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Abstract 

Purpose: Machine learning may contribute to understanding the relationship between the external load 

and internal load in professional soccer. Therefore, the relationship between external load indicators 

and the rating of perceived exertion (RPE) was examined using machine learning techniques on a group 

and individual level. Methods: Training data were collected from 38 professional soccer players over 

two seasons. The external load was measured using global positioning system technology and 

accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using 

two machine learning techniques, artificial neural networks (ANNs) and least absolute shrinkage and 

selection operator (LASSO), and one naive baseline method. The predictions were based on a large set 

of external load indicators. Using each technique, one group model involving all players and one 

individual model for each player was constructed. These models’ performance on predicting the 

reported RPE values for future training sessions was compared to the naive baseline’s performance. 

Results: Both the ANN and LASSO models outperformed the baseline. Additionally, the LASSO 

model made more accurate predictions for the RPE than the ANN model. Furthermore, decelerations 

were identified as important external load indicators. Regardless of the applied machine learning 

technique, the group models resulted in equivalent or better predictions for the reported RPE values 

than the individual models. Conclusions: Machine learning techniques may have added value in 

predicting the RPE for future sessions to optimize training design and evaluation. Additionally, these 

techniques may be used in conjunction with expert knowledge to select key external load indicators for 

load monitoring. 

Keywords: Football, athlete monitoring, global positioning system, rating of perceived exertion, 

predictive modelling 
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Introduction 

Nowadays, professional soccer clubs monitor training and match load to optimize physical 

fitness and reduce injury risk.1 When considering training and match loads, it is typical to distinguish 

between the external and internal load.2 The external load represents the dose performed and the internal 

load represents the psychophysiological stress experienced by the player.2 The external load is generally 

defined as all locomotor and non-locomotor activities performed by players.2 3 Global positioning 

systems (GPS) and inertial sensors are used for monitoring external load indicators (ELIs) such as the 

distance covered and jumps.3 The internal load can be quantified using the rating of perceived exertion 

(RPE), which is often considered a good indicator of the global internal load.4 Due to differences in 

individual characteristics (e.g., training history and actual physical fitness), similar external loads can 

result in different internal loads for players. Insights into the relationship between the external and 

internal load can improve load management and help to optimize physical fitness and support injury 

prevention.5 

To date, several studies about team sports have focused on the relationship between the external 

and internal load. In these studies, the data were analyzed using traditional statistical methods such as 

Pearson correlation coefficients, multiple regression and general linear models with partial correlation 

coefficients.6-8 Recently, a study in Australian football (AFL) found that artificial neural networks 

(ANNs), a machine learning approach, more accurately predicted the RPE in response to ELIs compared 

to traditional statistics.9 Other machine learning techniques could be used for this task as well, and each 

technique has strengths and weaknesses.10 

In general, the data-driven approach of machine learning is able to capture linear and non-linear 

relationships between various ELIs and the response variable RPE.10 Given a large set of ELIs, machine 

learning approaches can automatically identify the specific ELIs that are most predictive of the RPE, 

often without correcting for multicollinearity or using expert knowledge to hand select a set of ELIs. 

This can aid in evaluating newly developed external load metrics that come with improved tracking 

systems such as GPS technology and inertial movement sensors.11  

D
ow

nl
oa

de
d 

by
 K

u 
L

eu
ve

n 
2B

er
ge

n 
on

 1
2/

29
/1

7,
 V

ol
um

e 
0,

 A
rt

ic
le

 N
um

be
r 

0



“Relationships Between the External and Internal Training Load in Professional Soccer: What Can We Learn From Machine 

Learning?” by Jaspers A et al.  

International Journal of Sports Physiology and Performance 

© 2017 Human Kinetics, Inc. 

 
Another advantage of machine learning is its ability to detect possible inter-player differences. 

