection depth, all defined as

pdepth(θ;Xn) = (1 +O(θ;Xn))
−1.

General projection depth is studied in [Zuo03]. When using the median and
the MAD, the projection depth has breakdown value 1/2 and is affine equiv-
ariant. Its depth regions are convex.

4. Spatial depth ([Ser02]). Spatial depth is related to multivariate quantiles
proposed in [Cha96]:

spdepth(θ;Xn) = 1−

∥

∥

∥

∥

∥

1

n

n
∑

i=1

xi − θ

‖xi − θ‖

∥

∥

∥

∥

∥

The spatial median is also called the L1 median ([Gow74]). It has breakdown
value 1/2, but is not affine equivariant (it is only equivariant with respect
to translations, multiplication by a scalar factor, and orthogonal transfor-
mations). For a recent survey on the computation of the spatial median
see [FFC12].

A comparison of the main properties of the different location depth medians is
given in Table 58.1.1.

ARRANGEMENT AND REGRESSION DEPTH

Following [RH99b] we now define the depth of a point relative to an arrangement of
hyperplanes (see Chapter 28). A point θ is said to have zero arrangement depth
if there exists a ray {θ + λu;λ > 0} that does not cross any of the hyperplanes hi

in the arrangement. (A hyperplane parallel to the ray is counted as intersecting at
infinity.) The arrangement depth of any point θ is defined as the minimum number
of hyperplanes intersected by any ray from θ. Figure 58.1.3 shows an arrangement
of lines. In this plot, the points θ and η have arrangement depth 0 and the point
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TABLE 58.1.1 Comparison of several location depth me-

dians.

MEDIAN BREAKDOWN VALUE AFFINE EQUIVARIANCE

Tukey worst-case 1/(d + 1) yes

typically 1/3

Simplicial 6 1/(d + 2) yes

Oja 2/n ≈ 0 yes

Projection 1/2 yes

Spatial 1/2 no

ξ has arrangement depth 2. The arrangement depth is always constant on open
cells and on cell edges. It was shown ([RH99b]) that any arrangement of lines in
the plane encloses a point with arrangement depth at least ⌈n/3⌉, giving rise to a
new type of “centerpoints.”

FIGURE 58.1.3

Example of arrangement depth. In this arrangement of lines, the points θ and η have arrangement
depth 0, whereas ξ has arrangement depth 2. (See Figure 58.1.4 for the dual plot.)

1

2

•

•

•

θ

θ

θ

ξ

η

1

2

3

4

5

6

This notion of depth was originally defined ([RH99]) in the dual, as the depth
of a regression hyperplane Hθ relative to a point configuration of the form Zn =
{(x1, y1), . . . , (xn, yn)} in R

d+1. Regression depth ranks hyperplanes according
to how well they fit the data in a regression model, with x containing the predictor
variables and y the response. A vertical hyperplane (given by aτx = constant),
which cannot be used to predict future response values, is called a “nonfit” and
assigned regression depth 0. The regression depth of a general hyperplane Hθ is
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found by rotating Hθ in a continuous movement until it becomes vertical. The
minimum number of data points that is passed in such a rotation is called the
regression depth of Hθ. Figure 58.1.4 is the dual representation of Figure 58.1.3.
(For instance, the line θ has slope θ1 and intercept θ2 and corresponds to the point
(θ1, θ2) in Figure 58.1.3.) The lines θ and η have regression depth 0, whereas the
line ξ has regression depth 2.

