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Abstract

This empirical contribution reviews the rather limited existing literature measuring

congestion in production. It first compares current ways to measure congestion using

nonparametric specifications of technologies. In particular, it focuses on the magnitude

and incidence of the congestion detected in empirical studies using traditional radial

efficiency measures. Thereafter, it shows the limitations of this radial measurement

and how alternative measurement schemes may reveal higher amounts of congestion.

Then, the new, more general methodology of measuring S-congestion is presented. In

particular, we first present a numerical example to illustrate the way the S-disposable

technologies allow to capture more extreme forms of congestion by setting empirically

determined upper bounds to the wasting of inputs. Then, an empirical illustration is

presented based on an existing sample of data. A final section concludes.
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1 Introduction

Traditionally, few empirical studies attempt to measure the phenomenon of congestion in

production, here intuitively defined as production subject to negative marginal productivity.

One of the few streams in the literature where some studies report on congestion makes

use of multi-output nonparametric production technologies that impose either ray or free

disposability to distinguish between technical inefficiency, i.e., production below the produc-

tion frontier, and congestion, interpreted as a particular severe form of technical inefficiency.

While the empirical analysis of efficiency and productivity has become quite popular (see,

e.g., Alam and Sickles (2000) or Kumar and Russell (2002)), congestion is most often ignored

in such studies, despite the fact that some studies find it to be the most important source

of poor performance (e.g., Zhengfei and Oude Lansink (2003)).

One prominent example of congestion is traffic congestion. In cities worldwide congestion

leads to reduced speeds and traffic flows over a given network. In extreme cases, traffic jams

(e.g., due to an accident) can even temporarily destroy the whole throughput along an arc

or at a node in a network resulting in a zero traffic flow. The latter extreme case is but one

example of what one could label “hypercongestion”, whereby a total loss of output(s) occurs

for certain combinations of inputs.

While there is a limited axiomatic literature allowing to reveal and measure some limited

forms of congestion in production, it may be surprising to know that currently no economic

production model is capable to reveal and measure the above phenomenon of hyperconges-

tion. When there is an upper bound to the wasting of inputs in certain directions, then one

can model hypercongestion phenomena leading to the complete destruction of outputs. While

the limited forms of congestion in production are known as monotone output-limitational

(MOL) congestion, the latter form of hypercongestion is known as output prohibitive (OP)

congestion (see Färe and Svensson (1980) for definitions). Briec, Kerstens, and Van de

Woestyne (2016) are the first develop a new axiomatic approach allowing for the definition

of more general multi-output technologies capable of revealing all currently known (i.e., MOL

and OP) congestion concepts.

In this contribution, we offer a complementary empirical perspective to these new theor-

etical developments. In particular, we set ourselves three targets. First, we want to make a

preliminary inventory to document the amounts and incidence of congestion that are empir-

ically observed in the limited literature available. Second, we want to illustrate how the way

one measures congestion affects the amounts that can be revealed. Third, we want to move
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beyond these forms of MOL-congestion and also verify whether OP-congestion matters in

an empirical context. The latter form of congestion has to the best of our knowledge never

been empirically documented.

Considering congestion as an extreme form of technical inefficiency, a key question is

how one can think its existence when firms supposedly operate under a high degree of

competition. While traditionally technical inefficiency is conceived as incompatible with

competitive markets, the framework developed by Allais (1977) and later on reformulated

by Luenberger (1995) at least allows to think of the dynamics of market exchanges out

of equilibrium and it considers Walrasian equilibria as limiting states where inefficiencies

in consumption and production are zero. In this view, inefficiencies and surpluses in the

economy determine the dynamics of exchange and the battle to extract surpluses.

The existence of congestion is often related to the law of diminishing returns and it

has been presented as both a law and a statistical regularity. In agriculture, crop response

models that relate crop yields to essential single nutrients or combinations thereof (e.g.,

the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur, and

the micronutrients boron, chlorine, copper, iron, manganese, molybdenum, and zinc) almost

universally reveal an initial phase with positive marginal product and limited substitution

possibilities, the existence of a maximum plateau with zero marginal product, and also a

declining phase with negative marginal products (in soil science, the latter phase is called the

toxic range of nutrients).1 In hospitals, simulation models have determined a variety of causes

contributing to facility congestion (e.g., poor scheduling practices (e.g., Johnson and Happ

(1977)), congested emergency departments due to bottlenecks in long-term care facility (see

Patrick (2011)), etc.). From this scant evidence from the agricultural and hospital sectors,

it is clear that while the existence of the congestion phenomenon is beyond doubt, its causes

seem to be industry specific.

This paper is structured as follows. Section 2 provides some basic production axioms as

well as definitions of the technology and its boundaries. It also discusses the representation

of technologies by means of efficiency measures and distance functions. Section 3 introduces

the nonparametric technologies that can be used to model some form of congestion and how

congestion has been distinguished from technical efficiency in the literature. We review two

types of empirical literatures containing some evidence on the amounts and incidence of

congestion. Finally, we illustrate how the traditional radial way of measuring efficiency and

congestion actually may underestimate the amounts of congestion.

1For soil science, see Jones (2001, pp. 216-221) or Munson (1998). For agricultural economics, see Dillon
and Anderson (1990, Ch. 2-3) and the survey in Paris (2008).

3



Having summarised the theoretical and methodological parts, we now turn to the em-

pirical sections. In Section 4, we illustrate the more general notion of S-congestion using a

detailed numerical example with two input dimensions generating a single output assuming a

convex hull technology. In particular, we illustrate the notion of S-disposability and measure

I-congestion with I ∈ S by means of a suitable directional distance function. We briefly

elaborate on how to define a nonconvex hull technology and illustrate its usefulness on the

same numerical example. Thereafter, we present a small empirical Section 5 revisiting an

existing data set that further illustrates the new S-congestion concepts. Section 6 concludes.

2 Technology: Axioms, Subsets and Representation

Following the literature, this contribution mainly focuses on input efficiency. A production

technology describes all available possibilities to transform input vectors x = (x1, . . . , xm) ∈
Rm

+ into output vectors y = (y1, . . . , yn) ∈ Rn
+. The production possibility set or technology

T summarizes the set of all feasible input and output vectors: T = {(x, y) ∈ Rm+n
+ :

x can produce y}. Given our focus on input-oriented efficiency measurement, technology

can be represented by the input correspondence L : Rn
+ → 2R

m
+ where L(y) is the set of all

input vectors that yield at least the output vector y:

L(y) = {x : x can produce y} . (1)

The list of axioms imposed on the input correspondence contains first of all the following

three regularity properties:

L1: ∀y ≥ 0 with y ̸= 0: 0 ̸∈ L(y) and L(0) = Rm
+ .

L2: ∀x ∈ Rm
+ :

∩
y∈Rn

+
L(y) ∩ (x− Rm

+ ) = ∅.

L3: L(y) is closed ∀y ∈ Rn
+.

Axiom L1 imposes no free lunch and the possibility of inaction. Assumptions L2 and L3

postulate the boundedness (i.e., infinite outputs can not be obtained from a finite input

vector) and closedness of the input set. These regularity axioms are considered as self-

evident and not amenable to testing.

In addition, there are other assumptions that may be invoked in various combinations

on the input correspondence in the empirical applications:

L4: L(y) is a convex set ∀y ∈ Rn
+.
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L5: If x ∈ L(y) then λx ∈ L(y), ∀λ ≥ 1.

L6: Let u ∈ Rm
+ . If there exists a x ∈ L(y) with u ≥ x, then u ∈ L(y).

