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The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has
since been considered a well-established part of classical superconductivity. However, upon closer examination
a number of fundamental issues arises that leads one to question this standard picture. To address these issues
we studied equilibrium properties of niobium samples near and above the upper critical field Hc2 in parallel and
perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with
the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been
performed, which include dc magnetometry, electrical transport, muon spin rotation spectroscopy, and scanning
Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present
in the sample bulk above Hc2 and the field Hc3 is the same in both parallel and perpendicular fields. Our findings
suggest that above Hc2 the superconducting phase forms filaments parallel to the field regardless of the field
orientation. Near Hc2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed
state, and the filament density continuously falls to zero at Hc3. Our paper has important implications for the
correct interpretation of the properties of type-II superconductors and can be essential for practical applications
of these materials.
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Interpretation of equilibrium properties of superconductors
has a pivotal significance for the entire realm of quantum
physics, extending from neutron stars to the standard model
[1,2]. Therefore it is important to verify any concerns related
to the description of these properties.

Type-II superconductors subjected to a magnetic-field H

above the lower critical field Hc1 can be found in three
equilibrium states [3–6]: in the mixed state (MS) where
average magnetic induction B̄ < H and currents form vortices
organized in a hexagonal lattice; in a “surface superconductiv-
ity” state, where B = H everywhere except for a sheath with
thickness on the order of the Ginzburg-Landau (GL) coherence
length near the surface parallel to H ; and in the normal state
(NS). The typical phase diagram of type-II superconductors of
cylindrical geometry (such as, e.g., infinite circular cylinders
and slabs with thicknesses greatly exceeding the penetration
depth) in the parallel magnetic field or of massive samples
with a demagnetizing factor η = 0 [7] is shown in Fig. 1.
Transitions between states, occurring at the critical fields Hc2

and Hc3, are second-order phase transitions. In ellipsoidal
samples with η �= 0 the sheath forms an equatorial band whose
width decreases with increasing η. In samples with η = 1
(infinite slabs in the perpendicular field) the band vanishes,
and surface superconductivity disappears. Since the MS in
such samples starts from H = (1 − η)Hc1 = 0, their phase
diagrams consist of a single curve Hc2.

This interpretation of the properties of type-II supercon-
ductors is based on two well-known solutions of the linearized
GL equation obtained by Abrikosov [8] and Saint-James and
de Gennes [9]. Despite a narrow range of applicability of

the GL theory [10–12], its tremendous success has been due
to an explanation of the very puzzling properties of these
materials.

One of such puzzles was a factor of 2 discrepancy in
the upper critical field following from magnetic and resistive
measurements. It often was attributed to defects and insuffi-
cient sensitivity of magnetometers (see, e.g., Ref. [13]) and
therefore ignored in theories (e.g., Ref. [14]). Saint-James
and de Gennes treated superconductivity above Hc2 as an
equilibrium property, thus providing an interpretation of the
entire phase diagram within one theory.

However this standard picture raises some questions. In
particular, it implies that in parallel geometry superconduc-
tivity nucleates at a field (Hc3) almost twice as large as the
field at which it nucleates in perpendicular geometry (Hc2).
By definition, the field passes the sample in the NS being
unperturbed, i.e., not noticing the surface. Hence, nucleation at
Hc3 should not depend on the field-to-surface orientation. Also,
in this scenario the states coexisting at Hc2 belong to different
classes of symmetry, such as crystal and liquid. Hence, the
phase transition at Hc2 should not be of second order [15].
In particular, in samples with η = 1 the coexisting states are
the MS and the NS. Apart from different symmetries, the
minimum amount of a superconducting (S) phase needed to
create the vortex lattice is ≈10% of the sample volume. Hence,
this transition should not be continuous.

In this paper we challenge the standard interpretation of
the phase diagram of type-II superconductors by showing that
above Hc2 the S phase forms filaments parallel to the applied
field regardless of its orientation.
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FIG. 1. Phase diagram of a massive type-II superconductor of
cylindrical geometry in a parallel magnetic field. MS and NS denote
the mixed and the normal states, respectively.