In the AFL study using machine learning techniques, various ELIs were examined to determine their 

predictive value for each player’s RPE.9 Inter-player differences were found for ELIs and their 

contribution to an individual’s RPE.9 For most players, the distance covered was the most predictive 

ELI for the RPE. However, for some players, the distance covered per minute or distance covered at 

high-speed (>14.4 km.h-1) had a higher predictive value, indicating that individual differences should 

be considered when evaluating dose and response to training load.9  

Even though AFL and soccer are both running-based team sports, each sport imposes different 

physical demands on players due to differences in rules, pitch dimensions, player rotations versus 

substitutions, and playing time.12 In comparison to soccer players, AFL players typically cover 2.6 times 

greater distance (1322m versus 517m) at very high-speed (19.8-25.1 km.h-1) and 3.5 times greater 

distance (328m versus 93m) at sprinting speed (>25.2 km.h-1) in matches.12 When comparing the 

absolute number of maximal acceleration efforts (>2.78 m.s-2) to the absolute number of high-speed 

efforts (19.8-25.1 km.h-1), AFL players show a 1:1 ratio whereas soccer players exhibit a ratio of 1.7, 

indicating that numerous accelerations during matches do not result in high-speed efforts.12 Based on 

this comparison, it may be unlikely that the results regarding the most predictive ELIs and inter-player 

differences in AFL will generalize to professional soccer. To our knowledge, no prior study in 

professional soccer has investigated the relationship between ELIs and RPE using machine learning 

techniques to determine which ELIs are most predictive of the RPE or to examine possible inter-player 

differences. 

In summary, the current study aims to evaluate the ability of machine learning techniques to 

(1) predict the RPE from a given set of ELIs; (2) identify which ELIs for soccer players contribute most 

to the RPE; and (3) evaluate both group and individual models to examine possible inter-player 

differences regarding the relationship between ELIs and RPE.  
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Methods 

Subjects 

 Data from 38 professional soccer players (22.7 ± 3.4 years, 1.83 ± 0.06 m, 77.0 ± 6.7 kg, and 

10.3 ± 1.8% body fat) competing for a team in the highest league in the Netherlands were included. 

Goalkeepers’ data were excluded from the study due to different physical demands. The study was 

conducted according to the requirements of the Declaration of Helsinki and was approved by the KU 

Leuven ethics committee (file number: s57732). 

Design 

 Data were collected from pre-season and in-season training sessions over two seasons (2014-

2015 and 2015-2016). Like with Bartlett et al.,9 this study focused on the relationship between ELIs and 

RPE in training sessions. Therefore, data from matches, on-field recovery sessions, and rehabilitation 

sessions were excluded from the analysis. For each training session, the external load was measured 

using 10 Hz GPS and 100 Hz accelerometer technology (Optimeye S5, Catapult Sports, Melbourne) in 

accordance with the recommendations for collecting and processing GPS data in sports.11 The internal 

load was measured using the RPE. Each player reported his RPE approximately 30 minutes after the 

training session using the modified Borg CR-10 scale.13 All players were familiarized with the use of 

RPE before the beginning of the study and were instructed to rate their perceived effort for the whole 

training session.4 Furthermore, each player was asked in isolation for his RPE to minimize the influence 

of factors such as peer pressure.14  

The first season contained data from 23 players. The number of sessions recorded per player 

ranges from 35 to 160 with a mean and standard deviation of 125 ± 34 sessions. The second season 

contained data from 28 players. The number of sessions recorded per player ranged from 51 to 163 with 

a mean and standard deviation of 109 ± 33 sessions. As players frequently switch teams in professional 

football, only 13 players appeared in both seasons. 
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Methodology 

To examine the relationship between the external load and RPE using machine learning, a set 

of 67 ELIs that could be exported from the manufacturer’s software (SprintTM version 5.1.7, Catapult 

Sports, Melbourne, Australia) was selected to capture the external load of a training session.  The set of 

ELIs can be divided into high-level categories about duration, distance, speed, acceleration and 

deceleration, PlayerLoad (i.e., a metric based on accelerometry),15 and repeated high-intensity effort 

(RHIE) activity (Table 1). The first goal was to identify the ELIs that are most predictive of the RPE. 

Therefore, a model was constructed that accurately predicts what a player’s reported RPE (internal load) 

will be based on the observed value for all ELIs in a training session.  

The mean absolute error (MAE) was used to assess a model’s predictive performance. This 

metric calculates the mean of the absolute errors (i.e., |(reported RPE value) – (predicted RPE value)| ) 

over all predictions. The MAE is easy to interpret as it uses the same unit as the RPE value: a MAE of 

1 means that, on average, the predicted RPE is one value below or above the reported RPE. While a 

MAE of zero is unrealistic, the goal is to minimize a model’s MAE.  