L7: Let S ⊂ 2[m] and u ∈ Rm
+ . If for every I ∈ S there exists a xI ∈ L(y) with u ≥I xI , then

u ∈ L(y). Here,

u ≥I x ⇐⇒

{
ui ≤ xi if i ∈ I

ui ≥ xi else
.

Axiom L4 postulates that the input correspondence satisfies convexity: i.e., linear combin-

ations of activities are feasible. This is a widespread but not innocuous assumption, which

is mainly invoked for convenience. Assumption L5 postulates ray or weak disposability of

the inputs. Axiom L6 imposes strong or free disposal of inputs. While the former hypo-

thesis allows only for a proportional increase in inputs to produce given amounts of outputs,

the latter axiom implies that more inputs can always be used to generate an equal amount

of outputs. Finally, axiom L7 imposes S-disposability introduced in Briec, Kerstens, and

Van de Woestyne (2016). Obviously, when S = {∅}, S-disposability reduces to the strong

disposability axiom L6.

For future reference, we recall some important definitions and results from Briec, Ker-

stens, and Van de Woestyne (2016) concerning S-disposability and the related notions of

congestion.

Definition 2.1. Let L be an input correspondence. Let S ⊂ 2[m]. For all y ∈ Rn
+, L(y)

satisfies a minimal S-disposability assumption if:

(a) L(y) satisfies the S-disposal assumption, and

(b) ̸ ∃ S ′ ⊂ S with S ′ ̸= S such that L(y) satisfies the S ′-disposal assumption.

Proposition 2.1. Let L be an input correspondence satisfying L1-L3. For all y ∈ Rn
+, if

L(y) is nonempty then L(y) satisfies the S-disposal assumption if and only if:

L(y) =
∩
I∈S

(L(y) +KI) ,

with KI = {x ∈ Rm : x ≥I 0}.

Definition 2.2. Let L be an input correspondence and let S be a collection of subsets in

[m] that contains ∅. Let y ∈ Rn
+. L(y) is said to be S-congested if it is nonempty and fails

the S-disposal assumption.

To measure technical efficiency and congestion, it is useful to distinguish between certain

subsets of the input set L(y). In particular, one distinguishes between three subsets denoting

5



production units on the boundary. First, one can define the isoquant of an input set as:

Isoq L(y) = {x ∈ L(y) : λx /∈ L(y),∀λ ∈ [0, 1[}. (2)

Second, the weak efficient subset is defined by:

WEff L(y) = {x ∈ L(y) : u < x ⇒ u /∈ L(y)}. (3)

Finally, the efficient subset of an input set is defined as:

Eff L(y) = {x ∈ L(y) : u ≤ x and u ̸= x ⇒ u /∈ L(y)}. (4)

It is well-known that Eff L(y) ⊆ WEff L(y) ⊆ Isoq L(y) ⊆ L(y).

The subsets introduced in (3) and (4) can be generalized in the context of S-disposability

as indicated in Briec, Kerstens, and Van de Woestyne (2016). For instance, the generalization

of (4) leads to the following definition:

Definition 2.3. Let L be an input correspondence and let I ⊂ [m]. For all y ∈ Rn
+, the

I-congested boundary is the subset {x ∈ L(y) : u ≤I x and u ̸= x ⇒ u ̸∈ L(y)}.

Technologies can be characterized using distance functions. These distance functions are

related to the efficiency measures defined by Farrell (1957). In the input-orientation, this

Farrell efficiency measure Ei(x, y) indicates the minimum contraction of an input vector by

a scalar λ while still remaining on the boundary of the input set:

Ei(x, y) = inf
λ
{λ : λx ∈ L(y), λ ≥ 0} . (5)

Instead, it is also possible to use the input directional distance function in some arbitrary dir-

ection g ∈ Rm. This input directional distance function DL : Rm+n
+ ×Rm

+ → R∪{−∞,+∞}
is defined by:

DL(x, y; g) = sup{δ : x− δg ∈ L(y)}. (6)

Obviously, the input directional distance function is more general compared to the Farrell

input efficiency measure since it allows for measurement in different directions. When select-

ing g = x, then the input directional distance function is directly linked to the input-oriented

Farrell efficiency measure: DL(x, y; x) = 1− Ei(x, y).

Bearing in mind the theory-dependency of observations (i.e., to observe a certain phe-

nomenon, one needs a theoretical framework that permits to observe it), we need the direc-
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tional distance function because of the flexibility of its directional vector that allows us to

look for congestion in a precise way (see also infra on page 15).

Remark that precise definitions of monotone output-limitational (MOL) and output pro-

hibitive (OP) congestion can be found in Briec, Kerstens, and Van de Woestyne (2016,

Definition 2.1 (p. 70) and Definition 3.1 (p. 84)).

3 Nonparametric Technologies and Congestion Meas-

urement

3.1 Nonparametric Technologies: Definitions, Subsets and Con-

gestion Measurement

Let us consider a set of J observations A = {(x1, y1) , ..., (xJ , yJ)} ∈ Rn+m
+ . Nonparametric

deterministic specifications of technology can be estimated by enveloping these observations

while maintaining some basic production axioms (see Hackman (2008) or Ray (2004)).2

First, we define both a weak and strong disposable technology under variable returns to

scale (VRS). Under strong input and output disposal (SD), a VRS technology is defined as:

L(y)sd−vrs =

{
x : x ≥

J∑
j=1

zjxj, y ≤
J∑

j=1

zjyj,
J∑

j=1

zj = 1, z ≥ 0

}
. (7)

From activity analysis, z is the vector of activity variables that indicates the intensity at

which a particular activity is employed in constructing the reference technology. Under weak

input disposal and strong output disposal (WD), a VRS technology is defined as:

L(y)wd−vrs =

{
x : x =

J∑
j=1

µzjxj, y ≤
J∑

j=1

zjyj,
J∑

j=1

zj = 1, µ ≥ 1, z ≥ 0

}
. (8)

Note that the inequalities on the input dimensions have now been replaced by an equality

while the combinations of inputs defining the technology can be scaled up by the scalar µ.

Finally, to fully illustrate the notion of S-disposal we define a simple convex hull (CH) VRS

2Olesen and Petersen (2016) provide an overview of recent developments to handle measurement errors,
sample noise, and specification errors when defining these production models.
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technology that envelops all observations in the inputs as follows:

L(y)ch−vrs =

{
x : x =

J∑
j=1

zjxj, y ≤
J∑

j=1

zjyj,

J∑
j=1

zj = 1, z ≥ 0

}
. (9)

The latter technology is based upon the one defined in Charnes, Cooper, Golany, Seiford, and

Stutz (1985), but it is fair to say that is has hardly ever been used in the economic literature

(in contrast to the operations research literature).3 Note that it is not straightforward to

transform (9) into a nonconvex hull (NCH) technology if one wishes to dispense with the

convexity assumption.4

Figure 1 shows typical isoquants for nonparametric input sets with SD and WD under

VRS starting from some basic observations. The SD technology (7) being rather simple, we

focus on clarifying the WD technology (8). Note that the WD technology (8) is a subset of

the SD technology (7). While the equalities in (8) can explain the line segments bc and fg,

the scalar µ larger than or equal to unity is responsible for generating the rays emanating

from points b and g, respectively.

