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Preface

“‘But what are we going to do?’ Colonel Cathcart exclaimed with
distress. ‘The others are all waiting outside.’ ‘Why don’t we give him
a medal?’ Colonel Korn proposed. ‘For going around twice? What
can we give him a medal for?’ ‘For going around twice,’ Colonel
Korn answered with a reflective, self-satisfied smile. ‘After all, I
suppose it did take a lot of courage to go over that target a second
time with no other planes around to divert the antiaircraft fire. And
he did hit the bridge. You know, that might be the answer — to act
boastfully about something we ought to be ashamed of. That’s a trick
that never seems to fail.”’

- Joseph Heller, Catch-22

So this is how it feels. The author puts down the pen and reviews his work.
Tired of thinking, wary of writing, he compiles one last time. Printing. How
truly remarkable it is to be able to hold the fruits of your own labor. If you
read this, it means that you too hold a copy of my work (you may be viewing
this through a computer screen, but this scenario is so much less romantic that
we can neglect it in what follows). Writing this Thesis is, hands down, my
greatest achievement so far.1 It is also one of the hardest. Not the writing part
(although this too was not easy), but the work leading to it.

The book you are now holding is both the best and worst of me. I am almost
tempted not to submit it, for fear of how it will be judged. It has been an
amazing journey.2 The view was great, the target is satisfying, but most
importantly, I would not have changed the company. There are so many people

1David Broza, a prominent Israeli singer was offered the opportunity to publish a collection
of his “best” work. He declined, saying that he is still an active performer. So they settled for
the title The best of David Broza (so far).

2Yes, this is a thesis-as-a-journey metaphor. How original.
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without whom this Thesis could not have been possible. It would be impossible
to name them all, so I will only mention a few.

First and foremost, to my Michal. It is impossible to imagine who I was without
you. In the words of Orson Scott Card: “I was not alive until I met my beloved,
and now the moon is new, the sea is blue, the month is June, our love is true”.
this Thesis is dedicated to you.

To Vincent, the best promoter a student can wish for. When writing this, I was
not sure if I wanted to thank you more for the freedom to pursue my own path
or for the guidance. It was a difficult choice and I decided to go with a Belgian
solution: thank you for just the right mix of freedom and guidance.

To Orr, the first person in about 15 years of education to have faith in my
academic skills. It is impossible to say how much I owe you. I hope this Thesis
makes you proud.

To the members of my supervisory committee, Ingrid Verbauwhede and
Patrick Wambacq, for spending the time reading my reports, listening to my
presentations, and making sure I’m on the right track to reach the point where
I can write this acknowledgment. To the head of my group, Bart Preneel, who
is tasked with the ungrateful and under-appreciated job of making the wheels
turn. To the last member of my examination committee, Lars R. Knudsen, for
taking the time to be on this committee. I hope it was worth it.

To Leandro Panizzon the inventor of Ritalin (Methylphenidate; Rilatine) without
whom this Thesis would not have been possible, Ciba (now Novartis) for its
distribution, and Sophie Maes for prescribing it.

To Belgium, the country which received me so well. It is a wonderful country,
albeit (or maybe because) it is so fun to make fun of. A special thanks goes
to Atul for helping Michal and myself with our integration, and for being such
a great friend. This experience would have been completely different without
you. To my various co-authors not yet mentioned: Bart Mennink, Yunwen
Liu, Achiya Bar-On, Nimrod Talmon, Daniël Bodden, Glenn De Witte, Adrián
Ranea, and Tim Beyne. Those parts of the joint work that are good are thanks
to them, any mistake is mine alone.3 The same goes to Dana, Nele, Lennert,
and Jan-Pieter for helping with the Dutch parts of this Thesis. Sorry I didn’t
accept all of your suggestions—I did it in order to provide you with plausible
deniability in case of any translation errors. To the COSIC support staff: Péla,
Elsy, Wim, and Saartje without whom everyone would probably be sitting on
the floor. To the ESAT support staff, and especially the system group. As I said

3In the case of Daniël, Glenn, and Adrián, whom I supervised as master students, some of
the mistakes were certainly theirs, but I still take the responsibility for not spotting those.
Sorry guys.
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before, this is the best and most professional ICT team I have ever encountered,
including those under my own command.

To people who contributed to my research. I can’t actually remember the
contribution of each individual, but since I acknowledged all of you in my
publications, it must have been substantial: Adi Shamir, Nathan Keller, Daniel
J. Bernstein, Michael Klots, Elena Andreeva, Reza Reyhanitabar, Marc Stevens,
Ernst Schulte-Geers, Kaisa Nyberg, Aviad Stier, Jonathan J. Klinger, Amihai
Bannett, Dubi Kanengisser, Gustavo Mesch, Claudia Diaz, Tamar Zondiner,
Yair Goldberg, Alan Szepieniec, Shir Peled, Güneş Acar, Roger Dingledine, Ian
Goldberg, and Marc Juarez.

The support of various funding providers is highly appreciated and was extremely
useful (I work better when I’m not hungry and cold): The Israeli Ministry
of Science and Technology, the Google Europe Scholarship for Students with
Disabilities, The Belgian Federal Science Office (BELSPO) and the KU Leuven
Research Fund.

To friends (idiosyncratic and other): Adi & Nofar, Shai & Hanna, Eytan, Shkol
& Shay, Barend & Cata, Alex & Stefano, Guilel & Dim, Ohad & Nele, Brian &
Peter, Ilana & Siebrecht, and the rest of the OY community.

To all members of COSIC, past and present, who made this journey so
remarkable: Abdel Aly, Adrián Ranea, Angshuman Karmakar, Anthony Van
Herrewege, Antoon Bosselaers, Archana Bindu Sunil, Arthur Beckers, Ashrujit
Ghoshal, Aysajan Abidin, Begül Bilgin, Benedikt Gierlichs, Bing Sun, Bohan
Yang, Carl Bootland, Chaoyun Li, Charlotte Bonte, Christina-Angeliki Toli,
Danilo Šijačić, Danny De Cock, Dave Singelée, Deniz Toz, Dušan Božilov, Edu
Marín, Eleftheria Makri, Enrique Argones Rúa, Ero Balsa, Fatemeh Shirazi,
Filipe Beato, Fré Vercauteren, Furkan Turan, Gabriele Calianno, Gunes Acar,
Hiro Yoshida, Hyunmin Kim, Ilia Iliashenko, Iraklis Symeonidis, Jens Hermans,
Jeroen Delvaux, Jose Maria Bermudo Mera, Josep Balasch, Kan Yasuda, Kent
Chuang, Kerem Varici, Kimmo Järvinen, Lauren De Meyer, Liliya Kraleva,
Meghna Sengupta, Miloš Grujić, Mustafa Mustafa, Nele Mentens, Nicky Mouha,
Oscar Repáraz, Pieter Maene, Qingju Wang, Rafa Galvez, Ren Zhang, Roel
Peeters, Ruan de Clercq, Sanghan Lee, Sara Cleemput, Seda Gürses, Simon
Dhooghe, Simon Friedberger, Sujoy Sinha Roy, Svetla Petkova-Nikova, Tariq
Elahi, Thomas De Cnudde, Victor Arribas Abril, Vladi Rozic, Wenying Zhang,
Wouter Castryck, and Yoni De Mulder.

To fallen comrades.

To my siblings - you can’t imagine how much I miss you.

And to anyone else I might have forgotten. If you deserve to be mentioned here
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and weren’t, it is simply because you are too deep in my heart for my brain to
remember.



Abstract

“All of the true things I am about to tell you are shameless lies.”

- Kurt Vonnegut, Cat’s Cradle

Cryptography is that field of science dealing with secure communication in the
presence of an adversary. From an esoteric craft, on par with tasseography and
practiced by few, cryptography grew to be a scientific field whose practitioners
are portrayed as heroes in popular media (and rightly so!). What required large
codebooks 400 years ago, complicated machinery less than a 100 years ago, or a
PC sized box 10 years ago, can now be done by a chip embedded in one’s shoe.

Symmetric-key cryptography can be viewed as being crudely composed of three
parts: design, analysis, and implementation. The role of designers is to build
new systems using a mix of mathematical techniques, engineering methods, and
their own good instincts. Implementers are tasked with (securely) translating
those abstract designs into something tangible. Analysis deals with the security
evaluation of abstract cryptosystems (cryptanalysis) and of their implementation
(side-channel analysis). This thesis is about cryptanalysis.

An attempt was made by the Author4 to give this Thesis a natural flow from
theory to application. Chapter 1 is an introduction to this Thesis. The
mathematical background required for understanding the rest of the Thesis is
provided, as well as a description of the cryptosystems used later in the Thesis
to demonstrate new ideas.

This Author’s original contribution starts in Chapter 2 where he revisits the
theory of cryptanalysis. The first contribution deals with 1-round linear hulls.
Their existence is shown and the way they complicate the bias estimation for
linear cryptanalysis is discussed. A method for overcoming this complication

4For the rest of this Thesis, when capitalized, the word Author can be substituted for a
first person pronoun. Likewise, when the word thesis is capitalized it refers to this Thesis.
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and a correction to the way linear potential is calculated are presented. The
second contribution is a re-evaluation of Matsui’s Algorithm 1. It is shown that
using the bias from a single trail as an estimate for its hull’s bias cripples the
success probability which will sometimes even decrease as a result of increasing
the data complexity. As a third contribution the wrong-key-randomization
hypothesis is reconsidered under the distinct known-plaintext model. As a fourth
contribution, the non-monotonicity of a linear attack’s success probability is
explained and quantified. Finally, as a fifth contribution, a discussion about
misconceptions and open problems in linear cryptanalysis is presented.

Chapter 3 is about new methods in cryptanalysis. The first contribution of this
chapter is the discovery on RX-cryptanalysis. It is shown that the injection
of round constants is not a proper defense against rotational cryptanalysis,
and a method for dealing with these constants is developed. Then, a second
contribution in this chapter shows that despite the widespread belief, bounding
the absolute bias of linear approximations to 2−n/2 is insufficient to resist linear
cryptanalysis. Two new types of distinguishing attacks are developed, one using
multiple keys and one using multiple approximations. In both cases we see that
linear approximations with absolute bias smaller than 2−n/2 can still be used
to distinguish a block cipher from a random permutation.

The viewpoint of the Thesis then changes from theory to application in Chapter 4
where two automated tools for cryptanalysis are proposed. The first tool is used
to search for linear trails in ARX constructions by limiting the search space
from all masks to masks containing even-length sequences of active bits. The
second tool introduces a Python-like programming language for the description
of ARX primitives. After a primitive is described using this language, the tool
converts it into a set of logical constraints and uses a SAT/SMT solver to find
an optimal RX-characteristic.

Chapter 5 is about performing cryptanalysis. A trivial forgery attack against
p-omd is presented. The attack uses only 3 messages and succeeds with
probability 1. Then, a reflection attack, an impossible reflection attack, and
a fixed-point attack are presented against Gost2, as well as 3 related-key
differential attacks against the full cipher. Finally, the resistance of Speck
against RX-cryptanalysis is evaluated and previously best distinguishers are
extended by 1–4 rounds.

Finally, 4 contributions are presented in Chapter 6. First, a security analysis is
performed for the authentication service of Galileo, the European Union’s
Global Navigation Satellite System (GNSS), and security parameters are
recommended. Then, Spoed and Spoednic are introduced. These are 2
authenticated encryption schemes inspired by p-omd. Spoed is a simplified
and improved version of p-omd, and Spoednic is an extension restoring p-
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omd’s lost nonce-misuse resistance. The last contribution is a novel method
for obtaining RUP security. A generic construction is suggested and shown to
be secure. Then, we instantiate the construction using components from the
GCM mode of operation and show that GCM can be made RUP-secure by a
few minor tweaks.

Chapter 7 concludes this Thesis.





Beknopte samenvatting

“De vos weet vele dingen, maar de egel weet één groot ding”

- Erasmus, Adagia

Cryptografie is het wetenschappelijke gebied waarin beveiligde communicatie in
de aanwezigheid van een tegenstander onderzocht wordt. Van een esoterisch vak,
op gelijke voet gesteld met tasseografie en slechts door enkelen beoefend, groeide
cryptografie uit tot een wetenschappelijk vakgebied waarvan de beoefenaren
als helden worden voorgesteld in de media (en terecht!). Wat 400 jaar geleden
enkel kon gedaan worden met grote codeboeken, complexe machinerie minder
dan 100 jaar geleden of een doos ter grootte van een PC 10 jaar geleden, kan
nu worden gedaan met een chip die in een schoen ingebed zit.

Symmetrische cryptografie kan ruwweg gezegd in drie delen verdeeld worden:
ontwerp, analyse en implementatie. De rol van ontwerpers is om nieuwe systemen
te bouwen met een mix van wiskundige technieken, ingenieurs methodes, en
hun gezond verstand. Implementeerders vertalen die abstracte ontwerpen naar
iets tastbaars (op een veilige manier). Analyse omvat de veiligheidsevaluatie
van abstracte cryptosystemen (cryptanalyse) en hun implementatie (zijkanaal-
informatie analyse). Deze Thesis gaat over cryptanalyse.

De Auteur heeft een poging ondernomen om deze Thesis van theorie tot
toepassing van een natuurlijke stroming te voorzien. Hoofdstuk 1 is een
introductie tot deze Thesis. De wiskundige achtergrond die nodig is om de rest
van de Thesis te begrijpen, en een beschrijving van de cryptosystemen die later
in de Thesis gebruikt worden om nieuwe ideeën aan te tonen, worden daarin
voorzien.

De bijdrage van de Auteur begint in hoofdstuk 2 waar hij de theorie van
cryptanalyse herziet. De eerste bijdrage behandelt 1-ronde lineaire omhulsels.
Hun bestaan wordt aangetoond, en de manier waarop ze de onbalans schatting
voor lineaire cryptanalyse compliceren, wordt besproken. Een methode om deze

ix
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complicatie te overwinnen en een correctie op de manier waarop lineair potentieel
berekend wordt, worden voorgesteld. De tweede bijdrage is een reëvaluatie van
Matsui’s Algorithm 1. Er wordt aangetoond dat het gebruik van de onbalans van
een enkelvoudig pad als een schatting voor de onbalans van het hele omhulsel de
kans op succes belemmert, en dat die soms zelfs nog zal afnemen door de data
complexiteit te verhogen. Als derde bijdrage wordt de foute-sleutel-randomizatie
hypothese herbekeken onder het verschillende gekend-bericht model. De vierde
bijdrage houdt in dat de niet-monotone slaagkans van een lineaire aanval wordt
uitgelegd en gemeten. Tenslotte, als vijfde bijdrage, wordt een discussie over
misvattingen en huidige problemen in de lineaire cryptanalyse voorgesteld.

Hoofdstuk 3 gaat over nieuwe methodes in cryptanalyse. De eerste bijdrage
van dit hoofdstuk is de ontdekking van RX-cryptanalyse. Er wordt aangetoond
dat de injectie van rondconstanten geen degelijke verdediging tegen rotationele
cryptanalyse biedt, en een methode om met deze constanten om te gaan wordt
ontwikkeld. Een tweede bijdrage in dit hoofdstuk toont aan dat, in tegenstelling
tot wat doorgaans wordt aangenomen, de absolute waarde van de onbalans tot
2−(n−1)/2 beperken onvoldoende is om bestand te zijn tegen lineaire cryptanalyse.
Twee nieuwe types van onderscheidende aanvallen worden ontwikkeld: een die
meerdere sleutels gebruikt en een die meerdere benaderingen gebruikt. In beide
gevallen zien we dat een lineaire benadering met een absolute onbalans kleiner
dan 2−(n−1)/2 nog steeds gebruikt kan worden om een blokvercijfering van een
willekeurige permutatie te onderscheiden.

Het standpunt van de Thesis verandert van theorie naar applicatie in hoofdstuk
4, waar twee geautomatiseerde tools voor cryptanalyse worden voorgesteld. De
eerste tool wordt gebruikt om lineaire paden in ARX-constructies te zoeken door
de zoekruimte van alle maskers te beperken naar maskers die een sequentie van
gelijke lengte van actieve bits bevatten. De tweede tool gebruikt een Python-
achtige programmeertaal voor de beschrijving van ARX-primitieven. Nadat
een primitief met deze taal werd beschreven, converteert de tool het naar een
set van logische beperkingen en gebruikt het een SAT/SMT oplosser om een
optimaal RX-pad te vinden.

Hoofdstuk 5 gaat over het uitvoeren van cryptanalyse. Een triviale
vervalsingsaanval tegen p-omd wordt voorgesteld. De aanval gebruikt slechts
3 berichten en slaagt met waarschijnlijkheid van 1. Nadien worden een
reflectieaanval, een onmogelijke reflectieaanval, en een dekpuntaanval getoond
tegen Gost2, net als 3 verwant-sleutel differentiële aanvallen tegen de hele
vercijfering. Tenslotte wordt de weerstand van Speck tegen RX-cryptanalyse
geëvalueerd en de vroegere beste onderscheiders worden uitgebreid met 1–4
ronden.
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In hoofdstuk 6 worden 4 bijdragen voorgesteld. Eerst wordt een veiligheidsana-
lyse van de authenticatiedienst van Galileo uitgevoerd, het globale satellieten
navigatiesysteem van de Europese Unie, en veiligheidsparameters worden
aangeraden. Daarna worden Spoed en Spoednic geïntroduceerd. Dit zijn
twee geauthentiseerde encryptie-algoritmes die geïnspireerd werden door p-omd.
Spoed is een vereenvoudigde en verbeterde versie van p-omd, en Spoednic
is een extensie die p-omd’s verloren nonce-misbruik weerstand herstelt. De
laatste bijdrage is een nieuwe methode om UNK-veiligheid te verkrijgen. Een
generische constructie wordt voorgesteld en er wordt aangetoond dat die veilig
is. Daarna bevestigen we de constructie met componenten van de GCM modus
operandi en tonen we dat GCM UNK-veilig kan worden gemaakt mits er enkele
kleine aanpassingen plaatsvinden.

De Thesis wordt besloten met hoofdstuk 7.
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Chapter 1

Introduction

“Converte gladium tuum in locum suum. Omnes enim, qui
acceperint gladium, gladio peribunt.”

- Matthew, 26:52

The standard exposition for a thesis in cryptography is to write how human
beings required cryptography since the dawn of time. While this is possibly true,
it misses the point altogether. The examples given to uses of cryptography are
always from politics (including war, which is a mere continuation of policy by
other means [158]). Until the 1970’s, cryptography was used exclusively, or at
least chiefly, by nations. Similarly, cryptanalysis was used solely by governments
for warfare and diplomacy.

But cryptography is in fact much more than that. The academic interest
in cryptography which began in the 1970’s had been ever since a locomotive
pulling technological advancement. Although computer communication preceded
cryptography as a civilian tool, the latter did not lag behind. At first, civilian use
of cryptography was a mirror image of military applications—hiding the content
of messages and verifying their integrity. However with time, cryptography grew
to offer more than just that. In today’s world, advances in cryptography allow
for things that were previously impossible. Cryptocurrencies, car sharing, and
easy exercise of democracy through electronic voting are all new technologies
enabled by cryptography.

This is the context in which cryptanalysis should be considered. Indeed,
cryptography can be split into three parts: design, cryptanalysis, and

1
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implementation. While it seems that design and cryptanalysis are naturally
interleaved, this must not be so. De Leeuw notes in [62] that although Dutch
cryptanalysts were able to break Spanish codes during the 17th century, no
improvement was observed in their own use of codes. This suggests that
code breakers (as they were called back then) and code designers worked
independently and did not share knowledge.

There might not be a parallel to the dissonance between how a cryptanalyst is
viewed by society and what they really do.1 Alan Turing is often said to be the
most influential individual on World War 2. Note that in hindsight, we know
the names of the people breaking the Enigma but not the names of its designers.
“It has been estimated”, writes Kahn in [93], “that cryptanalysis saved a year
of war in the Pacific”. In practice, the cryptanalyst’s job is tedious and often
monotone. It involves applying both math and intuition, long frustrated stares
at blank sheets, or worse—sheets full of non-elegant equations. Cryptanalysis
is the art of “shaving bits”, i.e., reducing the work effort required to break a
cryptosystem from incomprehensible to unimaginable and then arguing that
the latter has practical significance.

But in fact, cryptanalysis can be viewed as garbage collection, and hence has
its own nobility. As a sanitary worker, the cryptanalyst’s job is to sieve and
sort candidates. Some of these candidates are complete garbage and should be
disposed. Others are worn out, and although nostalgia makes it hard, there
must come a time when they are replaced. Often, candidates can be recycled,
not usable by themselves but offer insights as to what a good cryptosystem
would look like. Once in a while, a gem is found. It is the cryptanalyst’s job to
sort these candidates, prune the bad and nurture the potential ones.

The focus of this Thesis is cryptanalysis and in the following chapters the
reader will be exposed to several facets of it. The rest of this chapter lays
the groundwork for everything coming next. In the next section (Section 1.1),
relevant parts from the theory of cryptanalysis are presented. The section
following (Section 1.2) presents cryptosystems used in the sequel. While some
find them interesting by their own merits, they are considered here only as a
lens allowing to look deeper into cryptanalysis.

The next two chapters deal with the theory of cryptanalysis. In Chapter 2
we revisit the existing theory of cryptanalysis to identify caveats and errors.
The former are then addressed, and the latter are corrected. Although the
importance of doing so is self-obvious, in light of this Author’s communication
with some of his colleagues it is never a bad idea to reiterate it: theory is the
gauge allowing to distinguish secure cryptosystems from insecure ones. Then,

1E.g., Kahn’s observation in [93]: “Codebreaking is the most important form of secret
intelligence in the world today.”
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in Chapter 3, the theory of cryptanalysis is extended and new cryptanalytic
techniques are developed.

Chapter 4 deals with automated tools. The work presented in this chapter
describes automated ways for finding good properties that can be used in
statistical cryptanalysis.

In Chapter 5 we cryptanalyze existing cryptosystems. This is the pruning
part in the metaphor above. Tools and techniques developed in Chapters 3–4
(as well as tools and techniques developed by others) are applied to existing
cryptosystems.

Finally, Chapter 6 applies the lessons learned during the security evaluation of
cryptosystems to build better cryptosystems.

Chapter 7 concludes this Thesis.

1.1 Cryptanalysis

This section provides the background required for reading this Thesis. The
first part provides mathematical and statistical background. Then, the next
four parts deal with existing cryptanalytic techniques: differential cryptanalysis,
linear cryptanalysis, rotational cryptanalysis, and self-similarity attacks. Finally,
in Section 1.1.6 key recovery algorithms are discussed.

1.1.1 Mathematical and Statistical Background

In this section we briefly describe mathematical and statistical notions used in
the rest of this Thesis.

Boolean functions

We denote the field with two elements by GF (2) and the vector space of
dimension n over this field by GF (2)n. We use ⊕ to denote addition in GF (2)
and � to denote modular addition in some finite group. The field in which the
addition is made is always clear from the context.

A Boolean function y = f (x) is a function f : GF (2)n → GF (2) mapping a
vector of size n with binary components into a single bit. A Boolean vector
function y = F (x) is a function F : GF (2)n → GF (2)m that maps a binary
vector of size n into a binary vector of size m. A permutation is an invertible
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Boolean vector function. A Boolean vector function y = F (x) with output size
m can be viewed as the parallel execution of m Boolean functions such that
yi = Fi (x) where 0 ≤ i ≤ m− 1 denotes the bit position.

A keyed Boolean vector function y = F (k, x) = Fk (x) is a family of Boolean
vector functions, indexed by a key k. An iterative block cipher with r rounds
is a composition of r permutations Fkr−1 ◦ Fkr−2 ◦ . . . ◦ Fk0 (x). For the sake
of brevity, and in compliance with existing literature we will assume that the
round keys ki are independent and the key of a block cipher, denoted by k, is
defined as the string consisting of the concatenation of all r round keys ki.

Probability distributions

A probability distribution is a well defined set of events and the likelihood of
their occurrence. In this Thesis, four well known probability distributions are
used: the binomial distribution, which we mark with B, the hypergeometric
distribution which we mark with HG, the normal distribution which we mark
with N and the χ2 distribution.

A binomial variable X0 ∼ B (N, p) is a random variable counting the number
of successes in a set of N independent experiments, each with two possible
results (which are “success” and “failure”, without loss of generality), and each
experiment is independent and has a success probability of p.

Similarly, a hypergeometric variableX1 ∼ HG (N,M,R) means that X1 follows
a hypergeometric distribution, i.e., X1 is a random variable counting the number
of occurrences of an item of Type I in N draws from a population of size M
known to include R such items, where the samples are not returned to the
“box” after being sampled and the probability to draw an item of a certain type
therefore depends on the outcomes of previous draws.

The binomial and hypergeometric distributions are discrete distributions, i.e.,
they deal with counting events. Unlike those, the normal distribution is a family
of continuous distributions. We say that X2 ∼ N

(
µ, σ2), follows a normal

distribution with mean µ and variance σ2.

The normal distribution appears in many natural phenomena. This is the
result of the central limit theorem showing that the sum of random variables
often converges to a normal distribution. The standard normal distribution
is a normal distribution with mean µ = 0 and variance σ2 = 1. A simple
transformation allows to convert any normal variable into a standard normal
variable.
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Lemma 1. If X2 ∼ N
(
µ, σ2) then

X2 − µ
σ

∼ N (0, 1) .

Both the binomial and hypergeometric distributions can be approximated by a
normal distribution. The normal approximation for the binomial distribution is
easy to show and can be found in any probability theory textbook:

Lemma 2 (The normal approximation of the binomial distribution). For a
sufficiently large N , if X0 ∼ B (N, p) then

X0 ≈ N (Np,Np (1− p)) .

The normal approximation of the hypergeometric distribution can take several
forms. For our purposes, the one from Feller should suffice:

Lemma 3 ([70]). Let X1 ∼ HG (N,M, pM). If N,M → ∞ in such manner
that N/M → t ∈ (0, 1), then X1 has asymptotic distribution

X1 ≈ N (pN,N (1− t) p (1− p)) .

Proof. Two proofs for Lemma 3 can be found in [130].

Despite the fact that the normal distribution is only an approximation for the
binomial and hypergeometric distributions, we shall nevertheless use it in an
exact way and write X ∼ N (·, ·).

The last family of distributions used in this Thesis is the χ2 family. While
the χ2 family is an object of research of its own accord, we are interested in
it insofar as it describes the behavior of a squared standard normal variable.
I.e., if X2 ∼ N (0, 1) then (X2)2 ∼ χ2

1. Here, the subscript of χ2 denotes the
degrees of freedom the distribution has. The sum of a set of standard normal
variables X(1)

2 , . . . ,X(m)
2 where each sample is drawn independently is said to

follow a χ2
m distribution, i.e.,

m∑
i=1

(
X

(i)
2

)2
∼ χ2

m.

All of these distributions will be used in the sequel.
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Compound probability distributions

A compound probability distribution is a probability distribution with one
of its parameters being in itself a random variable. When working with
compound distributions it is important to distinguish between two different
random variables: the sample value of the random variable, and the sample
value of the random variable given the value of its parameter. We shall refer to
the former by ε̂w and the latter will be written as ε̂w | εw.

The probability density of the compound variable ε̂w is given by the probability
density of ε̂w|εw = ε, weighted by the probability that εw = ε for any possible
ε that εw can take. Formally, if fε̂w|εw is the probability density function of
ε̂w | εw, and fεw likewise for εw, then we may write

fε̂w (εw) =
∫
ε

fε̂w|εw (εw, ε) fεw (ε) dε,

for the density of ε̂w. This is depicted in Figure 1.1.

εw

ε

ε1

fε̂w|εw(εw, ε1)

ε2

fε̂w|εw(εw, ε2)

ε3

fε̂w|εw(εw, ε3)

fε̂w(εw)

f ε
w

(ε
)

Figure 1.1: A compound model. The curve along the vertical axis represents
the density function of εw. The probability density function of ε̂w is shown at
the bottom. ε̂w has a compound distribution obtained by weighed integration
over the smaller curves which represent the conditional density of ε̂w for different
values of εw.
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1.1.2 Differential Cryptanalysis

One of the most notable techniques in cryptanalysis is differential cryptanalysis.
Developed by Biham and Shamir and published in 1990 [30], differential
cryptanalysis examines the evolution of differences during the encryption of
two inputs. An input difference is the difference between two inputs entering a
cryptosystem, usually with respect to the exclusive-or (XOR) operation. The
output difference is the difference between the outputs of two such inputs. We
say that an input difference ∆ causes an output difference ∇ under the function
f with probability p if a portion p of the possible pairs of inputs having a
difference ∆ results in outputs having a difference ∇ after applying f . When
this happens, we write ∆ f−→ ∇ with probability p.

A differential characteristic that describes a single round of a cryptosystem is
called a 1-round characteristic. Biham and Shamir showed that two or more such
characteristics can be concatenated to form longer multi-round characteristics
if the output difference of one characteristic is the input difference of the other.

Example 1. Let P and P ′ be two plaintexts and let ∆ = P ⊕ P ′ be defined as
their XOR difference. The most common application of differential cryptanalysis
is in the chosen-plaintext model ( i.e., where the model gives the adversary some
control over the inputs) and with a fixed input difference in mind. For example,
an adversary that is interested in an input difference ∆ = 00400000x will
generate a random plaintext P and set P ′ = P ⊕ 00400000x.

