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Abstract. In this article we will deduce geometrical convergence rates for approximating matrix
functions via inverse-free rational Krylov methods. In practical applications one frequently encoun-
ters matrix functions such as, e.g., the matrix exponential or matrix logarithm; often the matrix
under consideration is too large to compute the matrix function directly, and an approximation by
using Krylov subspaces is used instead. If many matrix-vector products of the form f(A)v are re-
quired, then it pays off to use smaller rational Krylov subspaces leading to good approximations
which can be evaluated with little computational effort. Unfortunately the required system solves
in constructing the rational Krylov space often create numerical problems or require quite some
computing time.

A novel approach to obtain compact rational Krylov subspaces is to first build a large Krylov
subspace and then transform this space in a numerically reliable manner to an approximate rational
Krylov space. The approximation error depends of course on the size of the original Krylov subspace.
In this article we will prove that the approximation converges geometrically (for increasing size of
the Krylov subspace) to the actual rational Krylov space. These convergence rates can then be used
to predict which size of Krylov space is required to obtain a certain accuracy in the approximation.
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1. Introduction. Many applications in science and engineering require the eval-
uation of expressions of the form

f(A)v, (1.1)

where A ∈ Rn×n is a large, possibly sparse or structured, matrix, f is a suitable
function, and v ∈ Rn is a vector. The function f(A) can be defined in terms of the
spectral factorization or Jordan canonical form of A; see, e.g., Higham [14].

The evaluation of (1.1) is of interest for entire functions such as

f(t) = exp(t), f(t) = (1− exp(t))/t, f(t) = cos(t), f(t) = sin(t),

with applications to the solution of ordinary and partial differential equations [6,7,10,
12, 16, 24], network analysis [8], as well as to inverse problems [4]. Other functions f
of interest include f(t) =

√
t with application to the solution of systems of stochastic

differential equations [1], and f(t) = ln(t).
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Higham [14] discusses and analyzes many methods for the evaluation of f(A)
that can be used when the matrix A is small enough to allow factorization. We are
interested in the approximation of expressions (1.1) with matrices A that are too
large to factor, and discuss the reduction of such matrices to small ones with stan-
dard and rational Krylov subspace methods. The evaluation of f applied to a small
matrix so obtained can be carried out with methods described in [14]. Generally, the
implementation of rational Krylov subspace methods requires the solution of linear
systems of equations with matrices of the form A−ψjI, where ψj is a prescribed pole.
Typically, an LU factorization has to be computed for every distinct pole. These fac-
torizations can be very demanding computationally when the matrix A is large and
does not posses structure that can be exploited. Recently, Mach, Pranić, and Van-
debril [20, 21] described an implementation of approximate rational Krylov methods
that circumvents the solution of linear systems of equations by using standard Krylov
subspaces of sufficiently high dimension and compressing it to the desired rational
space. This paper is concerned with the investigation of the convergence properties
of these methods, i.e., how quickly the approximate rational Krylov subspaces gen-
erated converge to rational Krylov subspaces when the dimension of the standard
Krylov subspace is increased.

Assume for the moment that the matrix A is large and symmetric. Applica-
tion of ` steps of the symmetric Lanczos method to A with initial vector v yields a
decomposition of the form

AV` = V`T` + g`e
T
` , (1.2)

where the columns of V` = [v1,v2, . . . ,v`] ∈ Rn×` form an orthonormal basis for the
Krylov subspace

K`(A,v) = span{v, Av, . . . , A`−1v}, (1.3)

with v1 = v/‖v‖2 and g` ∈ Rn satisfies V T
` g = 0. Throughout this paper, e` =

[0, . . . , 0, 1]T is the `th axis vector, the superscript T stands for transposition, and ‖·‖2
denotes the Euclidean vector norm or spectral matrix norm. The matrix T` ∈ R`×`

is symmetric and tridiagonal. We assume to be in the generic situation, that means
that ` is small enough so that no breakdown of the Lanczos method occurs. As a
result the subdiagonal elements of T are nonvanishing. We then can approximate the
expression (1.1) by