To illustrate how the WD technology can model congestion, we start out from observation

f . While the SD technology allows to waste additional inputs x1 at no opportunity cost, the

WD technology leaves two options: either the wasting of extra inputs x1 requires additional

costs in terms of extra inputs x2 to reach, for instance, point g while maintaining current

output levels, or the wasting of extra inputs x1 without any additional inputs x2 results

in reaching another input level set of the WD technology corresponding to a lower level of

outputs. In brief, wasting additional inputs x1 has an opportunity cost in terms of either

additional inputs x2 or less outputs.

Having intuitively explained the notion of congestion, we develop two more issues. First,

we clarify the three subsets ((2)-(4)) on these input sets. Then, we explain the radial way

of measuring technical efficiency and congestion.

FIGURE 1 ABOUT HERE

For both SD and WD technologies, the efficient subset Eff L(y) consists of the line

3Note that strong disposability in the outputs is assumed, to have (9) in line with the general notion of
an input correspondence stating that it is the set of all input vectors yielding at least the output vector y.
However, even if the inequality is replaced by an equality and the notion of input correspondence is adjusted
to allow for this case, similar computations as the ones reported here can be made.

4We refer to Subsection 4.3 for more details on how to obtain a valid description using the notion of
S-disposability in combination with nonconvexity.
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segments joining points def . For the WD technology, the weak efficient subset WEff L(y)

contains the connected line segments cdef , and its isoquant Isoq L(y) is formed by adding

the line segments bc and fg to those in WEff L(y). Points on the rays through 0b and 0f

belong to the boundary of the input correspondence, not to any of its three subsets. For

the SD technology, the weak efficient subset and the isoquant coincide: both contain the

connected line segments cdef and the lines beyond c and f parallel to both axes.

The traditional radial way of measuring technical efficiency and congestion as proposed

in Färe, Grosskopf, and Lovell (1983) can be illustrated by commenting on observation

h situated in the interior of the input set L(y)wd−vrs in Figure 1. Technical efficiency is

represented by the ratio of distances 0h2/0h measured relative to the input set L(y)wd−vrs.

Structural efficiency or congestion is measured by the ratio 0h3/0h2 derived by comparing

radial distances between an activity without congestion at point h3 on the weak efficient

subset WEffL(y)sd−vrs and activity with congestion h2 on the boundary of L(y)wd−vrs.

Turning to a comparison of observations a and b, we obtain the following results. Since

observation a is projected onto the weak efficient subset of both the SD and WD technolo-

gies, it does not suffer from congestion but the ratio of distances 0c/0a is just interpreted

as technical inefficiency solely. By contrast, applying the same logic, observation b is situ-

ated on the Isoq L(y) of the WD technology and hence technically efficient. However, the

gap between the SD and WD technologies (i.e., 0b2/0b) reveals congestion. Noticing that

observation a wastes more of both inputs than observation b for identical outputs, one may

wonder why the latter is considered congested but technically efficient, while the former is

technically inefficient but uncongested. We return to this issue below.

This distinction between technical efficiency and congestion can be seen against a back-

ground of a variety of proposals of static efficiency taxonomies. The seminal article by Farrell

(1957) clearly proposed the first basic measurement scheme distinguishing technical and al-

locative efficiency. Seitz (1970) adds a scale efficiency component based on cost function

comparisons. Førsund and Hjalmarsson (1974) and later on Färe, Grosskopf, and Lovell

(1983) and Banker, Charnes, and Cooper (1984) propose a distinction between technology-

based technical and scale efficiency, whereby the second team of authors also integrate a

congestion component. Färe, Grosskopf, and Lovell (1985) were probably the first to offer

an extended efficiency decomposition summarizing most of the above developments.

Crucial for our focus on congestion measurement in the remainder are the following re-

marks. First, we consider congestion as an extreme and unacceptable form of technical

efficiency. While technical inefficiency is costly and implies a waste of resources, one can
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imagine certain reasons justifying its existence (e.g., slack resources and capacity in anticip-

ation of an increasing demand over a product life cycle, etc.). However, congestion implies a

waste of resources and an additional opportunity cost in terms of additional inputs or wasted

outputs. Therefore, it is almost impossible to justify and ideally requires prompt managerial

action.

Second, one should clearly distinguish between detecting congestion and summarizing its

relative importance as a source of inefficiency within some efficiency decomposition. While

the radial efficiency measure (5) is convenient to summarize the relative importance of dif-

ferent efficiency components in a multiplicative decomposition, as illustrated above when

comparing points a and b it need not necessarily be an accurate tool to reveal the incidence

of congestion (see also infra).

3.2 Radial Congestion Measurement: Amounts and Incidence

While congestion is widely cited as a theoretical possibility in most microeconomics text-

books, empirical evidence as to its prevalence is relatively rare. We draw on two different

literatures providing some evidence as to its existence and/or incidence.

The merit of the first literature applying this nonparametric efficiency decomposition

outlined above is that quite a lot of studies have reported on (parts of) these efficiency de-

compositions, though relatively few report on congestion. Congestion is the most important

source of inefficiency at the sample level in at least four articles we are aware of: Byrnes and

Färe (1987) and Byrnes, Färe, Grosskopf, and Lovell (1988) both analyze US surface coal

mines, Zhengfei and Oude Lansink (2003) assess Dutch agriculture, and Färe, Grosskopf,

and Pasurka (1989) analyze US electric utilities. Just to offer some basic idea of the amount

of waste involved, Table 1 summarizes for each study the average amount of congestion ef-

ficiency as well as its incidence (% of sample). The last column adds the sample size and

some remarks whenever needed. Note that the second and fourth study have several entries:

in the second article a basic distinction is made between the Interior and Western US states,

while the fourth study compares two distinct years. Furthermore, for the second study we

also report results for those subsamples for which congestion efficiency is the key component.

TABLE 1 ABOUT HERE

Several conclusions can be drawn from Table 1. First, congestion inefficiency can vary

from a modest 7.5% (= 1−0.925) to a high 29% (= 1−0.71) at the sample level. In the second
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study, for Western nonunion mines one even observes a staggering 57% (= 1−0.43) congestion

inefficiency. Second, the incidence of congestion inefficiency varies widely: between a low

26.3% to about 75% of the sample.5 For the second study, two subsamples even record an

incidence of 83.3%. Third, congestion inefficiency and incidence need not be correlated. For

instance, the lowest incidence coincides with the highest congestion inefficiency (see Byrnes

and Färe (1987)). By contrast, the second lowest congestion inefficiency goes hand in hand

with the highest incidence levels (Byrnes, Färe, Grosskopf, and Lovell (1988)). Finally,

modest congestion inefficiency levels can hide high incidence levels (see Zhengfei and Oude

Lansink (2003)). In brief, these studies reveal a wide variety of patterns of congestion

inefficiency and incidence, even though the sample sizes of most studies are quite modest.

Furthermore, while in some studies congestion inefficiency does not dominate at the

sample level, it may well turn out to be important for specific parts of the sample. For

example, Byrnes, Färe, Grosskopf, and Kraft (1987) document that congestion dominates

for Illinois grain farms smaller than 700 acres, representing 72.9% of the sample.

Finally, there is the possibility that congestion plays a negligible role at the sample level

or for specific parts of it, but that it is critically important for some particular observations.

For instance, evaluating British building societies in 1985 and finding scale inefficiency as the

prime source of underperformance, Field (1990) observes that congestion is most important

for about 9.9% of observations (with amounts between 0.48 and 0.78).

A second literature worthwhile looking at are the parametric studies using flexible func-

tional forms and testing for the satisfaction of monotonicity and/or curvature conditions.

Barnett (2002) stresses that standard second-order conditions for optimizing behavior fail to

hold and duality relations break down if curvature or monotonicity conditions are violated.