To construct predictive models, two standard machine learning techniques were considered as 

well as one naive baseline method: 

Artificial neural networks (ANN) 

ANNs are a standard approach for constructing non-linear models that often exhibit good 

predictive performance.10 However, a disadvantage of ANNs is that the resulting models are difficult 

to interpret (i.e., they do not provide insight into the interactions that are modelled among ELIs). 

Least absolute shrinkage and selection operator (LASSO) 

This technique is an advanced version of linear regression.16 When setting the regression 

coefficients, LASSO contains a mechanism that biases many of them to be zero. Consequently, LASSO 

only selects a subset of the ELIs, those with a non-zero coefficient, to be included in the model. This 

results in both better interpretability and more robustness to multicollinearity among the input variables 
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than traditional linear regression. As LASSO constructs a linear model, it is more robust to small sample 

sizes compared to the more expressive ANNs. 

Additionally, a well-known LASSO-based approach can be used to compute importance scores 

of the ELIs.17 The importance scores are calculated as the probability that an ELI is selected by the 

LASSO model and fall in the range of zero to one. Higher scores denote more important ELIs. In 

general, the presence of collinearity among the input ELIs tends to result in lower importance scores. 

Baseline  

This model does not consider the external load and always predicts the average RPE value over 

all training sessions used to construct the model. This model assumes that none of the ELIs are 

predictive of the RPE. While a MAE of zero is a lower bound (i.e., a perfect predictive model), the 

baseline provides a realistic upper bound for the MAE. A valuable predictive model should have a lower 

MAE than this baseline. 

Data analysis 

 Two experiments were conducted. Each one employed standard machine learning methodology 

and subdivided the data into two disjoint sets: the learning set and testing set. Each machine learning 

approach used the data in the learning set to construct a model. The independent testing set was used to 

estimate a model’s predictive performance on unseen (that is, future) data. Specifically, each model 

made a prediction for the reported RPE associated with every training sessions in the testing set, and 

the MAE was computed for these predictions. In addition, 90% confidence intervals (CI) and effect 

sizes were calculated.18 19 

The first experiment evaluated the value of group models. The temporal nature of the data was 

preserved by partitioning the data based on seasons: data from the first season served as the learning set 

and the data from the second season as the testing set. A consequence of the seasonal split was that each 

model made predictions for unseen players, that is, players who had no data in the learning set. One 

group model was constructed using each learning approach. The most predictive ELIs were identified 

by inspecting the most accurate learned model. 
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The second experiment examined the impact of accounting for inter-player differences. As only 

a few players appeared in both seasons, there was insufficient data to consider season-based partitioning 

of the data. Therefore, season 1 and season 2 were treated separately. Each season’s data was subdivided 

temporally such that the first 75% served as the learning set and the last 25% served as the testing set. 

Using each learning approach, both one group model and an individual model for each player was 

constructed. The group model was constructed using data from all the players in the learning set. An 

individual model for each player was constructed by only considering that specific player’s training 

session data in the learning set. A global mean of the absolute errors of all individual models was 

calculated so that the metric aligned with how the group model’s MAE was computed. 

For automated preprocessing and advanced analysis, custom Python scripts were developed 

using Python Pandas for data handling20 and Sklearn for machine learning.21 

Results 

The average RPE for all 5917 analyzed training sessions was 3.59 ± 1.46 AU. The following 

descriptive statistics were calculated for these commonly reported ELIs: duration 70 ± 16 minutes, total 

distance covered 4614 ± 1576 m, distance covered at high-speed (>15 km.h-1) 426 ± 351 m, and total 

distance covered per minute 65 ± 14 m.min-1. 

Table 2 shows the MAEs and 90% CIs for the group models constructed using the data from 

season 1 and evaluated on the data from season 2. In addition, the effect sizes are shown for the MAEs 

of ANN and LASSO group models compared to the baseline’s MAE. Both the ANN and LASSO 

models outperform the baseline. Compared to the baseline, the LASSO model resulted in a 29.8% 

reduction in the MAE when predicting the RPE of unseen training sessions from season 2. Moreover, 

the LASSO model made more accurate predictions than the ANN model. A trivial effect size was found 

for ANNs compared to the baseline, while a small effect size was found for the LASSO group model 

compared to the baseline.  