FIGURE 58.1.4

Example of the regression depth of a line in a bivariate configuration of points. The lines θ and
η have regression depth 0, whereas the line ξ has regression depth 2. (This is the dual of Fig-
ure 58.1.3.)
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In statistics one is interested in the deepest fit or regression depth median,
because this is a line (hyperplane) about which the data are well-balanced. The
statistical properties of regression depth and the deepest fit are very similar to those
of the Tukey depth and median. The bounds on the maximal depth are almost the
same. Moreover, for both depth notions the value of the maximal depth can be used
to characterize the symmetry of the distribution ([RS04]). The breakdown value of
the deepest fit is at least 1/(d + 1) and under linearity of the conditional median
of y given x it converges to 1/3. In the next section, we will see that the optimal
complexities for computing the depth and the median are also comparable to those
for halfspace depth. For a detailed comparison of the properties of halfspace and
regression depth, see [HRV01].

The arrangement depth region Dk is defined in the primal, as the set of points
with arrangement depth at least k. Contrary to the Tukey depth, these depth
regions need not be convex. But nevertheless it was proved that there always exists
a point with arrangement depth at least ⌈n/(d+1)⌉ ([ABE+00]). An analysis-based
proof was given in [Miz02].
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ARRANGEMENT LEVELS

Arrangement depth is undirected (isotropic) in the sense that it is defined as a
minimum over all possible directions. If we restrict ourselves to vertical directions u
(i.e., up or down), we obtain the usual levels of the arrangement (cf. Section 28.2).
The absence of preferential directions makes arrangement depth invariant under
affine transformations.

58.2 COMPUTING DEPTH

Although the definitions of depth are intuitive, the computational aspects can be
quite challenging. Below we will first focus on the bivariate case, and then on higher
dimensions.

Algorithms for depth-related measures are often more complex for data sets
which are not in general position than for data sets which are. For example, the
boundaries of subsequent halfspace depth regions are always disjoint when the data
are in general position, but this does not hold for nongeneral position. Prefer-
ably, algorithms should be able to handle both the general position case and the
nongeneral position case directly. As a quick fix, algorithms which were made for
general position can also be applied in the other case if one first adds small random
errors to the data points. This is a standard perturbation technique sometimes
referred to as dithering. For large data sets, dithering has only a limited effect on
the results.

BIVARIATE ALGORITHMS

For the bivariate case several algorithms have been developed early on. Table 58.2.1
gives an overview of algorithms, each of which has been implemented, to compute
the depth in a given point θ in R

2. These algorithms are time-optimal, since
the problem of computing these bivariate depths has an Ω(n logn) lower bound
([ACG+02], [LS03a]).

The algorithms for halfspace and simplicial depth are based on the same tech-
nique. First, data points are radially sorted around θ. Then a line through θ is
rotated. The depth is calculated by counting the number of points that are passed
by the rotating line in a specific manner. The planar arrangement depth algorithm
is easiest to visualize in the regression setting. To compute the depth of a hyper-
plane Hθ with coefficients θ, the data are first sorted along the x-axis. A vertical
line L is then moved from left to right and each time a data point is passed, the
number of points above and below Hθ on both sides of L is updated.

In general, computing a median is harder than computing the depth in a point,
because typically there are many candidate points. For instance, for the bivariate
simplicial median the currently best algorithm requires O(n4) time, whereas its
corresponding depth needs only O(n log n). The simplicial median seems difficult
to compute because there are O(n4) candidate points (namely, all intersections
of lines passing through two data points) and the simplicial depth regions have
irregular shapes, but of course a faster algorithm may yet be found.

Fortunately, in several important cases the median can be computed without
computing the depth of individual points. A linear-time algorithm to compute a
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TABLE 58.2.1 Computing the depth of a bivariate point.

DEPTH TIME COMPLEXITY SOURCE

Tukey depth O(n logn) [RR96a]

Simplicial depth O(n logn) [RR96a]

Arrangement/regression depth O(n logn) [RH99]

bivariate centerpoint was described in [JM94]. Table 58.2.2 gives an overview of
algorithms to compute bivariate depth-based medians. For the bivariate Tukey
median the lower bound Ω(n logn) was proved in [LS00], and the currently fastest
algorithm takes O(n log3 n) time ([LS03a]). The lower bound Ω(n logn) also holds
for the median of arrangement (regression) depth as shown by [LS03b]. Fast algo-
rithms were devised by [LS03b] and [KMR+08].