Sauer (2006) revisits in total eight parametric frontier studies. Three articles fulfill mono-

tonicity in all inputs. Violations of monotonicity occur for a single input in two studies; for

two inputs in two articles; and even for five out of eight inputs in one study.6 One obvious

interpretation of these monotonicity failures is the existence of congestion.

In conclusion, from these two literatures it is difficult to deny that congestion may well

play a serious role as a source of poor performance in a relatively wide range of sectors.

Furthermore, the sometimes high incidence of congestion seems to indicate that in these

samples a lot of observations are situated close to the isoquant and boundary of the input

set. At first sight, this seems to imply that the amounts of congestion measured are not

5Remark that we have not been looking for studies reporting the highest congestion incidence levels
relative to the incidence of other sources of poor performance (instead of the highest congestion inefficiency).

6We ignore the violations of curvature conditions equally reported by Sauer (2006).
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artifacts created by just a few outlying observations enveloped by a particular axiomatic

structure imposed on technology.

3.3 Radial Congestion Measurement: Limitations

Especially the sample level results are surprising if one realizes that the use of radial efficiency

measures actually underestimates the prevalence of congestion. This can be easily illustrated

with the help of Figure 2. Only observations outside the cone spanned by WEff L(y)wd−vrs

(i.e., the rays Oc and Of in Figure 2) can be subject to congestion when using radial

efficiency measures. Compare, for instance, points g and i in Figure 1. Point g is detected

as being congested, since it is efficient relative to L(y)wd−vrs but not relative to L(y)sd−vrs.

However, point i, identical to g in its use of x1 but using a higher amount of x2 is not

subjected to congestion, since the radial efficiency measure projects observation i onto the

efficient subset at point i2. Hence, the traditional radial way of measuring congestion may

well underestimate its empirical amounts and/or its incidence.

FIGURE 2 ABOUT HERE

If one is willing to accept the argument that one should distinguish between the detection

of congestion and summarizing its relative importance as a source of inefficiency within some

static efficiency decomposition, then it is easy to understand that some authors have proposed

to measure congestion in a nonradial way.

One obvious possibility is to measure congestion per specific input dimension. This pro-

cedure is illustrated on Figure 2 for observation i, that remained undetected using the radial

measure. By contrast, measuring in the direction of the second input allows detecting its

congesting excessive usage of inputs. To be precise, the distances 0g/0i and the ratios of

distances 0g2/0g [= (0g2/0i)/(0g/0i)] measure the amount of technical efficiency and con-

gestion in the direction of the second input respectively. In a similar fashion, observation b

which remained uncongested using the radial measure may now be detected as being conges-

ted. Two studies are known to us that have implemented such uni-dimensional measurement

scheme for congestion: Zhengfei and Oude Lansink (2003) and Färe, Grosskopf, Logan, and

Lovell (1985).

Focusing on the Zhengfei and Oude Lansink (2003) study, while the radial input efficiency

measure evaluated over all eight input dimensions leads to on average an amount of 11.7%

congestion inefficiency, the use of a subvector measure per input dimension separately leads
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to average congestion inefficiency levels at the sample level from a minimum of 22.1 % for

“Other variable inputs” to a maximum of 45.6 % for “Nitrogen fertiliser”. Using the radial

input efficiency measure, the incidence of congestion is about 75%. The use of subvector

measures per input dimension leads to incidence levels varying between a minimum of 35 %

for “Other pesticides” to 59 % for “Nitrogen fertiliser”. One conclusion is clearly that the

radial way of measuring congestion may underestimate the amounts of congestion inefficiency

relative to an input-specific measurement scheme. The effect on congestion incidence is not

clear-cut.

Also more refined measurement schemes have been devised looking for subsets of dimen-

sions responsible for congestion (see Byrnes, Färe, Grosskopf, and Lovell (1988) and Färe,

Grosskopf, and Lovell (1994)). Thus, it remains somewhat an open issue how to best measure

congestion: radially, uni-dimensionally, or some other way.

Finally, following Färe, Grosskopf, and Logan (1987), the presence of congestion can also

be interpreted as a violation of the WD assumptions. Observations that are inefficient with

respect to a WD technology then simply suggest a lack of fit between the data and the WD

assumption. To the extent that the goodness-of-fit with the WD assumption is low, this

may lead to the search for alternative axioms (e.g., S-disposal) and resulting technology

specifications yielding an even closer fit with the data. In the next sections we move bey-

ond MOL-congestion to verify whether OP-congestion matters from an empirical point of

view. We do so by first discussing a numerical example to develop a basic understanding.

Thereafter, we discuss some empirical results.

4 Numerical Illustrations of S-congestion

In this section, we first present a numerical example to develop some intuitions for a two

input single output technology related to the measurement of S-congestion. To illustrate

the notion of S-congestion and the ways of measuring it by means of a suitable directional

distance function, we start from an artificial example containing 32 units with two inputs

and one output. The data are provided in the first four columns of Table 2. Note that

only two output levels are present to simplify the illustrations. Hereafter, all congestion

computations are executed for a given output level of 2: therefore, all units can be included

in the computations.

TABLE 2 ABOUT HERE
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4.1 Technologies Revealing S-congestion

To measure congestion, one needs a technology that allows observing some form of congestion.

Obviously, assuming SD (7) does not allow revealing congestion by definition. WD (8) allows

for certain types of S-congestion and could be a used if interest is limited to MOL-congestion.

But, since there is no upper bound to wasting inputs in certain directions, it cannot detect

OP-congestion. Therefore, to allow for a full range of S-congestion measurements, we start

from a CH VRS technology in the inputs for which the input correspondence is defined by

(9).

Figure 3 displays the input correspondence L(2) for output level 2. The boundary of

this input correspondence is clearly visible as the region bounded by the union of lines

between two consecutive points of the list of points labeled 1, 2, 3, 4, 5, 6, 7, 19, 18, 17, 16,

15 and 1. Obviously, L(2) satisfies minimal S-disposability with S = {∅, {1}, {2}, {1, 2}}.
Consequently, three meaningful boundaries and corresponding directions can be identified

for measuring congestion leading to {1}-, {2}- and {1, 2}-congestion measures. We first

describe these three boundaries in great detail.

First, in Figure 3 the {1}-congested boundary is represented by the dashed line starting

at the left-side horizontally towards point 5, then connecting points 5, 6, 7, 19 and 18 and

from there continuing vertically. The set L{1}(2) contains all points located left and above of

this {1}-congested boundary. Second, the {2}-congested boundary is shown by the dashed-

dotted line starting at the left-side vertically towards point 3, then connecting points 3, 2, 1,

15 and 16 and from there continuing horizontally. The set L{2}(2) contains all points located

right and below of this {2}-congested boundary. Finally, the {1, 2}-congested boundary is

represented by the dotted line starting at the left-side horizontally towards point 16, then

connecting points 16, 17 and 18 and from there continuing vertically. The set L{1,2}(2)

contains all points located left and below of this {1, 2}-congested boundary.

FIGURE 3 ABOUT HERE

Two remarks can be made at this point. First, note that also the ∅-congested boundary

and its corresponding set L∅(2) could be considered, which corresponds with the traditional

SD boundary. However, measuring with respect to this boundary implies a reduction of at

least one of the inputs. This makes it hard to interpret such a measurement as revealing

congestion. Second, observe that the intersection of the sets L∅(2), L{1}(2), L{2}(2) and

L{1,2}(2) exactly corresponds with L(y) demonstrating that L(2) satisfies the S-disposal

assumption according to Proposition 2.1.
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4.2 Measuring S-congestion

Recall the input directional distance function DL defined by (6). For efficiency measuring,

L(y) is the classical input correspondence at output level y and g ∈ Rm
+ . The directional

distance function measures the maximal possible factor of g by which the input x can be

decreased and still remains capable of producing y.