Table 3 displays the ELIs, and their corresponding importance scores, selected by the LASSO 

group model (learned on the data from season 1) that most contribute to predicting the RPE. 
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Table 4 reports the MAEs and 90% CIs for individual and group models that were constructed 

and evaluated on season 1 and season 2 separately. Additionally, the effects sizes are presented for the 

comparison of the MAEs of ANN and LASSO models (i.e., both individual and group models) with the 

baseline. In all eight cases, the learned models had a lower MAE score than the baseline. Regardless of 

learning method, the group models resulted in equivalent or even more accurate predictions of the 

reported RPE values than the individual models.  

Discussion 

This study aimed to evaluate the ability of machine learning techniques to predict the RPE of 

soccer training sessions from a set of ELIs. Additionally, it aimed to identify the ELIs which are most 

predictive of RPE within a professional soccer context. Finally, it attempted to explore inter-player 

differences for how ELIs contribute to each player’s RPE. 

The constructed ANN and LASSO models outperformed the baseline indicating that it is 

possible to construct machine learning models that capture a part of the relationship between ELIs and 

RPE in professional soccer. Additionally, it suggests that a good strategy is to start with a large set of 

ELIs, as opposed to hand selecting a small number of ELIs to reduce the chance of discarding a relevant 

ELI. Moreover, a strength of machine learning techniques is their ability to automatically select a subset 

of predictive ELIs, often without correcting for multicollinearity. Therefore, this method may provide 

new insights and support expert knowledge in the selection of key load indicators for monitoring 

strategies. 

The LASSO technique identified various ELIs as contributing the most to the perceived 

exertion in professional soccer (Table 3). These ELIs are partly in line with earlier findings in 

professional soccer using a smaller set of ELIs.6 8 However, as GPS devices from different 

manufacturers are used in the other studies, it is difficult to compare findings.11  

The novel important ELIs are indicators regarding decelerations. The results of this study 

indicate that this type of load, next to other ELIs, may contribute to a player’s RPE. Previously, mainly 

concentric, energy-demanding efforts were associated with higher RPE values in professional soccer.6 

8 Decelerating efforts are related to eccentric activity.22 This type of muscle activity has a lower energy 
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cost in comparison with concentric muscle activity.23 However, this type of eccentric contractions might 

more easily induce muscle damage.22 23 Therefore, monitoring ELIs concerning decelerations can be 

particularly important.  

Both individual and group models captured part of the relationship between ELIs and RPE. In 

contrast to Bartlett et al.,9 we found that group models using ANN and LASSO techniques demonstrate 

an equivalent or superior accuracy for both season 1 and 2 compared to individual models when 

predicting RPE based on ELIs. A combination of diverse underlying factors may explain these results.  

First, these findings are in contrast to the theoretical model of Impellizzeri et al.,2 which states 

that the internal load (RPE) results from the interaction between the external load (ELIs) and individual 

characteristics. The results of our study may indicate that there is less variation in the external loads and 

individual characteristics of professional soccer players than in AFL so there is less impact on the 

reported RPE. It is possible that there are greater differences in positional activity profiles12 24 and in 

individual characteristics (e.g., body composition and aerobic capacity) in AFL compared to 

professional soccer, which result in a more heterogenous group in AFL. The descriptive statistics for 

the ELIs and RPE clearly exhibit lower average values and less variation for professional soccer training 

sessions compared to AFL training sessions.9 These inter-sport differences may partly explain the 

results indicating the presence of other ELIs that mutually determine the RPE for (most of) the players 

within a professional soccer team.  

On the other hand, the sample size (i.e., the number of data points used to construct the model) 

is another factor which may have contributed to the equivalent performance of the group models. The 

group models are learned using a much larger sample size of more than 2000 data points compared to 

the individual models which typically relied on less than 100 data points. Nonetheless, we find that 

individual models constructed with the LASSO method perform similarly to the group models as the 

technique is robust to small sample sizes. If more data were available for each player, we would expect 

the individual models’ performance to improve. However, from a practical perspective this does not 

seem realistic. In professional soccer, only 100-150 training sessions (i.e., data points) are conducted 
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per season per player. Additionally, players are often transferred which makes it difficult to obtain data 

over multiple seasons. 

The current study focused on the relationship between ELIs and RPE for training sessions and 

matches were thus excluded. In future research, the same method could be applied to examine if similar 

ELIs influence the RPE for matches, or if different ELIs determine the RPE values of matches. 