V`f(T`)e1‖v‖2; (1.4)

see, e.g., [3, 7] and references therein for error bounds.
The relation (1.2) and the properties of T` show that the column vj of V` can be

expressed as a polynomial in A of exact degree j − 1 times the vector v. It follows
that the expression (1.4) is an approximation of (1.1) in which f is replaced by a
polynomial in A of degree at most `−1. In particular, when the function f cannot be
approximated well by a polynomial of fairly low degree on the spectrum of A, accurate
approximation of f(A)v by an expression of the form (1.4) generally requires that a
large number of Lanczos steps ` be carried out to determine an accurate approximant.
The computation of many Lanczos steps ` is undesirable because this yields a large
matrix T` in (1.4) and this makes the evaluation of f(T`) computationally demanding.
It is the aim of the present paper to discuss how T` can be replaced by a matrix of
smaller size by using a rational Krylov subspace instead of the standard subspace (1.3).
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This replacement is important, in particular, when f depends on some parameter
and f(T`) has to be evaluated for many values of this parameter. This situation is
illustrated in Section 6 for an exponential integrator.

The rational symmetric Lanczos method can be applied to determine rational
approximants of f with poles at or near singularities of the function f in the complex
plane. These approximants may converge to f much faster than polynomial approx-
imants. Therefore, the rational symmetric Lanczos method may require significantly
fewer steps than than the standard symmetric Lanczos method to deliver an approx-
imation of (1.1) of desired quality. Because of this, the development and application
of rational Lanczos methods has received considerable attention in the literature; see,
e.g., [2, 3, 6, 7, 11, 17–19, 22]. The main drawback of the rational Lanczos method is
the already mentioned need to solve linear systems of equations.

Mach et al. [20] proposed that rational Krylov subspaces determined by a sym-
metric nonsingular matrix A and by poles at 0 and ∞ be approximated by a standard
Krylov subspace (1.3). Assume that a rational Krylov subspace

Kp,q(A,v) = span{A−p+1v, A−p+2v, . . . , A−1v,v, Av, . . . , Aq−1v} (1.5)

of dimension p+ q − 1 is desired. Sometimes rational Krylov subspaces of this form,
with poles at zero and infinity only, are referred to as extended Krylov subspaces;
see, e.g., [6]. The approximation method in [20] first generates a standard Krylov
subspace (1.3) of dimension ` ≥ p+ q− 1 with the symmetric Lanczos method. Then
the symmetric tridiagonal matrix T` in (1.2) is transformed by orthogonal similarity
transformations to a symmetric block diagonal matrix with overlapping blocks of
the form matching the desired rational Krylov subspace. The block structure of the
latter matrix is chosen to correspond to the structure of the recursion relations for
orthogonal rational functions with poles at 0 and ∞ described in [17, 18]. No linear
systems of equations with the matrix A have to be solved. The subspace determined by
the transformation can accurately approximate the desired rational Krylov subspace
(1.5). This approach can be thought of as a scheme for approximating the expression
(1.1) in three steps: i) compute an orthonormal basis for a standard Krylov subspace
(1.3), ii) apply this basis to determine an orthogonal basis that approximately spans
the rational Krylov subspace (1.5), and iii) consider the computed basis a basis for
the rational Krylov subspace (1.5) and use it to compute a rational approximation
with poles at 0 and ∞ of f . This scheme for approximating f(A)v is attractive when
an accurate approximation of f(A)v can be determined in a rational Krylov subspace
(1.5) of low dimension, while the required dimension of the standard Krylov subspace
(1.3) is large.

The present paper aims to shed light on how the dimension ` of the standard
Krylov subspace (1.3) should be chosen so that elements in the rational Krylov sub-
space (1.5) can be approximated sufficiently accurately by elements in the standard
Krylov subspace. We will investigate this question with the aid of complex variable
methods. Our analysis is applicable also when the matrix A is nonsymmetric and
rational Krylov subspaces with several finite poles are approximated by a standard
Krylov subspace. This situation is described in [21] and will be analyzed in Section 4.