However, in the context of congestion measuring, this definition needs to be adjusted to

allow projections in opposite (potentially congesting) directions. The adapted input direc-

tional distance function DLI
with I ∈ S \ {∅} is now defined by:

DLI
(x, y; gI) = sup{δ : x− δgI ∈ LI(y)}, (10)

with gI ∈ Rm such that gI i ≤ 0 for all i ∈ I and gI i = 0 otherwise. This choice of direction

vector gI guarantees an increment of the input in the maximization process of the directional

distance function and making this optimization process bounded as well. The latter means

that the corresponding I-congested boundary is hit by the directional distance function.

Thus, the definition of the direction vector gI is complementary to the definition of the

I-congested boundary in that a feasible finite solution of the adapted input directional dis-

tance function DLI
is always guaranteed. This simply reflects the theory-dependency of

observations: the adapted input directional distance function DLI
and I-congested bound-

ary are theoretical constructs allowing to observe potential forms of OP-congestion for any

given empirical configuration of the production data, because the adapted input directional

distance function DLI
measures into a direction where it always will meet the I-congested

boundary.

This adapted directional distance function DLI
measures the maximal possible factor

of −gI by which the input x can be increased until the boundary of LI(y) is hit. Or put

differently, until the current level of production y can no longer be maintained. Since at this

stage, OP-congestion in the direction opposite of gI is observed, the value of DLI
can be

used as a measurement of the presence or absence of I-congestion. The larger this value, the

more further increases in inputs are needed before congestion occurs in the direction opposite

of gI . Values closer to zero indicate that congestion occurs with only a slight increase of

inputs in the direction opposite of gI . A value of zero means that congestion in the direction

opposite of gI is already a fact.

For practical computations, it is often convenient to opt for a so-called input position

dependent direction gI related to input x for which gI i = −xi for all i ∈ I and gI i = 0
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otherwise. As a consequence, 1 + DLI
represents the factor by which inputs xi with i ∈ I

can be scaled until I-congestion occurs, giving it a convenient proportional interpretation.7

To compute this adapted input directional distance function DLI
with I ∈ S \ {∅} with

input position dependent direction gI relative to the CH and WD technologies, it suffices to

solve a linear program. First, applied to the case of the CH technology, this input directional

distance function (10) can be computed using the following linear programming model (11):

DCH−V RS
LI

(xo, yo, gI) =max
δ,zj

δ

subject to
J∑

j=1

zjxj,i ≥ xo
i − δgI i i ∈ I

J∑
j=1

zjxj,i ≤ xo
i i ∈ {1, . . . ,m} \ I

J∑
j=1

zjyj,k ≥ yok k ∈ {1, . . . , n}

J∑
j=1

zj = 1

zj ≥ 0 j ∈ {1, . . . , J}.

(11)

When we consider the technology WD, the input directional distance function (10) re-

7Obviously, much more can be said on this choice of direction vector. We just refer to the recent literature
discussing various choices of direction vectors and their consequences: see, e.g., Atkinson and Tsionas (2016),
Daraio and Simar (2016), and Peyrache and Daraio (2012), among others.
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quires solving the following mathematical programming model (12):

DWD−V RS
LI

(xo, yo, gI) =max
µ,δ,zj

δ

subject to
J∑

j=1

µzjxj,i ≥ xo
i − δgI i i ∈ I

J∑
j=1

µzjxj,i ≤ xo
i i ∈ {1, . . . ,m} \ I

J∑
j=1

zjyj,k ≥ yok k ∈ {1, . . . , n}

J∑
j=1

zj = 1

µ ≥ 1

zj ≥ 0 j ∈ {1, . . . , J}.

(12)

Note that the WD technology defined by (8) can be linearised using the substitution z′j = µzj,

(j ∈ {1, . . . , J}), which is applied to obtain (13):

DWD−V RS
LI

(xo, yo, gI) =max
µ,δ,z′j

δ

subject to
J∑

j=1

z′jxj,i ≥ xo
i − δgI i i ∈ I

J∑
j=1

z′jxj,i ≤ xo
i i ∈ {1, . . . ,m} \ I

J∑
j=1

z′jyj,k ≥ µyok k ∈ {1, . . . , n}

J∑
j=1

z′j = µ

µ ≥ 1

z′j ≥ 0 j ∈ {1, . . . , J}.

(13)

Returning to the numerical example, for the fixed output level of 2, the adapted direc-

tional distance function values can be computed for all units with respect to the {1}-, {2}-
and {1, 2}-congested boundaries. The directional distance function values based on the input
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position dependent direction are recorded in the last three columns of Table 2. We explain

the interpretation of the directional distance function values using the two points 22 and 25.

Both these observations are also depicted in Figure 3.

To measure {1}-congestion for point 22, we compute DL{1}(x, 2; g{1}) = δ∗ = 0.4545 with

x = (11, 10) and g{1} = (−11, 0). It follows from the definition that x1−δ∗g{1}1 = x1+δ∗x1 =

x1(1+δ∗) = 11(1+0.4545) = 16. Obviously since g{1}2 = 0, x2−δ∗g{1}2 = x2 = 10. Therefore,

the optimal projection of point 22 has coordinates (16, 10). Looking at Figure 3, observe that

point 22 is projected following the horizontal dashed line onto the point labeled a located

at the {1}-congested boundary. Note that the coordinates of this point exactly corresponds

with the above computations. The value 1 +DL{1} = 1+ δ∗ = 1+ 0.4545 = 1.4545 indicates

the factor by which the first input of point 22 can be multiplied before {1}-congestion occurs.

Analogously, the {1}-congestion measurement for point 25 results in a value of 2.55 meaning

that the first input 4 can be multiplied with a factor 1 + 2.55 = 3.55 before hitting the {1}-
congested boundary. This yields a first input of 3.55× 4 = 14.2 which is the first coordinate

of the point labeled d in Figure 3.

The measurement of {2}-congestion for point 22 is computed by DL{2}(x, 2; g{2}) = δ∗ =

0.2 with x = (11, 10) and g{2} = (0,−10). Again by definition, x2 − δ∗g{2}1 = x2 + δ∗x2 =

x2(1 + δ∗) = 10(1 + 0.2) = 12. Since g{2}1 = 0, x1 − δ∗g{2}1 = x1 = 11. Thus, the optimal

projection of point 22 now has coordinates (11, 12) which corresponds in Figure 3 with

vertical projection of point 22 following the vertical dash-dotted line onto the point labeled

b located at the {2}-congested boundary. The value 1 + DL{2} = 1 + δ∗ = 1 + 0.2 = 1.2

provides the factor by which the second input of point 22 can be multiplied before {2}-
congestion occurs. Analogously, the {2}-congestion measurement for point 25 results in a

value of 1.55 meaning that the second input 4 can be multiplied with a factor 1+1.55 = 2.55

before reaching the {2}-congested boundary. The resulting second input yields a value of

2.55× 4 = 10.2 which is the second coordinate of the point labeled e in Figure 3.