However, as mentioned, machine learning requires sufficient amounts of data to build accurate 

predictive models. This could be a limitation due to the relative small number of games in a season. 

Additionally, the RPE for matches may be influenced by contextual factors.25 

Recently, the differential RPE (dRPE) has demonstrated its added value by quantifying 

respiratory and muscular perceived exertion.26-28 Using the dRPE may further clarify if specific ELIs 

have a higher impact on central (i.e., breathlessness) or local (i.e., leg muscle exertion) perceived 

exertion. These insights can aid in optimizing load and adaptation in terms of physiological (i.e., 

cardiorespiratory system) and biomechanical (i.e., musculoskeletal system) pathways.29 Additionally, 

measures of recovery and psychosocial factors were not considered. Therefore, the inclusion of 

measures such as pre-training perceived wellness and recovery may further clarify the RPE outcome 

for a given external training load.30 31 

The identification of key ELIs may aid in the evaluation of players’ training dose and response 

over time using efficiency ratios (i.e., the proportion between RPE and ELIs).32 33 For example, some 

ELIs may be perceived as less exerting at the end of preseason or a rehabilitation process compared to 

the beginning due to improvements in physical fitness. Consequently, a consistent deviation between 

the expected and reported RPE may be used as an efficiency ratio. This ratio could be used to exhibit if 

players evolve over time in their ability to deal with the external load. However, further research is 

needed regarding efficiency ratios relating to changes in fitness or fatigue.  

Practical applications 

Machine learning techniques may have added value in predicting the RPE for future training 

sessions and in selecting key ELIs for load monitoring in professional soccer. This study identified 

novel ELIs that should be considered such as high-magnitude decelerations that contribute to the RPE. 

D
ow

nl
oa

de
d 

by
 K

u 
L

eu
ve

n 
2B

er
ge

n 
on

 1
2/

29
/1

7,
 V

ol
um

e 
0,

 A
rt

ic
le

 N
um

be
r 

0



“Relationships Between the External and Internal Training Load in Professional Soccer: What Can We Learn From Machine 

Learning?” by Jaspers A et al.  

International Journal of Sports Physiology and Performance 

© 2017 Human Kinetics, Inc. 

 
In addition, group models may have an added value in predicting the RPE for individual 

players: they can be applied to any player whereas an individual model is only applicable to that specific 

player. Hence, group models can make predictions for newly transferred or youth players, for whom 

there is often little (or no) available data. From a monitoring perspective, a dashboard for player 

monitoring may initially be made with similar ELIs for the players within a team. In case more data is 

available for a specific player, an individual model can be constructed and a customized dashboard can 

be monitored.  

Conclusion 

Our study confirmed that machine learning techniques are able to predict RPE based on a large 

set of ELIs collected during two seasons in professional soccer. Secondly, these techniques can be 

applied to support expert knowledge for the selection of key ELIs such as decelerations and, 

accordingly, improve load management strategies. Lastly, group models predicted the RPE with an 

equivalent or even better accuracy than individual models. Possible limitations of the applied machine 

learning approaches were discussed. In addition, guidelines for future machine learning research and 

practical applications were provided. 
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Table 1: Set ELIs 

 

Category (# ELIs) Definition 

Duration (1 ELI) This ELI defines the duration of the training session. 

Distance (17 ELIs) These ELIs capture the total distance covered, 

distances covered in different speed zones, and 

percentages of distances covered at different speeds. 

The different speed zones considered are: 0-1 km.h-1, 

1-7 km.h-1, 7-12 km.h-1, 12-15 km.h-1, 15-20 km.h-1, 

20-25 km.h-1, >25 km.h-1. 

Speed (8 ELIs) This group contains ELIs that describe the distance 

covered per minute and the number of efforts in 

different speed zones. 

Acceleration and 

deceleration (18 ELIs) 

These ELIs capture the accelerations and decelerations, 

as well as the accelerating and decelerating distance. 

The ELIs regarding accelerating and decelerating 

efforts and distance are divided into different zones 

based upon magnitude (0-1 m.s-2, 1-2 m.s-2, 2-3.5 m.s-2 

and >3.5 m.s-2). 