This paper is organized as follows. Section 2 revisits the basic principles of the
algorithm by Mach et al. [20, 21]. Section 3 considers the choice of the dimension `
of the standard Krylov subspace (1.3) when the rational Krylov subspace only has
one finite pole such as (1.5). The approximation of rational Krylov subspaces with
several finite poles is discussed in Section 4. Different ways of approximating A−1v are
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described and compared in Section 5. Computed examples are presented in Section
6, and concluding remarks can be found in Section 7.

2. The inverse-free approximation of rational Krylov spaces. Let A be
a nonsingular matrix for which we would like to compute an approximate rational
Krylov subspace Kp,q(A,v) without explicit system solves. To do so we need a large
oversampled standard Krylov subspace K`(A,v), i.e., ` � p + q. Let columns of
the matrix V` form an orthonormal basis for this Krylov subspace, cf. (1.2). Let
us denote the orthonormal basis vectors for the rational Krylov subspace (1.5) by
w1, . . . ,wp+q−1, and set Wp+q−1 = [w1, . . . ,wp+q−1]. To keep our discussion sim-
ple, we consider extended Krylov subspaces (1.5) in this section. However, suitably
modified, the approach outlined applies to more general rational Krylov subspaces.

The QR factorization of the symmetric tridiagonal matrix T` = V T
` AV` in (1.2)

can be computed easily with rotators. It is of the form

T` = C1 · · ·C`−1R, (2.1)

where each Ci is the identity except for the part (i : i + 1, i : i + 1) which equals
a 2 × 2 rotation. The matrix R ∈ R`×` is upper triangular with small bandwidth.
It was shown in [20] that the matrix WT

p+q−1AWp+q−1 admits a similar factorization
namely

WT
p+q−1AWp+q−1 = C̃σ1

· · · C̃σp+q−2
S̃,

where the C̃i’s are rotators analogous to the rotators Ci, S̃ ∈ R(p+q−1)×(p+q−1) is
upper triangular, and (σ1, . . . , σp+q−2) is a permutation of (1, . . . , p+ q− 2). The ex-
tended Krylov subspace (1.5) is constructed by starting with p = q = 1 and increasing
either p or q by one at a time until the desired extended Krylov subspace is obtained.
The permutation vector (σ1, . . . , σp+q−2) is determined by the order in which p or q
are increased. For instance, a standard Krylov space (1.3) of length ` corresponds to
the ordering (1, 2, . . . , `−1); a rational Krylov space of length ` obtained by replacing
A by A−1 in (1.3) is associated with the ordering (` − 1, ` − 2, . . . , 1); a CMV-like
ordering (1, 3, 5, . . . , 2, 4, 6, . . . ) corresponds to an extended Krylov space (1.5) that
is built up by alternatingly increasing p and q.

We outline the algorithm described in [20]. The algorithm first constructs a
standard Krylov subspace K`(A,v) of generally fairly high dimension `. Substituting
the factorization (2.1) into (1.2) yields

AV` = V`T` + g`e
T
` = V`(C1 . . . C`−1R) + g`e

T
` .

Next, we apply at most p + q − 3 unitary similarity transformations, say Qi, to
reorder the rotations Ci. More precisely, the purpose of the transformation Qi is
to position the rotator that acts on rows and columns i and i + 1 on the proper
side of the rotator that acts on the rows and columns i − 1 and i. These similarity
transformations preserve the upper triangular form of the matrix R. At the end we
get, for Q = Q1 . . . Qp+q−3 and Ṽ` = V`Q,

AṼ` = AV`Q = V`QQ
H(C1 . . . C`−1R)Q+ g`e

T
` Q

= Ṽ`(C̃σ1
· · · C̃σp+q−2

C̃p+q−1 · · · C̃`−1R̃) + g`e
T
` Q,

where R̃ is upper triangular. Note, that only at most the first p+ q − 2 rotators are
reordered1. Truncating the right-hand side and left-hand side of the above expression

1We remark that the positioning of C̃p+q−1 plays a minor role. Details can be found in [20].
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so that only the first p+ q− 1 vectors on each side of the equality are retained yields

AW̃p+q−1 = W̃p+q−1(C̃σ1 · · · C̃σp+q−2 S̃) + g̃`q
T ,

where q = eT` Q ∈ Rp+q−1. In the absence of the residual g̃`q
T it would follow from

the implicit Q-theorem shown in [20] that the matrix W̃p+q−1 agrees with the desired
matrix Wp+q−1. The size of ‖g̃`q

T ‖2 therefore is important for gaining insight into

how well the columns of W̃p+q−1 approximate those of Wp+q−1.

