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Abstract. We consider copula modeling of the dependence between two or more random

variables in the presence of a multivariate covariate. The dependence parameter of the

conditional copula possibly depends on the value of the covariate vector. In this paper

we develop a new testing methodology for some important parametric specifications of this

dependence parameter: constant, linear, quadratic, etc. in the covariate values, possibly

after transformation with a link function. The margins are left unspecified. Our novel

methodology opens plenty of new possibilities for testing how the conditional copula depends

on the multivariate covariate and also for variable selection in copula model building. The

suggested test is based on a Rao-type score statistic and regularity conditions are given under

which the test has a limiting chi-square distribution under the null hypothesis. For small

and moderate sample sizes, a permutation procedure is suggested to assess significance. In

simulations it is shown that the test performs well (even under misspecification of the copula

family and/or the dependence parameter structure) in comparison to available tests designed

for testing for constancy of the dependence parameter. The test is illustrated on a real data

set on concentrations of chemicals in water samples.
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1. Introduction

Conditional copulas provide a convenient way to model the dependence between random

variables whose dependence structure is possibly influenced by covariates. See Patton [18]

for an early reference, Acar et al. [2] and Abegaz et al. [1] for semiparametric estimation,

and Veraverbeke et al. [26] and Gijbels et al. [14] for nonparametric estimation of conditional

copulas, among others.

A crucial fact in conditional copula modeling is that, in general, the covariates influence

the conditional copula on two levels: the copula itself (the dependence structure) may change

with the value of the covariate vector, and the margins may be influenced by the covariate

vector. An important simplification occurs when the dependence structure remains unchanged

whatever the realized value of the covariate vector. This simplification is often referred to as

‘the simplifying assumption’; see, e.g., Hobæk Haff et al. [15], Acar et al. [4], Stöber et al.

[23] and Gijbels et al. [11].

In this paper we contribute to testing for covariate effects on conditional copulas, and this

within a parametric copula setting. The literature on such testing problems is quite limited.

It includes a semiparametric likelihood ratio type of test—not assuming any structure on the

functional dependence parameter in a given copula—that was proposed and studied in Acar

et al. [3]; and nonparametric tests, leaving the copula dependence structure as well as the

margins fully unspecified. In contrast to these semiparametric and nonparametric approaches,

this paper presents a new approach, in which the starting point is to model parametrically

the copula, but also its functional dependence parameter. The margins are left unspecified.

Despite this parametric framework for both the copula and the dependence parameter, it

turns out that the test proposed herein continues to have a very good performance under

misspecification of one or both of these parts. This is an important first advantage. A second,

more practical, advantage is that the proposed test does not require any choice of smoothing

parameter (due to its major parametric setting). Thirdly, the developed test methodology

can be applied for several testing problems: (i) testing for no covariate effect; (ii) testing for

specific effects of a selection of covariates; (iii) testing for specific effects of all covariates (such

as linear versus quadratic).

The paper is further organized as follows. In Section 2 we present the statistical frame-

work, and briefly review semiparametric and nonparametric tests that are available in the

literature. The new test methodology is exposed in Section 3, in which the essential elements

of the derivation of the test and its asymptotic behavior are presented. Details about the

theoretical results, including their proofs, are provided in the Appendix. The test methodol-

ogy is applicable to several testing settings, as is explained in Section 3. In Sections 4 and 5

the test methodology is illustrated in various testing problems, in a univariate as well as a
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multivariate covariate setting. The use of the test in statistical analysis is demonstrated in a

real data example in Section 6.

2. Statistical framework and state-of-the-art

In this section we first introduce the statistical framework, the main testing problem of

interest, and briefly indicate major testing procedures available in the literature.

2.1. Statistical framework. Suppose we have n independent and identically distributed ob-

servations (Y11, Y21,X1), . . . , (Y1n, Y2n,Xn) from a random vector (Y1, Y2,X), where Y1 and Y2

are univariate random variables and X is a d-dimensional random vector. Let H(y1, y2,x) be

the cumulative distribution function of (Y1, Y2,X). Denote the joint and marginal distribution

functions of (Y1, Y2), conditionally on X = x, as

Hx(y1, y2) = Pr(Y1 ≤ y1, Y2 ≤ y2 |X = x),

F1x(y1) = Pr(Y1 ≤ y1 |X = x), F2x(y2) = Pr(Y2 ≤ y2 |X = x).

If F1x and F2x are continuous, then by Sklar’s theorem (see, e.g., Sklar [22], Nelsen [17])

applied to the conditional probability distribution setting, there exists a unique copula Cx

that links the conditional margins into the conditional joint distribution through the relation

Hx(y1, y2) = Cx

{
F1x(y1), F2x(y2)

}
.

The function Cx is called a conditional copula.

A first interest in this paper is to test whether the conditional copula Cx really depends

on x. More formally, we want to test the hypothesis

H0 : ∀x,x′∈RX
Cx = Cx′ (1)

versus the alternative

HA : ∃x,x′∈RX
Cx 6= Cx′ ,

where RX denotes the domain of the covariate X.

2.2. State-of-the-art. In what follows, suppose for a moment that we can observe U1i =

F1Xi(Y1i), U2i = F2Xi(Y1i) from the conditional copula CXi . If these observations are not

available (i.e., F1X and F2X are unknown), then one needs to estimate these, via estimation

of the conditional margins, and work with pseudo-observations, denoted by (Û1i, Û2i).
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2.2.1. Semiparametric approach of Acar et al. [3]. In Acar et al. [3] the conditional copula

function is modeled as

Cx(u1, u2) = C(u1, u2; θ(x)), (2)

where C(·, ·; θ) is a given parametric copula function, where for simplicity we assume here

θ ∈ R. The dependence on x is brought in via the parameter θ that is allowed to depend on

x, i.e., by considering an unknown function θ(x) instead of an unknown parameter θ. Assume

that the density associated with C exists, and denote it by c(·, ·; θ(x)).

Roughly speaking the test statistic is based on comparing the log-likelihoods computed

under the alternative and the null hypothesis. More formally, under the null hypothesis θ(x)

does not depend on x, thus the log-likelihood is given by

`n(H0) =

n∑
i=1

ln c
(
U1i, U2i; θ̂n

)
,

where θ̂n is the maximizer of the log-likelihood above.

Under the alternative hypothesis, let θ̂h(Xi) be the estimate of the parameter θ(Xi) using

a local-likelihood method. Estimation of the unknown function θ(·) requires smoothing/local

techniques, and in the d-variate covariate setting this involves nonparametric estimation of

the d-variate function θ(x). One thus has to face the usual curse of dimensionality issue. Acar

et al. [3] focus on the univariate setting (i.e., d = 1) and hence, with h a smoothing parameter

in estimating the univariate function θ(·), consider the log-likelihood under the alternative

hypothesis

`n(HA;h) =

n∑
i=1

ln c
(
U1i, U2i; θ̂h(Xi)

)
.

Finally the test statistic is given by

λn(h) = `n(HA;h)− `n(H0).

2.2.2. Nonparametric approach of Gijbels et al. [13]. This test is based on the fact that when

the conditional copula CX does not depend on the realized covariate vector value x, then

the associated conditional Kendall’s tau function τ(x) (see, e.g., Gijbels et al. [14]) does

not depend on x, i.e., is constant and equals τA = E{τ(X)}, called the average conditional

Kendall’s tau. The test of Gijbels et al. [13] then consists of measuring the squared distance

between a nonparametric estimator τ̂n(x) of τ(x) and a nonparametric estimator τ̄An of τA.

More precisely the test is based on the test statistic

Vn1 =
1

n

n∑
i=1

{τ̂n(Xi)− τ̄An }2,

where τ̄An =
∑n

i=1 τ̂n(Xi)/n. See Veraverbeke et al. [26] and Gijbels et al. [14] for nonparamet-

ric conditional copula estimation (and association measures) in a univariate covariate setting,

and Gijbels et al. [10] in a multivariate covariate setting.
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Obviously, the test Vn1 is based on estimating nonparametrically the conditional Kendall’s

tau τ(x) and the average conditional Kendall’s tau τA. Hence, it is a nonparametric test

involving also the choice of smoothing parameters (e.g., bandwidths).

3. New semiparametric approach

Similarly as in Acar et al. [3] the idea is based on the likelihood. Suppose that model (2)

holds, where θ(x) =
(
θ1(x), . . . , θq(x)

)>
is an unknown q-dimensional parameter possi-

bly depending on the value of the d-dimensional covariate x = (x1, . . . , xd)
>. Further

suppose that θ(x) is parametrized as θ(x) = a(x;α,ψ), where α = (α1, . . . , αp)
> and

ψ = (ψ1, . . . , ψq)
> are unknown parameters with values in Rp and Rq, respectively. Moreover,

let the parametrization be done in such a way that if α is the zero vector 0p = (0, . . . , 0)>,

then a(x; 0p;ψ) does not depend on x (and thus the simplifying assumption holds). Note

that for notational simplicity, we used the same notation for the dimension of the dependence

parameter θ(x) and the parameter ψ, which will be considered as a nuisance parameter. Since

we will mainly deal with the case of a real-valued dependence parameter (i.e., θ(x) ∈ R), we

chose to keep the notation simple. Throughout the paper, we assume that the parameters

(α,ψ) in the semiparametric model are identifiable.

Under the above described semiparametric framework, testing the null hypothesis (1) is

equivalent to testing

H0 : α = 0p, H1 : α 6= 0p. (3)

Assume for a moment that the margins are known. Then, a suitable test statistic for test-

ing (3) can be found within the framework of tests based on the likelihood in the presence

of a nuisance parameter (ψ). Although any of the three tests (likelihood ratio, Wald or Rao

score test) can be used, in what follows we concentrate on the Rao score test. The reason is

that the test statistic of this test does not require the estimation of α. This is convenient in

particular when a permutation principle is used to improve the Type I error properties of the

test in small or moderate samples. In Section 3.2, we describe the proposed test methodology.

3.1. Examples of settings and testing problems. Let us look more closely to the above

framework in which the conditional copula and its functional dependence parameter are of

parametric form, viz.

Cx(u1, u2) = C(u1, u2;θ(x)) with θ(x) = a(x;α,ψ) ,

where α characterizes completely the dependence (or not) of θ(x) (and hence of Cx(·, ·)) on

x, whereas the parameter ψ is a nuisance parameter.

For example, in a bivariate covariate setting (i.e., d = 2), one could model the conditional

dependence between Y1 and Y2 by, say, a Frank copula with parameter θ(x), x = (x1, x2)>,
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where θ(x) takes values in R, since for a Frank copula, the parameter can take positive and

negative values. There are many possible modeling choices for θ(x), such as

(i) θ(x) = ψ + α1x1 + α2x2, where thus p = 2 and q = 1;

(ii) θ(x) = ψ + α1x1 + α2x
2
1 + α3x2 + α4x

2
1 + α5x1x2, where p = 5 and q = 1;

(iii) θ(x) = ψ1 + ψ2x1 + αx2, where p = 1 and q = 2;

(iv) θ(x) = ψ1 + ψ2x1 + ψ3x
2
1 + α1x2 + α2x

2
2 + α3x1x2, where thus p = 3 and q = 3.

Here q refers to the dimension of the nuisance parameter since θ(x) ∈ R. Note that the

considered testing problem (3) is of a distinct nature for the different cases:

a) For (i) and (ii) this means that we are testing for no covariate effect.

b) For (iii) this means that we are testing for no effect from the covariate x2, whereas

the covariate x1 is assumed to have a linear effect.

c) For (iv) we are testing for no effect from the covariate x2, whereas the covariate x1

is assumed to have a quadratic effect and there is a possible first order interaction

between x1 and x2.

An important further remark is that, in contrast with the Frank copula, other copula

families have a restricted parameter space. For a Gaussian copula for example, θ ∈ (−1, 1),

for a Clayton copula it is often assumed that θ ∈ (0,∞), and for a Gumbel copula θ ∈ [1,∞).