For the measurement of {1, 2}-congestion for point 22, we compute DL{1,2}(x, 2; g{1,2}) =

δ∗ = 0.0968 with x = (11, 10) and g{1,2} = (−11,−10). It follows from the definition that

x1 − δ∗g{1,2}1 = x1 + δ∗x1 = x1(1 + δ∗) = 11(1 + 0.0968) = 12.0465. Again by definition,

x2 − δ∗g{1,2}2 = x2 + δ∗x2 = x2(1 + δ∗) = 10(1 + 0.0968) = 10.968. Therefore, the optimal

projection of point 22 has coordinates (12.0465, 10.968). Looking again at Figure 3, observe

that point 22 is now projected following the diagonal dotted line onto the point labeled c

located at the {1, 2}-congested boundary. The value 1 + DL{1,2} = 1 + δ∗ = 1 + 0.0968 =

1.0968 indicates the factor by which both inputs of point 22 can be multiplied before {1, 2}-
congestion occurs. In the same way, the {1, 2}-congestion measurement for point 25 results
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in a value of 1.8333 meaning that both inputs 4 can be multiplied with a factor 1+1.8333 =

2.8333 before {1, 2}-congestion is observed. This yields for both inputs a value of 2.8333×4 =

11.3332 which is the value for both coordinates of the point labeled f in Figure 3.

Note that the measures of {1}- and {2}-congestion on the one hand, and {1, 2}-congestion
on the other hand need not have some monotonic relation to one another. It suffices to

compare the results for points 22 and 25: while for point 22 the measure of {1, 2}-congestion
is situated below the measures of {1}- and {2}-congestion, for point 25 the measure of

{1, 2}-congestion is lower than the measure of {1}-congestion, but higher than the measure

of {2}-congestion.

Figure 3 contains two more points, 8 and 14, with their projections on the relevant

I-congested boundaries. For these points, the projection points onto the {1, 2}-congested
boundary labeled i and l respectively are not located on the CH, but rather at the cone.

Thus, to reiterate once more the complementarity between adapted input directional

distance functionDLI
and I-congested boundary, this numerical example has shown how {1}-

congestion ({2}-congestion) is detected by looking into the direction opposite of g{1} (g{2}),

while {1, 2}-congestion is revealed by simultaneously looking into the direction opposite of

g{1,2}.

4.3 Technologies Revealing S-congestion: A Nonconvex Perspect-

ive

The convexity assumption maintained so far can be replaced by a nonconvex alternative.

This cannot be done in a direct approach by merely requiring the activity vector z in the CH

technology (9) to be binary.8 However, note that Proposition 2.1 offers a characterization of

any S-disposal input correspondence L(y) as the intersection of all possible subsets L(y)+KI

without any assumption regarding convexity. It is easy to verify that in general the CH input

correspondence satisfies the minimal S-disposal assumption with S = 2[m]. In particular,

this is demonstrated on the numerical example in Subsection 4.1. Thus, this CH input

correspondence can be obtained via an indirect approach as the intersection of all possible

subsets LCH(y) + KI . This indirect approach for generating the CH input correspondence

LCH(y) can also be used for introducing the NCH input correspondence LNCH(y). Indeed,

one can define the NCH input correspondence as the intersection of all subsets LNCH(y)+KI

8This leads to infeasibilities in the corresponding optimization program. Consequently, the NCH techno-
logy cannot be defined in way similar to the convex setting.
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with I ∈ S = 2[m].9 Applied to the case of the NCH technology, the adapted input directional

distance function (10) is obtained by the following linear programming model (14):

DNCH−V RS
LI

(xo, yo, gI) =max
δ,zj

δ

subject to
J∑

j=1

zjxj,i ≥ xo
i − δgI i i ∈ I

J∑
j=1

zjxj,i ≤ xo
i i ∈ {1, . . . ,m} \ I

J∑
j=1

zjyj,k ≥ yok k ∈ {1, . . . , n}

J∑
j=1

zj = 1

zj ∈ {0, 1} j ∈ {1, . . . , J}.

(14)

In particular in the case of the example, this means that I ∈ S with S = {∅, {1}, {2}, {1, 2}}.
The corresponding optimization programs do not generate any infeasibility, whereby the

extension with the cones KI proves crucial. The boundary of these intersecting subsets

yields the NCH level set that can be observed in Figure 4.

FIGURE 4 ABOUT HERE

First, there is the subset LNCH(y) +K∅ with its boundary represented by the solid line

starting vertical towards point 3, then continuing with the nonconvex connection to points

4 and 5 and finally ending in the horizontal line from point 5 onwards. Second, the subset

LNCH(y)+K{1} has its boundary represented by the dashed line starting horizontal towards

point 6, then connecting points 6, 7, 9, 21, 28, 19 and 18 in a nonconvex manner and ending

vertically from point 18 upwards. Third, the boundary of subset LNCH(y)+K{2} is depicted

by the dash-dotted line starting horizontally towards point 16, then connecting points 16, 31,

15, 1 and 2 and then continuing vertically from point 2 downwards. Finally, the boundary of

subset LNCH(y) +K{1,2} is shown by the dotted line starting horizontally towards point 16,

then connecting points 16, 22, 17, 30, 20 and 18 in a nonconvex way and ending vertically

from point 18 downwards.

9To the best of our knowledge, the definition of a NCH technology is not available in the economic
literature.

20



The intersection of these four subsets provides exactly the NCH of which the boundary

is shown in solid. Note the very particular shape of this boundary, especially the “antenna

shaped” extensions leading towards points 16 and 18. These one-dimensional extensions

of the NCH input correspondence may partially explain the computational difficulties en-

countered when trying a direct reconstruction approach.

Obviously, the dimension-wise measurements relative to the I-congested boundaries presen-

ted in the previous subsection could be duplicated. Comparing Figures 3 and 4, we limit

ourselves to pointing out that, for instance, points 8, 13 and 22 that are situated in the in-

terior in the convex case are situated on the boundary in the nonconvex case. In general, the

NCH thus offers a better fit to the data relative to the CH resulting in lower I-congestion val-

ues. Focusing on observation 22, one can notice that the measures of {1}- and {2}-congestion
are identical with respect to CH and NCH on the one hand, and that {1, 2}-congestion is

smaller with respect to NCH (i.e., 0) compared to CH (i.e., 0.0968) on the other hand.

This succinct display of a NCH input set suffices to illustrate the main point that this

new approach is compatible with both the convexity axiom and its absence. Obviously, more

remains to be done to fully explore the impact of convexity and its absence on the relative

amounts of MOL- and OP-congestion one can reveal.

5 Empirical Illustration

We now perform the congestion computations on the data set provided in Färe, Grosskopf,

Logan, and Lovell (1985) containing the input-output combinations of 32 electric power

generating plants.10 The single output is electricity generated (expressed in 106 Kilowatt

Hours). The three inputs are: capital (in Megawatt capacity), fuel (in 1010 BTU), and labor

(in average annual employees). Färe, Grosskopf, Logan, and Lovell (1985) report an average

congestion inefficiency of 3% using traditional radial efficiency measures. Thus, we are at

least certain that some limited amount of congestion is present in this data set.

While the causes of congestion in electricity generation may be a priori unclear, we

can add two types of evidence on the issue of congestion in an energy setting. First, several

other studies have reported congestion when analysing samples of electricity generating firms.

Examples include Färe, Grosskopf, and Logan (1987), Färe, Grosskopf, and Pasurka (1989),

and Zeitsch and Lawrence (1996). Recall that the Färe, Grosskopf, and Pasurka (1989) study

10See their Table 8-1 on pp. 201-202.
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even reports congestion as the main source of poor performance. Second, there is a literature

focusing on energy efficiency (see Boyd (2014), Lin and Wang (2014), and Pardo Martnez

(2011), among others). In at one of these studies, congestion in the input factor energy has

been detected (see Wu, Zhou, and Zhou (2016)).