To address the indicated questions, we measured magne-
tization, electrical transport, and muon spin rotation (μSR)
spectra and took scanning Hall-probe microscopy (SHPM)
images on Nb samples. Those were two high-purity 5.7-μm-
thick films 4×6 mm2 (Nb-F) and 2×4 mm2 (Nb-F2) and
two one-side polished 1-mm-thick disks with diameters of
7 mm (Nb-SC) and 19 mm (Nb-SC2) cut from the same
single-crystal rod. The film samples were cut from a film grown
on sapphire using the electron cyclotron resonance technique
[16]; its residual resistivity ratio is 640. The GL parameter
κ determined from magnetization curves in the parallel field
is 0.8 (1.3) near the critical temperature Tc rising up to 1.1
(1.6) at 2 K for the Nb-F (Nb-SC) sample. Tc of the film
(single-crystal) samples is 9.25 K (9.20 K). As verified by
magnetization measurements, the samples are nearly pinning
free at T � 8 K.

The magnetic moment M was measured on the Nb-F and
Nb-SC samples using a Quantum Design magnetic property
measurement system. Typical data for high temperatures are
shown in Figs. 2(a) and 2(b). We see that Hc2 and Hc3 are
well distinguishable for both samples. At low temperatures
flux trapping is more significant, however it is still possible to
resolve the critical fields. An example of the low-temperature
data for the Nb-SC sample is shown in Fig. 2(c). We observe
that above Hc2 the S phase is present for both field orientations
and in both cases Hc3 is the same. These results are inconsistent
with the surface sheath interpretation. In particular, they
suggest that above Hc2 the S phase forms either droplets or
filaments with decreasing number density under an increasing
field.

The electrical resistance was measured for the Nb-F2
sample using a low-current (2-mA) ac bridge. The voltage
across the potential leads measured vs T at H = 0 and vs H at
constant T is shown in Fig. 3. In Figs. 3(b) and 3(c) we see that
resistance drops abruptly at Hc3 in the parallel field and at Hc2

in the perpendicular field, where Hc2 and Hc3 are inferred from
M(H ). This is in line with the data on electrical transport used
to support the surface superconductivity interpretation (see,
e.g., Refs. [17–20]). However, this interpretation conflicts with
the M(H ) data. At the same time both resistance and M(H )
are consistent with a filament scenario, provided the filaments

FIG. 2. Magnetic moment of Nb-F and Nb-SC in parallel and
perpendicular fields at indicated temperatures. The insets: the same
data on an enlarged scale.

are parallel to the applied field. The resistance data rule out
the droplet scenario.

Alternatively, magnetic properties can be studied by μSR.
Its bulk version makes use of 4-MeV polarized muons, probing
B at ∼0.1 mm below the sample surface, i.e., in the bulk
(see, e.g., Refs. [21–23] for details).

μSR spectra were acquired for the Nb-SC2 sample in the
perpendicular field at the Dolly instrument of the Swiss Muon
Source. The number of events of muon decays collected in
each data point is 3×106; the statistical error in the measured
field is �0.1%. Typical time spectra for the MS are shown
in Fig. 4(a) where the inset shows the spectra for the NS. For
comparison, Fig. 4(b) shows the spectra for the intermediate
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FIG. 3. Voltage V across the Nb-F2 sample. The green dots
represent V (T ) at H = 0; in (a) these data are shown on a
magnified scale. (b) and (c) V (H ) obtained in parallel (blue dots)
and perpendicular (brown dots) fields at indicated temperatures; the
red and navy arrows indicate Hc2 and Hc3 inferred from the M(H )
data, respectively. (d) Current (i) and the field configurations.

state (IS) taken at the same reduced temperature and field for
a type-I In sample; the inset shows the spectra of In in the NS.

We see that apart from a much larger damping rate (the
damping rate for Nb in the MS normalized relative to that
in the NS is greater than the normalized damping rate for
In in the IS by a factor of 5), indicating for a strong-field
inhomogeneity, the spectra of the MS differ from those of
the IS by the absence of the Asy2 [see Fig. 4(b)], caused by
nonprecessing muons stopped in S domains with the Meissner
(B = 0) phase [24]. Unlike the IS, B �= 0 throughout the
sample in the MS [5,25]. Therefore, all muons implanted in
such samples precess, resulting in the disappearance of Asy2.
The absence of Asy2 in μSR spectra of our Nb sample confirms
that it is in the MS but not in the intermediate-mixed state
[26,27].

Data for the most probable field Bμ extracted from the μSR
spectra [22] are shown in Fig. 5 in terms of �B = Bμ − H vs
H on two scales. As seen, (∂Bμ/∂H )T abruptly changes at Hc2.
At higher fields �B decreases vanishing near Hc3. Hc2 and Hc3

were inferred from the M(H ) data for the Nb-SC sample. The
μSR data are consistent with those on magnetization apart
from a greater hysteresis under the descending field, probably
caused by a stronger pinning in the Nb-SC2 sample. The μSR
results confirm the presence of the S phase in the sample bulk
above Hc2 in the perpendicular field, hence supporting the
filament scenario.