Let C and C ′ denote the encryption of P and P ′ through a single round of
the block cipher Simon32 (a description of Simon can be found in Section 1.2
and is immaterial for this example). As per [2], if ∆ = 00400000x is the
input difference entering 1-round Simon, then with probability 2−2 the output
difference is ∇ = C ⊕ C ′ = 01000040x.

We can extend this 1-round differential characteristic by another round by
considering ∇ = 01000040x, the output difference of the first round as
an input difference to the next round. Again, [2] shows that an input
difference ∇ = 01000040x leads after a single round of Simon to an output
difference of ♦ = 04400100x with probability 2−2. Multiplying these two
probabilities we get that the probability of the 2-round differential characteristic
(00400000x, 01000040x, 04400100x) is 2−4.

A differential is a set of differential characteristics having the same input and
output difference, disregarding intermediate differences. The probability of a
differential is the sum of probabilities of all differential characteristics in the
underlying set. Other extensions of differential cryptanalysis include, amongst
others, the boomerang attack [159], impossible differential cryptanalysis [29],



8 INTRODUCTION

truncated differential cryptanalysis [98], and higher-order differentials [98]. In
this Thesis, differential cryptanalysis is used as one of the building blocks
for a new cryptanalytic technique, RX-cryptanalysis, which is developed in
Section 3.1.

1.1.3 Linear Cryptanalysis

Linear cryptanalysis is a known-plaintext attack trying to identify linear relations
between plaintext bits and ciphertext bits. The attack was presented by Matsui
in [110] and was the first attack against DES with feasible complexities. The
idea behind linear cryptanalysis is to find a probabilistic relation between the
parity of some subset of ciphertext bits and that of plaintext and key bits.
Identifying this relation is the first phase in a linear attack. In the second phase,
a statistical procedure is used for distinguishing or key recovery.

Extensions of linear cryptanalysis include, amongst others, multiple linear
cryptanalysis [31,92], multidimensional linear cryptanalysis [80], multivariate
linear cryptanalysis [43], and zero-correlation attacks [40,41]. In this Thesis, we
present in Section 4.1 an automated tool assisting in the first phase of the attack.
The second phase is extensively analyzed in Chapter 2 where existing models
are refined and errors exposed. In Section 3.2 a new extension of (multiple)
linear cryptanalysis is presented that can be used against cryptosystems which
were previously believed to be secure with respect to linear attacks.

In this section, we recall some definitions and terminology of linear cryptanalysis
from [28,48,58,95,110,123].

Masks and approximations

Let α, β be two vectors of size n. Then

αt · x =
n−1⊕
i=0

αi & xi ,

where the subscript i denotes the i-th bit of a vector. We will call α the mask
of x. In practical examples, the masks will often contain many zero bits. In
order to emphasize which bits are nonzero, we will sometimes use the following
set notation:

α = {i1, i2, . . . , iu} ⇔
{
αi = 1,∀i ∈ {i1, i2, . . . , iu}
αi = 0,∀i 6∈ {i1, i2, . . . , iu}.
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A linear approximation for a keyed Boolean permutation is a tuple (α, β, γ)
such that α, β, and γ are masks for the input, the output and the
key, respectively. Let p be the fraction of inputs x for which the
equation αt · x⊕ βt · Fk (x)⊕ γt · k = 0 holds. The correlation of the linear
approximation (α, β, γ) is defined as cor (α, β, γ) = 2 ·

(
p− 1

2
)

= 2p− 1. In
general, both p and cor (α, β, γ) will depend on k. Similar to differential
cryptanalysis, linear approximations can be concatenated to form longer
approximations if the output mask of one is the input mask of the other.
A sequence of r concatenated approximations (αi, βi, γi) is called a linear trail.
When γ = 0, we abbreviate the notation (α, β, 0) and cor (α, β, 0) to (α, β) and
cor (α, β), respectively, and the approximation is called a linear hull.

The existing literature interchangeably uses correlations and biases. The bias
− 1

2 ≤ ε ≤ 1
2 and correlation −1 ≤ c ≤ 1 of a linear approximation are both

measures for the error in a linear approximation, or in simple words, how its
probability differs from 1

2 . The probability p, the bias ε, and the correlation c
can be obtained from one another through ε = c/2 = p− 1

2 . Correlations are
more frequently used when the mathematical aspects of linear cryptanalysis
are investigated, and biases are more often used when linear cryptanalysis is
applied to a cryptosystem. We will continue this trend and use both terms,
bearing in mind that the bias can easily be obtained from the correlation and
vice versa.

Linear hulls and trails

Following the terminology of [59], a (linear) trail Ω covering r rounds of an
iterative block cipher is a concatenation of linear approximations each covering
a single round such that the output mask of round i equals to the input mask
of round i+ 1. Hence, we can identify the trail with a vector of r + 1 masks
ωi, 0 ≤ i ≤ r, Ω = (ω0, ω1, . . . , ωr) . Round i has input mask ωi and output
mask ωi+1. The correlation contribution of a trail Ω is the product of the
correlations of the individual rounds: cor (Ω) =

∏r−1
i=0 corround i (ωi, ωi+1) .

A key-alternating cipher is a common model for block ciphers where the round
consists of a fixed part g followed by an addition with the round key. We can
thus write for a key-alternating cipher:

corround i (ωi, ωi+1) = (−1)ω
t
iki corg (ωi, ωi+1) . (1.1)
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Note, however, that this notation implicitly assumes that to each bit of the
round input a different bit of the round key is added. We will show that this is
not always the case in Section 2.1.2. We obtain for now:

cor (Ω) =
∏
i

(−1)ω
t
iki corg (ωi, ωi+1) = |cor (Ω) | · (−1)dΩ+

∑
i
ωtiki , (1.2)

with dΩ = 1 if
∏
i corg (ωi, ωi+1) is negative; otherwise dΩ = 0.

A linear hull covering r rounds of a block cipher is a pair (α, β). The hull is
composed of a set of linear trails all having the same input mask and output
mask but that can differ in intermediate masks. The correlation of a linear hull
is

cor (α, β) =
∑

Ω
ω0=α,ωr=β

cor (Ω) . (1.3)

Some works use the notion of linear characteristic to describe linear trails. The
advantage of using this notion is that it emphasizes the similarities between
differential cryptanalysis and linear cryptanalysis. For this reason exactly, the
term linear trail is preferred in this Thesis. While the similarities between the
two techniques are interesting, they often obfuscate important differences. For
example, the probability of a differential can be lower bounded by a single
differential characteristic. As we see in Section 2.2 no such equivalent exists for
a linear hull. The term linear path is also sometimes used in the literature, but
less frequently.

1.1.4 Rotational Cryptanalysis

Similar to differential cryptanalysis, rotational cryptanalysis [96] is a chosen-
plaintext attack taking advantage of the propagation of a certain property. In
differential cryptanalysis this property was the XOR difference of two plaintexts
while in rotational cryptanalysis the property is the rotational difference.

Given a pair of plaintexts (x, x′) we say that they form a rotational pair or
that they satisfy the rotational property with respect to γ if x′ = x≪ γ where
≪ is a cyclic shift. Rotational cryptanalysis uses the known probability that
an input rotational pair leads to an output rotational pair through what is
known as “the ARX operations” (modular Addition, Rotation, and XOR). In
other words, rotational cryptanalysis examines the evolution of the rotational
property during the encryption of a rotational input pair. For the rotation
and XOR operations, the probability that an input rotational pair leads to an
output rotational pair is 1. For modular addition, the following proposition
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provides a general way to compute the propagation probability of a rotational
pair:

Proposition 1 ([61]). For x, y ∈ F2n , and 0 < γ < n,

Pr[(x� y)≪ γ = (x≪ γ)� (y≪ γ)] =
(
1 + 2γ−n + 2−γ + 2−n

)
/4.

If n is large and γ = 1 the probability is maximized and we get

Pr[(x� y)≪ γ = (x≪ γ)� (y≪ γ)] = 2−1.415.

Whenever the two inputs to the modular addition are independent and uniformly
distributed, the probabilities of consecutive modular additions can be directly
multiplied. However, as was shown in [97], if a modular chain exists, an
adjustment is required to the formula, and the resulting probability is in fact
smaller.2 A similar effect was mentioned for linear cryptanalysis in [125], and
for differential cryptanalysis in [160].

In this Thesis, rotational cryptanalysis is used as the stage on which RX-
cryptanalysis is developed in Section 3.1. RX-cryptanalysis is then further used
in Sections 4.2 and 5.3.

1.1.5 Self-similarity Cryptanalysis

We now turn our attention to self-similarity attacks. These attacks exploit
similarities within the cipher structure. In this Thesis we use two self-similarity
attacks: a reflection attack and a fixed-point attack. We leave the exact
description of these attacks to Section 5.2 and give here just their essence. It is
important to note that other types of self-similarity attacks exist (e.g., slide
attacks), as well as different variants of the two presented below.

The reflection attack uses the well known fact that in a Feistel structure,
decryption can be obtained from the encryption function by changing the order
of words. Hence, for a palindromic sequence of round keys, if the two halves
of the message in the middle of the palindrome are equal, the two parts of the
palindrome cancel each other.

The fixed-point attack is similar, but instead of using a palindrome it exploits a
repeating sequence of subkeys. Suppose that the round keys for rounds 0–(`−1)
are the same as the keys for rounds `–(2`− 1), and suppose that for some input
S we have that S → S in rounds 0–(` − 1). Then, we also have S → S for

2A modular chain is a sequence of modular addition operations where the output of one is
given directly as an input to the next. It is outside the scope of this Thesis.
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rounds `–(2`− 1) and of course, due to the transitive property, also S → S for
rounds 0–(2`− 1).

1.1.6 Key Recovery

The end-goal of cryptanalysis is to recover the secret key used in a specific
instance of the attacked algorithm. We now present several generic methods
used for key recovery in statistical attacks (such as differential-, linear-, and
rotational-cryptanalysis). The key recovery phase in self-similarity attacks is a
more ad hoc procedure and we defer its description to Section 5.2 where it is
explained as part of the various attacks.

After a non-ideal statistical property was identified (e.g., a differential with high
probability, a linear hull with large bias, etc.), the attack proceeds to the data
collection phase. In the known-plaintext model, this phase consists of collecting
pairs of plaintexts and their respective ciphertexts. For chosen-plaintext attacks,
the adversary queries selected messages and collects their respective ciphertexts.
Once enough data was collected, the adversary tries to detect the non-ideal
property. If the property can be identified in the dataset, the cryptosystem
is said to be distinguishable from a random oracle. In statistical attacks, this
distinguishing is the basis for key recovery.

The amount of data required for the attack to be successful differs. For
differentials and rotational characteristics with probability p the amount of
required data is of the order of 1

p . For a linear hull with correlation c the data
requirement is usually 2` · c−2 for some small `. Chapter 2 deals extensively
with the data complexity of linear attacks.

Matsui’s Algorithm 2 (r-round attack)

A differential r-round attack and a linear attack using Matsui’s Algorithm 2 are
two similar key recovery procedures for block ciphers. The idea behind both is,
without loss of generality, to extend a q-round property by r additional rounds.
This is done by collecting data encrypted for q + r rounds of the block cipher.
Once enough data was collected, the adversary guesses the part of the key
required to remove the r rounds, leaving the inputs and outputs to the other q
rounds exposed. The intuition behind this procedure is that when the right key
is used to remove the r rounds, the q-round property can be detected. On the
other hand, using a wrong key is akin to adding r rounds of encryption instead
of removing them, and hence, using a wrong key would make the ciphertext
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look more random (i.e., as if it was encrypted using q + r + r rounds), and the
adversary will be unable to identify the q-round property.

In linear cryptanalysis this is often called the wrong-key-randomization hypothesis
or simply the wrong-key hypothesis. The wrong-key hypothesis was first
introduced by Harpes, Kramer and Massey in [79]. For quite some time,
it was understood to mean that an attempt to decrypt the last r rounds would
result in bias 0 for all wrong keys until Bogdanov and Tischhauser showed
in [42] that even the bias of a random permutation is not necessarily 0. They
corrected the wrong-key hypothesis to account for the bias distribution in random
permutations using a compound model and derived the success probability and
data complexity requirements of such an attack. Their work is extended in
Section 2.3 for the case of distinct known-plaintexts, and the observation they
made about the non-monotonicity of the success probability is reconsidered in
Section 2.4.

Matsui’s Algorithm 1

Matsui’s Algorithm 1 is another key recovery algorithm that is unique to
linear cryptanalysis. When Algorithm 1 is used, the sign of the bias is used
to determine the value of the XOR of some key bits. The idea behind this
algorithm is to find an affine relation between certain input bits, output bits,
and key bits (i.e., a relation of the form αt · x⊕ βt · Fk (x)⊕ γt · k = 0). The
input and output bits allow the adversary to measure the bias of the trail,
and the key bits determine its sign. By inverting the process, i.e., writing the
equation as αt · x⊕ βt · Fk (x) = γt · k, an adversary can determine the parity
(of a linear combination) of the key bits selected by γ.

Algorithm 1 is considered to be inferior to Algorithm 2. The main reason is
that it can only be used to recover a single key bit. In Section 2.2 we show
how to extend Algorithm 1 to recover more key bits. However, as we see in
Sections 2.1–2.2, Algorithm 1 suffers from further limitations and it is very
tempting to use it incorrectly. This is why Algorithm 1 should be abandoned
as a general method and only be used in certain well-understood scenarios.

Key ranking vs. hypothesis testing

Two approaches for key recovery are discussed in the literature for Matsui’s
Algorithm 2: key ranking and hypothesis testing. In the key ranking approach
which was first described by Matsui in [110] candidate keys are ordered according
to their likelihood and tried in this order. It is implicitly expected that the
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right key will have a high absolute bias and will hence be at the beginning of
the list (i.e., amongst the most likely keys).3 When hypothesis testing is used,
the likelihood of each key is evaluated independently using a statistical test.
Key ranking is used for the analyses of Sections 2.3–2.4; hypothesis testing is
used for the new technique we develop in Section 3.2.

Measuring the adversary’s advantage when using key ranking is easy:

Definition 1. When key ranking is used, the adversary is said to gain an
advantage of a bits if the right key is ranked amongst the highest 2m−a keys.
Otherwise, the attack is said to fail.

However, for hypothesis testing, measuring the advantage is not as simple and in
fact, different definitions exist in the literature. Instead of arbitrarily choosing
one we will now explain how hypothesis testing is used in linear cryptanalysis
in more detail.

Using hypothesis testing for linear cryptanalysis

Suppose π is a random permutation of n bits and ψ is a linear approximation.
We denote by T a random variable for the number of times ψ is satisfied over
all 2n possible inputs to π. The behavior of T is given by the following Lemma:

Lemma 4. For π, ψ, and T as before

T ∼ N
(
2n−1, 2n−2) (1.4)

Proof. We define T |ε = 2n−1 + 2n · ε to be the number of times the linear
approximation was satisfied over all possible inputs once π was chosen uniformly
from the set of all 2n! possible random permutations. Fixing π also fixes the
bias ε of ψ when it is applied to π. Daemen and Rijmen show in [60] that
ε ∼ N

(
0, 2n−2). Substituting π’s bias ε for ε we obtain the compound random

variable T.

The random variable T can be converted into a standard normal variable by
setting T−2n−1

2n/2−1 . Furthermore, knowing that the square of a standard normal
variable follows the χ2

1 distribution, we obtain the following corollary:

Corollary 1. Let π, ψ, and T as before, then(
T− 2n−1

2n/2−1

)2

∼ χ2
1 (1.5)

3As explained in Section 2.4, this implicit assumption is the reason for the non-monotonicity
of the success probability.
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Let E be a family of block ciphers with block size n, and Ek a member of
this family characterized by a key k. Further, let ψ be a linear approximation
that is biased when applied to a member of E. We define a counter T̂ to
count the number of times ψ is satisfied after observing 2n pairs of plaintexts
and ciphertexts. As ψ is biased when applied to Ek, so is T̂ and the value
Pr[T = T̂ ] is small. On the other hand, when applied to a random permutation,
T̂ follows Lemma 4 and hence Pr[T = T̂ ] is large. The goal of the adversary
upon receiving T̂ is to decide if it was obtained by applying ψ to a member of
E or to a random permutation.

In a classical linear attack, the adversary would normally use T̂ to calculate a
sample bias ε̂ and compare it to some threshold. For example, they may decide
to use ±2−n/2, meaning that the distinguishing algorithm returns “random
permutation” if −2−n/2 ≤ ε̂ ≤ 2−n/2; “a member of E” otherwise.

This procedure can be viewed as a form of hypothesis testing. The null
hypothesis H0 is that T̂ was generated through a random permutation. The
alternative hypothesis, namely H1, is that it was generated using a block cipher.
The adversary constructs a confidence interval for H0, and rejects the null
hypothesis if the test statistic falls outside of it. According to [60], ε, the
bias of a random permutation, has a normal distribution with mean 0 and
standard deviation 2−n/2−1, which means that in the above example, 2−n/2 is 2
standard deviations away from the mean, yielding a confidence interval of size
α = Φ (2)− Φ (−2) = 0.95449. Using this interval means that the distinguisher
reports 1−α ≈ 4.5% of the values coming from a random permutation incorrectly,
and thus, it gives an advantage when the probability to correctly identify the
block cipher, namely β, is high enough such that β − (1− α) > 0.

Note that this procedure does not require much knowledge about the bias. It is
sufficient that the underlying key-dependent bias be large enough, and that the
number of samples (i.e., the data complexity) be sufficiently large to provide a
good estimator to the underlying bias.

1.2 Cryptosystems Mentioned in this Thesis

Throughout this Thesis we will use specific cryptosystems either as examples,
test-beds, or simply to attack them and expose weaknesses. In this section we
describe those.
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1.2.1 Simon

Simon is a family of lightweight block ciphers designed by the US National
Security Agency (NSA) and published in 2013 [20]. The Simon2n/mn family
of lightweight block ciphers has 10 members differing in their block and key
sizes. All members of the family have a Feistel structure with round function
R employing a non-linear function f . In each round i, R receives two n-bit
input words Xi and Yi, and outputs two n-bit words Xi+1 and Yi+1. The round
function uses three operations: addition in GF(2)n (exclusive-or; XOR), bitwise
AND, and a left circular shift by j positions, which we denote by ⊕,&, and
≪ j, respectively. The internal non-linear function f is defined as:

f (Xi) = [(Xi≪ 1) & (Xi≪ 8)]⊕ (Xi≪ 2) .

The output of the round function R on an input block (Xi, Yi) is:

Ri (Xi, Yi) = (Yi ⊕ f (Xi)⊕ ki, Xi) ,

where i is the round number and ki is the round key. The entire cipher is a
composition of round functions Rr−1 ◦Rr−2 ◦ . . . ◦R0 (X0, Y0). The structure
of the round function of Simon is depicted in Figure 1.2.
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Figure 1.2: One round of Simon (without the final swap operation)

1.2.2 Speck

Speck is another family of lightweight block ciphers designed by the NSA
[20]. The family includes 10 members, where each member is denoted by
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Figure 1.3: One round of Speck

Speck2n/mn, where the block size is 2n for n ∈ {16, 24, 32, 48, 64}, and the
key size is mn for m ∈ {2, 3, 4}, depending on the desired security.

The round function of Speck receives two words Xi and Yi, and a round key
ki, all of size n, and outputs two words of size n, Xi+1 and Yi+1, such that

(Xi+1, Yi+1) = Rki (Xi, Yi) = (fki (Xi, Yi) , fki (Xi, Yi)⊕ (Yi≪ β)) ,

where fki (·, ·) is
fki (Xi, Yi) = ((Xi≫ α)� Yi)⊕ ki.

The Speck key schedule algorithm uses the same round function to generate
the round keys. Let K = (lm−2, ..., l0, k0) be a master key for Speck2n, where
li, k0 ∈ F2n . The sequence of round keys ki is generated as

ki+1 = fct (li, ki)⊕ (ki≪ β)

for
li+m−1 = fct (li, ki) ,

with ct = i the round number starting from 0.

The rotation offsets (α, β) are (7, 2) for Speck32, and (8, 3) for the larger
versions. A single round of Speck with m = 4 is depicted in Figure 1.3. For
more details, we refer the interested reader to the original design in [20].
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1.2.3 GOST and GOST2

Gost [140] is a block cipher designed during the 1970’s by the Soviet Union as
an alternative to the American DES [155]. Similarly to DES, it has a 64-bit
Feistel structure, employing 8 S-boxes and is intended for civilian use. Unlike
DES, it has a significantly larger key (256 bits instead of just 56), more rounds
(32 compared with DES’ 16), and it uses different sets of S-boxes. What is
unique about Gost is that the S-boxes are not an integral part of the standard,
and in fact, they were kept secret, which allowed the government to give different
sets of S-boxes to different users.

The Gost block cipher has a 64-bit Feistel structure using a 256-bit key. The
64-bit block is treated as two words of 32-bit each which are referred to as the
“left word” and the “right word”. The state in round i is denoted by Si = (Li, Ri)
where Li and Ri are the left and right words entering round i, respectively. In
each round, a 64-bit to 32-bit non-linear function f is applied to the right word
and the round’s subkey Ki. The output of f is XORed to the left input word,
and the words are swapped. This is repeated 32 times, for rounds numbered
0–31, and the output of the last round is used as the ciphertext. We get that

Ri+1 = f (Ri,Ki)⊕ Li

Li+1 = Ri ,

where R0 is the right half of the plaintext, L0 is the left half of it, and Ki is
the i-th round subkey.

Inside the non-linear function, the input is mixed with the round’s 32-bit subkey
Ki using modular addition. Then, it is split into 8 chunks of 4 bits entering the
eight S-boxes. Finally, the output of the S-boxes is left rotated by 11 bits. A
schematic view of 1-round Gost is depicted in Figure 1.4.

After the USSR had been dissolved, Gost was accepted as a Russian standard
in [140] and was proposed to be included in ISO/IEC 18033-3 [82]. At the time
Gost seemed like a natural candidate to be included in the standard. From a
security point of view, although there have been several attacks such as [100] in
the related-key model, the only attack on the full Gost in the single-key model
was published in [94], and was limited to a weak-key class.

However, as a result of the renewed interest due to the standardization process,
Isobe presented in [83] an improvement to [94] that eliminates the weak-key
assumption resulting in an attack with time complexity of 2224. A year later,
as the attack was improved by Dinur, Dunkelman, and Shamir in [68], and as
new attacks were presented by Courtois in [56], the idea to standardize Gost
was rejected.
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Figure 1.4: One round of Gost/Gost2

In 2015, authors from the Russian Technical Committee for Standardization
(TC 26) published a modified version of the Gost cipher that was claimed
to resist previous attacks [69]. The modified version differs from the original
Gost in only two aspects: (i) it has a different key schedule, designed to avoid
previous attacks and, (ii) it makes an explicit choice for the S-boxes.

In both versions, the key schedule takes the 256-bit key K and splits it into
8 subkeys of 32 bits denoted K0 to K7. In the original Gost, the first 24
rounds used the subkeys in their cyclic order (i.e., K0 = K8 = K16 = K0,
K1 = K9 = K17 = K1, etc.). In the final 8 rounds (i.e., rounds 24–31), the
subkeys were used in a reverse order such that K7 was used in round 24, K6 was
used in round 25, etc. In the modified version, the key schedule was changed,
but the keys are still used in an ascending cyclic order in rounds 0–7, 8–15,
and 16–23, and in a descending cyclic order in rounds 24–31. The order of the
subkeys for both versions is presented in Table 1.1. From here on, we refer to
the modified version of Gost presented in [69] as Gost2. Also, whenever we
want to stress that Kj is used in round i (i.e., Kj = Ki), we write it as Kj

i .

Table 1.1: The order of subkeys in Gost and Gost2

Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subkey (Gost) K0 K1 K2 K3 K4 K5 K6 K7 K0 K1 K2 K3 K4 K5 K6 K7

Subkey (Gost2) K0 K1 K2 K3 K4 K5 K6 K7 K3 K4 K5 K6 K7 K0 K1 K2

Round 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Subkey (Gost) K0 K1 K2 K3 K4 K5 K6 K7 K7 K6 K5 K4 K3 K2 K1 K0

Subkey (Gost2) K5 K6 K7 K0 K1 K2 K3 K4 K6 K5 K4 K3 K2 K1 K0 K7
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Another change made to the design of Gost is the proposal of concrete S-boxes.
The designers suggested to use the same permutation Π1 for the first 4 S-boxes,
and another permutation Π2 for the other 4 S-boxes. Both permutations are
presented in Table 1.2. We refer the interested reader to [69] for the rationale
behind the choice of S-boxes.

Table 1.2: The proposed S-boxes for Gost2

Input 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx
Π1 6x Ax Fx 4x 3x 8x 5x 0x Dx Ex 7x 1x 2x Bx Cx 9x
Π2 Ex 0x 8x 1x 7x Ax 5x 6x Dx 2x 4x 9x 3x Fx Cx Bx

1.2.4 P-OMD

Offset Merkle-Damgård (omd) is a submission to the CAESAR
competition [46] by Cogliani et al. [53]. omd is an Authenticated Encryption
with Associated Data (AEAD) mode of operation taking as input a key k, a
nonce N , a message M , and associated data A, and uses a keyed compression
function4 F to produce a ciphertext C, which is the encryption of M , and an
authentication tag T which allows to authenticate (i.e., verify the correctness
of) both M and A. omd is proven to be secure as long as the adversary is not
allowed to use the same nonce more than once, and as long as some restrictions
about the number of messages processed using the same key are met.

p-omd is an extension by Reyhanitabar, Vaudenay, and Vizár [134], which
improves over omd in that the associated data is processed almost for free. The
designers prove that p-omd inherits all security features of omd. As a bonus,
they claim that p-omd maintains its security even if the adversary is allowed to
use the same nonce more than once.

Formally, let k,m, n, τ ∈ N such that m ≤ n and let F : {0, 1}k × {0, 1}n+m →
{0, 1}n be a keyed compression function. p-omd is a mapping that takes as
input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}≤n−1, an arbitrarily sized associated
data A ∈ {0, 1}∗, and an arbitrarily sized message M ∈ {0, 1}∗, and returns a
ciphertext C ∈ {0, 1}|M | and an authentication tag T ∈ {0, 1}τ .

For the sake of brevity we describe p-omd only for the specific case where
|A| = 2n and |M | = m (or in other words, the associated data consists of
two integral blocks and the message of one integral block). It is depicted in

4A keyed compression function is a keyed Boolean vector function mapping inputs of size
n + m to outputs of size n.
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Figure 1.5: p-omd for the specific case of |A| = 2n and |M | = m.

Figure 1.5 (and corresponds to Case A of [135]). Here,

∆N,1,0 = FK

(
N‖10n−1−|N |, 0m

)
⊕ 16FK (0n, 0m) ,

∆N,2,4 = FK

(
N‖10n−1−|N |, 0m

)
⊕ (32⊕ 16⊕ 4)FK (0n, 0m) ,

1.2.5 GCM

In this section we describe the GCM mode of operation [111, 112] with 128-
bit nonces. We let E : {0, 1}128 × {0, 1}128 → {0, 1}128 denote a 128-bit block
cipher. The function GHASH is defined in Algorithm 1.1. Algorithm 1.3 provides
pseudocode for GCM encryption, which also uses the keystream generator CTR
mode from Algorithm 1.2. See Figure 1.6 for an illustration.
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Algorithm 1.1 GHASHL (A,C)

Input: L ∈ {0, 1}n, A ∈ {0, 1}≤n(2n/2−1), C ∈ {0, 1}≤n(2n/2−1)
Output: Y ∈ {0, 1}n
1: X ← A0∗n ‖ C0∗n ‖ strn/2 (|A|) ‖ strn/2 (|C|)
2: X[1]X[2] · · ·X[x] n←− X
3: Y ← 0n
4: for j = 1 to x do
5: Y ← L · (Y ⊕X[j])
6: end for
7: Return Y

N

GHLε

inc32/32 inc32 inc32 inc32

/96

EK EK EK EK

left|M |
+

M

GHL

EK

+

T

A

C

Figure 1.6: The GCM mode of operation with 128-bit nonces. GH is GHASH
and /m indicates the number of bits on a wire. The value L is EK (0) and ε is
the empty string.
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Algorithm 1.2 CTR[F ] (X,m)
Input: F : {0, 1}x → {0, 1}n , X ∈ {0, 1}x, m ∈ N
Output: S ∈ {0, 1}mn
1: I ← X
2: for j = 1 to m do
3: S[j]← F (I)
4: I ← incx (I)
5: end for
6: S ← S[1]S[2] · · ·S[m]
7: Return S

Algorithm 1.3 GCMK (N,A,M)

Input: K ∈ {0, 1}128, N ∈ {0, 1}128, A ∈ {0, 1}≤128·232
, M ∈ {0, 1}≤128·232

Output: (C, T ) ∈ {0, 1}≤128·232
× {0, 1}128

1: L← EK (str128 (0))
2: I ← GHASHL (ε,N)
3: m← |M |128
4: F ← EK (left96 (I) ‖ ·)
5: C ←M ⊕ left|M | (CTR[F ] (inc32 (right32 (I)) ,m))
6: T ← EK (I)⊕ GHASHL (A,C)
7: Return (C, T )





Chapter 2

Revisiting the Theory of
Cryptanalysis

“At any given moment there is an orthodoxy, a body of ideas
which it is assumed that all right-thinking people will accept without
question. It is not exactly forbidden to say this, that or the other,
but it is ‘not done’ to say it, just as in mid-Victorian times it was
‘not done’ to mention trousers in the presence of a lady.”