As indicated in the numerical example above, one has to start from a technology allowing

for some form of congestion so as to be able to detect it. Examples of such technologies are

the CH (9) and the WD (8) technologies. Assuming a CH VRS technology (9), any input

correspondence L(y) satisfies minimal S-disposability with

S = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

When assuming only WD, L(y) satisfies minimal Swd-disposability with Swd = S\{{1, 2, 3}}
because of the unboundedness. Therefore, meaningful {1}-, {2}-, {3}-, {1, 2}-, {1, 3}-, {2, 3}-
and {1, 2, 3}-congestion measures can be computed, but the latter only in the case of the

CH technology.

When using again a position dependent projection scheme as described before, we obtain

the congestion results for all power plants reported in Table 3. The columns represented

with a normal font provide the congestion values based on the CH technology, while the

columns in italics give the amount one has to add to the CH congestion values to obtain

the congestion measures based on a WD technology. The bottom lines contain some basic

descriptive statistics. Note that contrary to the numerical example, the output is not set

to a single value for all observations: instead, the actual output level of each individual

observation is used.

TABLE 3 ABOUT HERE

Starting with some basic descriptive statistics at the sample level, the following conclu-

sions can be drawn. First, in the single input dimensions {1}, {2} and {3} there are 14, 8

and 10 observations that are situated on the upper bound of technology. In the twin input

dimensions {1, 2}, {1, 3} and {2, 3} there are 10, 11 and 7 observations on the upper bound.

Finally, for the triplet dimensions {1, 2, 3} only 1 observation is situated on the upper bound.

Comparing the CH technology versus the WD technology results, the majority of observa-

tions adds nothing to the CH results. Second, from the differences reported in italics in

Table 3, one can observe that the WD results are all greater than or equal to the CH results,

except for the {3}-congestion measure of the unique unit 2. Thus, the CH seems to provide
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an almost uniformly better fit to the data compared to the WD results. Third, for all obser-

vations not situated on the upper bound of technology, in the single input dimensions {1},
{2} and {3} the inputs can on average be proportionally increased between 24 and 31 % be-

fore reaching the upper bound. In the twin input dimensions {1, 2}, {1, 3} and {2, 3}, these
percentages amount on average between 21 and 54 %. For the triplet dimensions {1, 2, 3},
this percentage increase even becomes a staggering 292 %.

To further illustrate the interpretation of the congestion results, we focus on some specific

observations. Starting with unit 14 and the CH based computations, a {1}-congestion of

0.5097 is observed meaning that the first input can be increased with 0.5097 times its actual

input before a negative effect on the output can be expected while keeping the other inputs at

their initial level. Put differently, the first input can be multiplied with a factor 1+0.5097 =

1.5097 before congestion occurs. Analogously, the {1, 2}-congestion of 0.5814 indicates that

0.5814 times the current values of the first two inputs can be added before congestion occurs.

Expressed in terms of proportionality this means that the current values of the first two inputs

can be multiplied with a factor 1.5814 before effects on the output can be expected. Note

that the {1, 2, 3}-congestion measure of unit 14 equals 1.9811 meaning that all inputs can

be multiplied simultaneously with a factor 2.9811 before congestion is expected.

From Table 3, it becomes clear that congestion depends on the direction in which it is

measured. Again observing the CH results for unit 14, one observes that congestion is much

less of an issue when all inputs are simultaneously increased proportionally rather than when

only the second and the third input is increased proportionally (since 1.9811 > 0.0630). An

even more drastic result is observed for unit 32. For this unit, congestion is detected for all

three inputs separately (value of 0). However, the {1, 2, 3}-congestion measure equals 8.8750

meaning that all three inputs can be increased simultaneously with 8.8750 times their initial

value before congestion is observed. To understand this somewhat strange behavior, observe

the location of unit 32 compared to the input correspondence L(778.5) when assuming a

CH technology in Figure 5. Note that the output level of unit 32 equals 778.5. This unit is

located at the lower left side near the origin located at boundary of L(778.5). Therefore, it

is impossible to stay within L(778.5) when only increasing one of the inputs. However, when

all inputs are increased simultaneously, the input combination can move up towards unit 1

while remaining in the input correspondence L(778.5).

FIGURE 5 ABOUT HERE

From the congestion computations of unit 1, one observes congestion for all inputs and

all possible combinations of inputs. This unit actually produces the highest possible output
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and is therefore efficient. However, since no information is available regarding possibly

even higher output levels (assuming all information is provided in the original data), also

congestion is registered for this unit.

Duplicating the same results with the nonconvex NCH technology, again using a position

dependent projection scheme one obtains the congestion results reported in Table 4. Two

main conclusions emerge. First, the number of observations situated at the upper bound

of technology is always higher under nonconvexity compared to convexity. For instance,

while for the triplet dimensions {1, 2, 3} the difference is 0, for the single input dimension

{3} and the twin dimensions {1, 3} and {2, 3} this difference amounts to 20. Second, for

all observations not situated on the upper bound of technology, the proportional increases

in inputs are always lower or equal under nonconvexity compared to convexity. This simply

shows the better fit of the NCH technology compared to the CH technology.

TABLE 4 ABOUT HERE

6 Conclusions

This paper has started by describing the axiomatic production literature revealing and meas-

uring a variety of congestion concepts. While traditionally only MOL forms of congestion

could be revealed, the article of Briec, Kerstens, and Van de Woestyne (2016) has laid the

foundations to measure also OP-congestion in a multiple output setting, eventually even

dispensing with the axiom of convexity. This contribution has offered a complementary

empirical perspective to these theoretical developments.

Three empirical goals have been achieved. First, a rather detailed overview of the em-

pirical literature has revealed that the amounts and incidence of congestion reported can

be surprisingly high at the level of the sample, some subsample, or for specific individual

observations. Second, it has been illustrated that the traditional radial way of measuring

congestion yields lower amounts of congestion compared to a measurement scheme per in-

put dimension. Third, moving beyond MOL-congestion, we have offered the first empirical

evidence that forms of OP-congestion may well matter in an empirical setting.

The main theoretical limitation of the analysis is that generalizations to congestion phe-

nomena in the outputs space or to the input and output space are still needed. Note that the

use of the directional distance function allows for a relatively straightforward extension of
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our proposals to define congestion in the output space or in the input–output space. Other

theoretical limitations are listed in Briec, Kerstens, and Van de Woestyne (2016).

From an empirical point of view it is worthwhile underscoring two main limitations. First,

this empirical paper has been limited to a primal approach focusing on technologies capable

to reveal several forms of congestion. For reasons of space, the dual approach focusing on the

cost function in a congested setting as developed in Briec, Kerstens, and Van de Woestyne

(2016) has been completely ignored. This also implies that the whole literature on generating

appropriate shadow prices for bad outputs using technologies modeling the joint production

of good and bad outputs (see the recent survey in Dakpo, Jeanneaux, and Latruffe (2016))

has equally been ignored.