3. Rational Krylov subspaces with one finite pole. Let A be a nonsingular
matrix and consider the problem of approximating A−k for some positive integer k by
a polynomial in A. This problem can be studied with the aid of conformal mappings.
Let λ(A) denote the spectrum of A and let Ω be a simply connected compact set in
the complex plane C such that

λ(A) ∈ Ω, 0 6∈ Ω. (3.1)

Assume that the boundary Γ of Ω is a Jordan curve and introduce the analytic function
φ that maps the set {w ∈ C : |w| > 1} conformally onto Ωc := C̄\Ω so that φ(∞) = ∞
and φ′(∞) > 0. Here C̄ denotes the extended complex plane C ∪ {∞}. We assume
that φ is defined as a continuous and univalent function in 1 ≤ |w| <∞. Then φ has
a Laurent expansion

φ(w) = cw + d0 + d1w
−1 + d2w

−2 + . . . ,

for |w| sufficiently large. The coefficient c is known as the capacity of Ω; it depends on
the scaling of Ω; see Gaier [9] or Walsh [25, Chapter 4] for details on the mapping φ.

Introduce the level curves

Γρ := {φ(w) : |w| = ρ}, ρ > 1. (3.2)

Since 0 ∈ Ωc, there is a constant ρ0 > 1 such that

0 ∈ Γρ0 . (3.3)

Define the uniform norm

‖h‖Ω := max
z∈Ω

|h(z)|,

for functions h that are analytic in the interior of Ω and continuous on Ω, and introduce
the set P` of all polynomials of degree at most `.

Theorem 3.1. Let the set Ω ∈ C satisfy (3.1) and let ρ0 > 1 be defined by (3.3).
Define the best polynomial approximant p` ∈ P` of z−k on Ω, i.e., p` is the solution
of

‖z−k − p`(z)‖Ω = min
p∈P`

‖z−k − p(z)‖Ω.

Then

lim sup
`→∞

‖A−k − p`(A)‖1/`2 ≤ 1/ρ0. (3.4)
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Proof. It can be shown that

lim sup
`→∞

‖z−k − p`(z)‖1/`Ω = 1/ρ0; (3.5)

see, e.g., [25, Chapter 4, Theorem 5]. When A is diagonalizable, the theorem follows
by substituting the spectral factorization of A into (3.4) and then applying (3.5).
When A is defective, its Jordan decomposition can be used. We use the spectral
norm in (3.4), but the bound holds for other matrix norms as well.

The above theorem establishes geometric convergence. The rate of convergence
increases with ρ0. The size of ρ0 depends on the choice of Ω and on the location of
the origin in relation to Ω. We would like ρ0 > 1 to be large. This implies that we
would like the set Ω to be far away from the origin and of small size. Note that while
ρ0 is independent of k, the norm ‖A−k − p`(A)‖2 may depend on k.

The situation when A is symmetric is considered in [20]. Assume that, in addition,
A is positive definite. Then Ω may be chosen as the smallest interval that contains
λ(A). This is illustrated in the following example.

Example 3.1. Let all eigenvalues of the symmetric matrix A live in the interval
[c, d] with 0 < c < d. Then all eigenvalues of the matrix

M :=
(d+ c)I − 2A

d− c
(3.6)

are in the interval [−1, 1]. The conformal mapping

φ(w) :=
1

2

(
w + w−1

)
(3.7)

maps the exterior of the unit circle to the exterior of the interval [−1, 1] and is known
as the Joukowski map. Its inverse is given by

φ−1(z) := z +
√
z2 − 1,

where the branch of the square root is chosen so that |z+
√
z2 − 1| > 1 for z 6∈ [−1, 1];

see, e.g., Henrici [13] for a detailed discussion on the properties of φ−1.
The transformation (3.6) maps zero to the point

z0 :=
d+ c

d− c
.