- George Orwell, Animal Farm

Cryptanalysis is the scientific field of investigating the security of cryptosystems.
This investigation has two facets: theory and application. The current chapter
and the next one both deal with the theory part. In this chapter, we identify
and correct errors in the existing theory of cryptanalysis. In the next chapter
we go beyond current theory by extending existing attacks and proposing new
ones.

Sections 2.1–2.2 both deal with trail biases. In Section 2.1 we demonstrate
the existence of 1-round linear hulls in linear cryptanalysis. We explain how
and why they form, what effect they have on a linear attack, and introduce
a correction to the way the Expected Linear Probability (ELP) is computed.
In Section 2.2 we revisit Matsui’s Algorithm 1 and show the importance of
properly estimating the hull bias in a linear attack. We show that when a trail
bias is taken as an approximation of a hull bias, the success probability of a
linear attack may be greatly affected. We conclude this section by showing that

25
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when the bias is properly accounted for, Matsui’s Algorithm 1 can be extended
to recover more than a single key bit. Both sections were published as a single
paper in [16] together with Vincent Rijmen. Only those parts from [16] where
this Author was a main contributor were included in this Thesis.

In Sections 2.3–2.4 we revisit a fundamental assumption in linear cryptanalysis,
namely the wrong-key-randomization hypothesis. The wrong-key-randomization
hypothesis deals with the behavior of the bias of wrong keys in Matsui’s
Algorithm 2. In Section 2.3 we show that previous work assumed that data
sampling in linear cryptanalysis is done with replacement and develop a new
statistical model for attacks using distinct known-plaintexts. We derive formulae
for the data complexity and the success probability of an attack using this
model. Our formula for the success probability shows once again the possibility
that increasing the data complexity may lead to a decrease in the success
probability. In Section 2.4 we explain this phenomenon and derive the necessary
conditions for its occurrence. Both sections were merged into a single paper [7]
and submitted to J. of Cryptology. The paper was co-authored with Tim Beyne
and Vincent Rijmen. This Author was a main contributor to this work.

Finally, in Section 2.5 a few misconceptions about linear cryptanalysis are
discussed.

2.1 On the Existence of 1-Round Linear Hulls

In this section we show the existence of 1-round linear hulls. The phenomenon
is presented and its implications on bias estimation is investigated. Finally, a
correction for the way ELP should be computed in this case is proposed.

In the rest of the section, the notation (a, b, c, d, e) is used to describe a 1-round
linear trail for Simon (cf. Figure 2.1). Here a and b denote the left and right
input masks; c and d denote the masks at the outputs of the two topmost
rotations; e and b denote the left and right output masks (before the swap
operation).

We now study the behavior of 1-round linear trails for Simon using the rules of
propagation of linear trails introduced in [28,48]. The rule for trail propagation
over the branch operation implies the following constraint on a, b, c, d, e:

a⊕ e = (b≫ 2)⊕ (c≫ 1)⊕ (d≫ 8). (2.1)

The rule for trail propagation over the XOR operation is already implicit in the
way we propagate the b mask through Figure 2.1.
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Figure 2.1: A 1-round linear trail for Simon (without the final swap operation).
The dashed box indicates the part of the round that we discuss in this section.

The output bit z of a bitwise AND operation z = x · y is correlated to the 4
linear functions of the two input bits:

cor(z, 0) = cor(z, x) = cor(z, y) = 1/2, cor(z, x⊕ y) = −1/2.

It follows that the AND operation in Simon leads to the following constraints
on b, c, d: if a bit in c or d is set, then the bit in b at the corresponding position
needs to be set. This translates to:

c̄ OR b = 1 (2.2)

d̄ OR b = 1 (2.3)

The following lemma expresses that some 1-round trails come in groups.

Lemma 5. Let (a, b, c, d, e) be a 1-round trail over Simon. If there exists
an index i such that bi = bi+7 = 1, then the trail (a, b, c, d, e) satisfies the
Constraints (2.1)–(2.3) if and only if the trail (a, b, c ⊕ (1 ≪ i), d ⊕ (1 ≪
(i+ 7)), e) satisfies the Constraints (2.1)–(2.3).
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Proof. For Constraint (2.1) we have:

((c⊕ (1≪ i))≫ 1)⊕ ((d⊕ (1≪ (i+ 7)))≫ 8)

= (c≫ 1)⊕ (1≪ (i− 1))⊕ (d≫ 8)⊕ (1≪ (i+ 7− 8))

= (c≫ 1)⊕ (d≫ 8)⊕ ((1≪ (i− 1))⊕ (1≪ (i− 1)))

= (c≫ 1)⊕ (d≫ 8).

Hence, either both trails satisfy Constraint (2.1) or neither does.

For Constraint (2.2) we see that if bit i of b is set, then the value of c at
position i does not matter. Hence, either both c and c ⊕ (1 ≪ i) satisfy
Constraint (2.2), or they both don’t satisfy it. Similarly for Constraint (2.3)
and d⊕ (1≪ (i+ 7)).

Since the trails in Lemma 5 have the same input mask (a, b) and the same
output mask (e, b), they form a 1-round linear hull. Each of the Figures 2.2–2.4
shows two trails derived from one another by means of Lemma 5. Notice that
in each set both trails select exactly the same bits of the round keys.
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Figure 2.2: Two trails of a 1-round linear hull

2.1.1 Correlations and Correlation Contributions

We now want to compute the correlation contributions of the trails in Figures 2.2–
2.4. The usual rule is to assume that all nonlinear functions act independently
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Figure 2.3: Two trails of a second 1-round linear hull
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Figure 2.4: Two trails of a third 1-round hull. The trails have nonzero
contributions of the same magnitude and opposite sign. The hull has correlation
zero despite being composed of two trails with non-zero correlation.

and to multiply their correlations. This results in the following values for the
correlation contributions of the six trails:

c d cor
Figure 2.2 ∅ {14} 2−2

{7} ∅ 2−2

Figure 2.3 ∅ ∅ 2−2

{7} {14} 2−2

Figure 2.4 {14} ∅ 2−2

{7, 14} {14} −2−2
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In each case by adding the correlation contributions of the two trails we obtain
the correct correlation of the hull. However, starting from the observation that
when bi = bi+7 = 1, there are pairs of AND gates that share input bits, we can
follow a different approach. Let

s = y · x, t = y · z,

then we have
s⊕ t = y · (x⊕ z),

which implies the following correlations:

cor(s⊕ t, 0) = cor(s⊕ t, y) = cor(s⊕ t, x⊕ z) = 1/2

cor(s⊕ t, y ⊕ x⊕ z) = −1/2

cor(s⊕ t, x⊕ y) = cor(s⊕ t, y ⊕ z) = 0

cor(s⊕ t, x) = cor(s⊕ t, z) = 0.

These values can be used to derive immediately the exact correlations of the
linear hulls of Figures 2.2–2.4. Observe that the linear hull of Figure 2.4 has
correlation zero, while both trails have nonzero correlation contributions. Hence,
mounting an attack and using the correlation contribution of one of the trails
from Figure 2.4 as an estimate for the correlation of this linear hull will likely
lead to wrong results. Likewise, using a single trail from Figures 2.2–2.3 would
lead to a higher data complexity than what is actually needed. This phenomenon
is further explained in Section 2.2.

2.1.2 Expected Correlation and Potential

Several recent works provide bounds for the security of ciphers defined at
bit-level against linear cryptanalysis by bounding the potential of linear hulls
[148–150,152]. The potentials of the hulls are computed by summing the squares
of the expected values of the correlation contributions of the linear trails, which
are constructed automatically using e.g., mixed-integer linear programming
(MILP) techniques. Several of these works mention the problem that may
arise in the computation of the correlation contribution of a linear trail when
non-linear functions share inputs.

We now address a second problem with the computation of the potential. Note
that this problem does not occur for differential characteristics and differentials.
It is one reason why we do not agree that differential characteristics and linear
trails can be treated in exactly the same manner, as is sometimes claimed in
existing literature (e.g., [99, Sect. 7.3.2]).
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Expected correlation

For a key-alternating cipher, the expected value (over all round keys) of the
correlation contribution of a linear trail equals

E[cor(Ω)] = 0 . (2.4)

This follows directly by taking the expectation of (1.2). Intuitively, (2.4) may
look contradictory to Matsui’s Algorithm 1 in [110]. The apparent contradiction
can be solved as follows. Although [58] writes:

The multiple-round linear expressions described in [110] correspond
with what we call linear trails.

there is in fact a difference. The approximations of [110] are linear expressions
in terms of plaintext bits, ciphertext bits and round key bits. In the trails
of [58], the round key bits are left out of the expression. It follows that the
expected value of the correlation contribution becomes zero. By (1.3) we obtain
that the expected value over all round keys of the correlation of a linear hull is

E[cor(a, b)] = 0.

Potential

Since the data complexity of a linear attack is inversely proportional to the
square of the hull correlation, it is of importance to know or to bound the value
E[(cor(a, b))2]. In [123], Nyberg calls this quantity the potential of the linear
hull, and gives the following formula to compute it:

E[(cor(a, b))2] =
∑

Ω
ω0=a,ωr=b

(corp(Ω))2. (2.5)

The potential is also called the Expected Linear Probability (ELP). We briefly
recall here the proof for (2.5), using our own notation. By definition of
expectations we have:

E[(cor(a, b))2] = 1
K

∑
k

 ∑
Ω

ω0=a,ωr=b

corp(Ω)


 ∑

Ω′

ω′0=a,ω′r=b

corp(Ω′)

 .
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Using (1.2):

= 1
K

∑
Ω

∑
Ω′

(
|cor(Ω)||cor(Ω′)| ·

∑
k

(−1)dΩ⊕dΩ′⊕
∑

i
(ωi⊕ω′i)

tki

)
since ∑

k

(−1)
∑

i
(ωi⊕ω′i)

tki =
{
K if ωi = ω′i, ∀i,
0 otherwise, (2.6)

we have:
E[(cor(a, b))2] =

∑
Ω

(corp(Ω))2 . (2.7)

Additions/corrections

We will now show that if a cipher exhibits 1-round hulls, Formula (2.7) is
no longer correct. The existence of 1-round hulls implies that we can have
more than a single trail corresponding to the same linear mask for the round
key. For example, each of the Figures 2.2–Figure 2.4 shows two different trails
corresponding to the same linear mask of the round key.

In order to explain the consequences, (1.1) has to be slightly rewritten using
a different notation. In fact, we need to distinguish between trails and masks
for the round key. From now on, we use κi to denote the mask for the round
key of round i, and K to denote the vector of round key masks. We use W
to denote the vector of the data masks required to uniquely define the trail:
W = (w0, w1, . . . , wr). Note that the domain of the wi may be larger than the
domain of the κi. For example, in Figure 2.1, the data mask wi contains a, b, c
and d, while the round key mask κi needs to contain only b.

We denote by l, respectively L, the functions mapping wi to the corresponding
κi, respectively W to the corresponding K. These functions are specific to the
cipher. With this notation, (1.1) becomes:

corround i(wi, wi+1) = (−1)κ
t
ikicorg(wi, wi+1), with κi = l(wi).

When L is one-to-one, Formula (2.7) applies without modifications. However,
if L is a non-injective map, then the sum of (2.6) becomes nonzero as soon as
K = K′, which still allows W 6= W ′. Hence (2.7) becomes:

E[(cor(a, b))2] =
∑
K

∑
W,W ′

L(W )=L(W ′)=K

(corp(W ) · corp(W ′)) .
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Converting back, we obtain:

E[(cor(a, b))2] =
∑
K

 ∑
W

L(W )=K

corp(W )


2

. (2.8)

Comparing (2.5) to (2.8), we see that the difference between the two values can
take positive as well as negative values. In particular when there are several
trails with correlation contributions of comparable magnitude, the difference
can be significant. Applied to the 1-round hulls of Figures 2.2–2.4, we get the
following results:

({a; b}, {e; b}), E[(cor(a, b))2] E[(cor(a, b))2]
with (2.5) with (2.8)

({6; 7, 14}, {5, 12; 7, 14}) 2−3 2−2

({5; 7, 14}, {12; 7, 14}) 2−3 2−2

({5, 13; 7, 14}, {12; 7, 14}) 2−3 0

We confirmed the values in the rightmost column experimentally.

2.2 On Matsui’s Algorithm 1

In this section, we investigate how the success probability of Matsui’s Algorithm 1
is influenced by all the trails in the same linear hull. As described already in [137],
this can be used to extend Matsui’s Algorithm 1 and to extract multiple key
bits. We illustrate this for a reduced round version of Simon32 in Section 2.2.5.

In Sections 2.2.3–2.2.4 we study another consequence of this phenomenon:
sometimes, the success rate of Matsui’s Algorithm 1 will be worse than the
estimate based on the study of a single trail. Somewhat counter-intuitively, the
success rate of an attack may even decrease when the number of known-plaintexts
is increased. But first, we describe the background for this phenomenon using
an example: the 4 trails that constitute a hull over three rounds of Simon
(Section 2.2.1) and the key-dependency of their correlations (Section 2.2.2).

2.2.1 Four Trails Through Three Rounds of Simon

Figures 2.5–2.6 show four trails through three rounds of Simon32. All four
trails start from plaintext bits {(8, 10); (0, 12)} and end in the ciphertext bit
{16}. Hence they belong to the same 3-round linear hull. Observe that these 4
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linear trails are linearly dependent. Denoting the vector of round key masks of
Trail i by Ωi, we have

Ω1 + Ω2 + Ω3 + Ω4 = 0.

All trails involve bits {0, 12} from the first round key, bit {14} from the second,
and bit {0} from the third round key. Additionally, each of these trails have
the following key bits involved in the second round:

Trail 1: ∅
Trail 2: bit 8
Trail 3: bit 15
Trail 4: bits 8, 15

We denote by Z the sum of the round key bits involved in all trails. The sum
of the round key bits involved in Trails 2, 3 and 4, we denote respectively by
Z + z0, Z + z1 and Z + z0 + z1.

2.2.2 Correlation Contributions of the Trails

Straightforward computations similar to the one in Section 2.1.1 show that the
trails have the following correlation contributions:

Trail 1: cor(1) = (−1)Z · 2−4

Trail 2: cor(2) = (−1)Z+z0 · 2−5

Trail 3: cor(3) = (−1)Z+z1+1 · 2−5

Trail 4: cor(4) = (−1)Z+z0+z1 · 2−5

Note that these correlation contributions exist only as intermediate mathematical
results. An attacker who can observe only plaintext and ciphertext bits, can
measure only the sum of the four correlation contributions, i.e. the correlation
of the hull (cf. [119]).
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Figure 2.5: Two trails in a 3-round linear hull. Trail 1 is shown on the left,
Trail 2 on the right.



36 REVISITING THE THEORY OF CRYPTANALYSIS

{8,10} {0,12}

{10,14} {0,12}

{0,12}

{0}

{0}

{14} {0}

{} {0}

{8,10} {0,12}

{10,14} {0,12}

{0,12}

{0}

{0}

{14} {0}

{} {0}

{15} {0}

{8} {0}

{15} {0}

{13} {14}

{12,13} {14,15}

{14,15}

{14,15}
{6} {14}

{13} {14}

{6,12,13} {8,14,15}

{8,14,15}

{8,14,15}

{0}{15} {0}

{8}

{15}

{0}

≪ 1

≪ 8

≪ 2

&
⊕
⊕
⊕

?

6

-

-

-s
-s
-s

?

?

?

�

((((
((((

(((
(((hhhhhhhhhhhhhh

≪ 1

≪ 8

≪ 2

&
⊕
⊕
⊕

?

6

-

-

-s
-s
-s

?

?

?

�

((((
((((

(((
(((hhhhhhhhhhhhhh

≪ 1

≪ 8

≪ 2

&
⊕
⊕
⊕

?

6

-

-

-s
-s
-s

?

?

?

�

≪ 1

≪ 8

≪ 2

&
⊕
⊕
⊕

?

6

-

-

-s
-s
-s

?

?

?

�

((((
((((

(((
(((hhhhhhhhhhhhhh

≪ 1

≪ 8

≪ 2

&
⊕
⊕
⊕

?

6

-

-

-s
-s
-s

?

?

?

�

((((
((((

(((
(((hhhhhhhhhhhhhh

≪ 1

≪ 8

≪ 2

&
⊕
⊕
⊕

?

6

-

-

-s
-s
-s

?

?

?

�

Figure 2.6: Two more trails in the same 3-round linear hull as Figure 2.5. Trail 3
is shown on the left, Trail 4 on the right.
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We denote the correlation of the hull by corh and obtain:

corh = (−1)Z · 2−4 + (−1)Z+z0 · 2−5 + (−1)Z+z1+1 · 2−5 + (−1)Z+z0+z1 · 2−5

(2.9)

= (−1)Z · 2−5 (2 + (−1)z0 + (−1)z1+1 + (−1)z0+z1
)

(2.10)

= (−1)Z+z0 · 2−5 ((−1)z0 · 2 + 1 + (−1)z1+z0+1 + (−1)z1
)

(2.11)

= (−1)Z+z1 · 2−5 ((−1)z1 · 2 + (−1)z0+z1 − 1 + (−1)z0
)

(2.12)

= (−1)Z+z0+z1 · 2−5 ((−1)z0+z1 · 2 + (−1)z1 + (−1)z0+1 + 1
)
. (2.13)

From (2.9) we see that the correlation is determined by the values of Z,Z +
z0, Z + z1 + 1, and Z + z0 + z1. Table 2.1 considers the 8 possible assignments
for these variables and their correlations. We see that for a fixed Z, the value
(−1)Z · 3 · 2−5 is three times more likely to occur than the value (−1)Z+1 · 2−5.
In the following, we will investigate how likely each value is, and show how
different values affect the success rate of Matsui’s Algorithm 1 when different
trails are considered as if they were the only trails.

Table 2.1: The possible values for corh obtained from (2.9)

Z z0 z1 corh
0 0 0 3 · 2−5

0 0 1 3 · 2−5

0 1 0 −2−5

0 1 1 3 · 2−5

1 0 0 −3 · 2−5

1 0 1 −3 · 2−5

1 1 0 2−5

1 1 1 −3 · 2−5

We adopt the figures of [110, Table 2] to express the relation between correlation
of a hull, the number of known-plaintexts and the success rate. Concretely, we
derive from the table that if the hull has correlation c, then using c−2, 4c−2

and 8c−2 known-plaintexts, the algorithm achieves respective success rates of
84%, 98% and 100%.
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2.2.3 Knowing Trail 1 Only

In order to apply Algorithm 1 using Trail 1, the adversary first computes the
correlation contribution of Trail 1:

c = cor(1) = (−1)Z · 2−4 . (2.14)

Using the assumption that the correlation of the hull is approximately equal to
the correlation contribution of Trail 1, the adversary concludes that a sample
of N = 4 · c−2 = 210 known-plaintexts should be sufficient to estimate Z with a
success rate of 98%.

Subsequently, the adversary collects a sample of N known-plaintexts and uses
them to compute the sample correlation ĉ. Depending on the value of ĉ, the
adversary “guesses” a value for the sum (XOR) of the round key bits associated
with the trail. Using (2.14) the adversary is led to believe that the actual bias
can only take the values 2−4 and −2−4 and so the obvious decision rule is to
guess for the XOR of the round key bits the value 1 if ĉ < 0, and the value 0 if
ĉ > 0. From (2.10), however, we obtain:

z0 = 0, z1 = 0→ corh = (−1)Z · 3 · 2−5

z0 = 0, z1 = 1→ corh = (−1)Z · 3 · 2−5

z0 = 1, z1 = 0→ corh = (−1)Z · (−1) · 2−5

z0 = 1, z1 = 1→ corh = (−1)Z · 3 · 2−5

In the first, second and last cases, the actual correlation is (−1)Z · 3 · 2−5, which
is 50% larger than the value that would have been obtained using Trail 1 only.
Using 210 known-plaintexts, the success rate of Algorithm 1 would increase
from the predicted 98% to 100%.

In the third case, however, not only the magnitude of the correlation has
decreased, but also the sign has changed. This means that Algorithm 1’s
estimate for Z will be usually wrong! The success rate drops from the predicted
98% to 100 − 84.89 = 15.1%. We conclude that the average success rate of
Matsui’s Algorithm 1 drops from the predicted 98% to

0.75 · 100% + 0.25 · 15.1% ≈ 79%.

When the data complexity is increased, the estimate of the actual correlation
through the sample correlation is improved. This means that the first term in
the sum increases, while the second one decreases. The success probability in
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the general case is given approximately by:

1−

0.75 · Φ

− (N2 + 3 ·N · 2−6 − N
2
)√

N
4 − 9 ·N · 2−12

+ 0.25 · Φ

− (N2 −N · 2−6 − N
2
)√

N
4 +N · 2−12

 .

Differentiating with respect to N shows that the function is maximized with a
success rate of 80% when N = 29.12, and tends to 75% as N tends to 232. So
we get the following observation.

Observation: In an attack based on (the original, non-extended version of)
Matsui’s Algorithm 1 the optimal number of plaintexts can be smaller than the
full codebook. Increasing the number of plaintexts beyond this optimal number
may decrease the success rate of the attack.

2.2.4 Knowing Only One of the Trails 2–4

Similar to the case of Trail 1, we can use the individual correlations presented
in Section 2.2.2. Hence, for Trail 2, the adversary computes

cor(2)
p = (−1)Z+z02−5

and concludes that 212 known-plaintexts should be sufficient to estimate Z + z0
with a success rate of 98%. Since the predicted correlation differs only in
sign, the decision rule for the guessed sum of the round key bits is as before.
Repeating the success rate analysis and using the numbers from Table 2.1, we
learn that the success rate with 212 known-plaintexts drops from the predicted
98% to

0.5 · 100% + 0.25 · 98% + 0.25 · 0% = 74.5% .

The success rate is maximized and saturates with 75% when N grows beyond
212.1 as the middle term tends to 100% and the others stay steady. Similar
computations give for Trail 3 and Trail 4 the same result.

2.2.5 Knowing all Trails

When all trails are taken into account, Matsui’s Algorithm 1 can be extended and
recover more than a single bit, see also [137]. The approach can be summarized
as follows. The adversary knows now that the correlation of the hull can take 4
values, cf. (2.9) and Table 2.1. The adversary divides the space of possible ĉ
outcomes into four regions instead of just two. After collecting N plaintexts,
the adversary computes ĉ and guesses for the key bits the values that produce
the correlation closest to ĉ. We can compute the success rate as follows:
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If Z = 0 and z0z1 ∈ {00, 01, 11}, then corh = 3 · 2−5. The attack will be
successful if ĉ > 2−4. When N = 212, this happens with probability 0.98.
The adversary obtains 1 + 3(−1/3 log2(1/3)) = 1 + log2(3) ≈ 2.6 bits of
information.

If Z = 0 and z0z1 = 10, then corh = −1 · 2−5. The attack will be successful if
−2−4 < ĉ < 0. When N = 212, this happens with probability 0.95. The
adversary obtains 3 bits of information.

If Z = 1 and z0z1 = 10, then corh = 2−5. The attack will be successful if
0 < ĉ < 2−4. When N = 212, this happens with probability 0.95. The
adversary obtains 3 bits of information.

If Z = 1 and z0z1 ∈ {00, 01, 11}, then corh = −3 · 2−5. The attack will be
successful if ĉ < −2−4. When N = 212, this happens with probability
0.98. The adversary obtains 2.6 bits of information.

2.3 On the Wrong-Key-Randomization Hypothesis

In this section we point out the importance of the sampling strategy employed
for obtaining plaintext/ciphertext pairs in a linear attack. In previous work,
sampling with replacement was often assumed. We continue this line of research,
by assuming that sampling without replacement is used (i.e., that no duplicate
pairs of plaintexts and ciphertext are considered). In some applications, this
is the more natural setting. For instance, some modes of operation such as
counter mode are designed to avoid duplicate plaintext/ciphertext pairs.

Under this assumption, we derive a formula for the success probability and
the data complexity of a linear attack for sampling without replacement. This
formula confirms the intuitive notion that, for sampling without replacement,
the sample bias converges faster to the underlying bias, which means that the
data complexity can be reduced. For the purpose of deriving this formula, we
redevelop a model for the distribution of the sample bias in wrong keys.

2.3.1 The Wrong-Key-Randomization Hypothesis

The success rate analysis performed by Selçuk [147] uses order statistics to
investigate the probability that the right key is amongst the 2m−a top ranked
keys. The main underlying assumption of this analysis is that the real bias for a
wrong key is zero, and thus, that the sample bias for a wrong key would have a
normal distribution centered around zero. This assumption may be summarized
in the following hypothesis:
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Hypothesis 1 (Simple wrong-key-randomization hypothesis). The bias for a
wrong key equals zero:

εw = 0.

If Hypothesis 1 is true, we have the following lemma.

Lemma 6. Let ε̂w be the sample bias obtained from a counter associated with
a wrong key using N pairs of plaintexts and ciphertexts. Assuming Hypothesis 1
is true and sampling is performed with replacement, we have approximately

ε̂w ∼ N (0, 1
4N ).

However, Bogdanov and Tischhauser noted in [42] that, in accordance with
Daemen and Rijmen [60], the underlying bias of a random linear approximation
is not necessarily zero but a random variable. This resulted in the following
extension of Hypothesis 1.

Hypothesis 2 (Bogdanov and Tischhauser [42]). The bias εw for a wrong key
is distributed as for a random permutation, i.e.

εw ∼ N (0, 2−n−2).

This hypothesis requires the use of a compound model for the sample bias,
which takes into account the distribution of the wrong bias. It leads to the
following statement about the distribution of the sample bias for wrong keys.

Lemma 7 ([42], Lemma 1). Let ε̂w be defined as before, then assuming the
validity of Hypothesis 2, we have approximately

ε̂w ∼ N (0, 1
4 ·
(

1
N

+ 1
2n

)
).

Selçuk gives the success probability of a linear attack as

PS(N) = Φ
(

2
√
N |ε0| − Φ−1(1− 2−a−1)

)
, (2.15)

which holds under Hypothesis 1. However, as was noted by Bogdanov and
Tischhauser, the bias for wrong keys has a normal distribution centered around
zero, in accordance with Hypothesis 2. Using the distribution of Lemma 7, they
adapt Selçuk’s formula to

PS(N) = Φ
(

2
√
N |ε0| −

√
1 + N

2nΦ−1(1− 2−a−1)
)
. (2.16)

An experimental verification of the above formula is provided in [39].
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2.3.2 Sample Bias

This section deals with the distribution of the sample bias for wrong keys. The
details of this distribution are relevant for the construction and the analysis
of statistical procedures that attempt to distinguish the right key from wrong
keys.

Generally speaking, the sample bias of wrong keys can be fully described given
the distribution of the bias for the wrong keys and a sampling strategy. The
former is completely determined by the choice of Hypotheses 1 or 2 and requires
no further discussion. The latter will now be discussed.

Finally, the main result of this section is presented in Theorem 1, which
approximates the distribution of the sample bias for a random wrong key in
the case of sampling without replacement. The resulting distribution turns out
to be the same as the one given in Lemma 6.

Sampling strategies

The way plaintext/ciphertext pairs are obtained in linear cryptanalysis
corresponds to sampling from a population of size 2n. For each sample, a
trial is conducted: it is checked whether or not a fixed linear approximation
holds. The outcome of each trial (zero or one) is added to a counter T̂ .

One could conceive of many strategies for sampling, but here we will limit the
discussion to two common cases:

1. Sampling with replacement. Trials are independent and N > 2n is
possible.

2. Sampling without replacement. Trials are not independent and N ≤
2n.

The use of the first sampling strategy leads to a binomial distribution for the
counters. The existing analyses that we are aware of [34,42,147] implicitly start
from this assumption. An exception is the notion of distinct known-plaintext
attacks in recent work by Blondeau and Nyberg [37], which was developed in
parallel to this work.

We now argue that the second strategy is preferable. This will lead to a
hypergeometric distribution for the counters. Since for a given key, a specific
plaintext always results in the same ciphertext, duplicates provide no new
information for the estimation of the real bias. Moreover, increasing the data
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complexity beyond what is needed for the attack reduces its efficiency, and may
render it worse than exhaustive search when the bias is small and the data
complexity grows beyond the time complexity of exhaustive search. Hence,
whenever possible, an adversary should prefer sampling without replacement.

Bias for the right key

In Expressions (2.15) and (2.16) given in Section 2.3.1 for the success probability,
the absolute bias for the right key is represented by a fixed value |ε0|. In practice,
however, the right-key bias depends on the unknown value of the right key. The
absolute right-key bias is therefore better modeled as a random variable |ε0|.
Hence, it is necessary to find an adequate model for the distribution of the bias
for the right key. This is an independent problem, which we briefly discuss in
Section 2.5.2, but that is not solved in this work. Instead, we will assume that
the probability density function fε0(ε) of the bias for the right key is available.
Several proposals for such a right-key hypothesis can be found in the literature,
see for instance [1, 37,42,43].1

In the setting described above, the success probability becomes a random
variable PS(N), or more explicitly PS(N, ε0). Typically, one is interested in
the average success probability E [PS(N, ε0)]. That is,

E [PS(N, ε0)] =
∫ 1/2

−1/2
PS(N, ε)fε0(ε)dε.

Despite this complication, we shall continue to use the notation PS(N) in the
sense that PS(N) = E [PS(N, ε0)]. Furthermore, we will continue to use the
term |ε0| to denote the actual right-key bias selected from the appropriate
distribution as a result of fixing the key.