In case of a restricted parameter space, one must work with a link function g, viz.

θ(x) = g{η(x)} = a(x;α,ψ)

with η(x) as, e.g., in (i)–(iv) above. For example, considering (i) above, in case of a Clayton

or Gumbel copula, one could take g(x) = ex and g(x) = ex + 1 as link functions, respectively,

leading to

(iC) θ(x) = exp(ψ + α1x1 + α2x2);

(iG) θ(x) = exp(ψ + α1x1 + α2x2) + 1.

Obviously there are many possible choices of link functions, and many parametrizations of

the dependence parameter θ(x).

From the results in Sections 4 and 5 it can be seen that even when the parametric copula

function and/or the parametric form of θ(x) (or the link function) are/is misspecified, the

proposed tests are still performing quite well when it comes to testing for no covariate effect.

3.2. Description of the suggested test. A detailed derivation and discussion of the sug-

gested test is provided for the case that the margins are not influenced by the covariate. The

proposed test, however, is also applicable when the margins are influenced by the covariate,

provided that appropriate pseudo-observations are used.
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3.2.1. Margins are not influenced by the covariate. Assuming that the margins are known,

Eq. (2) holds and the density of the covariate X does not depend on the parameters ψ and

α, the log-likelihood is given by

`n(α,ψ) =
n∑
i=1

ln c
(
U1i, U2i;θ(Xi)

)
=

n∑
i=1

ln c
(
U1i, U2i; a(Xi;α;ψ)

)
,

where c
(
u1, u2;θ(x)

)
is the assumed density of the copula of Y1 and Y2 when X = x. Note

that if one could observe (U1i, U2i), then the Rao score test of the hypothesis (3) would be

based on the score function
∂

∂α
`n(α,ψ)

∣∣∣
α=0p,ψ=ψ̃n

,

where ψ̃n is the maximum likelihood estimator of ψ when assuming α = 0p.

In practice the margins are usually unknown. If the covariate does not influence the mar-

ginal distributions, then one can replace the unobserved U1i, U2i with the pseudo-observations

Ũ1i =
n

n+ 1
F1n(Y1i) and Ũ2i =

n

n+ 1
F2n(Y2i), (4)

where F1n is the empirical distribution function of Y11, . . . , Y1n and analogously for F2n.

In addition to the lack of knowledge about the margins, the second problem encountered

in practice is that one can never be sure that the selected parametric form of the copula is

correct. Thus our aim is to construct a test that performs well, even if the copula family is

misspecified. That is why we denote

ρ(u1, u2,x;α,ψ) = ln cR
(
u1, u2; a(x;α,ψ)

)
,

where cR(u1, u2; a(x;α,ψ)) should be now understood as the copula density associated to a

Reference copula CR that is not necessarily the true copula C. The suggested test statistic

will be based on the score

Sn =
1√
n

n∑
i=1

sα
(
Ũ1i, Ũ2i,Xi; 0p; ψ̃n

)
,

where

sα(u1, u2,x;α,ψ) =
∂

∂α
ρ(u1, u2,x;α,ψ).

Finally for testing the null hypothesis (1), we suggest the following Rao-like test statistic

Rn = S>n { ̂avar(Sn)}−1Sn, (5)

where ̂avar(Sn) is an estimate of the asymptotic variance of Sn, that is consistent under the

null hypothesis.
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Derivation of ̂avar(Sn). We now give an insight into the construction of ̂avar(Sn). Formal

derivations and results can be found in the Appendix. Since here we suppose that the margins

are not influenced by the covariate, we can work with the pseudo-observations (Ũ1i, Ũ2i)

defined in (4).

Denote I(α;ψ) the Fisher-like information matrix of a random vector (U1i, U2i,Xi) and

note that this matrix can be written in block form as

I(α,ψ) =

(
Iαα(α,ψ) Iαψ(α,ψ)

Iψα(α,ψ) Iψψ(α,ψ)

)
, (6)

where for instance Iαψ(α,ψ) = −E {∂2ρ(U1i, U2i,Xi;α;ψ)/
(
∂α ∂ψ>

)
} is the upper right

corner, which is a submatrix of dimension (p, q).

Let ψ̃ be the value of the parameter identified under the null hypothesis, i.e.,

ψ̃ = arg max
ψ

E ρ(U1i, U2i,Xi; 0p;ψ).

Under the null hypothesis one then gets the asymptotic representation (see Lemma 3 in the

Appendix)

√
n
(
ψ̃n − ψ̃

)
= {Iψψ(0p, ψ̃)}−1 1√

n

n∑
i=1

sψ
(
Ũ1i, Ũ2i,Xi; 0p, ψ̃) + oP (1), (7)

where

sψ(u1, u2,x;α,ψ) =
∂

∂ψ
ρ(u1, u2,x;α,ψ).

Provided that one can proceed as in standard regular models (see the Appendices for

necessary conditions and technical details) one gets, with the help of (7),

Sn =
1√
n

n∑
i=1

sα
(
Ũ1i, Ũ2i,Xi; 0p; ψ̃

)
− Iαψ(0p, ψ̃)

√
n
(
ψ̃n − ψ̃

)
+ oP (1)

=
1√
n

n∑
i=1

sα
(
Ũ1i, Ũ2i,Xi; 0p, ψ̃

)
− Iαψ(0p, ψ̃) {Iψψ(0p, ψ̃)}−1 1√

n

n∑
i=1

sψ
(
Ũ1i, Ũ2i,Xi; 0p; ψ̃

)
+ oP (1). (8)

Now denote the joint score function as

s(u1, u2,x;ψ) = (s>α(u1, u2,x; 0p;ψ), s>ψ(u1, u2,x; 0p;ψ))>,

where for notational simplicity we dropped the value of the parameter α which in what follows

is always set equal to 0p. Then, under the null hypothesis by Theorem 1 of the Appendix,

1√
n

n∑
i=1

s
(
Ũ1i, Ũ2i,Xi; ψ̃

)
 Np+q

(
0p+q,Σ

)
(9)
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as n→∞, where

Σ = var
{

s
(
U1, U2,X; ψ̃

)
+

∫
[0,1]2

∫
Rd

[
1{U1 ≤ v1} − v1

]
s(1)
(
v1, v2,x; ψ̃

)
dC(v1, v2) dFX(x)

+

∫
[0,1]2

∫
Rd

[
1{U2 ≤ v2} − v2

]
s(2)
(
v1, v2,x; ψ̃

)
dC(v1, v2) dFX(x)

}
,

with C being the copula of U1 and U2 (under the null hypothesis) and s(j)(·) = ∂s(·)/∂uj .
Analogously as for the matrix in (6), let us write the matrix Σ in block form as

Σ =

(
Σαα Σαψ

Σψα Σψψ

)
.

Moreover for simplicity of notation put Iαψ = Iαψ(0p, ψ̃) and analogously for Iαα, Iψψ and

Iψα. Now combining (8) and (9) yields

Sn =
1√
n

n∑
i=1

sα
(
Ũ1i, Ũ2i,Xi; 0p, ψ̃n

)
 Np

(
0p,V

)
, (10)

where

V =
(
Ip×p,−IαψI−1

ψψ

)
Σ
(
Ip×p,−IαψI−1

ψψ

)>
= Σαα − Iαψ I−1

ψψ Σψα −Σαψ I
−1
ψψ Iψα + Iαψ I

−1
ψψ Σψψ I

−1
ψψ Iψα,

with Ip×p being the identity matrix of dimension (p, p). This result is formally stated in

Theorem 2 in the Appendix, where its proof is given.

The asymptotic variance of Sn can be estimated as

̂avar(Sn) =
1

n− 1

n∑
i=1

(Zi − Zn)(Zi − Zn)>, (11)

where

Zi = sα
(
Ũ1i, Ũ2i,Xi; 0p; ψ̃n

)
+ ϑ̂

(1)

α

(
Ũ1i

)
+ ϑ̂

(2)

α

(
Ũ2i

)
− Îαψ Î−1

ψψ

{
sψ
(
Ũ1i, Ũ2i,Xi; 0p; ψ̃n

)
+ ϑ̂

(1)

ψ

(
Ũ1i

)
+ ϑ̂

(2)

ψ

(
Ũ2i

)}
,

with

Îαψ = − 1

n

n∑
i=1

∂ sα
(
Ũ1i, Ũ2i,Xi;α;ψ

)
∂ψ>

∣∣∣
α=0p;ψ=ψ̃n

,

Îψψ = − 1

n

n∑
i=1

∂ sψ
(
Ũ1i, Ũ2i,Xi;α;ψ

)
∂ψ>

∣∣∣
α=0p;ψ=ψ̃n

,
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and for k ∈ {1, 2},

ϑ̂
(k)

α

(
u
)

=
1

n

n∑
j=1

[
1{u ≤ Ũkj} − Ũkj

]
s

(k)
α

(
Ũ1j , Ũ2j ,Xj ; 0p, ψ̃n

)
,

ϑ̂
(k)

ψ

(
u
)

=
1

n

n∑
j=1

[
1{u ≤ Ũkj} − Ũkj

]
s

(k)
ψ

(
Ũ1j , Ũ2j ,Xj ; 0p, ψ̃n

)
.

3.2.2. Margins are influenced by the covariate. Often, the margins are influenced by the co-

variates. To remove this effect one can use various methods depending on what can be

assumed about this effect; see, e.g., the beginning of Section 5 in Gijbels et al. [12]. Let Ŷ a
ji

be the values of Yji already adjusted for the effect of the covariate. Then mimicking (4) one

can define the estimated ‘pseudo-observations’ as

Û1i =
n

n+ 1
F̂1n

(
Ŷ a

1i

)
and Û2i =

n

n+ 1
F̂2n

(
Ŷ a

2i

)
,

where F̂1n(y) =
∑n

i=1 1{Ŷ a
1i ≤ y}/n is the empirical distribution function of the adjusted

observations Ŷ a
11, . . . , Ŷ

a
1n and analogously for F̂2n(y).

With properly adjusted pseudo-observations, the test statistic Rn, based now on the score

Sn =
1√
n

n∑
i=1

sα
(
Û1i, Û2i,Xi; 0p; ψ̃n

)
,

will have the same asymptotic distribution under the null hypothesis as the test statistic,

when margins are not influenced by the covariate. It should be mentioned that it is only in

case of proper adjustments that the variance-covariance matrix V remains the same, and can

be estimated similarly as before (replacing (Ũ1i, Ũ2i) with (Û1i, Û2i) everywhere). See Gijbels

et al. [12] for details about possible appropriate adjustments.

3.3. Assessing significance. Provided that under the null hypothesis (9) holds, the estimate

of ̂avar(Sn) given by (11) converges in probability to the regular matrix V, then the Cramér–

Slutsky theorem (under the null hypothesis) yields

Rn  χ2
p (12)

as n→∞, where Rn is given by (5). Thus for large sample sizes one can assess the significance

of the test statistic by using this asymptotic result.

In small and moderate samples we recommend to use a permutation procedure which reads

as follows.

(1) Keep (Û11, Û21), . . . , (Û1n, Û2n) fixed and permute X1, . . . ,Xn to obtain X∗1, . . . ,X
∗
n.

(2) Recalculate the test statistic based on triples (Û11, Û21,X
∗
1), . . . , (Û1n, Û2n,X

∗
n).

These steps are carried out for a large number of permutations, say B, and the p-value of the

test statistic is then calculated from the empirical distribution of these B ‘observed’ values

of the test statistic. See for instance p. 158 of Davison and Hinkley [8]. The permutation



TESTING COVARIATE EFFECTS 11

tests are exact only in the situation that the marginal distributions are not affected by the

covariate.