The solution of φ(w) = z0 yields

ρ0 := φ−1(z0) = z0 +
√
z20 − 1.

For instance, c = 1 and d = 2 give z0 = 3 and ρ0 = 3 + 2
√
2. 2

Example 2.2. Let all eigenvalues of the (possibly nonsymmetric) matrix A ∈ Rn×n

lie in the disk with center c > 0 and radius 0 < r < c. Consider the matrix

M := (cI −A)/r. (3.8)

Its eigenvalues are in the unit disk. The relevant conformal mappings are φ(w) := w
and φ−1(z) := z. The transformation (3.8) maps zero to z0 := c/r. It follows that
ρ0 = c/r. 2
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4. Rational Krylov subspaces with several finite poles. Mach et al. [21]
describe the approximation of rational Krylov subspaces with several poles ζ1, ζ2, . . . ,
ζp by a standard Krylov subspace (1.3). Define the rational Krylov subspace

Kp1,...,ps,ζ1,...,ζs(A,v) = span{v, (A− ζ1I)
−1v, . . . , (A− ζ1I)

−p1v,

(A− ζ2I)
−1v, . . . , (A− ζ2I)

−p2v, . . . , (4.1)

(A− ζsI)
−1v, . . . , (A− ζsI)

−psv}.

When ζj = ∞, the negative power (A − ζjI)
−s should be replaced by the positive

power As for s = 1, 2, . . . , pj . The poles ζj do not have to be distinct.
Let Ω be a compact simply connected set in C whose boundary is a Jordan curve

and assume that (3.1) holds. Similarly as in Section 3, the rate of convergence is
determined by the level curves (3.2). There is a largest constant ρ0 > 1 such that all
poles ζj are on or exterior to the level curve Γρ0

. The following result is analogous to
Theorem 3.1 and can be shown in the same manner.

Theorem 4.1. Let the conditions of Theorem 3.1 hold and define ρ0 as described
above. Then (3.4) holds.

Proof. Let p` ∈ P` be the best polynomial approximant of z−k on Ω. The proof
of Theorem 4.1 used Walsh [25, Chapter 4, Theorem 5]. The latter result is also valid
when there are several distinct poles. It follows that

lim sup
`→∞

‖z−k − p`(z)‖1/`Ω = 1/ρ0.

This shows geometric convergence. The rate of convergence depends on the distance
between Ω and the closest pole ζj . Here “distance” is measured using the level curves
(3.2).

The results of this and the previous section provide insight into how large the
dimension ` of the standard Krylov subspace (1.3) has to be chosen. For instance,
when the poles of the rational Krylov subspaces (1.5) or (4.1) are close to the spectrum
of A, then it may be necessary to choose ` fairly large. The fact that elements in the
rational Krylov subspaces (1.5) or (4.1) are approximated by elements in the standard
standard Krylov subspace (1.3) leads to an approximation error in (1.1). This error
depends both on how well the basis elements of the rational Krylov subspaces (1.5)
or (4.1) can be approximated by elements in the standard Krylov subspace (1.3) and
the magnitude of the coefficients of the former basis in the approximation of (1.1).