Images of the magnetic-field pattern near the surface of
the Nb-F sample were taken using a scanning Hall-probe
microscope [28]. This was our most challenging experiment
due to the low-field contrast and the limited microscope
resolution. To maximize the signal-to-noise ratio, the images
were taken at the lowest possible fields, i.e., at a temperature
(9.20 K) very close to Tc.

Typical images are shown in Fig. 6 where the colors reflect
the relative magnitude of the induction and the brightest color

FIG. 4. μSR spectra for (a) single-crystal type-II Nb and
(b) single-crystal type-I In at the same reduced temperature and field.
The insets show the spectra for the same temperature in the NS. The
black (red) dots present the spectra recorded along (opposite to) the
initial direction of the muon spin. Asy2 is the asymmetry caused by
muons stopping in domains with B = 0.

corresponds to the strongest B. We see that, although vortices
are clearly distinguishable in a weak field, they become
practically unresolvable as Hc2 is approached. However,
a field contrast exceeding the noise level remains below
and above Hc2. To quantify this observation we calculated
Brms =

√
〈(B − 〈B〉)2〉, where 〈· · · 〉 represents a statistical

average over the scanned area (7.6×7.6 μm2). The graphs
for Brms(H ) are shown in Fig. 6, where Hc2 is inferred from
M(H ). Brms �= 0 above Hc2, and it decreases with increasing
H . This agrees with the data on M(H ) and Bμ(H ), confirming
that the tiny contrast in the SHPM images above Hc2 is a real
feature consistent with the filament interpretation.

We conclude that: (a) All obtained results are in line with
each other; (b) the M(H ) and μSR data reveal the presence
of the S phase above Hc2 in the perpendicular field at the
same field range as in the parallel field; (c) the resistivity data
indicate that the S phase forms filaments parallel to the applied
field; (d) the filament interpretation is also consistent with the
SHPM images.
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FIG. 5. The difference between the μSR measured Bμ and the
applied field H vs H at indicated temperatures. The green (blue)
circles are experimental points obtained at the ascending (descending)
field. The red and navy arrows indicate Hc2 and Hc3 obtained from
magnetization measurements.

Now we turn to the question of what is happening near Hc2.
First we note that contrary to the IS, where M(H ) [29] and
Bμ(H ) [24] exhibit strong supercooling at the critical field, in
the MS, as seen from Figs. 2 and 5, both M(H ) and Bμ(H )
are continuous functions exhibiting discontinuous change in
(∂M/∂H )T and (∂Bμ/∂H )T at Hc2. M and B are the first
derivatives of the thermodynamic potentials F̃M (T ,V,H ) and
F̃ (T ,V,H i), respectively (Hi is the field strength inside the
sample) [7]. Therefore our results meet the classical definition
of second-order phase transition [30], thus confirming the
standard interpretation of the transition at Hc2.

Next, since M(H ), Bμ(T ) [27] and the heat capacity C(T )
[31] are smooth functions in the MS, the equilibrium structure
near Hc2 hardly differs from a periodic lattice of vortices, well
verified at low B̄ [32]. Therefore the filament structure should
also be periodic [15].

Due to hexagonal symmetry of the vortex lattice, a
“landscape” of B has “peaks” (vortex cores) with maximum
B = Hi , “troughs” with minimum B, and “saddle points”
between the nearest peaks. Currents form loops about the
peaks. The current per unit length of the vortex g(ϕ,r), being
a function of the azimuthal (ϕ) and radial (r) coordinates
(see Fig. 7), is determined by the local gradient of the induction
∂B/∂r [7]. The latter is minimal in the saddle points, thus
making these points weak spots in the loops. At Hc2 the current
in the loops ceases. This happens when the angular momentum
of electrons in Cooper pairs (or “superconducting electrons”)

FIG. 6. Typical SHPM images of the Nb-F sample with numbers
indicating the applied field in oersteds. Arrows up (down) indicate
images taken at the increasing (decreasing) field. The graph presents
Brms(H ) obtained from the SHPM data. The red (blue) points
represent Brms at the increasing (decreasing) field. The dashed line
designates Hc2 inferred from M(H ) data.

decreases down to its minimum value, i.e., a quantum of
angular momentum m∗vr r = h̄, where m∗ is the effective mass
of these electrons and vr is their speed at radius r . This Bohr’s
condition yields (see the Appendix) the minimum difference
δBmin between the peaks and the saddle points. In cgs units,

δBmin = h̄
4πnse

cm∗ ln
RS

Rc

= 	0

πλ2
L

ln
RS

Rc

, (1)

FIG. 7. An induction map of the MS near Hc2. The field is
perpendicular to the page. P marks the peaks with the highest
B = Hi, T marks troughs with the lowest B, and S marks the saddle
points in between the peaks.
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where ns and e are the number density and charge of the
superconducting electrons, λL is the London penetration depth,
	0 is the flux quantum, Rc is the core radius, and RS is the
radius at the saddle point.