3.4. Impact of the reference copula choice on size and power of the test. Note

that in constructing the test statistic Rn, we work with a reference copula CR which may

differ from the true (unknown) copula. Our theoretical results however (see, e.g., Theorem 2)

are valid for any reference copula that satisfies the conditions of the theorems. This implies

that the proposed test remains consistent even if the reference copula is misspecified (i.e.,

is different from the true copula). Consequently, one might wonder how restrictive are the

assumptions under which the theoretical results hold. In the simulation study in Section 4,

we illustrate the finite-sample impact of misspecifying the reference copula. As long as the

parameter space of the reference copula allow to cover the type of dependence embodied

by the true copula, such a choice is safe. For instance, if the true copula describes negative

dependence, and the reference copula can only range over all non-negative dependencies, then

this is not a good choice.

One might wonder further about the power properties of the test under local alternatives.

It is outside the scope of the current paper to study this in detail. However, under an

alternative hypothesis when there is a dependence on x, the statistic Sn would still converge

to a multivariate Gaussian distribution, but with no longer a zero mean, but with a mean

that depends on how θ(x) departs from a constant (say) under such a local alternative. As

a result the statistic Rn would converge, under such local alternatives, to a non-central chi-

square distribution. In case of a misspecified reference copula, this would influence the size

of the non-centrality parameter, leading to a possible reduction of power.

3.5. Extensions. As was already pointed out via examples in Section 3.1, it is straightfor-

ward to apply our methodology for testing that only part of the covariate vector has an effect

on the conditional dependence structure. To formalize this, let Xi(S) stand for the set of

d1 elements of Xi for which we want to test whether there is an effect. Denote by Xi(NS) the

remaining d− d1 covariates. Thus one can write

Xi =
(
X>i(S),X

>
i(NS)

)>
,

and analogously write x =
(
x>(S),x

>
(NS)

)
. The testing problem of interest is then

H0 : ∀x∈RX
Cx = Cx(S)

, H1 : ∃x∈RX
Cx 6= Cx(S)

.

The only difference is that now the function a(x; 0p;ψ) can still depend on x(S).

To assess the significance one can again use that the test statistic converges under the null

hypothesis to a χ2-distribution with p = d−d1 degrees of freedom. Alternatively one can use

the modified permutation procedure which is as follows
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(1) Keep (Û11, Û21,X1(S)), . . . , (Û1n, Û2n,Xn(S)) fixed and permute X1(NS), . . . ,Xn(NS) to

obtain X∗1(NS), . . . ,X
∗
n(NS).

(2) For each i ∈ {1, . . . , n}, put X∗i = (Xi(S),X
∗
i(NS)) and recalculate the test statistic

based on triples (Û11, Û21,X
∗
1), . . . , (Û1n, Û2n,X

∗
n).

Note that the above tests can be used also for variable selection in model building.

4. Simulation study: Univariate covariate X

In this section we consider a univariate covariate X so that we can compare with the

semiparametric test of Acar et al. [3] and the nonparametric test of Gijbels et al. [13]. First

we consider the problem of testing any effect of the covariate. We consider situations in which

the copula is correctly specified as well as settings where this is not the case. In a second

subsection we want to test for the presence of other than a linear term of the covariate in

the form of the conditional parameter, and in this case the parametric form of the copula is

always considered to be correctly specified.

The R-computing environment [19] was used to perform the simulations.

4.1. Testing for any effect of the covariate.

Distribution of the covariate. In all simulation models the covariate X is distributed uniformly

on the interval [2, 5], as in Acar et al. [3].

Margins. The main purpose of this section is to illustrate that the proposed procedure can

be used also in the same setting as in Acar et al. [3] and Gijbels et al. [13]. We therefore

restrict ourselves mostly to the case that the margins are not influenced by the covariate.

Only for one model we also present the results for the case that the margins are influenced

by the covariate.

Copula models. We consider two sets of models. The first set of models is as in Acar et al.

[3], and is listed in Table 1. These models constitute the semiparametric type of modeling

discussed briefly in Section 2.2. Note that under Model 1 the null hypothesis (1) holds.

Table 1. First set of models. The function θ(x) = g{η(x)} for the prespecified

copula family.

Family Model 1 Model 2 Model 3 Link function

Frank 8 25− 4.2x 1 + 2.5(3− x)2 g(x) = x

Clayton e1 exp(−1.2 + 0.8x) exp{2− 0.5(x− 3.8)2} g(x) = ex

Gumbel e1/2 + 1 exp(1.5− 0.4x)+1 exp{−1 + 0.5(x− 4)2}+ 1 g(x) = ex + 1
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The second set of models consists of copulas that are mixtures of two copulas, viz.

Cx(u1, u2) = w(x)C1(u1, u2) + {1− w(x)}C2(u1, u2),

with the weight function w(x) and copulas C1 and C2 as given in Tables 2 and 3, respectively.

Note that the null hypothesis (1) holds under Model 4 but that these copulas are not of the

form Cx(·, ·) = C(·, ·; θ(x)), and hence with Models 4–6 we are in misspecification settings.

Table 2. Second set of models. The weight function w(x).

Model 4 Model 5 Model 6

w(x) = 0.5 w(x) = (x− 2)/3 w(x) = (x− 3.5)2/1.52

Table 3. Second set of models. The copulas C1 and C2.

C1 C2

Frank - mixt independence copula Frank copula with θ = 8

Clayton - mixt independence copula Clayton copula with θ = 3

Gumbel - mixt independence copula Gumbel copula with θ = 2.65

For completeness we also consider Model 3, but now with margins that are influenced by

the covariate, as follows

Y1i = sin{2π (Xi − 1/2)}+ ε1i, Y2i = ε2i, i ∈ {1, . . . , n},

where the variables ε1i, ε2i and Xi are independent variables, and where each of the variables

ε1i and ε2i has density 1 − |x| on the support [−1, 1]. We refer to this as Model 3X in the

tables.

Sample sizes and number of samples. We consider the sample sizes n = 50, 100 and 200. We

generate 5000 samples to estimate the levels of the tests. Further 1000 samples are generated

to estimate the power of the tests.

Considered tests. For clarity of presentation we write the subscript R when denoting the

reference copula, the reference dependence parameter and the reference link function for

construction of our test.

The following tests are included in the simulation study:

• The test of Acar et al. [3] - λn(h) in (2.2.1) with cross-validation choice of the band-

width.

• The test of Gijbels et al. [13] based on the test statistic Vn1 in (2.2.2).



14 IRÈNE GIJBELS1, MAREK OMELKA2#, MICHAL PEŠTA2 AND NOËL VERAVERBEKE3,4

Further tests based on the suggested test statistic (5) are included, with the parameter

θR(x) = gR
(
ψ + α1 x+ α2 x

2
)
, (13)

where gR is a reference link function and we are testing that (α1, α2) = (0, 0). We used the

following three reference copula families and reference link functions for constructing the test:

a) Frank family with gR(x) = x – Rn-frank and R
(perm)
n -frank

b) Clayton family with gR(x) = exp{x} – Rn-clayt. and R
(perm)
n -clayt.

c) Gumbel family with gR(x) = exp{x}+ 1 – Rn-gumb. and R
(perm)
n -gumb.

where the superscript (perm) indicates that the permutation test is used to assess significance.

For the permutation procedure we use B = 999 throughout the paper. All tests are performed

at the nominal 0.05 significance level.

sign. level = 0.05 Model 1 Model 2 Model 3 Model 3X

50 100 200 50 100 200 50 100 200 50 100 200

Frank − λn(h) 0.051 0.064 0.059 0.480 0.836 0.985 0.401 0.822 0.995 0.455 0.735 0.990

Frank − Vn1 0.053 0.056 0.044 0.424 0.781 0.995 0.308 0.635 0.940 0.280 0.596 0.950

Frank − Rn-frank 0.053 0.057 0.050 0.340 0.757 0.987 0.591 0.911 1.000 0.501 0.906 0.997

Frank − R
(perm)
n -frank 0.052 0.051 0.044 0.329 0.738 0.984 0.494 0.879 0.999 0.396 0.875 0.997

Clayton − λn(h) 0.073 0.071 0.069 0.837 0.994 1.000 0.490 0.832 0.985 0.340 0.670 0.940

Clayton − Vn1 0.061 0.064 0.064 0.574 0.933 1.000 0.190 0.345 0.645 0.130 0.274 0.570

Clayton − Rn-clayt. 0.064 0.059 0.060 0.747 0.992 1.000 0.380 0.735 0.979 0.153 0.606 0.963

Clayton − R
(perm)
n -clayt. 0.050 0.046 0.050 0.677 0.987 1.000 0.306 0.670 0.971 0.110 0.524 0.951

Gumbel − λn(h) 0.063 0.067 0.070 0.217 0.446 0.745 0.265 0.592 0.925 0.340 0.565 0.955

Gumbel − Vn1 0.060 0.052 0.049 0.180 0.334 0.590 0.157 0.328 0.655 0.170 0.304 0.630

Gumbel − Rn-gumb. 0.060 0.057 0.059 0.207 0.445 0.802 0.272 0.690 0.962 0.201 0.669 0.942

Gumbel − R
(perm)
n -gumb. 0.046 0.046 0.051 0.176 0.380 0.768 0.273 0.659 0.954 0.220 0.631 0.934

Frank − Rn-clayt. 0.154 0.153 0.126 0.375 0.550 0.754 0.180 0.573 0.935 0.148 0.552 0.940

Frank − R
(perm)
n -clayt. 0.051 0.049 0.049 0.194 0.323 0.535 0.199 0.595 0.923 0.156 0.613 0.921

Frank − Rn-gumb. 0.070 0.073 0.067 0.357 0.583 0.882 0.260 0.720 0.977 0.186 0.682 0.980

Frank − R
(perm)
n -gumb. 0.048 0.049 0.047 0.271 0.501 0.833 0.332 0.765 0.979 0.275 0.734 0.982

Clayton − Rn-frank 0.060 0.060 0.058 0.659 0.979 1.000 0.161 0.447 0.881 0.076 0.459 0.875

Clayton − R
(perm)
n -frank 0.054 0.051 0.051 0.652 0.976 1.000 0.167 0.431 0.866 0.078 0.439 0.864

Clayton − Rn-gumb. 0.089 0.087 0.078 0.469 0.725 0.950 0.181 0.304 0.528 0.079 0.219 0.514

Clayton − R
(perm)
n -gumb. 0.047 0.050 0.052 0.334 0.609 0.909 0.086 0.178 0.393 0.042 0.135 0.391

Gumbel − Rn-frank 0.053 0.058 0.055 0.214 0.411 0.703 0.387 0.683 0.937 0.319 0.693 0.940

Gumbel − R
(perm)
n -frank 0.050 0.049 0.049 0.180 0.352 0.674 0.297 0.612 0.921 0.240 0.636 0.928

Gumbel − Rn-clayt. 0.127 0.132 0.109 0.199 0.349 0.551 0.144 0.428 0.810 0.118 0.430 0.790

Gumbel − R
(perm)
n -clayt. 0.049 0.050 0.050 0.126 0.199 0.403 0.115 0.368 0.725 0.127 0.351 0.718

Table 4. In Models 1—3 the margins are not influenced by X. In Model 3X

the margins are influenced by the covariate. Rejection frequencies for sample

sizes n = 50, 100 and 200.
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sign. level = 0.05 Model 4 Model 5 Model 6

50 100 200 50 100 200 50 100 200

Frank - mixt − λn(h) 0.088 0.130 0.146 0.465 0.780 0.990 0.370 0.815 0.985

Frank - mixt − Vn1 0.054 0.058 0.053 0.405 0.715 0.930 0.097 0.185 0.445

Frank - mixt − Rn-frank 0.096 0.075 0.066 0.467 0.757 0.953 0.386 0.734 0.971

Frank - mixt − R
(perm)
n -frank 0.051 0.050 0.051 0.346 0.683 0.943 0.272 0.627 0.956