Finally, we note that Hypothesis 2 makes no mention of the right key. The
dependence of the biases for wrong keys on the right key is neglected.

Sampling without replacement

Given that duplicate plaintexts provide no additional information to the
cryptanalyst, we would like to analyse the attack without them.

Assume then that N distinct plaintext/ciphertext pairs are sampled at random
from the total population of 2n pairs. The counter for a specific wrong key

1This Author finds none of these proposals satisfactory, which is why none of them is used
in this Thesis. This is further discussed in Section 2.5.
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follows a hypergeometric distribution

Tw | R ∼ HG(N, 2n, R),

where R = 2n( 1
2 + εw) is the number of plaintext/ciphertext pairs in the

population for which the linear approximation holds (i.e., the “real” bias as
per [60]). Given this starting point, the proof of the next theorem derives the
distribution of the sample bias for a random wrong key.

Theorem 1 (Lemma 6, stet.). Under Hypothesis 2, and for sampling without
replacement, the sample bias ε̂w of a random wrong key can be approximated by

ε̂w ∼ N (0, 1
4N ).

Proof. By Lemma 3, we have asymptotically

Tw | εw ∼ N (N
(

1
2 + εw

)
, N

(
1− N

2n

)(
1
4 − ε

2
w

)
).

Since ε2w is small, we have approximately

Tw | εw ∼ N (N
(

1
2 + εw

)
,
N

4

(
1− N

2n

)
).

It follows that for the sample bias

ε̂w | εw ∼ N (εw,
1

4N

(
1− N

2n

)
).

A compound normal distribution with normally distributed mean is again
normal. That is, if X ∼ N (µ, σ2

1) with µ ∼ N (µ, σ2
2), then X ∼ N (µ, σ2

1 + σ2
2).

In this particular case we obtain

E [ε̂w] = 0

Var [ε̂w] = 1
4N

(
1− N

2n

)
+ 1

2n+2 = 1
4N .

The preceding theorem shows that ε̂w for sampling without replacement has
approximately the same distribution as given by Lemma 6. In other words, the
correction provided in Lemma 7 should not be taken into account for sampling
without replacement. Note, however, that the result is based on Hypothesis 2
rather than the obsolete Hypothesis 1.
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2.3.3 Average Success Probability and Data Complexity

We will now derive formulae for the average success probability of an attack
using sampling without replacement and the data complexity required for a
successful attack.

To compute the average success probability, we will make the approximation
that the non-identically distributed sample biases for wrong keys can be replaced
by an equal amount of independent and identically distributed random variables
with distribution given by Theorem 1. A similar approximation was also
implicitly made in [42] and greatly simplifies the distribution of the order
statistics.

The derivation of PS(N) is similar to that of Selçuk [147], with the important
difference that the counter for the right key is distributed as

T0 ∼ HG(N, 2n,
(

1
2 + ε0

)
2n). (2.17)

The corresponding distribution function of ε̂0 will be denoted by Fε̂0 and can
be written in terms of the distribution function FT0 of T0:

Fε̂0(ε) = FT0

(
N

2 +Nε

)
.

Following Selçuk, without loss of generality, we only consider the case ε0 ≥ 0.
The discussion for ε0 < 0 is completely analogous. It will be assumed that
the distribution of an order statistic of the sample biases ε̂w for wrong keys
is approximately degenerate relative to that of the right key—Selçuk makes
the same approximation in his discussion. Per [147], the expected value of the
(2m − 2m−a)-th order statistic, namely ζ, is approximately given by E [ζ] =
Φ−1(1− 2−a−1)/(2

√
N). Noting that Pr[ε̂0 < 0] ≈ 0, we have for the average

success probability

PS(N) = Pr[ε̂0 − ζ > 0]

≈ Pr[ε̂0 > E [ζ]]

= 1− Fε̂0
(

Φ−1(1− 2−a−1)
2
√
N

)

= 1− FT0

(
N

2 +
√
N

2 Φ−1(1− 2−a−1)
)

︸ ︷︷ ︸
k(N)

.
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An accurate approximation of FT0 can be obtained by using a normal
approximation with respect to N . Indeed, by applying Lemma 3 to T0, one
obtains the approximation (assuming ε20 ≈ 0)

T0 ∼ N (N
(

1
2 + |ε0|

)
,
N

4

(
1− N

2n

)
),

which is accurate if N and 2n are sufficiently large. It can be verified that
the above expression also holds for ε0 < 0. In terms of the standard normal
distribution, we have

FT0(k(N)) ≈ Φ

k(N)−N
( 1

2 + |ε0|
)√

N
4
(
1− N

2n
)



= Φ

√NΦ−1(1− 2−a−1)/2−N |ε0|√
N
4
(
1− N

2n
)



= Φ

Φ−1(1− 2−a−1)− 2
√
N |ε0|√

1− N
2n

 .

By symmetry, we then obtain the simple result of the theorem below.

Theorem 2. Assume Hypothesis 2 holds. Let PS(N) denote the average
success probability of a linear attack on a block cipher given N distinct known-
plaintext/ciphertext pairs. If the bias of the right key is ε0 and the desired
advantage is a, then we have

PS(N) = Φ

2
√
N |ε0| − Φ−1(1− 2−a−1)√

1− N
2n

 ,

for sampling without replacement.

Note that in the above expression for the success probability, and in the preceding
discussion, we have assumed that the bias ε0 is fixed. In practice, this is not the
case and instead the right-key hypothesis should be taken into account. Recall
from Section 2.3.2 that the average success probability can be obtained as

E [PS(N, ε0)] =
∫ 1/2

−1/2
PS(N, ε)fε0(ε)dε,

where fε0(ε) is the probability density function of ε0.
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Theorem 2 directly leads to an expression for the data complexity, which is given
below. It also shows that non-monotonicity is possible for sampling without
replacement. Note that when PS(N) is non-monotonous, a value of the success
probability PS will correspond to two data complexities N . For simplicity, we
defer the discussion on non-monotonicity to Section 2.4 and only deal with the
monotonous case here.

Theorem 3. Under the same conditions as Theorem 2, the number of
plaintext/ciphertext pairs required to obtain an average success probability PS is

N =
(

2|ε0|α±
√

(2ε0α)2 − (α2 − β2)(2−nβ2 + 4ε20)
4ε20 + 2−nβ2

)2

,

where α = Φ−1(1− 2−a−1) and β = Φ−1(PS). The plus sign applies whenever
PS ≥ 1/2, otherwise the minus sign applies.

Proof. The result is obtained by solving the equation

Φ−1(PS)
√

1− N

2n = 2
√
N |ε0| − Φ−1(1− 2−a−1).

Letting α = Φ−1(1− 2−a−1) and β = Φ−1(PS), and squaring yields

β2 (1− 2−nN
)

= 4N |ε0|2 − 4
√
N |ε0|α+ α2.

Grouping terms appropriately, we obtain

(4|ε0|2 + 2−nβ2)N − 4|ε0|α
√
N + (α2 − β2) = 0.

This equation is quadratic in
√
N and has the solutions

√
N = 2|ε0|α±

√
(2ε0α)2 − (α2 − β2)(2−nβ2 + 4|ε0|2)

4|ε0|2 + 2−nβ2 .

Note that the approximation for large |ε0| gives the same data complexity as
Selçuk [147]. This is because large biases require fewer plaintext/ciphertext
pairs, and for very small N the difference between sampling with and without
replacement is negligible.

In general, the data complexity for sampling without replacement is lower.
This is a consequence of the fact that no duplicates are used. Bogdanov and
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Tischhauser provide an algorithm to compute the data complexity for a given
success probability [42].2

Figure 2.7 shows the data complexity for a large bias and for a small bias. For
|ε0| = 2−14 the difference between the data complexities is relatively small. For
instance, at a success probability of 95%, the data complexity is about 14%
higher for sampling with replacement. The difference is more significant for
small values of the bias. In this case, for a success probability of 95%, the data
complexity is 69% higher for sampling with replacement. Note that, due to
duplicates, the data complexity for sampling with replacement can exceed the
size of the codebook, but not that of the key.

2.4 On the Success Probability of Matsui’s Algo-
rithm 2 and its Non-Monotonicity

In the previous section we saw in Theorem 2 that for a fixed key the success
probability PS(N) is given by

PS(N) = Φ

2
√
N |ε0| − Φ−1(1− 2−a−1)√

1− N
2n

 , (2.18)

for sampling without replacement. Investigating this function we can see that
for some values of ε0 and a, the function may be non-monotonous in N (i.e.,
increasing the data complexity beyond some point may decrease the success
probability). Non-monotonicity was already observed in [42] where it was
attributed to the noise introduced due to duplicate data pairs. Since we see
that non-monotonicity occurs also when sampling is done without replacement,
a new explanation is required.

2.4.1 Explanation of Non-monotonicity

When the bias ε0 of the right key is close to zero, there is a non-negligible
probability that some of the wrong keys have a higher absolute bias than |ε0|.
This is depicted in Figure 2.8. In this case, the correct key should not be
expected to be ranked higher than (some of the) wrong keys. As N increases,

2In the non-monotonous case, their algorithm returns the lowest data complexity
corresponding to the given success probability.
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Figure 2.7: The theoretical data complexity for a given success probability. The
top figure corresponds to a relatively large bias compared to the bias in the
bottom figure.
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Figure 2.8: The biases for a few wrong keys are indicated by dots, the dashed
line represents the bias for the right key. Two of the wrong keys have a larger
bias than the right key. If the adversary requires such an advantage that the
right key needs to be amongst the top 2 keys, the attack would fail once enough
data is obtained to place the keys in their true order.

the accuracy of the ranking increases because the variances of all sample biases
decrease (i.e., they converge to the underlying bias). It follows that, if there are
wrong keys with absolute bias higher than |ε0|, then for large N those will be
ranked higher than the right key. If there are more such keys than the advantage
allows, i.e. more than 2m−a, then, due to the sample variance, the right key
may start high on the list of candidate keys (i.e., amongst the top 2m−a values)
as a false-positive but will slowly sink to its “real” position (i.e., below the top
2m−a keys) due to improved accuracy as a result of using more data. In this
case, if N →∞ (or N = 2n without replacement) then also PS(N)→ 0, almost
surely. In other words: given all possible information, the attack should fail,
as it indeed does.

From the discussion above we conclude that non-monotonous behavior indicates
that the attack can not be conducted using Matsui’s Algorithm 2. In fact,
a correct identification of the right key amounts to a false positive. This is
formalized in the next section by giving a bound on the required bias for given
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values of m and a with respect to the block size n.

2.4.2 Conditions for Non-monotonicity

This section derives necessary conditions for non-monotonous behavior of the
success probability. These conditions are necessarily probabilistic, since they are
determined by the biases of individual wrong keys. Hence, it can be expected
that for some values of a, n,m and ε0, PS(N) is non-monotonous only for some
keys. The main result of this section is Theorem 4, which gives a necessary
condition for average non-monotonicity.

The following lemma gives a first result on the probability of monotonicity. It
is independent of the sampling strategy.

Lemma 8. The probability that PS(N) is a monotonous function is given by

Pr[PS(N) is monotonous ] = Φ
((

2−a − 2−m−1 − p
)

2m/2√
p(1− p)

)
,

where
p = 2

(
1− Φ

(
|ε0|2n/2+1

))
.

and ε0 is as defined in Section 2.3.2
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Proof. The probability that a wrong key has absolute bias larger than |ε0| can
be computed as

p = Pr[|εw| ≥ |ε0|] = 2(1− Pr[εw < |ε0|]) = 2
(

1− Φ
(
|ε0|2n/2+1

))
,

since εw ∼ N (0, 2−n−2). For a decreasing success probability, we require at
least 2m−a keys with bias larger than |ε0|. Let C be the random variable
describing the number of such keys, then C is approximately binomially
distributed. Furthermore, if the number of keys 2m is sufficiently large, C
can be approximated with a normal distribution:

C ∼ N (p2m, p(1− p)2m).

The probability that PS(N) is monotonous for some |ε0|,m and a can hence be
computed as

Pr[PS(N) is monotonous] = Pr[C < 2m−a].

Using the normal approximation of C, we get:

Pr[PS(N) is monotonous] = Φ
(

2m−a − 2−1 − p2m√
p(1− p)2m

)

= Φ
(

(2−a − 2−m−1 − p)2m/2√
p(1− p)

)
.

In the previous lemma, a fixed absolute right-key bias |ε0| was assumed. When
ε0 has a known probability distribution, we can compute the average probability
of monotonicity from Lemma 8 by

Pr[PS(N) is monotonous ] =
∫ 1/2

−1/2
Φ
((

2−a − 2−m−1 − p(ε)
)

2m/2√
p(ε)(1− p(ε))

)
dε,

with p(ε):
p(ε) = 2

(
1− Φ

(
|ε|2n/2+1

))
.

Observe that, as the bias ε0 approaches 0 in probability, the success probability
is almost surely non-monotonous. If E [C] ≥ 2m−a, then PS(N) is non-
monotonous on average, i.e. over all keys and all choices of plaintexts. This
condition can be used to derive the following theorem, which assumes a fixed
absolute bias for the right key.
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Theorem 4. The success probability is monotonous on average if and only if

|ε0| > 2−n/2−1Φ−1(1− 2−a−1).

Proof. The condition E [C] ≥ 2m−a corresponds to the inequality

2
(

1− Φ
(
|ε0|2n/2+1

))
2m ≥ 2m−a,

which can be rewritten as

1− Φ
(
|ε0|2n/2+1

)
≥ 2−a−1

⇐⇒ |ε0| ≤ 2−n/2−1Φ−1(1− 2−a−1).

Theorem 4 expresses a necessary condition for a nonzero success probability in
the average case as N →∞ (or N = 2n without replacement). Hence, when the
condition does not hold, the advantage a can only be obtained as a false-positive
during key recovery with Matsui’s Algorithm 2.

Bogdanov and Tischhauser have observed non-monotonous behavior with |ε0| =
2−10, a = 12 and n = 20 [42]. Theorem 4 predicts:

p = 2
(
1− Φ(2−10 · 211)

)
≈ 0.0455.

and
|ε0| ≤ 2−11Φ−1(1− 2−13) ≈ 2−9.125.

Hence, with these parameters, the average attack setup will lead to non-
monotonous behavior. By Lemma 8, the probability of monotonicity is
Φ(−218.78) ≈ 0.

2.5 A Few Observations about Linear Cryptanalysis

We now discuss a few aspects of linear cryptanalysis that are often misunderstood
or overlooked. By including it in this Thesis, we try to view it in a new light
rather than claim any novel results.
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2.5.1 From Linear Trails to Linear Hulls

It is important to note that the problem of obtaining the right value for the bias
ε is still open. The problem is that even if in many cases it is easy to calculate
the probability of a specific linear trail directly from the cipher’s structure,
this bias remains impossible to measure unless the key is already known. On
the other hand, the bias of the linear hull, which is easy for the adversary to
measure, is hard to compute theoretically. To better understand this, it is useful
to consider the values the bias can take. When a single trail is considered, the
magnitude of its bias is fixed, and the key only affects the sign. However, since
an adversary has access only to the input and output of the cipher (and not to
intermediate rounds), the bias can only be measured over the linear hull, which
is composed of an unknown number of trails.

In Matsui’s original paper [110], he presented a single trail and used its bias for
the attack. This approach worked in the case of DES because the corresponding
linear hull consisted only of one significant trail. However, in other ciphers,
the fact that the hull may be composed of multiple trails leads to an under- or
overestimation of the bias. A counterexample to the case of DES is presented
in Section 2.1, showing how such an erroneous estimation of the hull’s bias
through a single trail affects the success probability of the attack.

2.5.2 The Influence of the Key over the Bias

Another important aspect of bias estimation is the influence of the key. In
the case of a linear trail, the magnitude of the bias is known and only the
sign is affected by the key. The bias is therefore a random variable that can
take only two values. The actual value is determined by a subset of key bits.3
However, in the case of a linear hull, the bias is the sum of multiple biases
coming from the underlying trails. Each of these underlying biases is a random
variable with different values coming from different distributions, and resulting
in a probability distribution rather than a single value for the hull’s bias (cf.
Section 2.2). Generally, the nature of this distribution is cipher-dependent. For
real-life ciphers, the distribution is hard to derive due to the large number of
involved non-trivial trails, and is therefore unknown to the adversary. The
probabilistic nature of the bias was discussed in [1]. In practice, many works
simply use the mean of the absolute bias in place of the actual distribution for
attacks, which is generally insufficient.

In [36] Nyberg and Blondeau tried to address these concerns through an
estimation of the ELP. The idea behind their approach is to split the involved

3This is the property exploited when using Matsui’s Algorithm 1.
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linear trails into two groups Q and R representing the dominating trails and
the “rest”. Once the set of dominating trails is properly accounted for, the “rest”
can be modeled as random noise. However, in the general case this approach
simplifies the problem only slightly. First, it assumes that the adversary can
find all dominating trails, which again requires sieving through the space of all
possible ones. Second, even if a certain set is already given, it is required that
it be exhaustive (i.e., that no dominant trails were overlooked), which is again
hard to verify in practice. Finally, although it can readily be shown that the
estimation error of the bias decreases with the number of known trails, this is
not reflected in [36], which always models R as random noise, regardless of the
set’s size.

2.5.3 Using Linear Cryptanalysis in Practice

In spite of all of this, progress in the practical application of linear cryptanalysis
has not stopped. For example, papers which follow the evolution of linear
trails either manually [3] or using automated tools [32,161] are still published,
suggesting that an attack can be leveraged using such trails (ignoring the
possible linear hull effect). Similarly, papers ignoring the key dependency [51]
are being published, then improved [163], criticized [35,81], then salvaged [36].

This discussion makes it apparent that there is still much more work to be done
before ciphers’ security against linear cryptanalysis is understood.

2.5.4 Data Complexity and Key Recovery

Statistical attacks such as linear cryptanalysis are a multi-round game. In the
first step, fixing the key for a block cipher is akin to drawing a certain value
from the distribution of all possible (right key) biases. Similarly, testing a
wrong key is akin to drawing a (wrong key bias) from N (0, 2−n−2). This bias
determines the number of data pairs that satisfy the linear hull (under both
right and wrong keys) and we call it here the underlying bias.

In the second step, the adversary evaluates the linear hull against pairs of
plaintexts and ciphertexts to obtain the sample bias. Since the underlying bias
fully determines the number of data pairs that satisfy the linear hull, using
the full codebook results in the underlying bias and the sample bias being the
same. However, when only a sample of the codebook is used, the sample bias
becomes a compound random variable. Generally speaking, the sample bias is
normally distributed around the underlying bias. When more information is
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added using new data pairs, the variance of this normal distribution decreases,
until it collapses into a single point when the full codebook is used.

It is important to note that this normal distribution has nothing to do with
the underlying bias itself, which is fully fixed once the key or the permutation
are chosen, but only with the data sample. The nature of this distribution was
studied in [35,42] and in Section 2.3 for different sampling strategies, and is a
straightforward process once the underlying bias is known. Key recovery using
Matsui’s Algorithm 2 is then composed of decrypting one or more rounds using
a candidate subkey and obtaining the sample bias associated with each subkey.
The wrong-key-randomization hypothesis states that a hull evaluated over data
obtained using a wrong key would behave as a random one; hence, the biases
for all wrong keys can be modeled as coming from the same distribution. If the
underlying bias for the right key is distinctly different from the biases for the
wrong keys, it can be distinguished through the sample bias.

2.6 Summary

This chapter dealt with the existing theory of cryptanalysis and presented
several contributions. First, we proved the existence of 1-round linear hulls
resulting from dependencies between bits in the state. We gave examples for
such dependencies and showed that they can either augment or cancel each
other, leading to a complication in bias estimation. We devised a method to
overcome this by explicitly writing down the Boolean function describing each
bit. Then, we corrected errors in the way linear potential is computed in the
presence of such 1-round hulls.

In our next contribution we showed how wrong bias estimation affects the
success probability of Matsui’s Algorithm 1. Such wrong estimation is often the
result of the common practice to use the bias of a single trail for the entire hull
due to the difficulty to obtain the real bias of the latter. We showed that since
each trail may have a positive as well as negative contribution to the hull’s bias,
an erroneous estimation may result in using either too much or too little data.
We also showed that sometimes, increasing the data complexity reduces the
success probability of an attack. On the other hand, we showed that when the
adversary obtains the exact distribution of the hull’s bias by accounting for all
invovled trails, Matsui’s Algorithm 1 can be used to recover more than a single
key bit.

Our next two contributions dealt with Matsui’s Algorithm 2. We first highlighted
the importance of explicitly choosing a sampling strategy. It is shown that
when distinct known-plaintexts are used for linear cryptanalysis, the sample
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bias converges faster to the underlying bias and hence less data need to be used
to achieve the same success probability. We then showed that the previously
described phenomenon of non-monotonous success probability occurs also for
distinct known-plaintexts and thus cannot be explained solely by the noise
added by duplicates. We offered a new explanation instead, showing that
non-monotonicity is the result of an incorrect assumption about the behavior of
the right-key bias amongst the biases of wrong keys. We exposed the conditions
for non-monotonicity and derived a formula for the probability that an attack
would have a monotonous success probability given a set of attack parameters.

Finally, we provided several observations about linear cryptanalysis. These
observations are not new and in fact, they can be traced back in one way or
another to existing literature. By including them here in an explicit form we
hope that they can serve as a roadmap for the still open questions in linear
cryptanalysis.

Future work for this chapter is discussed as part of the summary of the next
one.





Chapter 3

New Cryptanalytic
Techniques

“Even among conservative Galactics, science is about slowly
improving your models of the world. It’s future-oriented. Your
children will know more than you do, so the truth you already have
can never be called ‘perfect’.”

- David Brin, Startide Rising

Both the previous chapter and this one deal with the theory of cryptanalysis.
The difference is that while Chapter 2 presented and corrected shortcomings in
existing theory, this chapter goes beyond it in order to extend existing techniques
and develop new ones.

In Section 3.1 we focus our attention on rotational cryptanalysis. Previously, the
XOR of round constants was believed to be a countermeasure against rotational
cryptanalysis, see e.g., [21, p. 14]. We show that the injection of round constants
is akin to introducing an XOR-difference into the state. By abstracting both
rotational cryptanalysis and differential cryptanalysis into Rotational-XOR
(RX) cryptanalysis we show how a rotational attack can be executed against
ARX constructions involving the XOR of round constants. This work was
co-authored with Yunwen Liu and published in [13]. Follow-up work to this
paper is presented in Sections 4.2 and 5.3, and was published in [10,109,133].

In Section 3.2 we present the most important contribution of this Thesis. We
show that despite folklore belief, linear approximations with arbitrarily small
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biases can be used for a linear attack. This is done by combining data obtained
using a single approximation under multiple keys (Section 3.2.4) or multiple
approximation under a single key (Section 3.2.5). This work was co-authored
with Daniël Bodden and Orr Dunkelman and was made available through
ePrint [9].

3.1 Rotational Cryptanalysis in the Presence of
Constants

This section deals with the effect of round constants on rotational cryptanalysis.
In [96], it was shown that ARX-C, i.e., an ARX construction with the addition
of constants, is complete. This means that any function can be implemented
using the ARX-C operations. In most cases, the constants are injected into the
state either through an XOR operation or through modular addition. When
the constant c is rotational-invariant, i.e., c = (c≪ γ), for some γ, XORing
with c does not change the rotational property of a rotational pair (x, x≪ γ).
However, when c is not rotational-invariant, the properties of the output require
further inspection.

In general, when a constant c that is not rotational-invariant is XORed into a
rotational pair (x, x≪ γ), the output pair (x⊕c, (x≪ γ)⊕c), no longer forms
a rotational pair. If this pair is given as an input to the modular addition, the
basic formula in Proposition 1 of Section 1.1.4 for computing the propagation
of the rotational property can no longer be used.

In the sequel, we define a ((a1, a2), γ)-Rotational-XOR-difference (or in
shorthand notation ((a1, a2), γ)-RX-difference or simply RX-difference when
(a1, a2), γ are clear or irrelevant) to be the difference of a rotational pair with
rotation offset γ under translations a1 and a2, i.e., (x, x′) have a ((a1, a2), γ)-RX-
difference if and only if (x⊕a1)≪ γ = (x′⊕a2); we call such a pair an RX-pair.
Note that when a1 = a2 = 0, they simply form a rotational pair. Our goal is to
estimate the transition probability of two input RX-differences to an output RX-
difference, over modular addition. Without loss of generality, we consider the
case where the input rotational pairs are (x⊕a1, y⊕b1) and (←−x ⊕a2,

←−y ⊕b2), and
compute the probability of

←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕a2)�(←−y ⊕b2)⊕∆2.

This section requires some special notation, which is presented in Table 3.1.
The main contribution of this section is Theorem 5.
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Table 3.1: The notation used for Section 3.1

x = (xn−1, · · · , x1, x0) An n-bit Boolean vector; x0 is the least significant bit
� Addition modulo n
� Subtraction modulo n
x||y The concatenation of x and y
|x| The Hamming weight of the Boolean vector x
x|y The vector bitwise OR operation
←−x x≪ 1

1x4y A characteristic function which evaluates to 1 if and only if xi ≤ yi for all i
SHL(x) A non-cyclic left shift of x by one bit

(I ⊕ SHL)(x) x⊕ SHL(x)
L(x)∗ The γ most significant bits of x
R(x)∗ The n− γ least significant bits of x
R′(x)∗ The γ least significant bits of x
L′(x)∗ The n− γ most significant bits of x

∗ Note that x = L(x)||R(x) = L
′ (x)||R′ (x).

Theorem 5. Let x, y ∈ F2n be independent, uniformly distributed random
variables. Let a1, b1, a2, b2,∆1,∆2 be constants in F2n . Then,

Pr[
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2]

= 1(I⊕SHL)(δ1⊕δ2⊕δ3)⊕1�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−3

+ 1(I⊕SHL)(δ1⊕δ2⊕δ3)�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−1.415,

(3.1)

where
δ1 = R(a1)⊕ L

′
(a2),

δ2 = R(b1)⊕ L
′
(b2),

and
δ3 = R(∆1)⊕ L

′
(∆2).

Note that when all constants are 0, i.e., a1 = a2 = b1 = b2 = ∆1 = ∆2 = 0,
Theorem 5 predicts Pr[←−−−x� y =←−x �←−y ], which is the normal case for rotational
cryptanalysis.

Before moving to prove Theorem 5, we introduce the following two lemmata:
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Lemma 9 ([145]). Let ζ1, ζ2, ζ3 ∈ F2n be constants. Let x, y ∈ F2n be
independent random variables. The probability of the differential equation

x� y = (x⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3 (3.2)

is

1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| . (3.3)

Proof. The complete proof can be found in [145].

The following example is provided for a better understanding of Lemma 9.

Example 2. Let n = 8, ζ1 = E16, ζ2 = 916 and ζ3 = F716, we have

(I ⊕ SHL)(ζ1 ⊕ ζ2 ⊕ ζ3) = 1016,

SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3)) = FE16,

and
|SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3))| = |FE16| = 7.

We evaluate the characteristic function 1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)4SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)),
and see that it is equal to 1 since no bit in (I⊕SHL)(ζ1⊕ ζ2⊕ ζ3) is larger than
the respective bit in SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3)). The probability is then computed
to be 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| = 2−7.

Lemma 10. Let ζ1, ζ2, ζ3 ∈ F2n be constants. For independent random variables
x, y ∈ F2n , the probability of

x� y � 1 = (x⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3 (3.4)

is

1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)⊕1�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| . (3.5)

Proof. 1 Denote the bitwise complement of x ∈ F2n by x. We have that
x� x = −1, where −1 = 2n � 1. Thus

x� y = (−1� x)� (−1� y) = −x� y � 2,

and x� y� 1 = �(x� y)� 1 = (x� y) = (x� y)⊕ (−1). Rewriting (x� y) we
get

(x� y)⊕ (−1) = (x⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3 ⊕ (−1),
1We thank Ernst Schulte-Geers for suggesting a simplified proof to the one appearing in

the original paper. The proof given here is an adapted version of his proposal.
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which can be written as
(x⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3 = x� y.

From Lemma 9, the probability of (3.4) is

1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2
−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))|. (3.6)

Noting that
(I ⊕ SHL)(ζ1 ⊕ ζ2 ⊕ ζ3) =

(I ⊕ SHL)(ζ1 ⊕ (−1)⊕ ζ2 ⊕ (−1)ζ3 ⊕ (−1)) =

(I ⊕ SHL)(ζ1 ⊕ ζ2 ⊕ ζ3 ⊕ (−1)) =

(I ⊕ SHL)(ζ1 ⊕ ζ2 ⊕ ζ3)⊕ (I ⊕ SHL)(−1)) =

(I ⊕ SHL)(ζ1 ⊕ ζ2 ⊕ ζ3)⊕ 1,
and that

(ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3) = (ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3),
we get that

1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2
−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| =

1(I⊕SHL)(ζ1⊕ζ2⊕ζ3)⊕1�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| ,

which concludes the proof.