Hence, consistently with Abrikosov [8], one can conclude
that at Hc2 the magnetic landscape is not flat. For instance,
if RS differs from Rc by only 0.01%, δBmin is already
∼1 G. In the troughs B is smaller than in the saddle points,
therefore, upon collapse of the vortex current at Hc2, the S
phase survives at the troughs where it forms filaments in
the out-of-plane (parallel to the field) direction. The amount
of the S phase just above Hc2 can be estimated from the
difference between the areas of a hexagonal unit cell of the
lattice and a circle inscribed in it, which yields about 10%
of the sample volume. Currents driven by the field gradient
in the troughs now circulate in the filaments. It is important
that right above Hc2 the filaments keep hexagonal symmetry
of the vortex lattice below Hc2, thus removing the question
about impossibility of the second-order phase transition at
Hc2.

Under increasing H the filaments disappear one by one as
it happens with S laminae in the IS [33]. This implies that the
filament density continuously decreases down to zero at Hc3.
This is consistent with the data on M (Fig. 2) and Bμ (Fig. 5).

A final point to be addressed is the nucleation of super-
conductivity under a decreasing field. One can expect that the
first stable nuclei are small droplets in the sample bulk, then
the field near the droplets is perturbed, making zones of a
depleted field near the droplet poles. Therefore the next nuclei
will preferably appear in these zones, thus creating filaments
parallel to the field. In such a case the transition at Hc3 is
continuous, in consistency with experiments.

To summarize, results of reported magnetization, electrical
transport, μSR, and SHPM measurements performed on Nb
samples with different κ’s indicate that superconductivity in
type-II materials nucleates at Hc3 regardless of the orientation
of the applied field. Between Hc2 and Hc3 a superconducting
phase exists in the sample bulk, most probably in the form of
filaments parallel to the applied field. Under an increasing field
above Hc2 the filament number density decreases vanishing
at Hc3.

The suggested interpretation of properties of type-II su-
perconductors at a high field is based on experimental
results obtained for two low-κ (0.8 and 1.3) superconductors.
Therefore it is interesting to verify these observations with
materials of higher κ . Single-crystal A15 compounds and
high-Tc materials at sufficiently close to Tc temperatures
(where pinning is minimal) can be appropriate for such a
verification.
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APPENDIX: FORMULA (1)

To calculate δBmin between the peak and the saddle points
at Hc2 we will use cylindrical coordinates with an axis parallel
to B with azimuthal ϕ and radial r coordinates shown in Fig. 7.

The change dB in the normal (radial) direction over a radial
interval dr (see Fig. 8) occurs due to the current dI = l dg

running in the azimuthal direction in the cylindrical layer of
radius r and thickness dr , where l is the length of the cylinder
(length of the vortex) and g is the current per unit length of the
cylinder. In cgs units dB and dg are linked as [7]

dB = 4π

c
dg, (A1)

where c is the speed of light.
Therefore,

dI = l dg = l
c

4π
dB = (nsevr )l dr, (A2)

where ns, e, and vr is the number density, charge, and speed
of the superconducting electrons (electrons paired in Cooper
pairs) in the layer, respectively, and nsevr is the density of the
current running through the cross-sectional area l dr .

Therefore,

nsevrr dr = cr dB

4π
. (A3)

At Hc2 the Bohr condition for the minimal angular
momentum of the superconducting electron is

Lmin = m∗rvr = h̄. (A4)

Therefore,

dB = 4πnse(vrr)

cr
dr

∣∣∣∣
at Hc2

= h̄
4πnse

crm∗ dr. (A5)

Integrating the last expression over the radial interval from
the radius of the core Rc to the radius of the saddle-point RS
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one obtains formula (1),

δBmin = h̄
4πnse

cm∗

∫ RS

Rc

dr

r
= h̄

4πnse

cm∗ ln
RS

Rc

= 	0

πλ2
L

ln
RS

Rc

, (A6)

where 	0 and λL are the superconducting flux quantum and the London penetration depth, respectively.
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