Frank - mixt − Rn-clayt. 0.053 0.057 0.061 0.164 0.414 0.805 0.267 0.563 0.832

Frank - mixt − R
(perm)
n -clayt. 0.046 0.049 0.047 0.201 0.450 0.802 0.241 0.418 0.728

Frank - mixt − Rn-gumb. 0.056 0.055 0.058 0.174 0.490 0.863 0.293 0.650 0.929

Frank - mixt − R
(perm)
n -gumb. 0.046 0.058 0.050 0.242 0.541 0.866 0.258 0.563 0.900

Clayton - mixt − λn(h) 0.363 0.350 0.337 0.540 0.845 0.975 0.580 0.895 1.000

Clayton - mixt − Vn1 0.054 0.053 0.052 0.400 0.710 0.935 0.080 0.171 0.425

Clayton - mixt − Rn-frank 0.094 0.075 0.060 0.436 0.692 0.955 0.379 0.715 0.966

Clayton - mixt − R
(perm)
n -frank 0.051 0.048 0.047 0.325 0.611 0.940 0.259 0.616 0.952

Clayton - mixt − Rn-clayt. 0.055 0.068 0.068 0.190 0.530 0.909 0.419 0.787 0.982

Clayton - mixt − R
(perm)
n -clayt. 0.051 0.056 0.050 0.202 0.555 0.909 0.353 0.629 0.948

Clayton - mixt − Rn-gumb. 0.059 0.043 0.047 0.127 0.351 0.765 0.167 0.465 0.855

Clayton - mixt − R
(perm)
n -gumb. 0.056 0.048 0.052 0.164 0.456 0.802 0.180 0.430 0.819

Gumbel - mixt − λn(h) 0.303 0.337 0.198 0.445 0.815 0.980 0.535 0.885 0.995

Gumbel - mixt − Vn1 0.049 0.048 0.042 0.417 0.729 0.985 0.083 0.175 0.430

Gumbel - mixt − Rn-frank 0.098 0.077 0.067 0.435 0.766 0.960 0.443 0.764 0.981

Gumbel - mixt − R
(perm)
n -frank 0.053 0.051 0.051 0.332 0.692 0.945 0.316 0.687 0.974

Gumbel - mixt − Rn-clayt. 0.053 0.058 0.061 0.141 0.351 0.796 0.257 0.534 0.855

Gumbel - mixt − R
(perm)
n -clayt. 0.051 0.056 0.051 0.190 0.395 0.795 0.234 0.416 0.767

Gumbel - mixt − Rn-gumb. 0.050 0.053 0.059 0.225 0.545 0.956 0.390 0.784 0.989

Gumbel - mixt − R
(perm)
n -gumb. 0.050 0.052 0.053 0.287 0.611 0.950 0.346 0.673 0.980

Table 5. Models 4—6, the margins are not influenced by X. Rejection fre-

quencies for sample sizes n = 50, 100 and 200.

The results are presented in Tables 4 and 5. To facilitate the reading of Table 4 we present

results for the test based on correctly specified copula models in the first block, and results for

misspecified reference copulas (and parameters/links) in a second major block. The second

block thus allows to judge how the test performs in case of reference model misspecification.

Some findings. The asymptotic χ2-approximation of the distribution of the suggested test

statistic Rn under the null hypothesis is often (but not always) appropriate.

If the copula family is correctly specified (see the first block of Table 4) then the performance

of the suggested test (using the true copula) is usually comparable with the test of Acar et al.

[3]. The advantage of the suggested test is that it continues to work reasonably well even if the

copula family is misspecified. This can be seen by comparing results from the second block in

Table 4 with the corresponding ones in the first block, as well as by looking at Table 5. Note

also from Table 4 that when the margins are influenced by the covariate, and we are working

with properly adjusted pseudo-observations, the performances of the test are comparable; see

the column ‘Model 3X’.
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Relatively to its competitors the suggested tests do a slightly better job for ‘quadratic

models’ (i.e., Models 3 and 6). The reason is that in constructing the proposed test statistic,

we assumed that θ(x) is of the form (13). Thus for ‘linear models’ (i.e., Models 2 and 5) the

quadratic term is (at least in Model 2) useless.

4.2. Testing for other than a ‘linear’ effect of the covariate. In this subsection the

copula family and the link function g are always correctly specified. The null hypothesis is

that the copula parameter is of the form

θ(x) = g(ψ0 + ψ1 x), (14)

where ψ0 and ψ1 are unknown parameters. The alternative is that the copula parameter has

a more complex form.

In our framework we test the above hypothesis by assuming for the reference dependence

parameter the ‘quadratic model’

θR(x) = g(ψ0 + ψ1 x+ αx2)

and testing the null hypothesis H0 : α = 0. Note that other ways of modeling the deviation

from model (14) are possible depending on what is assumed about this deviation.

As far as we know such a hypothesis was considered only in Acar et al. [3]. For comparison

purposes, we use therefore the same design. As in Section 4.1 the covariate X is distributed

uniformly on the interval [2, 5] and the margins are not assumed to be influenced by the

covariate, except for Model 3X (with a same influence as before). The models are listed in

Table 6. We consider all the models used in Acar et al. [3] and also add two new models (see

Model 3 for the Clayton and Gumbel families).

Table 6. Models 1–3. The function θ(x) = g{η(x)} for the prespecified copula family.

Family Model 1 Model 2 Model 3 Link function

Frank 25− 4.2x 1 + 2.5 (3− x)2 12 + 8 sin(0.4x2) g(x) = x

Clayton exp(−1.2 + 0.8x) exp{2− 0.5 (x− 3.8)2} exp{2− 4 sin(0.4x2)} g(x) = ex

Gumbel exp(1.5− 0.4x) + 1 exp{−1 + 0.5 (x− 4)2}+ 1 exp{−1 + 2 sin(x)}+ 1 g(x) = ex + 1

Some findings. The results are in Table 7. The findings can be summarized as follows.

a) The test suggested in this paper is usually better in keeping the probability of Type I

error than the test of Acar et al. [3].

b) If the effect of the covariate is quadratic (and the family and link function are correctly

specified), then the suggested test has also slightly better power properties (when

taking the level properties into consideration).
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sign. level = 0.05 Model 1 Model 2 Model 3 Model 3X

50 100 200 50 100 200 50 100 200 50 100 200

Frank λn(h) 0.050 0.044 0.045 0.202 0.320 0.605 0.606 0.931 1.000 0.247 0.905 0.999

Frank Rn-frank 0.041 0.043 0.043 0.344 0.614 0.902 0.480 0.763 0.965 0.340 0.789 0.968

Clayton λn(h) 0.160 0.126 0.094 0.345 0.615 0.920 0.965 1.000 1.000 0.861 1.000 1.000

Clayton Rn-clayt. 0.038 0.043 0.039 0.303 0.629 0.947 0.481 0.784 0.955 0.398 0.784 0.968

Gumbel λn(h) 0.132 0.102 0.090 0.189 0.257 0.420 0.560 0.820 0.992 0.312 0.776 0.994

Gumbel Rn-gumb. 0.042 0.054 0.054 0.063 0.178 0.465 0.580 0.882 0.998 0.336 0.808 0.996

Table 7. Testing for other than a linear effect. In Models 1—3 the margins

are not influenced by the covariate. In Model 3X the margins are influenced

by the covariate. Rejection frequencies for sample sizes n = 50, 100 and 200.

c) If the effect of the covariate is more complex than quadratic, such as in Model 3, then

the test of Acar et al. [3] has usually better power properties. The difference in powers

can be either substantial if the effect deviates much from the linear effect (Model 3

with Clayton copula) or moderate (Model 3 with Frank copula). In models where the

deviation can be well approximated by the quadratic function (Model 3 with Gumbel

copula) the difference in powers can be even in favour of the proposed test.

To sum it up, the test of Acar et al. [3] has very good power properties. Nevertheless, the

test proposed herein has the following advantages: (i) it is better in keeping the level even

under model misspecifications; (ii) it is not so computationally intensive (the computing time

is substantially smaller) as the test of Acar et al. [3] that requires to solve many (the sample

size times the number of the grid points in the cross-validation procedure) optimisation tasks,

due to the involvement of a smoothing parameter choice.

5. Simulation results: A multivariate covariate

In this section we consider a two-dimensional covariate generated by a two-dimensional

Gaussian copula with correlation coefficient equal to 0.5. First we consider the problem of

testing of the effect of the whole covariate vector. Then we test that only the first component

of the covariate influences the conditional copula as described in Section 3.5.

5.1. Testing for any effect of the (whole) covariate.

Considered models. In the simulation models we consider Frank copulas or mixtures involving

these. A first set of models, Models 1–3, involves a single Frank copula in which the parameter

function θ(x) is as listed in Table 8.

In a second set of models, Models 4–6, the conditional copula is given by

Cx(u1, u2) = w(x)C1(u1, u2) + {1− w(x)}C2(u1, u2), (15)
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Table 8. First set of models for the multivariate covariate setting, with Frank

copula family with parameter function θ(x) as listed.

Family Model 1 Model 2 Model 3

Frank 8 8 (x1 − 2x2 + 1.5) 8[2/
[
1 + exp{2x2

1 − 4x1 − x2}
]
− 1]

with C1 and C2 as in the first line of Table 3 and the weight function w(x) = w(x1, x2) as in

Table 9.

Table 9. Second set of models for the multivariate covariate setting, with

x̄ = (x1 + x2)/2.

Model 4 Model 5 Model 6

w(x) = 0.5 w(x) = x̄ w(x) = 4 (x̄− 0.5)2

Considered tests. The following test statistics are included in this simulation study:

a) The test of Gijbels et al. [13] given by the test statistic Vn1 in (2.2.2).

Further the proposed test using the following copula reference models:

b) Frank family assuming that θR(x) = ψ+α1 x1+α2 x2 – Rn-frank and R
(perm)
n -frank;

c) Frank family assuming that θR(x) = ψ+α1 x1+α2 x2+α3 x
2
1+α4 x

2
2 –Rn-frank (quadr.)

and R
(perm)
n -frank (quadr.);

d) Clayton family with θR(x) = exp(ψ + α1 x1 + α2 x2) – Rn-clayt. and R
(perm)
n -clayt.;

e) Gumbel family with θR(x) = exp{ψ+α1 x1+α2 x2}+1 – Rn-gumb. and R
(perm)
n -gumb.

Note that for most models (except for Models 1 and 2 with the linear or quadratic form for

the dependence parameter) we are in settings of misspecification.

Some findings. The results can be found in Table 10, and can be summarized as follows.

a) The nonparametric test of Gijbels et al. [13] performs very well compared to the

suggested tests.

b) Of course, there is some loss of power if the copula family is misspecified.

c) Note that the suggested tests (with the exception of Rn-frank (quadr.) and R
(perm)
n -

frank (quadr.)) have practically no power in Model 6. An explanation for this is that

in this model the effect of the covariate on the conditional copula is ‘quadratic’, but

these tests assume only a ‘linear’ effect.