We can now prove Theorem 5.
Theorem 5. Let x, y ∈ F2n be independent random variables. Let
a1, b1, a2, b2,∆1,∆2 be constants in F2n . Then

Pr[
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2] =

1(I⊕SHL)(δ1⊕δ2⊕δ3)⊕1�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−3+

1(I⊕SHL)(δ1⊕δ2⊕δ3)�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−1.415

(3.7)
where

δ1 = R(a1)⊕ L
′
(a2),

δ2 = R(b1)⊕ L
′
(b2),

and
δ3 = R(∆1)⊕ L

′
(∆2).
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Proof. Let C1 be the carry vector of (x⊕ a1)� (y ⊕ b1) and let C1
n−γ be the

carry bit in position n− γ (i.e., C1
n−γ is the most significant carry produced

by (R(x)⊕R(a1))� (R(y)⊕R(b1))). We write
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 from

(3.7) as the concatenation of its left and right parts:
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 =

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1

n−γ)⊕ L(∆1)||

((R(x)⊕R(a1))� (R(y)⊕R(b1)))⊕R(∆1) =

((R(x)⊕R(a1))� (R(y)⊕R(b1)))⊕R(∆1)||

((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1
n−γ)⊕ L(∆1).

Similarly, let C2 be the carry vector of (←−x ⊕ a2) � (←−y ⊕ b2), and C2
γ the

carry bit in position γ (i.e., C2
γ is the most significant carry produced by

((L(x)⊕R′(a2))�(L(y)⊕R′(b2)). we can again write (←−x ⊕ a2)�(←−y ⊕ b2)⊕∆2
from (3.7) as the concatenation of its left and right parts:

(←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2 =

((
←−−−−−−−
L(x)||R(x))⊕ a2)� ((

←−−−−−−−
L(y)||R(y))⊕ b2)⊕∆2 =

((R(x)||L(x))⊕ (L
′
(a2)||R

′
(a2)))� ((R(y)||L(y))⊕ (L

′
(b2)||R

′
(b2)))⊕∆2 =

((R(x)⊕ L
′
(a2))� (R(y)⊕ L

′
(b2))� C2

γ)⊕ L
′
(∆2)||

((L(x)⊕R
′
(a2))� (L(y)⊕R

′
(b2)))⊕R

′
(∆2).

We get that
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2

if and only if

(R(x)⊕R(a1))� (R(y)⊕R(b1))⊕R(∆1) =

((R(x)⊕ L
′
(a2))� (R(y)⊕ L

′
(b2))� C2

γ)⊕ L
′
(∆2),

(3.8)
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and

((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1
n−γ)⊕ L(∆1) =

((L(x)⊕R
′
(a2))� (L(y)⊕R

′
(b2)))⊕R

′
(∆2).

(3.9)

Substituting

R(x†) = R(x)⊕ L
′
(a2)

R(y†) = R(y)⊕ L
′
(b2),

we can rewrite (3.8) as

R(x†)�R(y†)� C2
γ =

(R(x†)⊕ L
′
(a2)⊕R(a1))� (R(y†)⊕ L

′
(b2)⊕R(b1))⊕R(∆1)⊕ L

′
(∆2).

(3.10)

Similarly, by setting

L(x∗) = L(x)⊕ L(a1)

L(y∗) = L(y)⊕ L(b1),

(3.9) reduces to

L(x∗)� L(y∗)� C1
n−γ =

((L(x∗)⊕ L(a1)⊕R
′
(a2))� (L(y∗)⊕ L(b1)⊕R

′
(b2)))⊕R

′
(∆2)⊕ L(∆1).

(3.11)

Now, we can compute the probabilities of (3.10) and (3.11) based on the values
of C1

n−γ and C2
γ using Lemmata 9–10:

Case 1: C2
γ = 0, the probability is the difference propagation probability and

can be calculated using Lemma 9.

Case 2: C2
γ = 1, we solve the differential equations using Lemma 10.

Similarly,

Case 3: C1
n−γ = 0, the probability is the difference propagation probability

and can be calculated by Lemma 9.

Case 4: C1
n−γ = 1, we solve the differential equations using Lemma 10.
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When γ = 1, L(·), R′(·) represent a single bit, hence,

C1
n−γ = L(a1)⊕ L(b1)⊕ L(∆1)⊕R

′
(a2)⊕R

′
(b2)⊕R

′
(∆2).

In addition, we note that the carry bit of L(x) � L(y) is independent of the
carry bit of R(x)�R(y) when x and y are independent random variables. For
large n and γ = 1 we have Pr[C2

γ = 0] = 3/4 and Pr[C1
n−γ = 0] = 1/2. Then,

Pr[C2
γ = 0, C1

n−γ = 0] = 2−1.415

Pr[C2
γ = 0, C1

n−γ = 1] = 2−1.415

Pr[C2
γ = 1, C1

n−γ = 0] = 2−3

Pr[C2
γ = 1, C1

n−γ = 1] = 2−3.

Therefore, the probability is calculated as

Pr[C2
γ = 0, C1

n−γ ] · Pr[x� y = (x⊕ δ1)� (y ⊕ δ2)⊕ δ3]+

Pr[C2
γ = 1, C1

n−γ ] · Pr[x� y � 1 = (x⊕ δ1)� (y ⊕ δ2)⊕ δ3],

which concludes the proof.

The above theorem shows the propagation of RX-differences through modular
addition and how to compute its probability. Given inputs (x ⊕ a1, y ⊕ b1)
and (←−x ⊕ a2,

←−y ⊕ b2) with RX-differences (((a1, a2), 1), ((b1, b2), 1)), let z =
((x⊕ a1)� (y ⊕ b1)) and z′ = ((←−x ⊕ a2)� (←−y ⊕ b2)). Theorem 5 predicts the
probability that z, z′ form a ((0,

←−
∆1 ⊕∆2), 1)-RX-difference.

3.2 Linear Cryptanalysis Using Multiple Low-bias
Approximations

In this section we describe a set of methods for executing a (multi-)linear attack
using linear approximations with small biases. Such linear approximations
were previously considered unusable because they could not be detected by the
classical normal distinguisher discussed in Section 1.1.6. Indeed, one limitation
of this classical distinguisher is that it cannot use biases with magnitude smaller
than a certain threshold (The threshold is often set to 2−n/2). This is used to
“prove” the resistance of new designs against linear cryptanalysis by claiming
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that since no linear approximation with an absolute bias larger than 2−n/2
exists, no attack can be mounted with a non-negligible success probability. In
this section we show how to use linear approximations with arbitrarily low
absolute biases (i.e., below 2−n/2) to overcome this limitation.

We start this section by restating the χ2 distinguisher which was previously
presented in [156] and show that in the classical setting (i.e., with large biases) it
is equivalent to the classical normal distinguisher. Then, we show that unlike the
classical distinguisher, the χ2 distinguisher can be used to combine data from
multiple sources to avoid data limitations and hence it can be used to detect
smaller biases than the classical one. We present this work in two settings:

– A χ2 linear distinguisher for arbitrarily small biases using a single
approximation and multiple keys; and

– a χ2 linear distinguisher for arbitrarily small biases using multiple
approximations and a single key.

3.2.1 Related Work

Interestingly, [36] also mentions that linear approximations with low-bias can
be used for an attack through the variance of the distribution. However, they
discuss this in the context of a key recovery attack using a single approximation.
While theirs is an interesting observation, it still relies on several unrealistic
assumptions. First, it assumes that sufficient knowledge of the ELP is given,
which implies that the most dominant trails are known, if not the full distribution.
More importantly, it assumes that the ELP is always larger than the bias variance
of a random approximation, which allows them to define an interval [−Θ,Θ] and
claim that keys outside this interval are more likely to be right keys. However,
it can readily be shown that this is not always the case, which means that in
some scenarios (a priori unknown due to the difficulty of calculating the ELP),
keys inside the interval [−Θ,Θ] are actually more likely to be the right keys.

A recent paper [143] takes a different approach for obtaining the distribution of
biases, by trying to bound them. They explicitly criticize prevailing methods
using order statistics, due to the reliance of such methods on assumptions
regarding the distribution of the bias. As a result, they question the applicability
of formulae formerly used to derive the data complexity. Clearly, [36] and [143]
(as well as others) are in disagreement as to some fundamental aspects of linear
cryptanalysis.
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Our approach

To avoid the minefield that bias estimation seems to be, we take an approach
that is based on the foundation of statistical cryptanalysis, namely, the behavior
of random oracles. Our null hypothesis is that a set of observations came from a
random oracle, and we use a statistical test that does not require an alternative
hypothesis. In doing so, we avoid the need to obtain information about the bias
distribution of the specific cipher under consideration.

This is not to say that obtaining the bias distribution is unimportant. When
the distribution is known it allows to calculate the ELP, which can then be used
to calculate the data requirement and the advantage of an attack. However,
being orthogonal to the bias estimation problem, our approach has merits in
real world scenarios, even if the bias’s distribution is unknown. Since both
parameters are not required a priori to execute the attack, an adversary can
simply test the attack offline (e.g., in a lab), establish how much data is required,
then execute it on an online target.

In addition, as per the discussion in Section 2.5.4 and for brevity’s sake, we avoid
the estimation of the underlying bias through the sample bias using a sample
of the codebook. Instead, we use the entire codebook and always obtain the
underlying bias directly. We stress that this is not inherent to the method we
present here. When combined with [7,35,42], the behavior of a sample bias using
a sample of the codebook can directly be obtained. Similarly, our multi-linear
distinguisher presented in Section 3.2.5 can be used for a key recovery attack
using Matsui’s Algorithm 2 in the same manner that such distinguishers are
always used even if only part of the codebook is being sampled. A key recovery
attack using the multi-key distinguisher of Section 3.2.4 is more complicated,
and is left for future research.

3.2.2 The χ2 Distinguisher

We now present the χ2 distinguisher and demonstrate that in the classical setting
(i.e., for a single high-bias approximation) this distinguisher is as efficient as
the classical linear distinguisher.

Recalling Corollary 1, we can convert the normal variable X into a χ2
1 variable.

The [−2−n/2, 2−n/2] interval which was 2 standard deviations from the mean
in each direction (cf. Section 1.1.6) now becomes a [0, 4] interval. Computing
Fχ2

1
(4) = 0.95449 where Fχ2

1
is the Cumulative Distribution Function of the χ2

1
distribution shows that the two intervals cover an area of the same size. For a
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Table 3.2: Bounds for 90% confidence intervals of the χ2 family of probability
distributions. m is the number of degrees of freedom, a is the lower bound of the
interval and b is its upper bound. For example, Pr[0 ≤ X ≤ 5.02|m = 1] = 0.9.

m a b
1 0 3.84
2 0.1 5.99
4 0.71 9.49

128 102.87 155.4
256 219.95 294.32

Table 3.3: The linear approximations used to verify the equivalence between the
classical linear distinguisher and the χ2 distinguisher. The difference between
the trail bias predicted by [161] and the measured bias is due to the linear hull
effect. All masks are reported in hexadecimal notation.

No. rounds Input mask Output mask Trail bias Measured average
(left,right) (left,right) reported in [161] absolute bias (ELP)

6 (000D, 56E0) (0800, 0800) 2−8 2−10 (2−17.96)
7 (000D, 56E0) (2040, 2050) 2−10 2−12 (2−21.96)
8 (000D, 56E0) (0083, 80C3) 2−13 2−15 (2−27.87)
9 (000D, 56E0) (170B, 130A) 2−15 2−15.98 (2−29.64)

list of confidence intervals for the χ2 family that are used later in this Thesis,
see Table 3.2.

We have also verified this equivalence empirically using versions of Speck32/64
reduced to 6–9 rounds. The linear approximations we used were first published
in [161]. We present these approximations in Table 3.3, and report the average
absolute bias of the hull which we have obtained empirically. In each experiment
we used 211 random keys to encrypt 232 plaintexts for 6–9 rounds and applied the
respective linear approximations from Table 3.3. For each key we computed the
sample bias, and used both the classical distinguisher and the χ2 distinguisher.
For the classical distinguisher, we checked how many of the 211 experiments
have an absolute bias larger than 2−16. For the χ2 distinguisher, we checked
how many times the test statistic was outside the interval [0, 4]. Table 3.4
reports the results, which, as expected, show that the two distinguishers are
the same.
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Table 3.4: Comparing the two distinguishers: we see that the two distinguishers
produce exactly the same results and are in fact equivalent.

No. rounds Bias No. Successes for the
classical Linear distinguisher χ2 distinguisher

6 2−10 2048 2048
7 2−12 2048 2048
8 2−15 1900 1900
9 2−15.98 1020 1020

3.2.3 Using Datasets from Different Sources

Recall that Corollary 1 allows to convert a counter T̂ following a normal
distribution into a χ2

1-variable. Then, since the sum of m independent χ2
1

variables is distributed according to χ2
m, we obtain the following:

Corollary 2. Let T̂0, . . . , T̂m−1 be normal independent random variables with

T̂0, . . . , T̂m−1 ∼ N (2n−1, 2n−2).

Then a test statistic T defined as

T =
m−1∑
i=0

( T̂i − 2n−1

2n/2−1 )2 (3.12)

follows the χ2
m distribution.

Noting that N (2n−1, 2n−2) is exactly the distribution of counters obtained
from applying a linear approximation to a random permutation, we can use
the χ2 distinguisher in two scenarios which we soon describe. The intuition
in both cases is that although a single counter is insufficient to distinguish a
biased distribution from a random one, combining multiple counters increases
the statistical distance. In other words, we use a series of non-significant
observations to create a significant one. This is inherently different from prior
works which combined a series of significant observations to reduce the data
complexity.
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3.2.4 The Multi-key Setting

The first case we consider is the multi-key scenario. In this setting, data
is encrypted using the same family of block ciphers with multiple uniformly
selected keys k0, . . . , km−1. Under our assumption of using the entire codebook,
this means that each of the m keys is used to encrypt 2n plaintexts. This results
in a set of m counters, T̂0, . . . , T̂m−1, where each counter T̂i counts the number
of times the linear approximation ψ holds for data encrypted under ki (the
same ψ is used for all counters). The goal of the adversary is to distinguish
between this case and a case where the data was obtained using m independent
random permutations.

Lemma 11. Let π0, . . . , πm−1 be a set of m random permutations, ψ a linear
approximation, and T̂0, . . . , T̂m−1 a set of counters such that T̂i counts the
number of times ψ was satisfied when applied to πi after using the entire
codebook. Then, the test statistic T which is defined as

T =
m−1∑
i=0

(
T̂i − 2n−1

2n/2−1

)2

(3.13)

has a χ2
m distribution.

Proof. The counters T̂0, . . . , T̂m−1 are associated with the random permutations
π0, . . . , πm−1. Since random permutations are independent, the counters are
also independent. As per [60] each counter T̂i is normally distributed according
to Lemma 4. Using Corollary 2 on these independent and normally distributed
random variables completes the proof.

The reason T is modeled as a random variable is that in both cases, the
counters T̂0, . . . , T̂m−1 follow a certain distribution. In the case of a set of
random permutations, each value is drawn according to Lemma 4. Similarly, for
the case of a block cipher, each counter T̂i is drawn according to the unknown
distribution governing the underlying bias (cf. Section 2.5).

With that in mind, we can build a confidence interval of size α for χ2
m and use

it for hypothesis testing. An adversary receives a set of counters T̂0, . . . , T̂m−1
and needs to decide if they were obtained from a set of random permutations
π0, . . . , πm−1 or from a family of block ciphers with m different keys, i.e.,
Ek0 , . . . , Ekm−1 . The adversary builds a test statistic T according to Lemma 11
and checks if it falls inside the confidence interval. The null hypothesis H0 is
that the counters were obtained using m random permutations, and therefore
T ∼ χ2

m. The alternative hypothesis H1 is that they were not. The adversary
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builds a confidence interval [a, b] of size α for χ2
m, meaning that if H0 is true,

then Pr[a ≤ T ≤ b] = α. As is inherent in any hypothesis testing based attack
(such as the classical linear attack), the rate of false positives is 1− α.

The fact that we use the χ2 distribution has major benefits over the classical
distinguisher. First, by squaring, it avoids sign considerations that are inherent
to classical linear cryptanalysis. Moreover, since the average bias of a random
permutation as well as a biased one is 0, using more approximations in the
classical setting only makes it more similar to the random case. When the
random case is modeled as a distribution from the χ2 family, the mean of that
distribution increases as more degrees of freedom are added (i.e., when more
counters are used), while a test statistic calculated from a block cipher tends to
the second moment of the unknown right bias distribution, i.e., since the mean
is 0, to its variance (ELP). Hence, by using a double-sided χ2 test we can detect
biases lagging behind the χ2 distribution.

3.2.5 The Multi-linear Setting

The same arguments in favor of the χ2 distinguisher that were presented in the
previous section can be made for using multiple linear approximations with low
biases. However, it is hard to argue that multiple linear approximations relating
to the same random permutation are statistically independent. In [124] Nyberg
showed, based on the Xiao-Massey Lemma, that a set of linear approximations
is statistically independent if and only if they are linearly independent. However,
this condition seems too strict, and it might be enough that the approximations
are “sufficiently” independent. The adaptation of Lemma 11 to the case of
multiple linear approximations is therefore given below only as a hypothesis
and left unproven. In Section 3.2.6 we show through experiments that a certain
level of dependency can be tolerated.

Hypothesis 3. Let π be a random permutation, and let ψ0, . . . , ψm−1 be a set
of m linear approximation, and T̂0, . . . , T̂m−1 a set of counters such that T̂i
counts the number of times ψi was satisfied when applied to π after using the
entire codebook. Then, the test statistic T which is defined as

T =
m−1∑
i=0

(
T̂i − 2n−1

2n/2−1

)2

(3.14)

has a χ2
m distribution.
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Table 3.5: The 9-round linear approximations used in our experiments

No. rounds Trail number Input mask Output mask Trail bias Measured bias
(left,right) (left,right) reported in [161]

9 1 (000D, 56E0) (170B, 130A) 2−15 2−15.98

9 2 (000D, 56E0) (1D0B, 1B0A) 2−15 2−15.97

3.2.6 Experimental Verification

In this section we present an experimental verification of our distinguishers. We
use Speck32/64 to present several linear distinguishers for 9 and 10 rounds.

Multi-key distinguishers for Speck

We start discussing our results with a sanity check. In addition to the 9-round
linear trail presented by Yao et al., we found another trail of the same length
and the same bias. Both trails are presented in Table 3.5. We conducted 2048
experiments with each of the trails, using a confidence interval of size α = 0.9.
A success in a single experiment is defined to be “the test statistic falls outside
the confidence interval” which, for a random variable, should happen with
probability 0.1.

When using a single key with a single trail, the number of successes in 2048
experiments is 1069 for Trail 1 and 1104 for Trail 2, corresponding to 52.2% of
the experiments and 53.9%, respectively.2

When setting m = 2 and creating a distinguisher based on multiple keys by
combining the zeroth key with the first key, the second with the third, etc. we
get that the number of successes (out of 1024) is 749 for Trail 1 and 740 for
Trail 2 corresponding to 73.1% of the experiments and 72.3%, respectively.

For completeness, we model the expected number of successes in a random
permutation over N experiments where the success probability is 0.1
(corresponding to the false positive rate) by

W ∼ B(N, 0.1). (3.15)
2Note that the difference from Table 3.4 is due to the different size of the confidence

interval used in the distinguisher.
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Table 3.6: Results of the multi-key distinguisher for 9 rounds. The probability
reported inside the parentheses is the probability that a binomial random
variable will have the reported number of successes or more. We see that the
success rate of the distinguisher improves as we consider more approximations
obtained using different keys.

m No. of Trail No. of successes (prob.)
Experiments

1 2048 1 1069 (< 2−53)
2048 2 1104 (< 2−53)

2 1024 1 749 (< 2−53)
1024 2 740 (< 2−53)

Fixing N , we can compute the probability that W takes a value which is
the number of successes xi or higher, i.e., p = Pr[W ≥ xi]. The results are
summarized in Table 3.6.

We now turn to verify our 10-round distinguisher based on multiple keys. Using
the 9-round trails as a basis, we extended each of them into 128 10-round trails
using the automated tool presented in Section 4.1. The result is a collection
of 256 linear trails. This collection is viewed as two sets of size 128, where the
elements in the first set are those linear approximations extended from Trail 1
and the elements of the second set are those linear approximations extended
from Trail 2.

We first start by applying the distinguisher to each of the approximations
independently, and check if it falls inside the confidence interval induced by
χ2

1. Conducting 2048 · 256 = 524, 288 experiments, the test statistic falls
outside the confidence interval 52,215 times, corresponding to about 10% of
the experiments. This matches quite closely the expected number of false
positives which is 524, 288 · 0.1 = 52, 428. We therefore see that each individual
approximation cannot be distinguished from a random one.

When setting m = 256 (i.e., each approximation is evaluated against data
from 256 different keys), the number of successes over 2048 experiments is 224
corresponding to 10.9% of the experiments. The probability that a random
binomial variable with probability 0.1 will have 224 or more success in N = 2048
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Table 3.7: Results of the multi-key distinguisher for 10 rounds. The probability
reported inside the parentheses is the probability that a binomial random
variable will have the reported number of successes or more. We see that each
individual approximation is insufficient for constructing a linear distinguisher,
but that a collection of 256 is not.

m No. of Trail No. of successes (Prob.)
Experiments

1 524,288 1 + 2 52,215 (= 0.838)
256 2048 1 + 2 224 (= 0.085)

experiments is given by

W ∼ B(2048, 0.1)

Pr[W ≥ 224] = 0.085

The results are summarized in Table 3.7.

We see that the success rate of the distinguisher improves as we add more data
coming from different keys using the same linear approximation.

Multiple linear cryptanalysis using low-bias approximations

We now present a way to use our distinguisher for multiple approximations,
where all the approximations have a bias smaller than 2−n/2. As before, we
start with a sanity check using our 9-round linear approximations. As we saw in
Section 3.2.6, when using α = 0.9 and m = 1, the success rate is 1069 for Trail 1
and 1104 for Trail 2, corresponding to 52.2% of the experiments and 53.9%,
respectively.3 When combining both trails, i.e., setting m = 2, the number of
successes in 2048 experiments increases to 1429, corresponding to 69.8% of the
experiments. The results, as well as the probability to have this number of
successes à la (3.15) are presented in Table 3.8.

For a 10-round distinguisher for Speck32 based on multiple linear approxima-
tions we used the previously described 256 10-round trails. Setting α = 0.9 and
m = 128 we get that the number of successes in 2048 experiments is 232 when

3These numbers are the same as in Section 3.2.6 as they describe the same experiment.
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Table 3.8: Results of a distinguisher using multiple approximations for 9 and 10
rounds. The probability reported inside the parentheses is the probability that
a binomial random variable will have the reported number of successes or more.

No. Rounds m No. of Trail No. of successes (Prob.)
Experiments

9 1 2048 1 1069 (< 2−53)
2048 2 1104 (< 2−53)

9 2 2048 1+2 1429 (< 2−53)
10 1 524,288 1 + 2 52,215 (= 0.838)
10 128 2048 1 232 (= 0.026)

2048 2 222 (= 0.110)
10 256 2048 1 + 2 223 (= 0.097)
10 128+128 2048 1 or 2 438 (= 0.004)

using Trail 1, and 222 when using Trail 2, corresponding to 11.3% and 10.8%,
respectively.

Interestingly, when setting m = 256 and using the test statistic over all 256
linear approximations, the obtained result is 223 (10.9%), which is still better
than using a single trail, but is not as significant as the theory predicts. We
conjecture that this behavior is due to dependency between the biases of the
two underlying 9-round approximations and leave it for future research.

Instead, we build two test statistics T1, and T2, for each group of 10-round
linear approximations, and consider the experiments successful if either of the
statistics falls outside the confidence interval. We get that when using this
test for Speck32, the number of successes in 2048 experiments is 438 (21.4%),
wheres the expected false positive rate in this case is 0.1 + 0.1− 0.12 = 0.19. A
summary of these results is presented in Table 3.8.

3.3 Summary and Future Work

In this chapter we developed new cryptanalytic techniques. In the first
contribution we showed that the injection of round constants is not a
suitable defense against rotational cryptanalysis. We abstracted rotational
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and differential cryptanalysis into RX-cryptanalysis, and presented a way to
calculate the propagation probability of RX-characteristics.

In the second contribution, we showed that contrary to folklore belief (see e.g.,
the discussion in [59, Sect. 9.1.1]), linear approximations with low-biases can
be used for a linear attack. We recalled a distinguishing method based on
the χ2 distribution, and showed how to use it with multiple low-bias linear
approximations to obtain a distinguisher.

Future work

All contributions in the last two chapters stem from incomplete or incorrect
models. This is highly unfortunate as linear cryptanalysis is considered by many
to be one of the two most important cryptanalytic techniques. As these two
chapters show, linear cryptanalysis is still not well understood. The models
seem to be good enough in many practical examples, but they definitely do
not cover all corners. These cases are hard to identify because it is often the
case that an attack is presented only in its theoretical form because it is too
expensive to verify. Indeed, it is easy to find examples where attacks with
prohibitive complexities are published without any reservations and assuming
that everything will work the way the theory predicts, but attacks involving
experimental verification do not fully match the predictions.

Future work on linear cryptanalysis should focus on reviewing the models used.
The exact conditions for using Matsui’s Algorithm 1 should be exposed, and the
practice of using the bias of a linear trail for an attack should be abandoned.
For this to happen, better techniques for finding the bias of linear hulls must
be developed.4

However, bias estimation is only one side of the problem. The other side is
that bounding the bias does not provide guarantees against linear cryptanalysis.
As we showed in this chapter, multiple linear approximations can still be used
for an attack, even if each of them has an absolute bias below 2−n/2. This
work is still at its beginning as we only show how to use this property for a
distinguishing attack. A key recovery attack for the multi-linear distinguisher
seems to be straightforward, but it is still unclear how key recovery in the
multi-key case would work. On the other hand, further work is required to
understand how the dependencies between different approximations affect the
multi-linear distinguisher; especially in light of Parseval’s Theorem.

4While this is not always a common view (in many fields of life), this Author believes,
on principle, that there can be no good reason to use something known to be incorrect just
because the right way was not yet discovered.
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The understanding that non-monotonic success probability is encountered when
the bias for the right key is ranked below more wrong-key-biases than what the
advantage allows opens up avenues for improvements in how linear cryptanalysis
is being used. For example, we can redefine the advantage such that it is
achieved if the right key is amongst a collection of successively ranked keys, not
necessarily the first ones.

Similar to linear cryptanalysis, rotational cryptanalysis can be further improved.
The current work only considers round constants injected using the XOR
operation. A work in progress aims to extend this to round constants injected
using modular addition (such is, for example, the case in Threefish, the block
cipher underlying the hash function Skein [71]). Another apparent limitation is
that this work only considers rotational pairs with rotation offset of γ = 1 and
future work may extend RX-cryptanalysis to γ > 1. However, it is important
to note that γ 6= 1 was traditionally used in cases when the round constant was
rotation invariant with respect to the used γ. With the integration of round
constants offered in this chapter, there might never be a need to use γ 6= 1.

There are two more reasons why rotational cryptanalysis is not regarded as
highly as differential and linear cryptanalyses: (i) it is only applicable to ARX
constructions, and (ii) it requires two related keys. However, it was already
shown before that any function, and in particular any block cipher, can be
written using the ARX-C operations. Now that rotational cryptanalysis is
extended to cover ARX-C rather than just ARX, it might be beneficial to
consider the representation of non-ARX constructions as ARX-C. Similarly,
there are indications that RX-cryptanalysis can be made to work in the single
key model.

One last area of research that seems to have been neglected in recent years
is the development of new cryptanalytic techniques. This Author proposes to
do this in two parallel tracks. The first is by combining existing techniques.
Differential-linear cryptanalysis [105] is a good example for the potential of such
approach. This Author already explored combining rotational cryptanalysis
with differential cryptanalysis, rotational cryptanalysis with linear cryptanalysis,
and integral cryptanalysis with linear cryptanalysis; yet never in a systematic
way. The second approach is to come up with completely new techniques either
inspired by existing ones or unrelated.



Chapter 4

Automated Tools for
Cryptanalysis

“And once again he felt annoyance with the Universe for making
something both essential and unpleasant.”

- Isaac Asimov, The Robots of Dawn

The core of statistical cryptanalysis techniques such as those discussed in the
previous chapters is the existence of undesirable relations between a plaintext,
its ciphertext, and possibly the secret key. This chapter is concerned with the
automatic search of such relations.

In Section 4.1 we deal with the automated search of good linear trails in ARX
constructions. The search strategy reduces the search space by focusing on
linear masks that are likely to result in such trails. For each such mask, the tool
follows its propagation both forward and backwards, until certain constraints
are violated. This work was Daniël Bodden’s master thesis [38] under the
supervision of this Author. It was published in and won the best student paper
award of [8].

The work is included in this Thesis for the sake of completeness as part of the
work this Author did during his Ph.D term. Its application became severely
limited by this Author’s observation that unlike their differential counterparts,
linear trails cannot be used to lower bound the bias of a linear hull, and in light
of the results presented in Section 2.2.

79
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In Section 4.2 we develop an automated tool for searching RX-characteristics.
The tool encodes the constraints for a valid RX-transition and uses a SAT/SMT
solver to find characteristics satisfying all the constraints. This work was
Glenn De Witte’s master thesis [64], for which he won the Vasco Data Security
prize, under the supervision of Yunwen Liu and this Author. It was published
in [10]. De Witte’s original work focused on devising the constraints for the
block cipher Speck and was later generalized by Adrián Ranea in his master
thesis [132] (co-supervised by Yunwen Liu and this Author) where he developed
a new Python-like language for describing ARX ciphers, and a Python parser
converting this language into a set of constraints. Ranea’s work was published
in [133]. Both works were used to find the RX-characteristics presented in
Section 5.3. These RX-characteristics were published in [109].