PlayerLoad (10 ELIs) This category consists of ELIs based on measures of 

PlayerLoad. PlayerLoad 3D is calculated based on the 

changes in accelerations of a player in the X, Y and Z 

axis. Also, PlayerLoad per meter (i.e, PlayerLoad 3D 

per total distance covered) and the PlayerLoad per 

minute are included. Furthermore, it includes 

PlayerLoad 1D (i.e., PlayerLoad values per axis). 

RHIE (13 ELIs) An RHIE bout was defined as three or more sprints, 

high-magnitude accelerations or a combination of both 

within 21 seconds (modified from Spencer et al34 and 

Austin et al35). This category included measures based 

on RHIE such as RHIE bout recovery, RHIE duration, 

RHIE per bout, and RHIE total bouts.  

Abbreviations: #, number of; ELI, external load indicator; RHIE, repeated high-intensity effort. 

 

 

 

Table 2: Machine learning group models and baseline constructed on season 1 and evaluated on season 

2: MAEs, 90% CIs, % diff vs LASSO, and effect sizes of MAEs vs baseline 
 

Method Aggregation MAE (90% CI) % diff vs LASSO d Effect size 

ANN Group 1.09 (1.07 – 1.11) 26.6% 0.06 

0.44 

trivial 

small LASSO Group 0.80 (0.78 – 0.82) 

Baseline Group 1.14 (1.12 – 1.16) 29.8%   

Abbreviations: % diff, percentage difference; ANN, artificial neural networks; CI, confidence interval; 

d, standardized difference; LASSO, least absolute shrinkage and selection operator; MAE, mean 

absolute error; vs, versus. 
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Table 3: Overview of ELIs and importance score selected by the LASSO group model 
 

ELI Importance score Definition 

Acceleration zone 4 efforts 0.515 Number of acceleration efforts above 3.5 m.s-2 

RHIE per bout – mean 0.513 Average of repeated high-intensity efforts per bout of 

21 seconds 

Deceleration zone 3 distance 0.510 Decelerating distance between -3.5 and -2 m.s-2 

Velocity zone 5 distance 0.507 Distance covered between 15-20 km.h-1  

Acceleration zone 3 efforts 0.507 Number of acceleration efforts between 2 and 3.5 m.s-2 

PlayerLoad 0.487 Accumulated PlayerLoad measured by accelerometry 

Velocity zone 4 distance 0.487 Distance covered between 12-15 km.h-1  

Minutes 0.471 Training duration 

Deceleration zone 4 distance 0.466 Decelerating distance below -3.5 m.s-2 

PlayerLoad 1D side 0.458 Accumulated PlayerLoad for sideways movements (or 

medio-lateral axis) measured by accelerometry 

Velocity zone 6 efforts 0.428 Efforts between 20-25 km.h-1 

PlayerLoad 2D 0.384 Accumulated PlayerLoad with exclusion of up- and 

downwards movements (or longitudinal axis) 

measured by accelerometry 

Abbreviations: ELI, external load indicator; LASSO, least absolute shrinkage and selection operator; RHIE, 

repeated high-intensity effort. 
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Table 4: Machine learning models and baseline for season 1 and season 2: MAEs, 90% CIs, % diff vs 

LASSO, and effect sizes of MAEs vs baseline 
 

Method Aggregation Season 1 Season 2 

  MAE 

(90% CI) 

% diff vs 

LASSO 

d Effect 

size 

MAE 

(90% CI) 

% diff vs 

LASSO 

d Effect 

size 

ANN          

 Individual 0.84 

(0.82 – 0.86) 

3.6% 0.21 small 0.85 

(0.83 – 0.87) 

0% 0.33 small 

 Group 0.81 

(0.79 – 0.83) 

2.5% 0.26 small 0.83 

(0.81 – 0.85) 

-2.4% 0.34 small 

LASSO          

 Individual 0.81 

(0.76 – 0.86) 

 0.26 small 0.85 

(0.80 – 0.90) 

 0.33 small 

 Group 0.79 

(0.75 – 0.83) 

 0.30 small 0.85 

(0.80 – 0.90) 

 0.33 small 

Baseline Group 0.99 

(0.94 – 1.04) 

20.2%   1.11 

(1.05 – 1.17) 

23.4%   

Abbreviations: % diff, percentage difference; ANN, artificial neural networks; CI, confidence interval; d, standardized difference; 

LASSO, least absolute shrinkage and selection operator; MAE, mean absolute error; vs, versus. 
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