5.2. Testing for an (partial) effect of the second coordinate of the covariate. We

consider Frank copulas or mixtures involving these. A first set of models, Models 1–3, involves

a single multivariate Frank copula in which the parameter function θ(x) is as listed in Table 11.
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sign. level = 0.05 Model 1 Model 2 Model 3

50 100 200 50 100 200 50 100 200

Frank - Vn1 0.051 0.050 0.048 0.517 0.911 0.995 0.218 0.458 0.800

Frank - Rn-frank 0.047 0.047 0.046 0.622 0.949 1.000 0.258 0.458 0.768

Frank - R
(perm)
n -frank 0.053 0.050 0.047 0.610 0.949 1.000 0.217 0.430 0.757

Frank - Rn-frank (quadr.) 0.055 0.056 0.058 0.476 0.887 0.999 0.182 0.364 0.707

Frank - R
(perm)
n -frank (quadr.) 0.051 0.049 0.047 0.402 0.848 0.996 0.120 0.287 0.642

Frank - Rn-clayt. 0.141 0.144 0.111 0.502 0.771 0.940 0.258 0.371 0.559

Frank - R
(perm)
n -clayt. 0.049 0.052 0.049 0.329 0.622 0.888 0.168 0.243 0.446

Frank - Rn-gumb. 0.061 0.065 0.052 0.582 0.854 0.986 0.231 0.410 0.671

Frank - R
(perm)
n -gumb. 0.046 0.051 0.043 0.500 0.813 0.984 0.200 0.371 0.641

Model 4 Model 5 Model 6

Frank - mixt - Vn1 0.053 0.049 0.054 0.274 0.507 0.820 0.097 0.140 0.240

Frank - mixt - Rn-frank 0.081 0.067 0.054 0.349 0.588 0.890 0.068 0.050 0.059

Frank - mixt - R
(perm)
n -frank 0.047 0.050 0.049 0.273 0.531 0.871 0.048 0.047 0.052

Frank - mixt - Rn-frank (quadr.) 0.124 0.091 0.072 0.340 0.526 0.830 0.202 0.362 0.681

Frank - mixt - R
(perm)
n -frank (quadr.) 0.051 0.047 0.047 0.189 0.416 0.770 0.107 0.263 0.593

Frank - mixt - Rn-clayt. 0.047 0.052 0.056 0.113 0.294 0.657 0.136 0.113 0.100

Frank - mixt - R
(perm)
n -clayt. 0.058 0.054 0.050 0.150 0.349 0.647 0.077 0.049 0.061

Frank - mixt - Rn-gumb. 0.032 0.040 0.048 0.128 0.309 0.753 0.084 0.085 0.072

Frank - mixt - R
(perm)
n -gumb. 0.051 0.049 0.049 0.202 0.390 0.767 0.064 0.065 0.054

Table 10. Testing for any effect of the covariate (d = 2), the margins are not

influenced by the covariate. Rejection frequencies for sample sizes n = 50, 100

and 200.

Table 11. First set of models for the multivariate covariate setting, with

Frank copula family with parameter function θ(x) = g(η(x)) as listed.

Family Model 1 Model 2 Model 3 Link function

Frank 8 8 (x1 + 0.5) 8 (x1 − 2x2 + 1.5) g(x) = x

Clayton e1.1 exp(−1.2 + 5x1) exp{−1.2 + 3x1 + 3x2} g(x) = ex

Gumbel e1/2 + 1 exp(1.5− 1.4x1)+1 exp{1.5− 0.7x1 − 0.7x2}+ 1 g(x) = ex + 1

In a second set of models, Models 4–6, the conditional copula is given by (15), with C1 and

C2 as in the first line of Table 3 and the weight function w(x) = w(x1, x2) as in Table 12.

Table 12. Second set of models for the multivariate covariate setting.

Model 4 Model 5 Model 6

w(x) = 0.5 w(x) = x1 w(x) = (x1 + x2)/2

We want to test the null hypothesis that the conditional copula depends only on the first

coordinate of the covariate. Thus Models 1, 2, 4 and 5 represent the null hypothesis.
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sign. level = 0.05 Model 1 Model 2 Model 3

50 100 200 50 100 200 50 100 200

Frank − Rn-frank 0.050 0.052 0.047 0.048 0.053 0.057 0.722 0.977 1.000

Frank − R
(perm)
n -frank 0.054 0.052 0.048 0.048 0.053 0.054 0.715 0.976 1.000

Clayton − Rn-clayt. 0.044 0.052 0.052 0.031 0.034 0.033 0.345 0.733 0.984

Clayton − R
(perm)
n -clayt. 0.040 0.044 0.051 0.050 0.056 0.059 0.393 0.802 0.987

Gumbel − Rn-gumb. 0.055 0.050 0.052 0.039 0.042 0.049 0.097 0.243 0.479

Gumbel − R
(perm)
n -gumb. 0.051 0.047 0.050 0.046 0.044 0.052 0.107 0.236 0.469

Frank − Rn-clayt. 0.092 0.110 0.090 0.087 0.104 0.091 0.506 0.791 0.958

Frank − R
(perm)
n -clayt. 0.044 0.044 0.043 0.045 0.049 0.046 0.399 0.689 0.927

Frank − Rn-gumb. 0.056 0.056 0.056 0.052 0.054 0.056 0.598 0.909 0.994

Frank − R
(perm)
n -gumb. 0.048 0.049 0.048 0.050 0.047 0.050 0.575 0.885 0.991

Clayton − Rn-frank 0.048 0.053 0.050 0.054 0.053 0.061 0.639 0.948 1.000

Clayton − R
(perm)
n -frank 0.048 0.052 0.049 0.053 0.052 0.059 0.641 0.943 1.000

Clayton − Rn-gumb. 0.058 0.061 0.052 0.040 0.054 0.062 0.281 0.576 0.894

Clayton − R
(perm)
n -gumb. 0.043 0.046 0.048 0.045 0.051 0.052 0.282 0.561 0.870

Gumbel − Rn-frank 0.042 0.054 0.053 0.044 0.046 0.046 0.103 0.187 0.396

Gumbel − R
(perm)
n -frank 0.045 0.053 0.050 0.052 0.050 0.046 0.115 0.200 0.392

Gumbel − Rn-clayt. 0.085 0.091 0.084 0.087 0.086 0.089 0.129 0.204 0.265

Gumbel − R
(perm)
n -clayt. 0.044 0.046 0.050 0.050 0.048 0.060 0.082 0.127 0.192

Table 13. Models 1—3 (testing for a partial effect of the second covariate).

The margins are not influenced by the covariate. Rejection frequencies for

sample sizes n = 50, 100 and 200.

The assumed copula (reference copula for the test) is a Frank copula (with gR(x) = x) and

θR(x) = ψ1 + ψ2 x1 + αx2.

Thus we test the null hypothesis H0 : α = 0 and the assumed alternative is H1 : α 6= 0.

The results for margins not influenced by the covariate are in Tables 13 and 14.

Next we have considered also a simulation setting where the margins are influenced by the

covariate in the following way

Y1i = sin{2π (X1i − 1/2)}+X2i + ε1i, Y2i = ε2i, i ∈ {1, . . . , n},

where the variables ε1i, ε2i and (X1i, X2i) are independent elements. Further each of the

variables ε1i and ε2i has density 1 − |x| on the support [−1, 1]. For brevity we only present

in Table 15 the results for the Frank and Frank mixture models.

Some findings. The findings can be summarized as follows.

a) The suggested tests perform well (i.e., keep the level and have some power) even if

the copula family is misspecified. The price to pay is some loss of power.

b) Not surprisingly, there is also some small loss of power if the margins are influenced

by the covariate.
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sign. level = 0.05 Model 4 Model 5 Model 6

50 100 200 50 100 200 50 100 200

Frank-mixt − Rn-frank 0.065 0.063 0.062 0.073 0.060 0.051 0.158 0.237 0.382

Frank-mixt − R
(perm)
n -frank 0.046 0.050 0.054 0.058 0.052 0.047 0.121 0.212 0.367

Frank-mixt − Rn-clayt. 0.045 0.054 0.061 0.059 0.085 0.081 0.085 0.172 0.268

Frank-mixt − R
(perm)
n -clayt. 0.054 0.050 0.053 0.058 0.060 0.045 0.100 0.146 0.199

Frank-mixt − Rn-gumb. 0.038 0.037 0.045 0.048 0.064 0.068 0.086 0.190 0.310

Frank-mixt − R
(perm)
n -gumb. 0.048 0.045 0.048 0.060 0.060 0.061 0.108 0.182 0.293

Clayton-mixt − Rn-frank 0.068 0.066 0.058 0.061 0.055 0.051 0.127 0.203 0.386

Clayton-mixt − R
(perm)
n -frank 0.047 0.052 0.050 0.046 0.046 0.045 0.104 0.175 0.353

Clayton-mixt − Rn-clayt. 0.043 0.054 0.061 0.055 0.078 0.088 0.084 0.176 0.371

Clayton-mixt − R
(perm)
n -clayt. 0.048 0.046 0.050 0.067 0.061 0.059 0.099 0.162 0.319

Clayton-mixt − Rn-gumb. 0.029 0.042 0.057 0.042 0.058 0.064 0.058 0.127 0.254

Clayton-mixt − R
(perm)
n -gumb. 0.046 0.049 0.059 0.056 0.052 0.056 0.078 0.141 0.261

Gumbel-mixt − Rn-frank 0.065 0.058 0.053 0.065 0.058 0.058 0.134 0.236 0.390

Gumbel-mixt − R
(perm)
n -frank 0.045 0.048 0.047 0.050 0.049 0.053 0.106 0.215 0.365

Gumbel-mixt − Rn-clayt. 0.038 0.053 0.063 0.058 0.075 0.079 0.081 0.160 0.263

Gumbel-mixt − R
(perm)
n -clayt. 0.047 0.050 0.054 0.064 0.055 0.053 0.114 0.148 0.219

Gumbel-mixt − Rn-gumb. 0.033 0.048 0.048 0.052 0.066 0.064 0.096 0.217 0.420

Gumbel-mixt − R
(perm)
n -gumb. 0.040 0.046 0.045 0.062 0.058 0.054 0.121 0.211 0.382

Table 14. Models 4—6 (testing for a partial effect of the second covariate).

The margins are not influenced by the covariate. Rejection frequencies for

sample sizes n = 50, 100 and 200.

sign. level = 0.05 Model 1 Model 2 Model 3

50 100 200 50 100 200 50 100 200

Frank − Rn-frank 0.059 0.044 0.047 0.064 0.047 0.056 0.248 0.715 0.998

Frank − R
(perm)
n -frank 0.054 0.044 0.047 0.059 0.044 0.054 0.224 0.704 0.995

Frank − Rn-clayt. 0.069 0.090 0.089 0.065 0.076 0.078 0.220 0.674 0.968

Frank − R
(perm)
n -clayt. 0.046 0.049 0.048 0.050 0.037 0.040 0.206 0.562 0.932

Frank − Rn-gumb. 0.040 0.048 0.051 0.044 0.057 0.065 0.218 0.583 0.980

Frank − R
(perm)
n -gumb. 0.048 0.044 0.047 0.049 0.059 0.060 0.229 0.553 0.974

Model 4 Model 5 Model 6

Frank-mixt − Rn-frank 0.075 0.056 0.059 0.074 0.058 0.058 0.092 0.188 0.366

Frank-mixt − R
(perm)
n -frank 0.054 0.047 0.049 0.054 0.050 0.052 0.070 0.163 0.352

Frank-mixt − Rn-clayt. 0.024 0.044 0.063 0.038 0.090 0.091 0.057 0.163 0.326

Frank-mixt − R
(perm)
n -clayt. 0.059 0.049 0.052 0.068 0.086 0.061 0.107 0.174 0.254

Frank-mixt − Rn-gumb. 0.025 0.041 0.050 0.035 0.059 0.074 0.050 0.141 0.252

Frank-mixt − R
(perm)
n -gumb. 0.057 0.054 0.057 0.067 0.062 0.066 0.097 0.154 0.236

Table 15. Models 1—6 (testing for a partial effect of the second covariate).

The margins are influenced by the covariate. Rejection frequencies for sample

sizes n = 50, 100 and 200.

6. Real data example

As an illustration we revisit the data on hydro-geochemical stream and sediment reconnais-

sance from Cook and Johnson [7]. These data consist of the observed log-concentrations of
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seven chemicals in 655 water samples collected near Grand Junction, Colorado. The data can

be found, e.g., as a data set called uranium in the R package copula [16]. In the analysis we

focus on the relationship between Cesium (Cs) and Scandium (Sc), given some of the other

chemicals.