4.1 An Automated Tool for Searching Linear Trails
in ARX Constructions

This section deals with an automated search for linear trails in ARX
constructions. The search strategy is based on [52, Cor. 1] where it is shown that
an input mask containing only a pair of consecutive bits propagates with bias
1
4 through modular addition to an output mask containing the same bits. This
result was later extended in [11] which showed that a sequence of `′ consecutive
bits can be treated as ` = `′

2 independent pairs and their joint bias can be
calculated using the Piling Up Lemma. Focusing on these “consecutive pairs”
trails allows to greatly reduce the search space by considering only probable
candidates.

The tool receives an OpenCL core1 with a description of the cipher to be analyzed
and an integer ` limiting the search space. The program starts by testing all
masks with a single pair of consecutive bits, two pairs of consecutive bits, up
to ` pairs of consecutive bits. For each starting point it tries to propagate the
mask both forward and backwards for as many rounds as possible, using the
propagation rules of [28]. The search stops when one of the following events
occur:

– The rotation operation splits two consecutive bits to the most- and least-
significant positions; or

– the XOR operation creates odd-length sequence of bits (e.g., 0110⊕0011 =
0101), which can not be further propagated using [52, Cor. 1]; or

1OpenCL is a programming language with a C-like syntax developed for writing parallel
applications. A core is a unit of software, much like a function in other programming languages.



AUTOMATED TOOLS FOR CRYPTANALYSIS 81

– the trail bias falls below 2−n/2 where n is the block size.

The output of the tool is the longest linear trail it could find without violating
these constraints.

To test the tool, we executed it on versions of Speck using a 40-core 3.1 GHz
Intel Xeon. For each version with block size n, we ran the tool with the highest
possible ` = n

2 . The execution time was less than 10 milliseconds for Speck32
and less than a week for Speck128, with all other versions ranging in between.

The tool returned linear trails for 7, 8, 11, 10, and 11 rounds for versions of
Speck with block sizes of 32, 48, 64, 96, and 128, respectively. These trails were
not the best linear trails published for Speck. The best linear trails at the time
were published in [161] and involved a few odd-length sequences in intermediate
states, suggesting that searching only through even-length sequences is not an
optimal strategy.

4.2 An Automated Tool for Searching
RX-characteristics in ARX Constructions

This section deals with an automated search tool for RX-characteristics. The
tool extends the work of Section 3.1 by encoding the RX-transition constraints
and searching for an optimal RX-characteristic. We start in Section 4.2.1 by
describing the Boolean Satisfiability Problem and how SAT-solvers can be used
for cryptanalysis. Then, in Section 4.2.2 we show how to encode an ARX-based
cryptosystem as a SAT/SMT problem. In Section 4.2.3 we discuss possible
search strategies for the tool. We continue by presenting in Section 4.2.4 a
language for describing an ARX-based system in a Python-like syntax, and a
parser for this language translating it into a SAT/SMT problem. The results of
the execution of this tool on the block cipher Speck are presented in Section 5.3.

In the rest of this chapter, we use the notation of Section 3.1.

4.2.1 The Boolean Satisfiability Problem

A Boolean formula is an expression consisting of Boolean variables taking the
values true or false, and the logical operators AND, OR and NOT. A Boolean
formula is said to be satisfiable if there exists an assignment for its variables
that makes it evaluate to true. For example the Boolean formula

a AND (NOT b)
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is satisfiable because it returns true when evaluated on the input (a, b) =
(true, false).

The Boolean satisfiability (SAT) problem is the problem of determining whether
a Boolean formula is satisfiable. In general, the SAT problem is NP-complete
[54], which implies that no known algorithm solves a general SAT instance in
polynomial time (with respect to the number of variables). In practice, SAT
solvers can handle instances with thousands (and sometimes even millions) of
variables [162].

A generalization of the SAT problem is the satisfiability modulo theories (SMT)
problem. SMT formulae can be expressed with richer languages (theories)
than Boolean formulae. In particular, a formula in the bit-vector theory can
contain bit-vectors (a vector of Boolean variables) and the usual operations of
bit-vectors such as bitwise operations (e.g., XOR, OR, and AND) arithmetic
operations (e.g., addition and multiplication), etc. A common approach in SMT
solvers [44,75] is to translate the SMT instance into a SAT instance and solve
it using a SAT solver.

In addition to richer languages, SMT solvers also support an objective function.
This function is an additional constraint forcing a variable to satisfy certain
conditions. For example, through an objective function, an adversary can ask the
solver for solutions not exceeding some probability for the RX-characteristics.

4.2.2 Automated Search for RX-characteristics

A triplet of RX-differences (α, β, ζ) is said to be valid if α and β propagate
to ζ through � with non-zero probability, that is, Pr[α, β �−→ ζ] 6= 0. Using
Theorem 5, the triplet (α, β, ζ) is valid if and only if one of the following
conditions holds

(I ⊕ SHL)(δα ⊕ δβ ⊕ δζ) � SHL((δα ⊕ δζ)|(δβ ⊕ δζ)) (4.1)

(I ⊕ SHL)(δα ⊕ δβ ⊕ δζ)⊕ 1 � SHL((δα ⊕ δζ)|(δβ ⊕ δζ)). (4.2)

The weight ω of a valid triplet (α, β, ζ) is defined as

ω(α, β, ζ) = − log2(Pr[α, β �−→ ζ]).

Using Theorem 5, the weight can be calculated as follows

ω(α, β, ζ) =
{
|SHL((δα ⊕ δζ)|(δβ ⊕ δζ))|+ 1.415, if (4.1) holds
|SHL((δα ⊕ δζ)|(δβ ⊕ δζ))|+ 3, if (4.2) holds.

(4.3)
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The weight W of an RX-characteristic is defined as the sum of the weights for
each transition (noting that in ARX, only transitions through modular addition
incur weight penalty). As in [118], it is assumed that the probability of a
characteristic is the multiplication of the probabilities of each modular addition.
In this case, the probability of an RX-characteristic p can be calculated as
p = 2−W .

The main idea of this technique is to use a SAT/SMT solver to determine
whether there exists an RX-characteristic up to a certain weight W . If the
SAT/SMT solver concludes that the problem is satisfiable, a lower weight is
chosen. Otherwise, a higher weight is chosen. This is repeated until the minimal
weight is found, that is, a weight Ŵ such that there exists an RX-characteristic
up to weight Ŵ but not up to weight Ŵ − ε, where ε is a predetermined value
(usually ε = 1, e.g., [118]).

SAT/SMT solvers not only determine whether a formula is satisfiable, but also
obtain an assignment that makes the formula true if it is. Therefore, the result
of this method is a minimal weight Ŵ , an RX-characteristic with probability in
the interval (Ŵ − ε, Ŵ ] and the knowledge that there is no RX-characteristic
with probability better that Ŵ − ε.

Since the RX-differences of the round keys are necessary to propagate the
RX-differences through the encryption function, a pair of characteristics is
actually considered: one for the key-schedule and one for the encryption. The
RX-differences predicted by the key-schedule characteristic are used in the
encryption characteristic as the RX-differences of the round keys.

An important step of this technique is the formulation of the decision problem
of whether there exists a pair of RX-characteristics up to a certain weight as an
SMT problem. The operations of an ARX cipher are performed on n-bit vectors,
whereas the formula of a SAT problem can only contain Boolean variables
and the operations AND, NOT and OR. Therefore, an SMT problem in the
bit-vector theory, which supports bit-vectors variables and the usual operations
of bit-vectors, is used instead. Once the SMT problem is written, an SMT
solver translates it into a SAT problem and solves it using a SAT solver. An
example of an SMT solver is STP [75]. STP is built from a SAT solver and was
also used in [118].
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Table 4.1: The output RX-differences for rotation and XOR given two pairs
(X,X ′) and (Y, Y ′) with RX-differences α and β, respectively, and a constant c.

Pair RX-difference

((X≫ c), (X ′≫ c)) (α≫ c, γ)
((X≪ c), (X ′≪ c)) (α≪ c, γ)
((X ⊕ Y ), (X ′ ⊕ Y ′)) (α⊕ β, γ)
((X ⊕ c), (X ′ ⊕ c)) (α⊕ c⊕ (c≪ γ), γ)

The SMT problem is written as follows:

– For every pair of n-bit input words of the key schedule and the encryption,
an n-bit vector is used to represent the RX-difference of the pair;

– Additional n-bit vectors are used to represent the RX-difference after the
addition, XOR and rotation operations when required;

– For each of the XOR and bit rotation operations, Table 4.1 is used to
propagate properly the RX-differences;

– For every modular addition operation, (4.1) and (4.2) are used to ensure
that the RX-differences are propagated with non-zero probability and
(4.3) is used to calculate the weight;

– Finally, two constraints are used to ensure that the weights denoting the
transition probability for the key schedule (resp., encryption) is at most
WK (resp., WE).

4.2.3 Search Strategies

Our program works in two phases:

Phase 1 - finding a good RX-characteristic over the data part. The program
starts by searching for an RX-characteristic covering the data part of the
cipher with probability not smaller than 2−n/2, and the key schedule part with
probability at least 2−mn formn the length of the master-key (thus ensuring that
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at least one weak-key exists). If a solution adhering to these constraints is found,
the objective function for the data part is updated and an RX-characteristic
with probability not smaller than 2−n/4 is sought.

If the program cannot find a solution with probability at least 2−n/2, the
objective function for the data part is relaxed and the program searches for an
RX-characteristic with probability at least 2−1.5n/2. This binary search (over
the exponent for the data part) is repeated until no further improvements are
possible.

Phase 2 - increasing the size of the weak-key class. After the best RX-
characteristic (in terms of its probability) is found, the program sets to increase
the size of the weak-key class. Suppose ζ0 is the probability for the RX-
characteristic found in Phase 1, the objective function in Phase 2 is set such
that the program finds RX-characteristics with probability ζ0 for the data
part, and probability at least 2−mn/2 for the key schedule. In a binary search
similar to that of Phase 1, the best RX-characteristic for the key schedule is
improved, under the constraint that this key RX-characteristic can support an
RX-characteristic for the data part with probability ζ0.

When the program can no longer improve the probability for the key’s RX-
characteristic, it outputs both RX-characteristics. Using this algorithm it is
guaranteed that the data RX-characteristic has optimal probability, and that
the corresponding key RX-characteristic allows for a non-empty weak key class
and has the best possible probability, conditioned on the existence of a data
RX-characteristic with probability ζ0.

Additional search strategies

Note that, for purposes of obtaining a large number of rounds, the above search
strategy prefers RX-characteristics with high probability in the data part over
large weak-key classes. A side-effect of this search strategy is that the size of the
weak-key class may be smaller than the data complexity. Such distinguishers can
be used in the known-key model, but not for key recovery. We therefore devised
a second search strategy with the additional constraint that ζ0 ·ζ1 < 2−2n where
ζ0 is as before, ζ1 is the probability that a uniformly chosen key is weak, and
2n is the block size. By ensuring that the data complexity is now smaller than
the size of the weak-key class, the additional constraint guarantees that the
resulting distinguisher can be used for a key recovery attack.
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4.2.4 The ArxPy Tool

ArxPy is a tool for finding optimal RX-characteristics in ARX block ciphers.
It takes a Python-like implementation of an ARX block cipher as input, encodes
it as a SAT/SMT problem, and gives it as an input to the solver.

To the best of our knowledge all automated tools [103,107,157] searching for
statistical characteristics are implemented specifically for a particular cipher
or for a small set of such. In order to encode an arbitrary cipher, a significant
effort is needed.

Given a Python implementation of an ARX block cipher, ArxPy is executed
with a simple shell command. Therefore, the only effort to use ArxPy is
implementing the ARX block cipher in Python, which is negligible due to
the low development time and code complexity of the Python programming
language. On top of that, ArxPy is open source and has a modular architecture.
Therefore, it can be easily adapted for specific needs.

Structure of Python implementations of ARX block ciphers

ArxPy expects a certain structure in the Python implementation of an ARX
block cipher. Such implementation will be called an ARX implementation. Any
iterated ARX block cipher can be considered, as long as all its operations are
performed on words of the same size.

A minimal ARX implementation contains at least one global variable, wordsize,
and two functions, key_schedule and encryption.

– The global variable wordsize contains the word size (in bits) of the ARX
block cipher.

– The function key_schedule implements the key expansion algorithm of
the cipher. This function receives m arguments as input, representing the
m words of the key, and has no return value; the round keys are stored in
the list-like object round_keys.

– The function encryption describes the encryption algorithm of the cipher.
The arguments of this function represent the words of the plaintext. The
intermediate values of each round are stored in the list-like object rounds,
except for the last one which is used as the return value. This function
can access the list-like object round_keys.

In order to implement the encryption and the key schedule, the Python operators
+, >>, << and ^ are used to describe modular addition, right and left rotations,
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Algorithm 4.1 An ARX implementation of Speck32. The total length of
code is 23 lines.

wordsize = 16
number_of_rounds = 22
alpha = 7
beta = 2

# round function
def f(x, y, k):

x = ((x >> alpha) + y) ^ k
y = (y << beta) ^ x
return x, y

def key_schedule(l2, l1, l0, k0):
l = [None for i in range(number_of_rounds + 3)]

round_keys[0] = k0
l[0:3] = [l0, l1, l2]

for i in range(number_of_rounds - 1):
l[i+3], round_keys[i+1] = f(l[i], round_keys[i], i)

def encryption(x0, y0):
rounds[0] = f(x0, y0, round_keys[0])

for i in range(1, number_of_rounds):
x, y = rounds[i - 1]
round_output = f(x, y, round_keys[i])

if i < number_of_rounds - 1:
rounds[i] = round_output

else:
return round_output

and XOR, respectively. Augmented assignments, such as += or ^=, are not
allowed.

Apart from the variable wordsize and the functions key_schedule and
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Algorithm 4.2 An example for the test function and a fix_differences
function for Speck32.

def test():
key = (0x1918, 0x1110, 0x0908, 0x0100)
plaintext = (0x6574, 0x694c)
ciphertext = (0xa868, 0x42f2)

key_schedule(*key)
assert ciphertext == encryption(*plaintext)

def fix_differences():
for i in range(number_of_rounds):

round_keys.fix_difference(i, 0)

encryption, additional variables and functions can be defined to improve
the readability and modularity of the implementation. Algorithm 4.1 contains
an ARX implementation of Speck32.

There are several considerations about rounds and round_keys to take into
account:

– They are not created nor declared in the ARX implementation. They are
created by the ArxPy parser; and

– they only support the operator [] to access their elements. Slices and
negative indices are not supported; and

– they can store either single values or lists of values, but each position can
only be assigned once. Furthermore, storing a list of values must be done
in a single assignment and cannot be done element-wise.

Apart from the functions encryption and key_schedule, an ARX implementa-
tion may contain two more special functions: the function test and the function
fix_differences.

Test vectors can be added to an ARX implementation by using the Python
statement assert inside the function test. It is also possible to fix the
RX-differences of the round keys and the outputs of each round by using
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the method fix_difference of round_keys and rounds inside the function
fix_differences. Algorithm 4.2 shows an example of these functions for
Speck32, where all RX-differences of the round keys are fixed to 0.

Running the program

ArxPy uses the Python library SymPy [114] and the SMT solver STP [75].
They, together with Python3, must be installed in order to execute ArxPy.

The shell command to run ArxPy is the following:

python3 arxpy.py <ARX_implementation> <output>

where <ARX_implementation> is the name of the file containing an ARX
implementation and <output> is the name of the output file.

To find an optimal RX-characteristic, ArxPy searches for characteristics
using the search strategy described above. During an execution of ArxPy,
intermediate characteristics are written to the output file. When the execution
is complete, the last characteristic in the output file is the optimal one.

Implementation

ArxPy has been implemented in three modules: the ARX block cipher parser,
the SMT writer and the characteristic finder. This section briefly explains these
three modules.

The parser module takes an ARX implementation and generates a sequence of
symbolic expressions of the output values of each round and the round keys. This
is done by modifying the source code of the ARX implementation dynamically
and executing the functions key_schedule and encryption symbolically. The
Abstract Syntax Tree (AST) of the ARX implementation is used to modify
the source code dynamically, whereas SymPy, a Python library for symbolic
mathematics, is used to generate and handle the symbolic expressions.

The writer module takes the symbolic expressions generated by the parser as
an input and outputs an SMT problem. The SMT problem is described in the
SMT-LIB v2 [18] language, an input format supported by many SMT solvers.
This is done by extracting the sequence of ARX operations of the encryption
algorithm and the key schedule and translating these operations into equations
as described in Section 4.2.2. The sequence of operations is obtained from the
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symbolic expressions by traversing them as trees and extracting their nodes
with methods provided by SymPy.

The finder module implements the search strategy to find the optimal RX-
characteristic. The binary search strategy described in Section 4.2.3 is used to
minimize the weight of the characteristic.

4.3 Summary and Future Work

This chapter dealt with automated tools for cryptanalysis. We developed two
tools to accommodate the search for linear trails and RX-characteristics in ARX
constructions. The first tool searches for linear trails by reducing the search
space from all masks to those likely to produce a highly biased trail. This is
achieved by starting with an intermediate mask having even-length sequences
of consecutive bits, and trying to extend it both backwards and forward until
certain constraints are violated.

The second tool searches for RX-characteristics by encoding the problem into a
set of logical constraints and solving them using a SAT/SMT solver. The tool
we developed receives a simple Python-like description and deals with the rest.

The benefit from building automated tools is twofold: first, it complements the
human effort in searching for a good property. This effort is menial, and since
computers, unlike humans, excel in performing such tasks, it is reasonable to
assume that it will expose properties previously missed by humans. Secondly,
using such tools frees their operators to developing new ideas; a task in which
they outperform their computers.

Future work

At the time of writing this, automated search for statistical and structural
properties is an active research field. This promising trend is likely to continue
even without recommendations from this Author. Yet, if such is still desired,
it would be useful if future research would focus on building general purpose
search tools rather than ones for specific algorithms, thus allowing researchers
to outsource this work to computers with minimal effort.



Chapter 5

Application of Cryptanalysis

“A process cannot be understood by stopping it. Understanding
must move with the flow of the process, must join it and flow with
it.” (Paul-Muad’dib Atreides)

- Frank Herbert, Dune

This chapter deals with the application of cryptanalytic methods to existing
algorithms. In a way, this is the cryptanalyst’s real job.

In Section 5.1 we present an attack on Pure omd (p-omd). The attack uses a
flaw in the security proof of p-omd to create a state collision by using the same
nonce multiple times. This work was co-authored with Bart Mennink and was
first published in [14]. As a result, the authors of p-omd dropped the claim for
nonce-misuse resistance. A more thorough version was subsequently published
in [15].

In Section 5.2 we present multiple attacks for Gost2. The 3 main attacks of this
work are a fixed-point attack, a reflection attack and an impossible reflection
attack. Less notable attacks are related-key differential attacks. This work was
co-authored with Achiya Bar-On and Orr Dunkelman and was published in [6].

In Section 5.3 we present several RX-distinguishers for the Speck family of block
ciphers. The distinguishers were found using the automated tool described in
Section 4.2. This work appeared in part in [10] and was co-authored with Glenn
De Witte and Yunwen Liu. A more complete manuscript was co-authored with
Glenn De Witte, Yunwen Liu, and Adrián Ranea and was published in [109].
This Author was a main contributor to this work.

91
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Figure 5.1: p-omd for the specific case of |A| = 2n and |M | = m.

5.1 A Nonce-misusing Attack on p-OMD

Recalling the specification of p-omd given in Section 1.2.4 (cf. Figure 5.1) we
consider a nonce-misusing adversary that operates as follows:

(i) Fix N = ε and choose arbitrary M ∈ {0, 1}m and A1, A2, A
′
1 ∈ {0, 1}n

such that A1 6= A′1;

(ii) Query p-omdK(N,A1A2,M)→ (C, T );

(iii) Query p-omdK(N,A′1A2,M)→ (C ′, T ′);

(iv) Set A′2 = C ⊕ C ′ ⊕A2;

(v) Query forgery p-omd−1
K (N,A′1A′2, C ′, T ).

For the first and second evaluations of p-omd, the state difference right before
the second F -evaluation is C ⊕ C ′. The forgery is formed simply by adding
this value to A2. Consequently, the first call to p-omd and the forgery attempt
have the exact same input to the second F -evaluation, and thus have the same
tag. Therefore, the forgery attempt succeeds as

p-omd−1
K (N,A′1A′2, C ′, T ) = M

by construction.

The issue appears in the proof of [135] in Lemma 4 case 4, and more specifically
the probability analysis of Pr[intcol | E4]. The authors claim that an adversary
can indeed find an internal collision, but that any such collision happens with a
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birthday-bound probability only. This reasoning, however, assumes that the
input to every F -call is random, which is not the case given that the adversary
can re-use the nonce and thus observe and modify the state using encryption
queries.

5.2 Cryptanalysis of GOST2

In this section, we show how to adapt previous attacks against Gost to Gost2.
This shows that Gost2 fails to deter the exact attacks it was supposed to avoid,
thus casting doubt on its design methodology, and most notably on its key
schedule.

We start by discussing some properties of Feistel structures. The first of which
is the reflection property [94]. A reflection-point is a state S = (L,R) such that
L = R. We use the following lemma which is a well-known property of Feistel
networks:

Lemma 12. if S is a reflection-point, then for any subkey k, Rk(S) = R−1
k (S).

Lemma 12 leads to the following corollary:

Corollary 3. if S is a reflection-point, then for any sequence of subkeys Ki,
Ki+1, . . . ,Ki+j, it holds that

RKi(RKi+1(. . . (RKi+j (S)))) = R−1
Ki

(R−1
Ki+1

(. . . (R−1
Ki+j

(S)))).

We use Corollary 3 to present in Section 5.2.1 a reflection attack for a weak-key
class of size 2224 with time complexity of 2192 using 232 known-plaintexts. Then,
in Section 5.2.2 we present a complementary attack (i.e., an attack that works
when the key is chosen amongst the remaining 2256 − 2224 “strong” keys) that
reduces the time of exhaustive search by a factor of 2e.

In Section 5.2.3 we present a fixed-point attack on the full Gost2 with time
complexity 2237. A fixed-point is an intermediate state S such that

S = RKi(RKi+1(. . . (RKi+j (S))))

for some sequence of keys Ki, . . . ,Ki+j used in rounds i to i+ j. As we can see
from Table 1.1, rounds 10–15 use the same keys as rounds 16–21. This leads to
the following observation used in Section 5.2.3:

Observation 1. If S10 is a fixed-point with respect to rounds 10–15 (i.e. S10 =
S16), then S10 = S16 = S22.
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We conclude by briefly discussing several related-key differential attacks, and
how they affect the security of Gost2.

5.2.1 A Reflection Attack for a Weak-key Class of GOST2

In this attack, we make use of a reflection-point in an intermediate state. As
can be seen from Table 1.1, the order of keys in rounds 18–31 is:

K7
18,K

0
19,K

1
20,K

2
21,K

3
22,K

4
23,K

6
24,K

5
25,K

4
26,K

3
27,K

2
28,K

1
29,K

0
30,K

7
31.

We assume that the key belongs to a weak-key class where K5
24 = K6

25. Then,
if the intermediate state before round 25 is a reflection-point (i.e. S25 = (x, x)),
we get, due to Corollary 3, that C = S32 = S18, and thus the number of
effective encryption rounds is 18 rather than 32. The probability of any state in
Gost2 to be a reflection-point is 2−32, which means that the probability that an
adversary observing 232 plaintexts would encounter at least one reflection-point
in S25 is approximately 0.632.

P Rounds 0–2

K0,K1,K2

K0 K1,K2

S3

S3
Rounds 3–12

K3, . . . ,K12

K3,K4, . . . ,K7

S13
Rounds 13–17

K13, . . . ,K17
C

K0,K1,K2,K5 “ K6

S13

Rounds 18–24

K18, . . . ,K24

L25 “ R25

S25
Rounds 25–31

K25, . . . ,K31

C

1

Figure 5.2: A schematic description of the reflection attack

The description of the attack is as follows (cf. Figure 5.2): The adversary
observes 232 pairs of plaintexts and ciphertexts denoted by (Pi, Ci). Then, they
use an outer loop and two inner loops. In the outer loop they iterate over the
values of S3 and K5

16 = K6
17. Then, in the first inner loop, they iterate over the

observed plaintext and ciphertext pairs (Pi, Ci), and over all possible values
for K0. They compute S1 = RK0(Pi) and use the outer loop’s interim S3 to
retrieve K1 and K2 which can be computed through the 2-round Feistel network
without additional complexity by solving the equations

K1 = S−1((L1 ⊕ L3)≫ 11)�R1

and
K2 = S−1((R1 ⊕R3)≫ 11)� L3

with respect to known R3 and L3. They then obtain

S13 = R−1
K13

(R−1
K14

(R−1
K15

(R−1
K16

(R−1
K17

(Ci = S18)))))
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Algorithm 5.1 Pseudocode of the reflection attack against Gost2
Input: 232 pairs of known-plaintexts and ciphertexts - {Pi, Ci}.

for S3,K
5
16 = K6

17 do {Outer loop}
for (Pi, Ci),K0 do {Inner loop 1}
K1,K2 ← Solve(Pi, S3,K0)
S13 ← R−1

K13
(R−1

K14
(R−1

K15
(R−1

K16
(R−1

K17
(Ci = S18)))))

T [S13]← (Pi,K0,K1,K2)
end for
for K3,K4,K7 do {Inner loop 2}
S13 ← RK12(RK11(RK10(RK9(RK8(RK7(RK6(RK5(RK4(RK3(S3))))))))))
(Pi,K0,K1,K2)← T [S13]
TRY(K0,K1,K2,K3,K4,K5,K6,K7)

end for
end for

using the newly obtained K2 = K15 and K1 = K14 and the interim K0 =
K13,K

5
16 = K6

17. Finally, they store the tuple (Pi,K0
0 ,K

1
1 ,K

2
2 ) in T [S13].

In the second inner loop, which is run sequentially after the previous one, they
iterate over all possible values of K3

3 ,K
4
4 , and K7

7 for the encryption of S3
through rounds 3–12 to obtain S13. Then, they fetch the tuple (Pi,K0,K1,K2)
from T [S13]. Since, on average, each S13 maps to a single tuple, the adversary
now holds a candidate key K = (K0,K1,K2,K3,K4,K5,K6,K7) which can
be tested using a trial encryption. A pseudo-code describing the attack is
presented in Algorithm 5.1.

The data complexity of the attack is 232 known-plaintexts, and hence the
expected number of reflection-points is 1. The outer loop iterates over 264

possible values for S3 and over 232 possible values for K5
16 = K6

17, making its
time complexity 296. The first inner loop iterates over the 232 known pairs of
plaintexts and ciphertexts, and over 232 candidates for K0, making its time
complexity 264. The second inner loop iterates over 232 candidates for each of
the values of K3,K4, and K7, i.e. it runs 296 times. The total time complexity
is therefore 296 · (264 + 296) ≈ 2192. The size of the table T is 264 rows, each
of 160 bits, resulting in memory complexity of 268.32 bytes.1 The memory

1The original publication included an error suggesting that the memory complexity is
268.58 due to a need to save a 192-bit value in each row of the table. This error was corrected
here.
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complexity can be reduced to 267.58 bytes by storing only Pi and K0 in the first
inner loop and recomputing K1 and K2 in the second inner one.

5.2.2 An Impossible Reflection Attack on the Full GOST2

In this section we present an impossible reflection attack on the full Gost2.
This attack is a complementary attack to the one presented in Section 5.2.1
and uses the fact that K5 6= K6. When this is the case and the S-boxes are
bijective, the event S18 = C is impossible, as it implies that K6

24 = K5
25.

The attack uses an outer loop and two sequential inner loops. In the outer
loop the adversary iterates over all K5 and K6 6= K5. In the first inner loop,
they iterate over all possible S3, and over all pairs (Pi, Ci) of plaintexts and
ciphertexts, to find the values K0,K1, and K2 leading from Pi to this S3. Then,
they assume towards contradiction that S18 = Ci and decrypt S18 = Ci back to
S13. They store in a temporary table T1 the values K0

0 ,K
1
1 , and K2

2 indexed
by S3||S13.

In the second inner loop the adversary iterates over S3,K
3
3 ,K

4
4 , and K7

7 , and
tries to encrypt S3 to S13. If S3||S13 is in the table, the keys associated with their
entry along with the values of the iterators (i.e. the current K3,K4,K5,K6, and
K7) are discarded as impossible keys. Finally, the adversary tries all remaining
keys to find the right one. A full description of the attack can be found in
Algorithm 5.2.

The probability that a key is impossible is e−1 and thus, the number of impossible
keys is e−1 · 2256 ≈ 2254.56 (the number of remaining keys is (1− e−1) · 2256 ≈
2255.34). We can reduce the number of possible keys by another factor of 2 by
using Gost2’s complementation property described in Section 5.2.4, leading
to a time complexity of 2−1 · (1− e−1) · 2256 ≈ 2254.34. The data complexity is
264 known-plaintexts (263 chosen-plaintexts when using the complementation
property), and the memory complexity is (1−e−1)·2192 for storing the impossible
keys.