5. Simultaneous and individual approximations of the inverse. It is clear
that when the function f in (1.1) has a singularity close to the spectrum of A, it may
be advantageous to approximate f(A) by a rational function with suitably allocated
poles when compared with polynomial approximation. Rational approximations are
obtained with the aid of extended or rational Krylov subspaces. Druskin and Knizhn-
erman [6] considered matrix functions (1.1) with an entire function f and a symmetric
positive definite matrix, and showed that it may be beneficial to use extended Krylov
subspaces (1.5) when approximating these kind of matrix functions. The numerical
method described in [6] fixes p and first determines an orthonormal basis for the ra-
tional Krylov subspace (1.5) with p > 1 and q = 1. This basis is computed with the
symmetric Lanczos process applied to the matrix A−1 and with initial vector v. The
matrix A−1 is not formed; instead p− 1 linear systems of equations with the matrix
A are solved by using the conjugate gradient method. Having computed an orthonor-
mal basis for the space Kp,1(A,v), Druskin and Knizhnerman proceed to compute an
orthonormal basis for the space Kp,q(A,v) for a desired q > 1.
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The approach from Mach, et al. [20, 21] differs from the one in [6] in that we ap-
proximate all negative powers in A−1v, . . . , A−p+1v, required in the extended Krylov
subspace (1.5), at once. However, we will show in this section that our approach, un-
der some minor constraints, is closely related to one used in [6]. We restrict ourselves
to the analysis of a single inverse A−1v, more inverses are treated identically.

Let the matrix V` = [v1,v2, . . . ,v`] ∈ Rn×`, whose columns form an orthonormal
basis for the standard Krylov subspace (1.3), be available. We described in Section 2 a
transformation of the form V`Q such that the orthogonal columns of Ṽ` = V`Q approx-
imately span an extended Krylov subspace. Assume that the columns approximately
span the space

K2,`−1(A,v) = span{A−1v,v, Av, . . . , A`−2v}.

Since range(Ṽ`) = range(V`), we have

y := argmin
y∈range{V`}

‖A−1v − y‖2 = argmin
y∈range{Ṽ`}

‖A−1v − y‖2.

Thus, the approximation of A−1v in K`(A,v) determined by a minimal residual
method is as accurate as the approximation of A−1v determined in the approxi-
mation of the rational Krylov space K2,`−1(A,v). It follows that solving a sequence
of linear systems of equations with the matrix A, as advocated in [6], is in exact arith-
metic equivalent to our approach if the Krylov subspaces for the MINRES method
are chosen of sufficiently large dimension.

6. Computed examples. This section contains two types of experiments. In
Section 6.1 we illustrate that our technique for approximating matrix functions can
lead to savings in computing time. Section 6.2 compares the convergence bounds of
Section 4 and 6 with actual approximation errors. All experiments were executed in
MATLAB.

6.1. Savings in computing time. A simple ODE was solved with an exponen-
tial integrator from EXPODE [15] and compared to the approximate rational Krylov
approach. The problem ẋ = ∆x is a 1D-heat-equation with a sinusoidal heat distribu-
tion as starting condition, the solution at time stamp t equals x(t) = exp(At)x0. The
matrix A ∈ Rn×n, for n = 200, is a symmetric tridiagonal matrix with −0.2(n + 1)2

on the diagonal and 0.1(n+ 1)2 on the subdiagonals.
The accuracy of both methods was roughly 7 significant digits. The timings are

as follows. A single matrix exponential in EXPODE exp(At) took 0.13s and several
more evaluation as in Figure 6.1 resulted in 1.5s. A smooth solution as computed by
EXPODE and via 200 evaluations of the approximate rational Krylov space is shown
in Figure 6.1. EXPODE required 22s, whereas the approximate approach only needed
0.65s to achieve the same result.

6.2. Prediction of the convergence. Example 6.1. In this example, the ma-
trix from [18, Example 5.1] was used. Consider a 1000 × 1000 symmetric positive
definite Toeplitz matrix A, having entries

ai,j =
1

1 + |i− j|
.

The vector A−1v was computed with MATLAB and serves as a reference. A
sequence of subspaces approximating the extended Krylov subspace {v, A−1v} was
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Fig. 6.1. Solution via EXPODE, required time: 1.5s.
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Fig. 6.2. 200 intermediate solutions via approximate rational Krylov, required time: 0.65.

computed for varying `. In Figure 6.3 the orange line reveals how well A−1v is approx-
imated in the computed subspace. The green line displays the expected convergence
based on (3.4), with ρ0 ≈ 1.4345. We yield the same ρ0 by computing the level curves
(3.2) using the Schwarz-Christoffel toolbox [5] and by using the formulas in Example
3.1. However, the orange line seems to follow ρ ≈ 1.5263 instead, until it reaches ma-
chine precision. But, the difference between the actual convergence and the predicted
convergence is shrinking for growing n as shown in Figure 6.4.