For the analysis we use the Frank copula as the reference copula in our testing procedure.

This copula can capture both positive and negative dependencies, and it is in conformance,

e.g., with the fact that the dependence between these two variables is not extreme-value

[5]. The loess function in the R software was used to adjust for the possible effect of the

covariates on the margins. For testing for the effect of a single covariate (x) we consider the

conditional parameter of the form

θR(x) = ψ + α1 x+ α2 x
2.

For testing any effect of a two-dimensional covariate (x = (x1, x2)) we use

θR(x) = ψ + α1 x1 + α2 x
2
1 + α3 x2 + α4 x

2
2 + α5 x1 x2.

Finally, for testing a partial effect of the second covariate (x2) when the first covariate (x1)

is included we consider the model

θR(x) = ψ1 + ψ2 x1 + ψ3 x
2
1 + α1 x2 + α2 x

2
2 + α3 x1 x2.

Further to stabilize the effect of covariate we transform the values of the covariates into

(marginal) ranks. For comparison we also included the results based on the statistic Vn1 in

Gijbels et al. [13]; see also Sections 4.1 and 5.1. Results for testing for a partial effect are of

course not available (NA) for this nonparametric test.

Some of the results are presented in Table 16. Note that when considering any effect of

the univariate or multivariate covariate (lines 1, 2, 3, 6 and 7), our findings are mostly in

agreement with the findings based on the statistic Vn1. The only exception is the effect of

Lithium (Li) on line 6 which is not significant when testing with the help of Vn1 but it is

slightly below the standard level of statistical significance when using the test statistic (5).

The new findings are on lines 4, 5, 8 and 9 concerning testing for partial effects of a bivariate

covariate vector. The results suggest that Co has an effect on the conditional copula even

if Ti is included (line 4). On the other hand when Co is included the effect of Ti is only

borderline (line 5).

Acknowledgments. The authors are grateful to the Editor-in-Chief, Associate Editor and

the reviewers for their valuable comments, which led to an improved manuscript.

Appendix

In this appendix we show all the results needed to prove (12) when margins are not influ-

enced by the covariate. First we start with some auxiliary results of independent interest.
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Table 16. p-values for the test of the simplifying assumption of Cesium and

Scandium when conditioning on one other chemical (lines 1, 2, 6) or two

additional chemicals (lines 3 and 7). Lines 4, 5, 8 and 9 contain the p-values

of the test that the conditional copula is affected by the first variable provided

that the second variable is included.

Cov. effect Vn1 Rn-frank R
(perm)
n -frank

Ti 0.001 0.001 0.001

Co 0.003 0.001 0.001

Ti and Co 0.001 0.001 0.011

Co when Ti incl. NA 0.003 0.005

Ti when Co incl. NA 0.090 0.097

Li 0.151 0.018 0.021

Ti and Li 0.001 0.001 0.001

Li when Ti incl. NA 0.010 0.011

Ti when Li incl. NA 0.001 0.001

Then we subsequently prove the asymptotic normality result (9), the asymptotic represen-

tation (7), asymptotic normality of (10) and finally the consistency of the estimator of the

asymptotic variance estimator (11).

A1 - Auxiliary results. We first introduce the notion of U-shaped functions (see, e.g.,

Shorack [20]).

Definition 1 (Subclasses of U-shaped functions). A function r : (0, 1) → (0,∞) is called

U-shaped if it is symmetric about 1/2 and decreasing on (0, 1/2].

(i) Let V be the set of continuous functions v on [0, 1], such that 1/v is U-shaped and∫ 1
0 {v(t)}−2dt <∞.

(ii) For 0 < β < 1 and a U-shaped function r, we define

rβ(t) =

{
r(βt) if 0 < t ≤ 1/2,

r{1− β(1− t)} if 1/2 < t < 1.

If for every β > 0 in a neighborhood of 0, there exists a constant Mβ, such that rβ ≤Mβ r

on (0, 1), then r is called a reproducing U-shaped function. We denote by R the set of

reproducing U-shaped functions.

Before we proceed, we need to generalize the results of Genest et al. [9] and Tsukahara [24]

for a score function, which is also a function of the covariate. Let RX ⊂ Rd be the support

of X and let J be a function from [0, 1]2 ×RX to R.



24 IRÈNE GIJBELS1, MAREK OMELKA2#, MICHAL PEŠTA2 AND NOËL VERAVERBEKE3,4

Suppose we observe independent random vectors (Y11, Y21,X1), . . . , (Y1n, Y2n,Xn). Recall

that (Ũ1i, Ũ2i) are given by (4) and (U1i, U2i) =
(
F1(Y1i), F2(Y2i)

)
, where F1 and F2 are the

marginal distribution function of Y1i and Y2i, respectively.

Definition 2 (Class of J1- and J2-functions). A function J is called a J1-function if J is

continuous on (0, 1)2 ×RX and there exist functions r1, r2 ∈ R and M : RX → R such that

|J(u1, u2,x)| ≤M(x) r1(u1) r2(u2), (A1)

and

E {M(X) r1(U1)r2(U2)} <∞. (A2)

Furthermore, a function J is called a J2-function if there exist functions r1, r2, r̃1, r̃2 ∈ R,

v1, v2 ∈ V, and M : RX → R such that

|J(u1, u2,x)| ≤M(x) r1(u1) r2(u2),∣∣∣J (1)(u1, u2,x)
∣∣∣ ≤M(x) r̃1(u1) r2(u2),

∣∣∣J (2)(u1, u2,x)
∣∣∣ ≤M(x) r1(u1)r̃2(u2), (A3)

where J (j)(·) = ∂J(·)/∂uj (j ∈ {1, 2}) is continuous on (0, 1)2 ×RX, and

E {M(X) r1(U1) r2(U2)}2 <∞,

E {M(X) v1(U1)r̃1(U1)r2(U2)} <∞, E {M(X) v2(U2)r1(U1)r̃2(U2)} <∞.
(A4)

Lemma 1. If J is a J1-function, then

1

n

n∑
i=1

J(Ũ1i, Ũ2i,Xi)
Pr−−−→

n→∞
E {J(U1, U2,X)}.

Proof. Due to the law of large numbers, it is sufficient to show that

Dn =

∣∣∣∣∣ 1n
n∑
i=1

J(Ũ1i, Ũ2i,Xi)−
1

n

n∑
i=1

J(U1i, U2i,Xi)

∣∣∣∣∣ Pr−−−→
n→∞

0. (A5)

Let ε > 0 be given. For a given δ ∈ (0, 1/2) (that will be specified later on), consider the

set

Iδ = {(u1, u2) : (u1, u2) ∈ [δ, 1− δ]2}. (A6)

Thanks to the assumptions of the lemma, one can choose δ > 0 and a compact set K ⊂ RX

such that

E
[
M(X) r1(U1) r2(U2) 1

{
(U1, U2,X) 6∈ Iδ ×K

}]
< ε. (A7)

Now, we introduce the set of indices

Jδ =
{
i : (U1i, U2i,Xi) ∈ Iδ ×K

}
(A8)



TESTING COVARIATE EFFECTS 25

and note that Dn introduced in (A5) can be bounded as

Dn ≤

∣∣∣∣∣∣ 1n
∑
i∈Jδ

J(Ũ1i, Ũ2i,Xi)−
1

n

∑
i∈Jδ

J(U1i, U2i,Xi)

∣∣∣∣∣∣ (A9)

+
1

n

∑
i 6∈Jδ

|J(Ũ1i, Ũ2i,Xi)|+
1

n

∑
i 6∈Jδ

|J(U1i, U2i,Xi)|. (A10)

Using (A1), (A7), and the law of large numbers, the second term in (A10) can be bounded as

1

n

∑
i 6∈Jδ

|J(U1i, U2i,Xi)| ≤
1

n

n∑
i=1

M(Xi) r1(U1i) r2(U2i) 1
{

(U1i, U2i,Xi) 6∈ Iδ ×K
}

= E
[
M(X) r1(U1) r2(U2) 1

{
(U1, U2,X) 6∈ Iδ ×K

}]
+ oP (1)

≤ ε+ oP (1). (A11)

To bound the first term in (A10), Lemma A3 by Shorack [20] assures that there exists βε ∈
(0, 1) such that for all sufficiently large n

Pr
{
∀i∈{1,...,n} ∀j∈{1,2} βε Uji ≤ Ũji ≤ 1− βε (1− Uji)

}
> 1− ε. (A12)

Taking into account (A12) and (A1) the first term in (A10) can be bounded with probability

greater than 1− ε as follows

1

n

∑
i 6∈Jδ

|J(Ũ1i, Ũ2i,Xi)| ≤
1

n

n∑
i=1

M(Xi) r1βε(U1i) r2βε(U2i) 1
{

(U1i, U2i,Xi) 6∈ Iδ ×K
}

= E
[
M(X) r1βε(U1) r2βε(U2) 1

{
(U1, U2,X) 6∈ Iδ ×K

}]
+ oP (1)

≤ O(ε) + oP (1). (A13)

By the uniform convergence of an empirical distribution function and the continuity of the

function J , the term on the right-hand side of (A9) converges to zero in probability. This

combined with (A11) and (A13) implies the statement of the lemma. �

Remark 1. Note that in our context X is independent of (U1, U2). Thus assumption (A2) can

be replaced with

E {M(X)} <∞, E{r1(U1)r2(U2)} <∞.

With the help of Hölder’s inequality it is easy to show that a sufficient condition for the

second assumption is that for some δ > 0

r1(u) = {u(1− u)}
−1+δ
p , r2(u) = {u(1− u)}

−1+δ
q ,

where p, q are positive constants such that 1/p+ 1/q = 1.
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Lemma 2. Let J be a J2-function, and assume that E {J(U1, U2,X)} = 0. Then

1√
n

n∑
i=1

J(Ũ1i, Ũ2i,Xi) =
1√
n

n∑
i=1

φ(U1i, U2i,Xi) + oP (1),

where

φ(u1, u2,x) = J(u1, u2,x) +

∫
[0,1]2×Rd

[
1{u1 ≤ v1} − v1

]
J (1)

(
v1, v2,x

)
dH(v1, v2,x)

+

∫
[0,1]2×Rd

[
1{u2 ≤ v2} − v2

]
J (2)

(
v1, v2,x

)
dH(v1, v2,x),

where H stands for the joint cumulative distribution function of (U1, U2,X).

Proof. The proof will be divided into two steps. First, we will show that

1√
n

n∑
i=1

J(Ũ1i, Ũ2i,Xi) =
1√
n

n∑
i=1

J(U1i, U2i,Xi)

+

2∑
j=1

1√
n

n∑
i=1

J (j)(U1i, U2i,Xi)
(
Ũji − Uji

)
+ oP (1),

(A14)

and second, we will prove that

1√
n

n∑
i=1

J (j)(U1i, U2i,Xi)
(
Ũji − Uji

)
=

1√
n

n∑
i=1

∫ [
1{Uji ≤ vj} − vj

]
J (j)

(
v1, v2,x

)
dH(v1, v2,x) + oP (1), (A15)

which together with (A14) provides the statement of the lemma.

Step 1: Proving (A14). By the mean value theorem,

1√
n

n∑
i=1

J(Ũ1i, Ũ2i,Xi) =
1√
n

n∑
i=1

J(U1i, U2i,Xi)

+

2∑
j=1

1√
n

n∑
i=1

J (j)(U∗1i, U
∗
2i,Xi)

(
Ũji − Uji

)
, (A16)

where U∗ji lies between Ũji and Uji. In what follows, we show that one can indeed replace

J (j)(U∗1i, U
∗
2i,Xi) with J (j)(U1i, U2i,Xi) in (A16).