5.2.3 A Fixed-point Attack on the Full GOST2

We now show how to mount a fixed-point attack against Gost2 using
Observation 1. The probability that S10 is a fixed-point with respect to rounds
10–15 is 2−64, and hence an adversary observing 264 plaintexts (i.e. the entire
codebook) expects to observe one such point. A second observation is that
knowing the input and output to a 3-round Feistel network, an adversary can
iterate over some of the bits in the first and last rounds and check if they match
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Algorithm 5.2 Pseudocode of the impossible reflection attack against Gost2
Input: 264 pairs of known-plaintexts and ciphertexts.

{Outer loop}
for K5,K6 do
for S3, (Pi, Ci) do {Inner loop 1}
for K2 do
S2 ← R−1

K2
(S3)

T [L2]← K2
end for
for K0 do
S1 ← RK0(Pi)
K2 ← T [R1]
K1 ← SOLVE(Pi, S3,K0,K2)
S18 ← Ci
S13 ← R−1

K13
(R−1

K14
(R−1

K15
(R−1

K16
(R−1

K17
(S18)))))

T1[S3||S13]← (K0,K1,K2)
end for

end for
for S3,K3,K4,K7 do {Inner loop 2}
S13 ← RK12(RK11(RK10(RK9(RK8(RK7(RK6(RK5(RK4(RK3(S3))))))))))
(K0,K1,K2)← T1[S3||S13]
Discard(K0,K1,K2,K3,K4,K7)

end for
for all undiscarded (K0,K1,K2,K3,K4,K7) do

TRY(K0,K1,K2,K3,K4,K5,K6,K7) {(K5,K6) are taken from the
outer loop}
end for

end for

in the middle round to filter out wrong keys. In this attack, we guess the 12 least
significant bits of K0 and K2, which are denoted by K0[0–11] and K2[0–11],
respectively, and match bits 11–22 in R1. This gives 212 · 212 · 2−12 = 212

suggestions for 24 bits of the key. By additionally guessing the carry bit
in position 11, the adversary can compute key bits 12–19 in K1 denoted by
K1[12–19].
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Figure 5.3: A schematic description of Gost2’s fixed-point attack

The attack procedure is as follows (cf. Figure 5.3): In the outer loop, the
adversary iterates over K7, K0[0–11], K2[0–11], and K1[11]. In the first inner
loop they iterate over 264 pairs of plaintexts and ciphertexts, and the remaining
bits of K0,K1, and K2. They decrypt Ci through rounds 31–28 to obtain
S28 and encrypt Pi through rounds 0–2 to obtain S3. They then use a table
T to store in row S3||S28 the subkey values K0

28[12–31],K1
29[0–10,12–31], and

K2
30[12–31] supposedly leading from S3 to S28. Since T needs to store 271

possible key values for each of the 264 data pairs using 2128 rows, each row
contains 271 · 264 · 2−128 = 27 candidates on average where each 71-bit candidate
occupies 23.15 bytes.

In the second inner loop the adversary iterates over all possible S10 and all
possible K5 and K6 to encrypt S10 through rounds 10–12 and obtain S13. From
S13 and S16 = S10 they check if the values of K0[0–11] and K2[0–11] in the
outer loop lead from S13 to S16. For the values surviving this filter, they obtain
K1[12–19]. Then, by iterating over K3 and K4 they decrypt S10 through rounds
9–3 to obtain S3 and encrypt S22 = S10 through rounds 22–28 to obtain S28.
Using the interim S3 and S28 they fetch 27 possible suggestions from T for
K0

28[12–31],K1
29[0–10,12–31],K2

30[12–31], on average. They use K1[12–19] to
further discard wrong values and try the remaining keys, i.e. a single key on
average. A pseudocode of the attack procedure is presented in Algorithm 5.3.

The attack uses 264 known-plaintexts and it builds a table of size 2128+7+3.15 =
2138.15 bytes. The time complexity is dominated by the total number of iterations.
The number of iterations in the outer loop is 232+25. The time it takes to build
the table in the first phase is 264+71. The second phase takes 264+32+32 iterations
for the outer part, which uses a filter to keep 2−12 of the keys. The inner part
of the second phase, which is executed for the surviving keys requires another
232+32 iterations. The probability that a row in the table matches the 2128 bits
of S3 and S28 that were obtained in this part is (2−64)2 = 2−128, i.e. each call
to the table fetches 27 possible keys, which are filtered according to K1[12–19],
leaving a single key to test. The total time complexity of the attack is then
232+25 · (264+71 + 264+64 · 2−12 · 264) ≈ 2237.
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Algorithm 5.3 Pseudocode of the fixed-point attack against Gost2
Input: 264 pairs of known-plaintexts and ciphertexts.

for K7,K0[0–11],K2[0–11],K1[11] do {Outer loop}
for (Pi, Ci),K0

28[12–31],K1
29[0–10,12–31],K2

30[12–31] do {First phase}
S28 ← R−1

K28
(R−1

K29
(R−1

K30
(R−1

K31
(Ci))))

S3 ← RK2(RK1(RK0(Pi)))
T [S3||S28]← T [S3||S28] ∪ (K0

28[12–31],K1
29[0–10,12–31],K2

30[12–31])
end for
for S10 = S16 = S22,K

5
5 ,K

6
6 do {Second phase - outer part}

S13 ← RK12(RK11(RK10(S10)))
if FILTER(S16, S13,K0[0–11],K2[0–11]) == TRUE then
for K3

3 ,K
4
4 do {Second phase - inner part}

(K0[0–11],K1[12–19],K2[0–11]) ←
SOLVE(S16, S13,K0[0–11],K2[0–11],K1[11])

S3 ← R−1
K3

(R−1
K4

(R−1
K5

(R−1
K6

(R−1
K7

(R−1
K8

(R−1
K9

(S10)))))))
S28 ← RK27(RK26(RK25(RK24(RK23(RK22(S22))))))
for each (K0[12–31],K1[0–10,12–31],K2[12–31]) in T [S3||S28] do
FILTER(K1[12-19])

end for
TRY(K0,K1,K2,K3,K4,K5,K6,K7)

end for
end if

end for
end for

5.2.4 Related-key Differential Properties in GOST2 and their
Effect on its Security

An interesting omission by the authors of [69] is mitigation against related-
key differential attacks. Indeed, in their introduction they discuss the works
of [68, 83], but not any of the works of [57, 100, 146]. It seems that some
attacks were not addressed in the design of Gost2, and that the cipher is
still vulnerable to these attacks. We mention below three possible related-key
differential attacks.
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A 32-round related-key differential distinguisher with probability 1 (a
complementation property)

Assume two related keys differing only in the most significant bit of each of the
subkeys. A pair of plaintexts also differing only in the most significant bit of
each of the two words will result in a pair of ciphertexts differing in the same
bits with probability 1. This characteristic can be used to distinguish the full
Gost2 from a random permutation in the related-key model with probability
1, using only 2 chosen-plaintexts. It can also be used to speed up exhaustive
search on the full Gost2 by a factor of 2. Moreover, reduced-round variants of
this observation can speed up all of our attacks by a factor of 2.

A 16-round related-key differential distinguisher with probability 1

Assume that a pair of plaintexts (P, P ′) whose intermediate states (S8, S
′
8) differ

only in bit 31 (i.e. the most significant bit of the right half). Then, a pair of
related keys having a difference in the most significant bit of the subkeys indexed
by an odd number (i.e. K1,K3,K5, and K7), leads to the same difference before
round 24 with probability 1. We can extend this differential characteristic 4
rounds backwards and 3 rounds forward with probability ( 3

4 )4. This gives a
truncated input difference with 8 known bits in S4 leading to a truncated output
difference with 28 known bits in S27. By guessing K0,K1,K2,K3 and K7 we can
bridge the distance between the plaintext and S4, and between the ciphertext
and S27. The attack can recover the full key using 236 chosen-plaintexts, 238

bytes of memory, 2226 time, and 2 related keys.

A 30-round related-key differential distinguisher with probability 2−30

As was shown by Ko et al. in [100], a difference in the second most significant
bit can be canceled by a related-key having a difference in the same position
with probability 1

2 . Ko et al. also show how to concatenate this transition to
obtain a related-key differential characteristic for 30 rounds with probability
2−30. We observe that the same property holds also for Gost2, and that the
key recovery attack of [100] can be adapted in a straightforward manner.

5.3 RX-cryptanalysis of Reduced-round Speck

Using the theory developed in Section 3.1 we developed the automated search
tool described in Section 4.2. The tool was executed on round reduced versions
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Table 5.1: Comparison of RX-characteristics with γ = 1 and previous
differentials for different versions of Speck. Entries marked with † were found
through the adjusted search strategy. Entries marked with †† can only be used
in the open-key model.

Version Rounds Data Prob. Key Class Size Ref.
32/64 9 2−30 264 [67]
32/64 10 2−19.15 228.10 Section 5.3.1
32/64 11†† 2−22.15 218.68 Section 5.3.1
32/64 12†† 2−25.57 24.92 Section 5.3.1
48/96 10 2−40 296 [67]
48/96 11 2−45 296 [74]
48/96 11 2−23.15 214.93 Section 5.3.2
48/96 11† 2−24.15 225.68 Section 5.3.2
48/96 12 2−26.57 227.5 Section 5.3.2
48/96 12† 2−26.57 243.51 Section 5.3.2
48/96 13†† 2−31.98 224.51 Section 5.3.2
48/96 14†† 2−37.40 20.34 Section 5.3.2
48/96 15†† 2−43.81 21.09 Section 5.3.2

of Speck. We present an overview of the distinguishers found in Table 5.1 and
compare them with the previously best ones.

5.3.1 RX-characteristics of Speck32/64

Table 5.2 shows two RX-characteristics covering 11 and 12 rounds found by
our program. The best characteristic thus far covered 9 rounds of Speck with
probability 2−30. Our 10-round characteristic has a much better probability of
2−19.15 for a weak-key class of size 228.10. The table also shows that even our
12-round characteristic has probability 2−25.57, which is still higher than the
previously known 9-round differential characteristic, although ours works for
a weak-key class of about 30 keys. As was explained in Section 4.2, different
tradeoffs between the weak-key class and the characteristic’s probability are
possible.

We extended the search to find 13-round characteristics and found that none
exist, suggesting that a 12-round RX-characteristic is the longest possible for
Speck32/64.
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Table 5.2: An 11-round (left) and a 12-round (right) RX-characteristics for
Speck32/64.

Round Key Input
RX-difference RX-difference

0 0000 (0000||0000)
1 0000 (0000||0000)
2 0000 (0000||0000)
3 0001 (0000||0000)
4 0000 (0000||0000)
5 0003 (0000||0000)
6 0200 (0000||0000)
7 0205 (0200||0200)
8 0801 (0000||0800)
9 2001 (0000||2000)
10 AA0B (0000||8000)
11 (2A0B||2A09)

Prob. 2−45.32 2−22.15

Round Key Input
RX-difference RX-difference

0 0000 (0050||2000)
1 0100 (8000||0000)
2 0001 (0000||0000)
3 0000 (0000||0000)
4 0001 (0000||0000)
5 0000 (0000||0000)
6 0001 (0000||0000)
7 0200 (0000||0000)
8 0206 (0200||0200)
9 0800 (0000||0800)
10 2001 (0000||2000)
11 A40E (0000||8000)
12 (240E||240C)

Prob. 2−59.08 2−25.57

5.3.2 RX-characteristics of Speck48/96

For Speck48/96, we found RX-characteristics covering up to 15 rounds. Some
of these characteristics are shown in Table 5.3 and Table 5.4. The distinguishers
extend the previously best differential characteristic which covers 11 rounds
with probability 2−45. Note that the sizes of the weak key classes for the 14-
and 15-round characteristics are marginal. However, due to resource constraints
we ended the program before it completed its search. Hence, the characteristics
presented here are not guaranteed to be optimal in length (i.e., 16-round RX-
characteristics may exist) nor in probability (i.e., RX-characteristics with higher
probabilities or a larger weak-key class may exist for the same number of rounds).
In addition, the probabilities of the round function part in the 14- and 15-round
characteristics are relatively high, which may imply that distinguishers with
larger weak key classes can be found using a different trade-off.

5.4 Summary and Future Work

In this chapter we applied cryptanalytic techniques to existing constructions.
The first contribution is a trivial forgery attack against p-omd using only 3



APPLICATION OF CRYPTANALYSIS 103

Table 5.3: A 12-round (left) and a 13-round (right) RX-characteristics for
Speck48/96.

Round RX-difference RX-difference
in Key in Input

0 000008 (000000||000008)
1 000240 (000000||000040)
2 000000 (000200||000000)
3 000000 (000000||000000)
4 000000 (000000||000000)
5 000000 (000000||000000)
6 000001 (000000||000000)
7 000001 (000000||000000)
8 000001 (000000||000000)
9 010010 (000001||000001)
10 100089 (000010||000018)
11 8904de (000080||000040)
12 (09049e||09069e)

Prob. 2−52.49 2−26.57

Round RX-difference RX-difference
in Key in Input

0 000008 (000000||000008)
1 000240 (000000||000040)
2 000000 (000200||000000)
3 000000 (000000||000000)
4 000000 (000000||000000)
5 000000 (000000||000000)
6 000001 (000000||000000)
7 000001 (000000||000000)
8 000000 (000000||000000)
9 010018 (000001||000001)
10 1000f1 (000018||000010)
11 880801 (080080||080000)
12 c04911 (000000||400000)
13 (004911||004913)

Prob. 2−71.49 2−31.98

Table 5.4: A 14-round (left) and a 15-round (right) RX-characteristics for
Speck48/96.

Round RX-difference RX-difference
in Key in Input

0 000008 (000000||000008)
1 000240 (000000||000040)
2 000000 (000200||000000)
3 000000 (000000||000000)
4 000000 (000000||000000)
5 000000 (000000||000000)
6 000001 (000000||000000)
7 000001 (000000||000000)
8 000000 (000000||000000)
9 010018 (000000||000000)
10 1000e0 (010019||010019)
11 680021 (0801e8||000120)
12 000009 (000900||000000)
13 202844 (000000||000000)
14 (202844||202844)

Prob. 2−95.66 2−37.40

Round RX-difference RX-difference
in Key in Input

0 000008 (000000||000008)
1 000240 (000000||000040)
2 000000 (000200||000000)
3 000000 (000000||000000)
4 000000 (000000||000000)
5 000000 (000000||000000)
6 000001 (000000||000000)
7 000001 (000000||000000)
8 000001 (000000||000000)
9 010011 (000001||000001)
10 100080 (000010||000018)
11 990391 (000089||000049)
12 480103 (000248||000000)
13 000301 (000100||000100)
14 91101d (000000||000800)
15 (91181d||91581d)

Prob. 2−94.91 2−43.81
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messages. Although not presented as such, this attack was found by searching
for a state collision using the differential cryptanalysis framework. As a result
of this attack, the p-omd designers changed their security claims and no longer
argue that p-omd is nonce-misuse resistant.

The second contribution is a collection of attacks against Gost2. Inspired
by attacks on the original Gost, we showed how 3 self-similarity attacks can
be translated from Gost to Gost2, and that previously known related-key
differential attacks for Gost are still valid, unmodified, for Gost2.

We also applied RX-cryptanalysis to the Speck family of block ciphers and
found, using one of the automated tools of the previous chapter, distinguishers
longer than everything previously known, albeit in a weaker model.

Future work

It is striking to see how remarkably easy it is to find weaknesses in cryptosystems.
The general idea behind the acceptance of cryptosystems, and especially
symmetric-key primitives is that of Linus’s law: “given enough eyeballs, all
bugs are shallow”. Seeing that not all “bugs” are shallow we must conclude that
there are not enough eyeballs.

Future research must sift cryptosystems better and do so more systematically.
While sometimes requiring ingenuity, the general problem of systematically
reviewing existing cryptosystems against known and newly developed techniques
is a classical task for entry level research. A first step in this direction is to
compile an exhaustive list of techniques and their extensions. This list can
then be translated to a set of standardized procedures a designer can use to
“prove” to the world that their design is secure.2 Then, after performing a
survey identifing which algorithms are being used in the wild beyond the obvious
AES and ChaCha+Poly, researchers, aided by automated tools, can evaluate
existing algorithms systematically.

2Part of this work was already done in ISO/IEC 15408—Common Criteria for Information
Technology Security Evaluation which includes a set of criteria for a system to be considered
secure but not the evidence required from a designer to pronounce the system as such.



Chapter 6

Design of Symmetric-key
Mechanisms

“Isn’t it a pleasure to study and practice what you have learned?”

- Confucius, Analects

This chapter deals with the design of new cryptosystems. Whereas previous
chapters were concerned with finding weaknesses and undesirable properties,
this chapter seeks to learn from such weaknesses and apply these lessons to
build better secured systems.

In Section 6.1 we present a security analysis of the TESLA variant used in the
European Union’s Galileo global navigation satellite system (GNSS) in order
to derive proper security parameters against various adversaries. This work was
submitted as a report to the EU commission [17] and was co-authored with
Vincent Rijmen. Only those parts of the report where this Author was a main
contributor were included.

In Section 6.2 we present our security model for Sections 6.3–6.5. For brevity
sake, in addition to introducing some specific notation for these sections, we
recall some notation already used.

In Sections 6.3–6.4 we present the Spoed and Spoednic modes of operation.
Both modes are inspired by p-omd (cf. Section 1.2.4) and seek to fix the attack
presented in Section 5.1 while preserving p-omd’s clever trick to process the
Associated Data (AD) almost for free. Spoed (Simplified p-omd Encryption

105
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Decryption) aims to simplify the security proof of p-omd against nonce-
respecting adversaries. Spoednic (Simplified p-omd Encryption Decryption
(with) Nonce-misuse Integrity Conserved) takes a further step forwards and
tries to salvage the nonce-misuse resistance initially claimed for p-omd. Both
modes are proven to be secure, and consequently, the simplified proof allows
to slightly improve the security bound. Both Sections 6.3–6.4 (together with
Section 5.1 and Appendix A) were published in [15]. This Author was a main
contributor to this work which was co-authored with Bart Mennink.

In Section 6.5 we show how to add RUP security to some existing modes of
operation. This work was initially motivated by the crypto-tagging attack [154]
on the Tor network. We sought to identify the causes allowing for the attack
and mitigate them. We show that with minor modifications, some existing
modes of operation can be made RUP-secure (incidentally, adding RUP security
will also prevent the crypto-tagging attack). This work was co-authored with
Orr Dunkelman and Atul Luykx and was published in [12]. Only those parts
where this Author was a main contributor were included in this Thesis.

6.1 GALILEO Security Assessment

The Galileo project is a Global Navigation Satellite System (GNSS) managed
and deployed by the European Union. A common threat against GNSS systems
are spoofing attacks. These are attacks where an adversary sends a false signal
to the receiver. If the false signal is strong enough to overshadow the real signal,
the receiver mistakes to accept it as real and provides the user with wrong
location data. For a real-life example of such an attack believed to be performed
by the Russian government see [45].

We evaluated the security of Galileo’s authentication service. This evaluation
resulted in a set of recommended security parameters given in Section 6.1.8.

6.1.1 The TESLA-based GALILEO System

The Timed Efficient Stream Loss-tolerant Authentication (TESLA) scheme is
an authentication scheme for continuous data broadcasting designed by Perrig
et al. in [128]. The idea behind the scheme is to use a one-way function to create
a chain of authentication keys. The last key is then released and authenticated
off-channel. In each step, a package of data is authenticated using the previous
key in the chain, followed by the key itself. Each receiver can verify the validity
of the newly released key by first recomputing the one-way function, and then
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checking if the result matches the last valid key. Once the key is accepted as
valid, the data can be authenticated using this key.

A common method to obtain a one-way function is through a cryptographically
secure hash function. A hash function is a function taking inputs of arbitrary
length, producing an output of a fixed length n. If F (·) is a one-way function,
then a preimage attack is an attack that, given Y , finds an X such that
Y = F (X) (note that X does not have to be the same X through which Y was
generated). A cryptographically secure hash function has to satisfy, amongst
other security requirements, that the work effort required for finding a preimage
is 2n. Standardized hash functions (e.g., sha-256 and sha-3), although not
proven to be secure, are the subject of a long ongoing research, and are believed
to be so.

The TESLA variant used for the Galileo system differs from the original
scheme in several ways. The biggest difference between the schemes is that
multiple satellites disseminate keys from the same chain in every step of
Galileo, rather than just one for the original TESLA. Another difference is
that instead of using the MD5 hash function, Galileo uses sha-256 truncated
to 80–128 bits, depending on the desired security level. Finally, the input used
to generate the next key in the chain has a time dependent component, and
each chain is associated with a fixed constant α used to thwart Time-Memory
Tradeoff attacks.

In Galileo, the level of truncation for the hash function’s output determines
the key length used for authentication of the MAC data. The purpose of this
section is to analyse how different output sizes (i.e. key lengths) affect the
security of the scheme. We will consider three scenarios: an online attack,
an offline attack, and a hybrid attack between them. In the online attack,
the adversary tries to find a preimage for the last released key. In the offline
attack, the adversary has some time to prepare, hoping to observe one of their
precomputed values at the right time. In the hybrid attack, the adversary can
prepare, but only for a limited amount of time determined by the length of the
chain.

6.1.2 Preliminaries

The preimage attack is a natural attack against the TESLA key chain. If, after
a key is released, an adversary can find a preimage for that key, they can use
this value to authenticate spoofed messages. It is important to note that a
preimage can be found for any one-way function using exhaustive search, i.e.
given an output value Y , try sufficiently enough inputs until the right output is
obtained.
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We start by introducing some notation. Let n be the key length. To generate a
chain we first choose uniformly a seed key k0 in the interval [0, 2n − 1]. Further,
let f be a one-way function used for generating a key in the chain. The next key
is generated as k1 = f(k0), and successive keys ki are generated as ki = f(ki−1).
The last key in the chain is k2z . When the chain is fully generated, f(k2z) is
released and authenticated by external means. We refer to this key as the initial
KRoot.

The time domain is split into sections of length T (e.g., 10 seconds), which we
will refer to as MACK sections. During the first MACK section each Galileo
satellite authenticates the navigation data it disseminates using k2z . At the
end of this MACK section, k2z is released along with its s − 1 predecessors
k2z−1, . . . , k2z−s+1. Note that each of these keys allows to obtain k2z , and
that none of them can be used to sign further messages. To verify that the
navigation data was signed by the right key, k2z is hashed and compared against
the initial KRoot. In the next section, messages are signed using k2z−s, which
is released along with k2z−s−1, . . . , k2z−2·s+1 at the end of the MACK section.
It is up to the receiver to decide if they wish to compare the hash of k2z−s
to k2z , k2z−s+1, or to the initial KRoot. For simplicity, we will assume that
the hash of a newly disseminated key k2z−α·s is compared against k2z−α·s+1
in a single hashing step,1 and refer to the key against which the new key is
compared as the effective key and to any key that is not part of the chain in
a certain MACK section as an ineffective key. Further, we refer to a key kj ,
leading to an effective key after m hashing steps as a preimage of degree m or
as the effective key of MACK section j.

6.1.3 Preimage Analysis

Given a key ki, we can analyse its number of preimages as a binomial variable.
The first observation is that an effective key ki is part of a chain and must have
at least one preimage ipso facto. The rest of the 2n − 1 values are left to be
mapped at random by the hash function which, by definition, maps each of
them to a fixed value with probability 2−n.

For an arbitrary key ki, we get that the number of preimages can be modeled
as a binomial random variable X having

X ∼ B(2n − 1, 2−n) (6.1)
1Since any already-released key can be obtained from k2z−α·s+1, this assumption can only

help the adversary.
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Figure 6.1: A tree of chains ending in ki. Keys along the “real” chain are drawn
with a solid line, while ineffective keys are drawn with a dotted line.

with expected value µX = (2n − 1) · 2−n ≈ 1.2 For an ineffective key, the
expected number of preimages is µX . For an effective key, taking into account
the previous key in the chain, the expected number of preimages is µX + 1, i.e.,
the previous key in the chain and possibly other ineffective keys.

By induction, assume that an effective key ki has m preimages of degree m− 1.
Then, the number of preimages of degree m for ki is m+ 1. Per the assumption
that ki is an effective key, one of the m preimages of degree m− 1 is a key in
the chain leading to ki. This key has two preimages on average. Each of the
other m− 1 preimages of degree m− 1 has a single preimage on average. We
conclude that the number of preimages of degree m is 1 · (m− 1) + 2 · 1 = m+ 1.
Using (6.1) as the base case of the induction, we conclude with the following
proposition:

Proposition 2. An effective key ki has ` · s+ 1 preimages of degree ` · s, on
average.

An example for this behavior is depicted in Figure 6.1.

6.1.4 The Security Model

An important point to discuss is the type of preimage required for a spoofing
attack. Since the s keys that are released in every MACK section all contain the
same information from a cryptographic point of view, finding a preimage within
them cannot be used for an attack. In the sequel we denote the effective key by

2This may seem contradictory to [72] at first. The contradiction is resolved by noting that
the TESLA variant we investigate in this Thesis appends a timestamp to each link of the key
before inputting it to the one-way function. This ensures that a new one-way function is used
for every input.
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ki. A forgery attack of length 1 requires a single hash (i.e. ki = f(kj)), a forgery
attack of length 2 requires s + 1 hashes (i.e. ki = fs+1(kj)), and a forgery
attack of length ` · s requires (`− 1) · s+ 1 hashes (i.e. ki = f ((`−1)·s+1)(kj)).

The adversary we consider tries to keep the victim in a spoofed state during
` MACK sections of length T . Given an already released effective key ki an
attack is a chain of length (`− 1) · s+ 2 such that ki is the last key of the chain.
We consider three scenarios: an online attack, an offline attack, and a hybrid
attack and give a bound of the expected effort an adversary needs to spend to
forge a chain of length (`− 1) · s+ 2.

6.1.5 The Online Attack

In the online attack, the adversary tries to spoof messages during ` MACK
sections by targeting the latest key released. As we saw in the preimage analysis,
there are (`− 1) · s+ 2 starting points converging after (`− 1) · s+ 1 steps to a
specific effective key. In order to fully construct such a chain, (`−1) ·s+1 hashes
are required. Using a random starting point k̄i−((`−1)·s+1), the probability that
such a candidate chain ends in a specific value ki (i.e. an effective key) is
p = (`−1)·s+2

2n , when n is the key size. The expected number of starting points
that need to be checked before finding a good one is inversely proportional to
p, i.e. 1

p = 2n
(`−1)·s+2 . Given t̂ the number of hashes the adversary can execute

during a MACK section (i.e., the adversary’s computational power, measured
in units of # of hashes

MACK section length ) of length T , it takes
(`−1)·s+1

t̂
MACK sections

to generate a single chain, or

2n
(`− 1) · s+ 2 ·

(`− 1) · s+ 1
t̂

= 2n

t̂
· (`− 1) · s+ 1

(`− 1) · s+ 2 (6.2)

MACK sections to test enough starting points and find a spoofed chain of
length (` − 1) · s + 1. Note that when the spoofed chains are very short (i.e.
` · s = 1⇒ ` = s = 1), then (`−1)·s+1

(`−1)·s+2 = 0.5 which reduces (6.2) to

2n−1

t̂
. (6.3)

6.1.6 The Hybrid Attack

The online attack targets an already released key and updates the target
frequently as new effective keys are being released. The next two attacks target
a yet to be released key. In the hybrid attack, the adversary waits until the value
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α is released. As soon as it is published, the attacker starts generating chains
of length (`− 1) · s+ 2 with endpoints k0

i , . . . , k
m−1
i and stores them in a large

database. Once the target key ki is released, the adversary searches the database
for a chain with this endpoint. Since an endpoint is univocally associated to a
chain (through the α value) and a position (through the timestamp), the chains
in the database are only valid with respect to a certain MACK section. If the
target key ki is not in the database at the end of MACK section i, the database
is not reusable and the work effort spent on building it is lost.

To build the database, the adversary chooses a MACK section i, and a chain
length (`−1)·s+2 they wish to attack. They choose a starting point k̄0

i−((`−1)·s+1)
and compute its endpoint k̄0

i = f (`−1)·s+1(k0
i−((`−1)·s+1)). They store the pair

(k̄0
i , k̄

0
i−((`−1)·s+1)) in a look-up table, and repeat this process for many starting

points.

When the target key ki is finally released, the adversary searches the table to
see whether any value k̄ji = ki. If there is such a value, then its corresponding
value in the table is the beginning of a spoofed chain. As before, since a chain
of length (`− 1) · s+ 2 has (`− 1) · s+ 2 possible starting points converging
to the same endpoint, the probability to randomly select a “good” starting
point is (`−1)·s+2

2n . The analysis is similar to that of the online attack, for t̂ the
number of hashes per MACK section, it takes (`−1)·s+1

t̂
to generate a single

chain, and the time it takes to try the required 2n
(`−1)·s+2 starting points is

2n
(`−1)·s+2 ·

(`−1)·s+1
t̂

, measured in time units of length T .

This attack is a hybrid between the online attack described in the previous
section and the offline attack described in the next one. Like the online attack,
the attacker needs to know the α value of the chain being attacked. On the
other hand, similar to the offline attack, the adversary builds a database of
endpoints, and waits for the target key to be released at a future time.

6.1.7 The Offline Attack

We describe now how an adversary that does not know α can carry out a fully
offline attack. We recall that α is a random value associated with each chain
and is released close to the time when the chain enters into effect. An adversary
who is interested to start preparing before α was released, must guess α in
addition to guessing an appropriate starting point.