TABLE 58.2.2 Computing the bivariate median.

MEDIAN TIME COMPLEXITY SOURCE

Tukey median O(n log3 n) [LS03a]

Simplicial median O(n4) [ALS+03]

Oja median O(n log3 n) [ALS+03]

Regression depth median O(n logn) [LS03b]

The computation of bivariate halfspace depth regions has also been studied.
The first algorithm [RR96b] required O(n2 logn) time per depth region. An al-
gorithm to compute all regions in O(n2) time is constructed and implemented
in [MRR+03]. This algorithm thus also yields the Tukey median. It is based on
the dual arrangement of lines where topological sweep is applied. A completely dif-
ferent approach is implemented in [KMV02]. They make direct use of the graphics
hardware to approximate the depth regions of a set of points in O(nW + W 3) +
nCW 2/512 time, where the pixel grid is of dimension (2W + 1) × (2W + 1). Re-
cently, [BRS11] constructed an algorithm to update halfspace depth and its regions
when points are added to the data set.

ALGORITHMS IN HIGHER DIMENSIONS

The calculation of depth regions and medians is more computationally intensive in
higher dimensions. In statistical practice such data are quite common, and therefore
reliable and efficient algorithms are needed. The computational aspects of depth
in higher dimensions are still being explored.

The first algorithms to compute the halfspace and regression depth of a given
point in R

d with d > 2 were constructed in [RS98] and require O(nd−1 logn) time.
The main idea was to use projections onto a lower-dimensional space. This reduces
the problem to computing bivariate depths, for which the existing algorithms have
optimal time complexity. In [BCI+08] theoretical output-sensitive algorithms for
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the halfspace depth are proposed. An interesting computational connection between
halfspace depth and multivariate quantiles was provided in [HPS10] and [KM12].
More recently, [DM16] provided a generalized version of the algorithm of [RS98]
together with C++ code. For the depth regions of halfspace depth in higher di-
mensions an algorithm was recently proposed in [LMM14].

For the computation of projection depth see [LZ14]. The simplicial depth of a
point in R

3 can be computed in O(n2) time, and in R
4 the fastest algorithm needs

O(n4) time [CO01]. For higher dimensions, no better algorithm is known than the
straightforward O(nd+1) method to compute all simplices.

When the number of data points and dimensions are such that the above algo-
rithms become infeasible, one can resort to approximate algorithms. For halfspace
depth such approximate algorithms were proposed in [RS98] and [CMW13]. An
approximate algorithm in R

3 based on a randomized data structure was proposed
in [AC09]. An approximation to the Tukey median using steepest descent can be
found in [SR00]. In [VRHS02] an algorithm is described to approximate the deepest
regression fit in any dimension. A randomized algorithm for the Tukey median was
proposed in [Cha04].

58.3 OTHER STATISTICAL TECHNIQUES

Computational geometry has provided fast and reliable algorithms for many other
statistical techniques.

Linear regression is a frequently used statistical technique. The ordinary least
squares regression, minimizing the sum of squares of the residuals, is easy to cal-
culate, but produces unreliable results whenever one or more outliers are present
in the data. Robust alternatives are often computationally intensive. We here
give some examples of regression methods for which geometric or combinatorial
algorithms have been constructed.

1. L1 regression. This well-known alternative to least squares regression min-
imizes the sum of the absolute values of the residuals, and is robust to ver-
tical outliers. Algorithms for L1 regression may be found in, e.g., [YKII88]
and [PK97].

2. Least median of squares (LMS) regression ([Rou84]). This method
minimizes the median of the squared residuals and has a breakdown value of
1/2. To compute the bivariate LMS line, an O(n2) algorithm using topological
sweep has been developed [ES90]. An approximation algorithm for the LMS
line was constructed in [MNR+97]. The recent algorithm of [BM14] uses
mixed integer optimization.