For η ∈ [0, 1/2) and δ ∈ (0, 1/2) (that will be specified later) define the processes

Fjn(u) =

√
n
[
Fjn{F−1

j (u)} − u
]

uη(1− u)η
, u ∈ (0, 1). (A17)
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and

F̃jn(u) =

√
n
[

n
n+1 Fjn{F

−1
j (u)} − u

]
uη(1− u)η

1
{
u ∈

[
δ/n, 1− δ/n

]}
+ Fjn(u) 1{u 6∈

[
δ/n, 1− δ/n

]}
. (A18)

First of all note that

F̃jn(u)− Fjn(u) =

[√
n
[

n
n+1 Fjn{F

−1
j (u)} − u

]
uη(1− u)η

− Fjn(u)

]
1
{
u ∈

[
δ/n, 1− δ/n

]}
= −

√
n
[

1
n+1 Fjn{F

−1
j (u)}

]
uη(1− u)η

1
{
u ∈

[
δ/n, 1− δ/n

]}
,

which implies that

sup
u∈[0,1]

∣∣F̃jn(u)− Fjn(u)
∣∣ ≤ sup

u∈
[
δ/n,1−δ/n

]
√
n

n+1 Fjn{F
−1
j (u)}

uη(1− u)η

≤
√
n

n+ 1

1(
δ/n
)η (

1− δ/n
)η = o(1). (A19)

Further note that

F̃jn(u) =

√
n
[

n
n+1 Fjn{F

−1
j (u)} − u

]
uη(1− u)η

+Rδjn(u),

with

Rδjn(u) =

[
Fjn(u)−

√
n
[

n
n+1 Fjn{F

−1
j (u)} − u

]
uη(1− u)η

]
1{u 6∈

[
δ/n, 1− δ/n

]}
,

which is always nonnegative. It can be seen that, for j ∈ {1, 2},

Pr

{
max

i∈{1,...,n}
Rδjn(Uji) = 0

}
= Pr

(
min

1≤i≤n
Uji > δ/n and max

1≤i≤n
Uji < 1− δ/n

)
≥ Pr

(
min

1≤i≤n
Uji > δ/n

)
+ Pr

(
max

1≤i≤n
Uji < 1− δ/n

)
− 1.

Since

Pr
(

min
1≤i≤n

Uji ≤ δ/n
)

= Pr
(

max
1≤i≤n

Uji ≥ 1− δ/n
)

= (1− δ/n)n ,

we obtain

Pr

{
max

i∈{1,...,n}
Rδjn(Uji) = 0

}
≥ 2 (1− δ/n)n − 1.

Hence,

Pr

{
max
j∈{1,2}

max
i∈{1,...,n}

Rδjn(Uji) 6= 0

}
≤ Pr

{
max

i∈{1,...,n}
Rδ1n(U1i) 6= 0

}
+ Pr

{
max

i∈{1,...,n}
Rδ2n(U2i) 6= 0

}
≤ 2 {1− 2 (1− δ/n)n + 1} = 4− 4 (1− δ/n)n .
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Consequently,

Pr

{
max
j∈{1,2}

max
i∈{1,...,n}

Rδjn(Uji) = 0

}
≥ −3 + 4 (1− δ/n)n . (A20)

Note that the right-hand side of (A20) tends to −3 + 4e−δ, as n → ∞, for any δ ∈ (0, 1/2);

in the limit, for δ going to 0, this bound tends to 1. So, by taking δ sufficiently small we get

that the event

Aδn =
{

max
j∈{1,2}

max
i∈{1,...,n}

Rδjn(Uji) = 0
}

=
{
∀j∈{1,2}∀i∈{1,...,n} Uji ∈

[
δ/n, 1− δ/n

]}
, (A21)

Therefore for the rest of the paper, we will work on the intersection with this event. Note

that (on Aδn)

max
j∈{1,2}

max
i∈{1,...,n}

∣∣∣∣√n
(
Ũji − Uji

)
Uηji(1− Uji)η

∣∣∣∣ = max
j∈{1,2}

max
i∈{1,...,n}

∣∣F̃jn(Uji)
∣∣.

Using this together with the Chibisov–O’Reilly theorem (see, e.g., Shorack and Wellner

[21], p. 462) for the process Fjn(u) and (A19) yields that

max
j∈{1,2}

max
i∈{1,...,n}

∣∣∣∣√n
(
Ũji − Uji

)
Uηji(1− Uji)η

∣∣∣∣ = OP (1). (A22)

Now, let ε > 0 be given. Then, let us introduce Iδ, K and Jδ as in (A6) and (A8) with δ

chosen such that

E
[
M(X) v1(U1)r̃1(U1)r2(U2) 1

{
(U1, U2,X) 6∈ Iδ ×K

}]
< ε,

E
[
M(X) v2(U2)r1(U1)r̃2(U2)1

{
(U1, U2,X) 6∈ Iδ ×K

}]
< ε.

(A23)

With respect to (A22), one can bound (on Aδn)∣∣∣∣ 1√
n

n∑
i=1

J (j)(U∗1i, U
∗
2i,Xi)

(
Ũji − Uji

)
− 1√

n

n∑
i=1

J (j)(U1i, U2i,Xi)
(
Ũji − Uji

)∣∣∣∣∣
≤ OP (1)

1

n

n∑
i=1

∣∣∣J (j)(U∗1i, U
∗
2i,Xi)− J (j)(U1i, U2i,Xi)

∣∣∣Uηji(1− Uji)η
≤ OP (1)

 1

n

∑
i∈Jδ

∣∣∣J (j)(U∗1i, U
∗
2i,Xi)− J (j)(U1i, U2i,Xi)

∣∣∣ (A24)

+
1

n

∑
i 6∈Jδ

∣∣∣J (j)(U∗1i, U
∗
2i,Xi)

∣∣∣ Uηji(1− Uji)η (A25)

+
1

n

∑
i 6∈Jδ

∣∣∣J (j)(U1i, U2i,Xi)
∣∣∣ Uηji(1− Uji)η

 . (A26)

The term on the right-hand side of (A24) converges in probability to zero by the continuity

of J (j). To deal with the term in (A25), one can choose η in (A22) arbitrarily close to 1/2.
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Thus similarly as in (A13), using (A12), (A3), (A23), and the law of large numbers, one can

bound (on Aδn)

1

n

∑
i 6∈Jδ

∣∣∣J (j)(U∗1i, U
∗
2i,Xi)

∣∣∣ Uηji(1− Uji)η ≤ O(1)
1

n

∑
i 6∈Jδ

vj(Uji) r̃j(Uji) r3−j(U3−j,i)

≤ O(ε) + oP (1).

Analogously, one can also treat the term in (A26), which completes the proof of (A14).

Step 2: Proof of (A15). Let η ∈ [0, 1/2) be chosen such that vj(u) = O{uη(1−u)η}. Similarly

as in Step 1 of the proof, we will work on the intersection with the event Aδn defined (A21).

On Aδn one has

1√
n

n∑
i=1

J (j)(U1i, U2i,Xi)
(
Ũji − Uji

)
=

1

n

n∑
i=1

h̃n(U1i, U2i,Xi), (A27)

where

h̃n(u1, u2,x) = J (j)(u1, u2,x)uηj (1− uj)
η F̃jn(uj),

with F̃jn defined in (A18). Further with the help of (A19) one has (on Aδn)

max
j∈{1,2}

max
i∈{1,...,n}

∣∣F̃jn(Uji)− Fjn(Uji)
∣∣ ≤ o(1),

where Fjn is defined in (A17). Now using (A27) one gets

1√
n

n∑
i=1

J (j)(U1i, U2i,Xi)
(
Ũji − Uji

)
=

1

n

n∑
i=1

hn(U1i, U2i,Xi) + oP (1), (A28)

where hn(u1, u2,x) = J (j)(u1, u2,x)uηj (1− uj)η Fjn(uj).

Now, by the Chibisov–O’Reilly theorem the process
{
Fjn : u ∈ (0, 1)

}
converges in distri-

bution in the space of bounded function `∞([0, 1]) (equipped with the supremum metric %).

Hence, by Theorem 1.5.8 of van der Vaart and Wellner [25] the process is asymptotically tight

and thus for each ε > 0 there exists a compact set K ⊂ `∞([0, 1]) such that

lim inf
n→∞

Pr(Fjn ∈ Kε/2) ≥ 1− ε,

where Kε/2 =
{
g ∈ `∞([0, 1]) : dist(g,K) < ε/2

}
is an (ε/2)-enlargement around K, with

dist(g,K) = inf g̃∈K %(g, g̃). Thus, Pr(hn ∈ Hε) ≥ 1− ε, where

Hε =
{

(u1, u2,x) 7→ J (j)(u1, u2,x)uηj (1− uj)
η g(uj), g ∈ Kε/2

}
.

Moreover, as the set K is compact, it can be covered by finitely many balls of radius ε/2.

Hence, for each ε > 0 the ε-bracketing number of Kε/2 with respect to the supremum norm is

finite. Since E |J (j)(U1, U2,X)Uηj (1− Uj)η| < ∞, it is straightforward to show that for each
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ε > 0 the ε-bracketing number of Hε with respect to the L1-norm is finite. One can proceed

as in the proof of Theorem 2.4.1 of van der Vaart and Wellner [25] to show that for each ε > 0

sup
h∈Hε

∣∣∣∣∣ 1n
n∑
i=1

h(U1i, U2i,Xi)− E {h(U1, U2,X)}

∣∣∣∣∣ ≤ ε+ oP (1).

Combined with the fact that with an arbitrarily high probability for all sufficiently large n

the function hn lies in Hε, this implies that

1

n

n∑
i=1

hn(U1i, U2i,Xi) = EZ{hn(U1, U2,X)}+ oP (1), (A29)

where EZ stands for an expectation taken with respect to Z = (U1, U2,X). We stress this

here since the random function hn (depending on (U1i, U2i,Xi), i ∈ {1, . . . , n}) is considered

as fixed. It remains to calculate

EZ{hn(U1, U2,X)} =
1√
n

n∑
i=1

∫ [
1{Uji ≤ vj} − vj

]
J (j)(v1, v2,x) dH(v1, v2,x),

which together with (A28) and (A29) provides (A15). �

Remark 2. Analogously as in Remark 1, if X is independent of (Y1, Y2), then (A4) is satisfied

if

E {M(X)}2 <∞, r1(u) = {u(1− u)}
−1/2+δ

p , r2(u) = {u(1− u)}
−1/2+δ

q ,

for some δ > 0 and p, q positive constants such that 1/p+ 1/q = 1.

A2 - Theorem 1 and proof of (9). To proceed we need to formulate needed regularity

assumptions.

Assumptions R:

R1. The function ρ(u1, u2,x;α;ψ) is continuously differentiable with respect to α and ψ for

all (u1, u2,x).

R2. The function R(ψ) = E {ρ(U1i, U2i,Xi; 0p;ψ)} has under the null hypothesis a unique

maximizer ψ̃.

R3. Under the null hypothesis E {sα
(
U1i, U2i,Xi; 0p; ψ̃

)
} = 0p.

For each k ∈ {1, . . . , p+q}, let us denote the kth element of s(u1, u2,x;ψ) by sk(u1, u2,x;ψ).

R4. For each k ∈ {1, . . . , p+ q}, the function sk(·, ·, ·; ψ̃) ∈ J2.

Theorem 1. Assume that Assumptions R1–R4 hold. Then, under H0,

1√
n

n∑
i=1

s
(
Ũ1i, Ũ2i,Xi; ψ̃

)
=

1√
n

n∑
i=1

φ(U1i, U2i,Xi) + oP (1), (A30)
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where

φ(u1, u2,x) = s(u1, u2,x; ψ̃)

+

∫
[0,1]2

∫
Rd

[
1{u1 ≤ v1} − v1

]
s(1)
(
v1, v2,x; ψ̃

)
dC(v1, v2) dFX(x)

+

∫
[0,1]2

∫
Rd

[
1{u2 ≤ v2} − v2

]
s(2)
(
v1, v2,x; ψ̃

)
dC(v1, v2) dFX(x), (A31)

which further implies (9).