Second, we have not managed to establish a link with a related literature in operational

research focusing on alternatives to the WD approach (see Cooper, Thompson, and Thrall

(1996) for the seminal alternative proposal and Kao (2010) for a recent overview). As

summarised by Kao (2010), these different approaches are distinct in terms of their focus

on input space, output space, or input-output space. There is an urgent need to extend the

S-disposal approach into the output space and into the input-output space in order to be

able to measure S-congestion in the outputs and in the input-output space. Only thereafter,

meaningful comparisons between the WD, S-disposal and operational research approaches

in terms of the incidence and amounts of congestion can eventually be established. This

necessitates substantial future work.
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Figure 1: Input Set and its Subsets
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Figure 2: Limits of Radial Congestion Measurement
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Figure 3: S-congested boundaries from a CH technology and proportional projections

Figure 4: S-congested boundaries from a NCH technology
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Figure 5: Input correspondence of a CH technology in the inputs of empirical data with

minimal output set to 700

Article Congestion Congestion Remarks

Efficiency Incidence

Byrnes & Färe (1987) 0.71 26.3% N=186

Byrnes et al. (1988) 0.74 69.0% N=84, Interior states

0.70 83.3% N=54, Interior states; UMWA†
0.77 74.3% N=113, Western states

0.43 83.3% N=12, Western states; Nonunion

Färe et al. (1989) 0.925 NA‡ N=23, Year 1969

0.924 NA N=23, Year 1975

Zhengfei & Oude Lansink (2003) 0.88 75.0%§ N=1072

† UMWA = affiliation with United Mine Workers of America.

‡ NA = Not available.

§ Text states: “approximately 3/4 of observations” (p. 475).

Table 1: Congestion Efficiency and Incidence: Literature Selection
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CH NCH

Unit Input 1 Input 2 Output {1} {2} {1, 2} {1} {2} {1, 2}
1 3.5 10.0 2.0 3.5714 0.0000 0.2000 3.5714 0.0000 0.2000

2 3.0 7.0 2.0 4.2222 0.0000 0.7143 4.0000 0.0000 0.7143

3 3.0 5.0 2.0 4.0000 0.4000 1.4000 4.0000 0.4000 1.4000

4 4.0 3.0 2.0 2.3500 2.4000 2.4000 2.2500 2.3333 2.3333

5 5.0 2.0 2.0 0.6000 4.3000 2.2000 0.6000 4.0000 2.2000

6 8.0 2.0 2.0 0.0000 4.7500 1.0000 0.0000 4.5000 1.0000

7 13.0 2.5 2.0 0.0000 3.8000 0.2308 0.0000 3.8000 0.2308

8 13.0 3.0 2.0 0.0308 3.0000 0.2308 0.0000 3.0000 0.2308

9 13.0 4.0 2.0 0.0923 2.0000 0.2308 0.0769 2.0000 0.2308

10 4.0 4.0 2.0 2.5500 1.5500 1.8333 2.5000 1.5000 1.5000

11 7.0 6.0 2.0 1.1905 0.8750 0.7895 1.1429 0.8333 0.6667

12 8.0 6.0 2.0 0.9167 0.9167 0.7000 0.8750 0.8333 0.6667

13 4.0 10.0 2.0 3.0000 0.0200 0.2000 3.0000 0.0000 0.2000

14 5.0 10.0 2.0 2.2000 0.0600 0.2000 2.2000 0.0000 0.2000

15 6.0 11.0 2.0 1.6667 0.0000 0.0909 1.6667 0.0000 0.0909

16 10.0 12.0 2.0 0.6000 0.0000 0.0000 0.6000 0.0000 0.0000

17 14.0 10.0 2.0 0.1429 0.2000 0.0000 0.1429 0.2000 0.0000

18 16.0 8.0 2.0 0.0000 0.5000 0.0000 0.0000 0.5000 0.0000

19 15.0 5.0 2.0 0.0000 1.4000 0.0667 0.0000 1.4000 0.0667

20 14.5 9.0 2.0 0.1034 0.3333 0.0213 0.1034 0.3333 0.0000

21 14.0 4.0 2.0 0.0143 2.0000 0.1429 0.0000 2.0000 0.1429

22 11.0 10.0 2.0 0.4545 0.2000 0.0968 0.4545 0.2000 0.0000

23 5.0 10.0 4.0 2.2000 0.0600 0.2000 2.2000 0.0000 0.2000

24 4.0 7.0 4.0 2.9167 0.4571 0.7143 2.7500 0.4286 0.7143

25 4.0 4.0 4.0 2.5500 1.5500 1.8333 2.5000 1.5000 1.5000

26 8.0 3.0 4.0 0.6750 2.8333 1.0000 0.6250 2.6667 1.0000

27 10.0 3.0 4.0 0.3400 3.0000 0.6000 0.3000 3.0000 0.6000

28 14.0 5.0 4.0 0.0714 1.4000 0.1429 0.0714 1.4000 0.1429

29 15.0 7.0 4.0 0.0444 0.7143 0.0667 0.0000 0.7143 0.0667

30 14.0 9.0 4.0 0.1429 0.3333 0.0435 0.1429 0.3333 0.0000

31 10.0 11.0 4.0 0.6000 0.0909 0.0625 0.6000 0.0909 0.0000

32 9.0 8.0 4.0 0.7778 0.4688 0.3600 0.7778 0.3750 0.2500

Table 2: Numerical Example: Data and S-congestion results from CH and NCH technologies

and proportional projections with output set to 2
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Unit {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2964

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5203

4 0.0000 0.0000 0.0000 0.0295 0.0000 0.0000 0.5266

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9652

6 0.0000 0.0374 0.0000 0.0000 0.0000 0.0000 1.0386

7 0.0000 0.1190 0.0000 0.3962 0.0000 0.0000 0.9506

8 0.0000 0.0812 0.0000 0.2374 0.0000 0.0000 0.8810

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.3672

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.4925 2.0013

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.0521

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.4286 1.9858

13 0.0000 0.5484 0.0000 0.3956 0.0000 0.0000 1.1351

14 0.0000 0.0011 0.0000 0.4988 0.0000 0.0000 1.9811

15 0.0000 0.0166 0.0000 0.0391 0.0000 0.0154 2.1026

16 0.0000 0.2154 0.0000 0.2424 0.0000 0.0000 2.7094

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.0477

18 0.0000 0.0000 0.0000 0.4583 0.0000 0.0000 3.3542

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.5833

20 0.0000 0.6008 0.0000 0.4532 0.0000 0.0000 3.0000

21 0.0000 0.2466 0.0000 0.6518 0.0000 0.0441 3.6471

22 0.0000 0.3977 0.0000 1.5077 0.0000 0.0000 1.6333

23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.7455

24 0.0000 0.0472 0.0000 1.2814 0.0000 0.0000 2.9012

25 0.0000 0.6548 0.0800 0.7324 0.0000 0.0000 3.2133

26 0.0000 0.7133 0.0000 1.1710 0.0000 0.0000 2.8072

27 0.0000 0.0000 0.0000 0.0000 0.6337 0.0000 6.6660

28 0.0000 0.0000 0.0000 0.0532 0.0000 0.0000 5.3200

29 0.0000 0.0000 0.5625 0.0226 0.0000 0.0000 7.4850

30 0.0000 0.0000 0.0000 0.3665 0.0000 0.0000 6.1818

31 0.0000 0.0000 0.0000 0.0000 0.0000 0.8469 6.6042

32 0.0000 0.0000 0.0000 0.7338 0.0000 0.0000 8.8750

# 0 Obs. 32 19 30 14 31 27 1

Avg. 0.0000 0.1150 0.0201 0.2897 0.0198 0.0571 2.9243

St. Dev. 0.0000 0.2141 0.0984 0.4082 0.1103 0.1804 2.2258

Max. 0.0000 0.7133 0.5625 1.5077 0.6337 0.8469 8.8750

Table 4: Empirical Example: S-congestion results from a NCH technology and proportional

projections
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