3. Median slope regression ([The50], [Sen68]). This bivariate regression tech-
nique estimates the slope as the median of the slopes of all lines through
two data points. An algorithm with optimal complexity O(n logn) is given
in [BC98], and a more practical randomized algorithm in [DMN92].

4. Repeated median regression ([Sie82]). Median slope regression takes the
median over all couples (d-tuples in general) of data points. Here, this median
is replaced by d nested medians. For the bivariate repeated median regression
line, [MMN98] provide an efficient randomized algorithm.
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The aim of cluster analysis (Sections 48.5 and 54.1) is to divide a data set into
clusters of similar objects. Partitioning methods divide the data into k groups.
Hierarchical methods construct a tree (called a dendrogram) such that each cut
of the tree gives a partition of the data set. A selection of clustering methods
with accompanying algorithms is presented in [SHR97]. The general problem of
partitioning a data set into groups such that the partition minimizes a given error
function f is NP-hard. However, for some special cases efficient algorithms exist.
For a small number of clusters in low dimensions, exact algorithms for partitioning
methods can be constructed. Constructing clustering trees is also closely related to
geometric problems (see e.g., [Epp97], [Epp98]).

58.4 SOURCES AND RELATED MATERIAL

SURVEYS

All results not given an explicit reference above may be traced in these surveys.

[Mos13]: A survey of multivariate data depth and its statistical applications.

[Sha76]: An overview of the computational complexities of basic statistics problems
like ranking, regression, and classification.

[Sma90]: An overview of several multivariate medians and their basic properties.

[ZS00]: A classification of multivariate data depths based on their statistical prop-
erties.

RELATED CHAPTERS

Chapter 1: Finite point configurations
Chapter 28: Arrangements
Chapter 54: Pattern recognition
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25–38, Birkhaüser, Basel, 2002.

[Sha76] M.I. Shamos. Geometry and statistics: problems at the interface. In J.F. Traub,

editor, Algorithms and Complexity: New Directions and Recent Results, pages 251–

280, Academic Press, Boston, 1976.

[SHR97] A. Struyf, M. Hubert, and P.J. Rousseeuw. Integrating robust clustering techniques

in S-PLUS. Comput. Stat. Data Anal., 26:17–37, 1997.

[Sie82] A. Siegel. Robust regression using repeated medians. Biometrika, 69:242–244, 1982.

[Sma90] C.G. Small. A survey of multidimensional medians. Internat. Statistical Review,

58:263–277, 1990.

[SR00] A. Struyf and P.J. Rousseeuw. High-dimensional computation of the deepest location.

Comput. Stat. Data Anal., 34:415–426, 2000.

[The50] H. Theil. A rank-invariant method of linear and polynomial regression analysis (parts

1-3). Nederl. Akad. Wetensch. Ser. A, 53:386–392, 521–525, 1397–1412, 1950.

[Tuk75] J.W. Tukey. Mathematics and the picturing of data. In Proc. Internat. Congr. of

Math., 2, pages 523–531, Vancouver, 1975.

[VRHS02] S. Van Aelst, P.J. Rousseeuw, M. Hubert, and A. Struyf. The deepest regression

method. J. Multivar. Anal., 81:138–166, 2002.

[YKII88] P. Yamamoto, K. Kato, K. Imai, and H. Imai. Algorithms for vertical and orthogonal

L1 linear approximation of points. In Proc. 4th Sympos. Comput. Geom., pages 352–

361, ACM Press, 1988.

[Zuo03] Y. Zuo. Projection based depth functions and associated medians. Ann. Statist.,

31:1460–1490, 2003.

[ZS00] Y. Zuo and R. Serfling. General notions of statistical depth function. Ann. Statist.,

28:461–482, 2000.

Preliminary version (December 21, 2016).