Proof of Theorem 1. The asymptotic representation (A30) follows due to Lemma 2 applied to

each element sk(u1, u2,x;ψ) of the score function. The central limit theorem for independent

identically distributed vectors provides the asymptotic normality result (9). The existence of

a finite variance matrix is guaranteed by Assumption R4. �

A3 - Proof of representation (7). Let us define the partial score function as a function of

the nuisance parameter ψ, i.e.,

W n(ψ) =
1

n

n∑
i=1

sψ
(
Ũ1i, Ũ2i,Xi; 0p,ψ

)
Thus, the estimator ψ̃n of the nuisance parameter ψ under the null is a solution of the

estimating equations W n(ψ̃n) = 0q. In order to obtain some properties of ψ̃n, the following

additional assumptions are postulated.

Assumptions I:

I1. The function s(u1, u2,x;ψ) is assumed to be continuously differentiable with respect to ψ

for all (u1, u2,x). Further there exists an open neighborhood U of ψ̃ such that ∂s(u1, u2,x;ψ)/∂ψ

is continuous in (0, 1)2 × RX × U and there exists a dominating function h(u1, u2,x) ∈ J1

such that

sup
ψ∈U

∥∥∥∥ ∂s

∂ψ
(u1, u2,x;ψ)

∥∥∥∥ ≤ h(u1, u2,x).

I2. The q × q matrix Iψψ = −E {∂sψ(U1, U2,X; 0p, ψ̃)/∂ψ>} is nonsingular.

Lemma 3. Suppose that Assumptions I1, I2, and R1–R4 are satisfied, then (7) holds.

Proof of Lemma 3. Similarly as in the first part of the proof of Theorem 1 by Tsukahara [24],

we employ Theorem A.10.2 of Bickel et al. [6] forW n(ψ) and the corresponding estimator ψ̃n.

Note that Assumption (GM0) in that theorem is trivially satisfied due to Assumption R2.

Moreover, Assumptions I1 and I2 imply Assumption (GM3). Assumption (GM2) is also

satisfied as by Theorem 1

1

n

n∑
i=1

sψ
(
Ũ1i, Ũ2i,Xi; ψ̃

)
=

1

n

n∑
i=1

φψ(U1i, U2i,Xi) + oP (n−1/2),
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where φψ are the corresponding components of φ which is given in (A31). Thus, it remains

to check Assumption (U) from Theorem A.10.2. Therefore for each ε > 0 and for each

j, ` ∈ {1, . . . , q}, it is sufficient to find a neighborhood Uε = {ψ ∈ U : ‖ψ− ψ̃‖ < ε} such that

sup
ψ∈Uε

∣∣∣∣∣ 1n
n∑
i=1

∂

∂ψ`
sψ,j(Ũ1i, Ũ2i,Xi; 0p,ψ)− I(j,`)

ψψ

∣∣∣∣∣ ≤ ε+ oP (1),

where I
(j,`)
ψψ stands for the (j, `) element of Iψψ.

For simplicity of notation, let us put gj,`(u1, u2,x;ψ) = ∂sψ,j(u1, u2,x; 0p,ψ)/∂ψ`. As-

sumption I1 allows to adapt Lemma 1, which gives

1

n

n∑
i=1

gj,`(Ũ1i, Ũ2i,Xi; ψ̃)− I(j,`)
ψψ = oP (1).

Hence, it remains to show

Dn = sup
ψ∈Uε

∣∣∣∣∣ 1n
n∑
i=1

gj,`(Ũ1i, Ũ2i,Xi;ψ)− 1

n

n∑
i=1

gj,`(Ũ1i, Ũ2i,Xi; ψ̃)

∣∣∣∣∣ ≤ ε+ oP (1). (A32)

For a given δ ∈ (0, 1/4) (that will be specified later on), let us introduce the sets Iδ and Jδ as

in (A6) and (A8). Then the left-hand side of (A32) can be bounded by

Dn ≤ sup
ψ∈Uε

∣∣∣∣∣∣ 1n
∑
i∈Jδ

gj,`(Ũ1i, Ũ2i,Xi;ψ)− 1

n

∑
i∈Jδ

gj,`(Ũ1i, Ũ2i,Xi; ψ̃)

∣∣∣∣∣∣ (A33)

+
2

n

∑
i 6∈Jδ

h(Ũ1i, Ũ2i,Xi). (A34)

With probability going to 1 for each sufficiently large n, if (U1i, U2i) ∈ Iδ, then (Ũ1i, Ũ2i) ∈
Iδ/2. Thus for each δ ∈ (0, 1/4) the right-hand side of (A33) can be made arbitrarily small

(Assumption I1) up to oP (1) term by considering a sufficiently small neighbourhood Uε.
Finally, analogously as in the proof of Lemma 1, one can show that

1

n

∑
i 6∈Jδ

h(Ũ1i, Ũ2i,Xi) ≤ O(1) E
[
M(X) r1(U1) r2(U2) 1{(U1, U2,X) 6∈ Iδ×K}

]
+oP (1), (A35)

where K is a compact subset of RX. The right-hand side of the inequality (A35) can be

made arbitrarily small by decreasing δ and enlarging K. Combining (A33), (A34), and (A35)

verifies (A32). Thus by Theorem A.10.2 of Bickel et al. [6] one gets

√
n
(
ψ̃n − ψ̃

)
= {Iψψ(0p, ψ̃)}−1 1√

n

n∑
i=1

φψ
(
U1i, U2i,Xi; 0p, ψ̃) + oP (1),

which together with Theorem 1 gives (7). �
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A4 - Theorem 2 and proof of (10).

Theorem 2. Under Assumptions I1, I2, and R1–R4, (10) holds.

Proof of Theorem 2. Let sα,j be the jth element of the vector function sα and Sn,j the jth

coordinate of Sn. By the mean value theorem and using Assumption I1, there exists ψ̃
∗
n,

which lies between ψ̃n and ψ̃, such that

Sn,j =
1√
n

n∑
i=1

sα,j
(
Ũ1i, Ũ2i,Xi; 0p; ψ̃n

)
=

1√
n

n∑
i=1

sα,j
(
Ũ1i, Ũ2i,Xi; 0p, ψ̃

)
+

q∑
`=1

1

n

n∑
i=1

∂

∂ψ`
sα,j

(
Ũ1i, Ũ2i,Xi; 0p, ψ̃

∗
n

)√
n (ψ̃n,` − ψ̃`), (A36)

where ψ̃n,` and ψ̃` are the `th elements of ψ̃n and ψ̃, respectively.

Analogously as in the proof of Lemma 3, one can show that

1

n

n∑
i=1

∂

∂ψ`
sα,j

(
Ũ1i, Ũ2i,Xi; 0p, ψ̃

∗
n

)
= I

(j,`)
α,ψ + oP (1),

for all j ∈ {1, . . . , p} and ` ∈ {1, . . . , q}. The above equation combined with (A36) and

Lemma 3 yields that, for all j ∈ {1, . . . , q},

Sn,j =
1√
n

n∑
i=1

sα,j
(
Ũ1i, Ũ2i,Xi; 0p, ψ̃

)
+ I

(j,)
α,ψ I

−1
ψ,ψ

1√
n

n∑
i=1

sψ
(
Ũ1i, Ũ2i,Xi; 0p; ψ̃n

)
+ oP (1), (A37)

where I
(j,)
α,ψ is the jth row of the matrix Iα,ψ. Hence, Theorem 1 (requiring Assumptions R1–

R4) and (A37) imply

Sn = (Ip×p,−IαψI−1
ψψ)

1√
n

n∑
i=1

s
(
Ũ1i, Ũ2i,Xi; ψ̃

)
+ oP (1)

 Np
(
0p,Σαα − Iαψ I−1

ψψ Σψα −Σαψ I
−1
ψψ Iψα + Iαψ I

−1
ψψ Σψψ I

−1
ψψ Iψα

)
,

where Ip×p is the identity matrix of the dimension (p, p). �

A5 - Proving consistency of the asymptotic variance estimator (11). To proceed it

is useful to generalize the notion of J2-functions introduced in Definition 2 so that it includes

also the parameter ψ from a parameter space Θψ.
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Definition 3 (J̃2-functions). A function J̃ : (0, 1)2×RX×Θψ is called a J̃2-function if there

exist functions r1, r2, r̃1, r̃2 ∈ R, v1, v2 ∈ V, and M : RX → R such that

sup
ψ∈Θψ

∣∣∣J̃(u1, u2,x;ψ)
∣∣∣ ≤M(x) r1(u1) r2(u2),

sup
ψ∈Θψ

∣∣∣J̃ (1)(u1, u2,x;ψ)
∣∣∣ ≤M(x) r̃1(u1) r2(u2), sup

ψ∈Θψ

∣∣∣J̃ (2)(u1, u2,x;ψ)
∣∣∣ ≤M(x) r1(u1)r̃2(u2),

where J̃ (j)(·) = ∂J(·)/∂uj , j ∈ {1, 2}, is continuous on (0, 1)2 ×RX ×Θψ, and (A4) holds.

Theorem 3. Let Assumptions I1, I2, and R1–R4 hold. Suppose that there exists a neigh-

borhood U of ψ̃ such that for each k ∈ {1, . . . , p + q}, the function sk(·, ·, ·, ·) ∈ J̃2 (with U
taken in place of Θψ). Then under the null hypothesis ̂avar(Sn)

Pr−−−→
n→∞

V.

Proof. Note that from the proof of Lemma 3 it follows that Îψψ
Pr−−−→

n→∞
Iψψ and completely

analogously one can show that Îαψ
Pr−−−→

n→∞
Iαψ and also that

1

n

n∑
i=1

sk(Ũ1i, Ũ2i,Xi; ψ̃n) sk′(Ũ1i, Ũ2i,Xi; ψ̃n)
Pr−−−→

n→∞
E {sk(U1, U2,X; ψ̃) sk′(U1, U2,X; ψ̃)}

for each k, k′ ∈ {1, . . . , p + q}. Now the proof is finished provided that one shows that for

each k, k′ ∈ {1, . . . , p}

1

n

n∑
i=1

ϑ̂
(1)

α,k

(
Ũ1i

)
ϑ̂

(1)

α,k′
(
Ũ1i

)
= E {ϑ(1)

α,k(U1)ϑ
(1)
α,k(U1)}+ oP (1),

where

ϑ
(j)
α,k(u) =

∫ [
1{u ≤ vj} − vj

]
s

(j)
k (v1, v2,x; ψ̃) dC(v1, v2) dFX(x), j ∈ {1, 2}.

All the remaining terms can be handled analogously. Note that one can choose η ∈ [0, 1/2)

such that uniformly in u ∈ (0, 1)∣∣ϑ̂(j)

α,k

(
u
)∣∣ ≤ 1

n

n∑
j=1

∣∣∣1{u ≤ Ũ1j} − Ũ1j

Ũη1j(1− Ũ1j)η
Ũη1j(1− Ũ1j)

η s
(j)
k (Ũ1j , Ũ2j ,Xj ; ψ̃)

∣∣∣
≤ 1

uη(1− u)η
1

n

n∑
j=1

v1(Ũ1j) r̃1(Ũ1j) r2(Ũ1j) =
1

uη(1− u)η
OP (1).

This implies that (in probability) one has an integrable majorant 1/(u2η(1− u)2η) for the set

of the functions
{
gn(u) = ϑ̂

(j)

α,k

(
u
)
ϑ̂

(j)

α,k′
(
u
)

: n ∈ N
}

. Thus one can proceed analogously as in

the proof of Lemma 3. �

N.B.: The references have been typeset according to JMVA standards.
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