The eigenvalues for n = 1000 lie between 0.3863 and 12.1259. We chose Ω to be
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Fig. 6.4. Example 6.1–Convergence rate over n.

a rectangle with height 2 e−10 around the interval [0.3863, 12.1259]. The conformal
mapping computed with the Schwarz-Christoffel toolbox [5] mapping the concentric
circles with radius 1, 1/0.9, 1/0.8, 1/0.7, 1/0.6, 1/0.5, 1/0.4 is shown in Figure 6.5.

Example 6.2. We use the Toeplitz matrix with symbol

f(z) = 2iz−1 − 3i+ z2 + 0.7z3.

This is a shifted version of the Toeplitz matrix “head of a bull” used by Reichel
and Trefethen [23]. The results for n = 1000 are shown Figure 6.6. The actual
convergence rate is predicted very well by the conformal mapping. We know that all
eigenvalues lie within f(T), with T the unit circle. Thus we used f(T) as input for the
Schwarz-Christoffel toolbox, see Figure 6.7, where f(T) is surrounded by the orange
line.

Example 6.3. Let us consider now the effect of different poles. We take the
Toeplitz matrix from the first example (n = 1000) and divide it by 12.5 so that all
eigenvalues lie in [0, 1]. We approximate the matrix function f(A)v with

f(z) = log(z) + log(1− z).
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Fig. 6.5. Example 6.1–Conformal mapping.
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Fig. 6.6. Example 6.2–Convergence behavior for n = 1000.

For a successful approximation we require a rational Krylov subspace with poles at
infinity, 0, and 1. A rational Krylov subspace where the poles ∞, 0,∞, 1 are repeated
10 times, is sufficient to approximate the matrix function to 1 e−9. The first predicted
convergence rate is the value of the conformal mapping at 0. The second prediction
is the value at 1. Unfortunately the results in Figure 6.8 are not as good as hoped
for.

We repeat the same for the nonsymmetric “bull’s head” Toeplitz matrix. This
time we shift with 3.5 instead of −3i and divide by 6. The idea is again to gather the
eigenvalues inside a band [0, 1]× iR near the real line. With the conformal mapping
we can now predict a convergence rate for the pole 0 and for the pole 1. The results
are much better now and shown in Figure 6.9.

7. Conclusion. In this article we analyzed the methods proposed by Mach et
al. [20, 21] to construct approximate rational Krylov subspaces. We were able to
deduce convergence rates based on complex analysis methods, predicting how large
the original Krylov subspace prior to contraction had to be. We also showed the
equivalence with Krylov subspace methods for approximating the matrix inverses.
All statements were validated in the numerical experiments section, also illustrat-
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Fig. 6.9. Example 6.3–“head of bull”
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ing the possible computational savings when using the approximate Krylov subspace
techniques for an exponential integrator.
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[11] S. Güttel and L. Knizhnerman, A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix

functions, BIT, 53 (2013), pp. 595–616.
[12] G. I. Hargreaves and N. J. Higham, Efficient algorithms for the matrix cosine and sine, Numer.

Algorithms, 40 (2005), pp. 383–400.
[13] P. Henrici, Applied and Computational Complex Analysis, vol. 1, Wiley, New York, 1974.
[14] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
[15] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp.

209–286.
[16] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential

operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.
[17] C. Jagels and L. Reichel, The extended Krylov subspace method and orthogonal Laurent poly-

nomials, Linear Algebra Appl., 431 (2009), pp. 441–458.
[18] C. Jagels and L. Reichel, Recursion relations for the extended Krylov subspace method, Linear

Algebra Appl., 434 (2011), pp. 1716–1732.
[19] L. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov subspace method

for matrix function evaluations, Numer. Linear Algebra Appl., 17 (2010), pp. 615–638.
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