The probability of choosing the right α is 2−|α| and the probability to choose
a good starting point is (`−1)·s+2

2n as before. The combined probability to
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choose both α and a good starting point is therefore (`−1)·s+2
2n+|α| as the two

probabilities are independent. An adversary capable of computing t̂ hashes
per MACK section of length T needs (`−1)·s+1

t̂
MACK sections to generate a

single chain, and the time it takes to try the required 2n+|α|

(`−1)·s+2 starting points
is 2n+|α|

(`−1)·s+2 ·
(`−1)·s+1

t̂
= 2|α| · 2n

(`−1)·s+2 ·
(`−1)·s+1

t̂
, measured in time units of

length T .

6.1.8 Conclusion and Recommendations for Security Parame-
ters in GALILEO

This section derives bounds for the effort required by an adversary to attack
the Galileo/TESLA scheme. We looked into three cases: an online attack,
a hybrid attack, and an offline attack. We see that the online attack and the
hybrid attack converge to the same bound. I.e., an adversary who wants to
keep a victim in a spoofed state during ` MACK sections, with a system using a
key of n bits, where s keys are released in each time unit, and hardware capable
of hashing t̂ values during a MACK section of length T would need

2n

t̂
· (`− 1) · s+ 1

(`− 1) · s+ 2 (6.4)

MACK sections on average to find a spoofed chain using the online and hybrid
attacks. For the offline attack (6.4) becomes

2|α| · 2n

t̂
· (`− 1) · s+ 1

(`− 1) · s+ 2 . (6.5)

As of Feb. 2017 the parameters considered for Galileo were T = 10 seconds,
s = 36, n = 82. Assuming ` = 1 and t̂ = 257 we plug these values into (6.4) and
see that it would take

282

257 ·
(1− 1) · 36 + 1
(1− 1) · 36 + 2 = 224

MACK sections to find a spoofed chain of length 1, which correspond to about
5.32 years. When ` = 2, the time it takes to find a single forged chain almost
doubles to ≈ 10.33 years. For other values, see Table 6.1. We note that the
biggest step is when moving from ` = 1 to ` = 2, and that successive steps are
increasingly smaller.
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Table 6.1: A table describing the average length in years for spoofing a single
chain for the adversarial effort considered in Section 6.1.8 (i.e., s = 36, n = 82,
and t̂ = 257).

` Years
1 5.32
2 10.33
3 10.48
4 10.53
5 10.56
6 10.57
7 10.59
8 10.59
9 10.60

As on Nov. 2016, the hardware cost for 246.51 hashes per 10 seconds is about
1,600-4,550 US$ [33], putting the hardware cost alone between 2,000,000–
6,500,000 US$ for ` = 1 and double that number for larger `. Further costs
include energy consumption, cooling costs, and sufficient and efficient storage
devices for the hybrid and offline attacks. This puts the attack way beyond the
reach of most reasonable adversaries.

Note that extending the key by a single bit requires the adversary to double its
efforts to maintain the same success rate. I.e., once the system is switched to
83-bit keys, the same hardware will be able to attack the system within 10–20
years, instead of 5–10. Alternatively, the cost of attacking the system within
5–10 years is doubled to 4,000,000–13,000,000 US$.

It is important to point out that the cryptoperiod of the chain (i.e., its
length) does not play a role in the success rate analysis, as all it does
is to slightly delay the adversary by limiting the length of the chains they can
spoof, thus putting an upper bound on (`− 1) · s+ 1. For reasonable values of `
and s we get (`−1)·s+1

(`−1)·s+2 ≈ 1, which is already covered by (6.3). Therefore, once
a certain level of confidence is decided, we recommend using (6.3) for choosing
the key size.

The place where the cryptoperiod of the chain does play a role is in disaster
mitigation. As can be seen in Table 6.1, when ` grows, the expected effort (in
years) required for a successful attack is ≈ 10.6, independently of the length
of `. Setting the cryptoperiod of the chain to a certain length puts an upper
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bound on `. In other words, Table 6.1 shows that it takes about the same
effort for the adversary to spoof a day’s worth of chain as it is to spoof a year’s
worth. Replacing the chain periodically ensures that even if a spoof occurred,
the attack is valid at most until the chain is replaced.

6.2 Security Model for Sections 6.3–6.5

Before we move to Sections 6.3–6.5 we recall some required notation and present
new ones. Throughout the rest of this chapter, n ≥ 1 denotes the state size.
By ⊕ we denote the exclusive-or (XOR) operation, and by ⊗ or · finite field
multiplication over 2n. Concatenation is denoted using ‖. Denote by {0, 1}∗
the set of binary strings of arbitrary length and by {0, 1}n the set of strings
of size n. Denote by ({0, 1}n)+ the set of strings of length a positive multiple
of n. For an arbitrary string X, |X| denotes its length, and 〈|X|〉n denotes its
encoding in n ≥ 1 bits. By leftn(X) (resp. rightn(X)) we denote its n leftmost
(resp. rightmost) bits. We use little-endian notation, which means the three
notations “bit position 0”, “the rightmost bit”, and “the least significant bit”
all refer to the same bit.

6.2.1 Authenticated Encryption

Let Π = (E,D) be an authenticated encryption scheme with associated data
(AEAD), where

E : (K,N,A,M) 7→ (C, T ) and

D : (K,N,A,C, T ) 7→M/⊥

are the encryption and decryption functions of Π. Let $ be a random function
that returns (C, T ) $←− {0, 1}|M | × {0, 1}τ on every new tuple (N,A,M). In
other words, E and $ have the same interface, but the latter outputs a uniformly
drawn ciphertext and tag for every new input.

An adversary A is a probabilistic algorithm that has access to one or more oracles
O, denoted AO. By AO = 1 we denote the event that A, after interacting with
O, outputs 1. In below games, the adversaries have oracle access to EK or its
counterpart $, and possibly DK . The key K is uniformly drawn from {0, 1}k at
the beginning of the security experiment. We say that A is nonce-respecting
(nr) if it never queries its encryption oracle under the same nonce twice, and
nonce-misusing (nm) if it is allowed to make multiple encryption queries with
the same nonce. The security definitions below follow [5,23–25,73,84,90,91].
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We define the advantage of A in breaking the confidentiality of Π as follows:

Advconf
Π (A) =

∣∣∣Pr
(
K

$←− {0, 1}k , AEK = 1
)
−Pr

(
A$ = 1

)∣∣∣ .
For n ∈ {nr, nm}, we denote by Advconf

Π (n, q, `, σ, t) the maximum advantage
over all n-adversaries that make at most q queries, each of length at most `
message blocks and together of length at most σ message blocks, and that run
in time t.

For integrity, we consider an adversary that tries to forge a ciphertext, which
means that DK returns a valid message (other than ⊥) on input (N,A,C, T )
and no previous encryption query EK(N,A,M) = ENK(A,M) returned (C, T )
for any M . Formally:

Advint
Π (A) = Pr

(
K

$←− {0, 1}k , AEK ,DK forges
)
.

For n ∈ {nr, nm}, we denote by Advint
Π (n, qE, qD, `, σ, t) the maximum advantage

over all n-adversaries that make at most qE encryption and qD decryption
queries, each of length at most ` message blocks and together of length at most
σ message blocks, and that run in time t. We remark that the nonce-respecting
condition only applies to encryption queries: the adversary is always allowed
to make decryption queries for “old” nonces, and to make an encryption query
using a nonce which is already used in a decryption query before.

6.2.2 Separated AE Schemes

Following the RUP-model [4], we focus in Section 6.5 on designing separated
AE schemes, where the decryption algorithm is split into plaintext computation
and verification algorithms, to ensure that the decryption algorithm does not
“hide” weaknesses behind the error symbol. Furthermore, our construction
will communicate nonces in-band, meaning it will encrypt them and consider
them as part of the ciphertext. As a result, the nonce no longer needs to be
synchronized or communicated explicitly, as sufficient information is contained
in the ciphertext. This changes the syntax slightly from that of Section 6.2.1,
since now the decryption and verification algorithms no longer accept an explicit
nonce input.
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Formally, a separated AE scheme which communicates nonces in-band is a triplet
of functions—encryption SEnc, decryption SDec, and verification SVer—where

SEnc : (K,N,M) 7→ C , (6.6)

SDec : (K,C) 7→ M , (6.7)

SVer : (K,C) 7→ {⊥,>} , (6.8)

with K the keys, N the nonces, M the messages, and C the ciphertexts. Recall that
the symbols > and ⊥ represent success and failure of verification, respectively,
and we assume that neither are elements of M. It must be the case that for all
K ∈ K, N ∈ N, and M ∈ M,

SDecK(SEncNK(M)) = M and SVerK(SEncNK(M)) = > . (6.9)

From a separated AE scheme (SEnc,SDec,SVer) one can reconstruct the
following conventional AE scheme (E,D):

ENK(M) := SEncNK(M) (6.10)

DK(C) :=
{
M = SDecK(C) if SVerK(C) = >
⊥ otherwise ,

(6.11)

where we assume that the AE scheme communicates nonces in-band as well.

Separated AE schemes must provide both chosen-ciphertext confidentiality and
authenticity. Both of these security aspects are captured in the RUPAE measure
of Barwell, Page, and Stam [19]. We adopt a stronger version of their definition,
by requiring from the decryption algorithm to look “random” as well. Let Π
denote a separated AE scheme (SEnc,SDec,SVer), then the RUPAE-advantage
of adversary A against Π is

RUPAEΠ(A) := ∆
A

(SEncK ,SDecK ,SVerK ; $SEnc, $SDec,⊥) , (6.12)

where A is nonce-respecting, meaning the same nonce is never queried twice to
SEnc, and

∆
A

(α ; β) = |Pr[Aα = 1]− Pr[Aβ = 1]|.

Nonces may be repeated with SDec and SVer. Furthermore, A cannot use the
output of an ON1 query (i.e., a query to the first oracle in the tuple) as the
input to an ON2 or ON3 query with the same nonce N , otherwise such queries
result in trivial wins.
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6.2.3 Encryption Schemes

An encryption scheme (Enc,Dec) is a separated AE scheme without SVer.
The basic security requirement for encryption schemes is chosen-plaintext
confidentiality, but this is not sufficient for our purpose. In particular, a
mode like CBC [120] will not work, since during decryption a change in the
nonce will only affect the first decrypted plaintext block. What we need are
encryption schemes where during decryption a change in the nonce will result
in the entire plaintext changing. Modes such as CTR [120], OFB [120], and
the encryption of OCB [102,138,139] suffice. In particular, it is necessary that
both encryption and decryption algorithms give uniform random output when
distinct nonces are input across both encryption and decryption. For example,
with CTR mode, decryption is the same as encryption, and if nonces are never
repeated across both algorithms then its output will always look uniformly
random.

We use Shrimpton and Terashima’s [151] SRND measure for encryption schemes,
which was introduced by Halevi and Rogaway [78]:

SRND(A) := ∆
A

(EncK ,DecK ; $Enc, $Dec) , (6.13)

where K is chosen uniformly at random from K, and A must use a different
nonce for every query it makes, to both of its oracles.

6.2.4 Tweakable Block Ciphers

A tweakable block cipher [108] is a pair of functions (E,D), with

E : (K,T,X) 7→ X (6.14)

D : (K,T,X) 7→ X , (6.15)

where K is the key space, T the tweak space, and X the domain, where X = {0, 1}x
is a set of strings of a particular length. For all K ∈ K and T ∈ T it must be
the case that ETK is a permutation with DTK as inverse. We will need to measure
the SPRP quality of the tweakable block cipher, which is defined as

SPRP(A) := ∆
A

(
EK ,DK ; π, π−1) , (6.16)

where K is chosen uniformly at random from K, and (π, π−1) is a family of
independent, uniformly distributed random permutations over X indexed by T.

Although Liskov, Rivest, and Wagner [108] introduced the concept of finite-
tweak-length (FTL) block ciphers, for our construction we need tweakable block
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ciphers that can process variable tweak lengths (VTL). Starting from an FTL
block cipher, one can construct a VTL block cipher by compressing the tweak
using a universal hash function, and using the resulting output as the tweak
for the FTL block cipher, as explained by Coron et al. [55]. Minematsu and
Iwata [117] introduce the XTX construction which extends the tweak length
while minimizing security loss.

There are a few dedicated constructions of FTL block ciphers: the hash
function SKEIN [71] contains an underlying tweakable block cipher, the CAESAR
competition candidates Joltik [87] and Deoxys [86] also developed new tweakable
block ciphers, and the TWEAKEY framework [85] tackles the problem of
designing tweakable block ciphers in general. Besides dedicated constructions,
there are also constructions of tweakable block ciphers using regular block
ciphers; see for example Rogaway’s XE and XEX constructions [138],
Minematsu’s beyond-birthday-bound construction [116], Landecker, Shrimpton,
and Terashima’s CLRW2 construction [104], and Mennink’s beyond-birthday-
bound constructions [113].

6.2.5 (Tweakable) Keyed Compression Functions

Let F : {0, 1}k ×{0, 1}n+m → {0, 1}n be a keyed compression function. Denote
by Func({0, 1}n+m, {0, 1}n) the set of all compression functions from n+m to
n bits. We define the PRF security of F as

Advprf
F (A) =

∣∣∣∣∣∣
Pr
(
K

$←− {0, 1}k , AFK = 1
)
−

Pr
(
R

$←− Func({0, 1}n+m, {0, 1}n) , AR = 1
)
∣∣∣∣∣∣ .

We denote by Advprf
F (q, t) the maximum advantage over all adversaries that

make at most q queries and that run in time t.

A tweakable keyed compression function F̃ : {0, 1}k × T × {0, 1}n+m → {0, 1}n
takes as additional input a tweak t ∈ T . Denote by F̃unc(T , {0, 1}n+m, {0, 1}n)
the set of all tweakable compression functions from n+m to n bits, where the
tweak inputs come from T . Formally, a tweakable keyed compression function
is equivalent to a keyed compression function with a larger input, but for our
analysis it is more convenient to adopt a dedicated notation. We define the
tweakable PRF (P̃RF) security of F̃ as

Advp̃rf
F̃

(A) =

∣∣∣∣∣∣
Pr
(
K

$←− {0, 1}k , AF̃K = 1
)
−

Pr
(
R̃

$←− F̃unc(T , {0, 1}n+m, {0, 1}n) , AR̃ = 1
)
∣∣∣∣∣∣ .
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We denote by Advp̃rf
F (q, t) the maximum advantage over all adversaries that

make at most q queries and that run in time t.

6.3 SPOED

Using the security model from the previous section we now introduce the
authenticated encryption scheme Spoed with the motivation of generalizing
and simplifying p-omd. As a bonus, the simplification allows for a better bound
and a significantly shorter proof, making the scheme less susceptible to mistakes
hiding in one of the lemmata.

6.3.1 Syntax

Let k, n, τ ∈ N such that τ ≤ n. Here and throughout, we assume Spoed
to process blocks of m = n bits. However, the results easily generalize to
arbitrary (but fixed) block sizes. Let F : {0, 1}k × {0, 1}2n → {0, 1}n be a
keyed compression function. Spoed consists of an encryption function E and a
decryption function D.

– The encryption function E takes as input a key K ∈ {0, 1}k, a nonce N ∈
{0, 1}n, an arbitrarily sized associated data A ∈ {0, 1}∗, and an arbitrarily
sized message M ∈ {0, 1}∗. It returns a ciphertext C ∈ {0, 1}|M | and a
tag T ∈ {0, 1}τ ;

– The decryption function D takes as input a key K ∈ {0, 1}k, a nonce
N ∈ {0, 1}n, an arbitrarily sized associated data A ∈ {0, 1}∗, an arbitrarily
sized ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}τ . It returns either a
message M ∈ {0, 1}|C| such that M satisfies E(K,N,A,M) = (C, T ) or a
dedicated failure sign ⊥.

The encryption and decryption functions are required to satisfy

D(K,N,A,E(K,N,A,M)) = M

for any K,N,A,M .
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Figure 6.2: Spoed encryption, which outputs C = left|M |(C1‖ · · · ‖C`−1) and
T . Here, L = FK(N‖0).

6.3.2 Data Processing

Spoed is designed with the sha-256 and sha-512 compression functions in
mind as an underlying primitive. sha-256 is a compression function

sha-256 : {0, 1}256 × {0, 1}512 → {0, 1}256 .

Similarly, sha-512 is a compression function

sha-512 : {0, 1}512 × {0, 1}1024 → {0, 1}512.

In the sequel, we will define Spoed using sha-256, or in other words use a
keyed compression function

FK(Z) = sha-256(K,Z) ,

where K is injected through the chaining value interface, and the block is
injected through the message interface. Note that this implicitly means that we
take k = n = 256. We nevertheless continue to use k and n for clarity. Also
note that Spoed can be equivalently designed using the sha-512 compression
function, but a proper change to the sizes of the words should be introduced.

We now informally describe how to use Spoed, and refer the reader to
Algorithms 6.1–6.2 for a formal specification. Define L = FK(N‖0). First,
the associated data and message are padded into

(Z1, . . . , Z`) = GPADn,τ (A,M) ,

where GPADn,τ is defined in Appendix A and each Zi is a (2n = 512)-bit block
consisting of two blocks Zi = Z0

i ‖ Z1
i of size 256 bits each. Spoed reads all

blocks but the last one sequentially and processes them by

ti = FK(ti−1 ⊕ 2iL⊕ Z0
i ‖ Z1

i ) ,
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where t0 = 0n. The ciphertext block Ci is generated as Ci = ti ⊕Mi, truncated
to the appropriate length ifMi does not contain an integral number of n message
bits. The last block Z` contains the lengths of the message and the associated
data and is processed through

t` = FK(t`−1 ⊕ 2`3L⊕ Z0
` ‖ Z1

` ) .

The tag T is generated by removing the leftmost 256-τ bits of t`. Spoed is
depicted in Figure 6.2.

Decryption goes fairly the same way: a ti and a Ci value are used to recover
Mi, and the state is set to Ci. This eventually leads to a verification tag T ′,
and the message M is released if T = T ′.

Algorithm 6.1 Spoed encryption
E
Input: (K,N,A,M)
Output: (C, T )
1: (Z1, . . . , Z`) =

GPADn,τ (A,M)
2: m = d|M |/ne
3: L = FK(N‖0)
4: t0 = 0n
5: for i = 1, . . . , `− 1 do
6: ti = FK(ti−1⊕2iL⊕Z0

i ‖ Z1
i )

7: Ci = ti ⊕ Z0
i+1

8: end for
9: t` = FK(t`−1⊕ 2`3L⊕Z0

` ‖ Z1
` )

10: C = left|M |(C1‖ · · · ‖C`−1)
11: T = leftτ (t`)
12: Return (C, T )

Algorithm 6.2 Spoed decryption D
Input: (K,N,A,C, T )
Output: M or ⊥
1: (Z1, . . . , Z`) = GPADn,τ (A,C)
2: m = d|C|/ne , ρ = |C| mod n
3: L = FK(N‖0)
4: t0 = 0n , M0 = Z0

1
5: for i = 1, . . . , `− 1 do
6: ti = FK(ti−1 ⊕ 2iL⊕Mi−1 ‖ Z1

i )
7: if i < m then Mi = ti ⊕ Z0

i+1
8: if i = m then Mi = leftρ(ti) ⊕
Z0
i+1

9: if i > m then Mi = Z0
i+1

10: end for
11: t` = FK(t`−1 ⊕ 2`3L⊕ Z0

` ‖ Z1
` )

12: M = left|C|(M1‖ · · · ‖M`−1)
13: T ′ = leftτ (t`)
14: Return T = T ′ ? M : ⊥

6.3.3 Security of SPOED

Spoed achieves confidentiality and integrity against nonce-respecting adver-
saries. Note that we do not claim security against nonce-misusing adversaries.
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Theorem 6. We have

Advconf
Spoed(nr, q, `, σ, t) ≤ 1.5σ2

2n + Advprf
F (2σ, t′) ,

Advint
Spoed(nr, qE, qD, `, σ, t) ≤

1.5σ2

2n + `qD
2n + qD

2τ + Advprf
F (2σ, t′) ,

where t′ ≈ t.

These bounds, surprisingly, improve over the ones of p-omd, but with a much
shorter proof. The proof itself is given below. It relies on a preliminary result
on a tweakable keyed compression function, which is in fact an abstraction of
the XE tweakable block cipher [138] to compression functions, and has also
been used for omd [53] and p-omd [134,136], albeit with a worse bound.

Lemma 13. Let F : {0, 1}k × {0, 1}2n → {0, 1}n be a keyed compression
function. Let T = [1, 2n/2] × [0, 1] × {0, 1}n, and define F̃ : {0, 1}k × T ×
{0, 1}2n → {0, 1}n as

F̃ (K, (α, β,N), S) = F (K, (2α3β · FK(N‖0) ‖ 0n)⊕ S) . (6.17)

Then, we have

Advp̃rf
F̃

(q, t) ≤ 1.5q2

2n + Advprf
F (2q, t′) ,

where t′ ≈ t.

Proof. The proof is performed using the H-coefficient technique [50, 127]. It
closely follows the proof of [76, Thm. 2]; the only significant differences appear
in the fact that the underlying primitive is a one-way function instead of
a permutation, and hence some bad events do not need to be considered.
Specifically, in the terminology of [76, Thm. 2], the events bad1,2 and bad2,K
are inapplicable (as the adversary has no access to the underlying primitive),
and for the events bad1,1, bad1,K , and badK,K , we only have to consider input
collisions to the primitives. Checking the corresponding bounds reveals a term
1.5q2/2n.

As a first step, we replace the evaluations of FK for K $←− {0, 1}k by a random
function R : {0, 1}2n → {0, 1}n. As every evaluation of F̃ renders at most 2
evaluations of FK , this step induces a penalty of Advprf

F (2q, t′), where t′ ≈ t,
and allows us to consider

F̃ : ((α, β,N), S) 7→ R((2α3β ·R(N‖0) ‖ 0n)⊕ S) , (6.18)
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based on R
$←− Func({0, 1}2n, {0, 1}n). As we have replaced the underlying

function F by a secret random primitive, we can focus on adversaries with
unbounded computational power, and consider them to be information theoretic.
Without loss of generality, any such adversary is deterministic. For the remainder
of the analysis, consider any fixed deterministic adversary A. Without loss of
generality, we assume that A does not repeat any queries.

Let R
$←− Func({0, 1}2n, {0, 1}n) and R̃

$←− F̃unc(T , {0, 1}2n, {0, 1}n) and
consider any fixed deterministic adversary A. In the real world, A has access
to F̃ of (6.18), while in the ideal world it has access to R̃, and its goal is to
distinguish both worlds. It makes q queries to the oracle, which are summarized
in a view

νF = {(α1, β1, N1, S1, T1), . . . , (αq, βq, Nq, Sq, Tq)} .

Note that, as A is deterministic, this view νF properly summarizes the
interaction with the oracle. To suit the analysis, we will provide A with
additional information after its interaction with its oracle. In more detail, it
is given a subkey transcript νL that includes the computations of R(N‖0) for
all N ∈ {N1, . . . , Nq}. As the latter set may include duplicates, i.e., it may be
that Ni = Nj for some i 6= j, the formalism of νL requires further notation
{M1, . . . ,Mr} that is a minimal set that includes N1, . . . , Nq. Then, after the
interaction of A with its oracle, we reveal

νL = {(M1, L1), . . . , (Mr, Lr)} ,

In the real world the values L1, . . . , Lr are defined as Li = R(Mi‖0), while in the
ideal world, these values are randomly generated dummy subkeys Li

$←− {0, 1}n.
Clearly, the disclosure of νL is without loss of generality as it only increases
the adversary’s chances. The complete view is defined as ν = (νF , νL). It is
important to note that, as A never repeats queries, νF does not contain any
duplicate elements and neither does νL, by minimality of the set {M1, . . . ,Mr}.

H-Coefficient Technique. For brevity, denote A’s distinguishing advantage
by ∆A(F̃ ; R̃). Denote by X

F̃
the probability distribution of views when A is

interacting with F̃ and by X
R̃
the probability distribution of views when A is

interacting with R̃. Let V be the set of all attainable views i.e., those views
that can be generated from R̃ with non-zero probability. Let V = Vgood ∪ Vbad
be a partition of the set of attainable views. The H-coefficient technique states
the following. Let 0 ≤ ε ≤ 1 be such that for all ν ∈ Vgood we have

Pr[X
F̃

= ν]
Pr[X

R̃
= ν] ≥ 1− ε .
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Then, the distinguishing advantage of A satisfies

∆A(F̃ ; R̃) ≤ ε+ Pr[X
R̃
∈ Vbad] . (6.19)

We refer to [49] for a proof.

Bad Transcripts. Note that every tuple in νF uniquely fixes a subkey in νL
and therewith uniquely fixes one evaluation R(s) = t. On the other hand, the
evaluations in νL represent evaluations of R themselves. Informally, we will
consider a transcript as bad if there exist two different tuples that have the
same input to R. Formally, we say that a view ν is bad if it satisfies one of the
following conditions:

Bad1. There exist (α, β,N, S, T ) ∈ νF and (N,L), (M∗, L∗) ∈ νL such that:

(2α3β · L ‖ 0n)⊕ S = M∗ ‖ 0n ;

Bad2. There exist distinct (α, β,N, S, T ), (α∗, β∗, N∗, S∗, T ∗) ∈ νF and (not
necessarily distinct) (N,L), (N∗, L∗) ∈ νL such that:

(2α3β · L ‖ 0n)⊕ S = (2α
∗
3β
∗
· L∗ ‖ 0n)⊕ S∗ .

Probability of Bad Transcripts. Consider a view ν in the ideal world R̃.
We will consider both bad events separately.

Bad1. Consider any query (α, β,N, S, T ) ∈ νF with corresponding subkey
(N,L) ∈ νL, and let (M∗, L∗) ∈ νL (q2 choices in total). The queries
render a bad view if

2α3β · L = S0 ⊕M∗ .

As in the ideal world L $←− {0, 1}n, this equation is satisfied with probability
2−n. Summing over all possible choices of queries, Bad1 is satisfied with
probability at most q2/2n;

Bad2. Consider any distinct (α, β,N, S, T ), (α∗, β∗, N∗, S∗, T ∗) ∈ νF with
corresponding (N,L), (N∗, L∗) ∈ νL (

(
q
2
)
choices in total). The queries

render a bad view if

2α3β · L⊕ S0 = 2α
∗
3β
∗
· L∗ ⊕ S∗0 ∧ S1 = S∗1 .

Clearly, if N 6= N∗, then L $←− {0, 1}n is generated independently of the
remaining values, and the first part of the condition holds with probability
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1/2n. Similar for the case where N = N∗ but 2α3β 6= 2α∗3β∗ . On
the other hand, if N = N∗ and 2α3β = 2α∗3β∗ , we necessarily have
(N,α, β) = (N∗, α∗, β∗) (due to the non-colliding property of 2α3β). As
the two queries in νF are distinct, we have S 6= S∗, making above condition
false. Concluding, Bad2 is satisfied with probability at most

(
q
2
)
/2n.

We thus obtained that Pr[X
R̃
∈ Vbad] ≤ 1.5q2/2n.

Good Transcripts. Consider a good view ν. Denote by Ω
F̃

the set of all
possible oracles in the real world and by comp

F̃
(ν) ⊆ Ω

F̃
the set of oracles

compatible with view ν. Define Ω
R̃
and comp

R̃
(ν) similarly. The probabilities

Pr[X
F̃

= ν] and Pr[X
R̃

= ν] can be computed as follows:

Pr[X
F̃

= ν] =
|comp

F̃
(ν)|

|Ω
F̃
|

and Pr[X
R̃

= ν] =
|comp

R̃
(ν)|

|Ω
R̃
|

.

Note that |Ω
F̃
| = (2n)22n and |Ω

R̃
| = (2n)|T |+22n · (2n)r (taking into account

that in the ideal world ν contains r dummy subkeys). The computation of the
number of compatible oracles is a bit more technical. Starting with comp

F̃
(ν), as

ν is a good view, every tuple in ν represents exactly one evaluation of R, q+r in
total, and hence the number of functions R compatible with ν is |comp

F̃
(ν)| =

(2n)22n−(q+r). Next, for comp
R̃

(ν), the tuples in νF all define exactly one
evaluation of R̃, q in total, and νL fixes all dummy keys. Therefore, the number
of compatible oracles in the ideal world is |comp

R̃
(ν)| = (2n)|T |+22n−q. We

consequently obtain

Pr[X
F̃

= ν]
Pr[X

R̃
= ν] =

|comp
F̃

(ν)| · |Ω
R̃
|

|Ω
F̃
| · |comp

R̃
(ν)| = (2n)22n−(q+r) · (2n)|T |+22n · (2n)r

(2n)22n · (2n)|T |+22n−q = 1 ,

putting ε = 0.

The proof is concluded via (6.19) and above computations.

Note that p-omd uses tweaks of the form 2α, while we use 2α3β . This is not a
problem as long as the offsets are unique [138] (i.e., there is no (α, β) 6= (α′, β′)
such that 2α3β = 2α′3β′). For the case of n = 128, Rogaway [138] proved—via
the computation of discrete logarithms—that the tweak domain [1, 2n/2]× [0, 1]
works properly, but this result is inadequate for our purposes as we use a
compression function with n ∈ {256, 512}. Granger et al. [76] recently computed
discrete logarithms for n ≤ 1024, therewith confirming properness of the tweak
set domain. Note that the tweak sets computed in [76,138] commonly exclude
the all-zero tweak (α, β) = (0, 0) because it is a representative of 1 and hence
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problematic for XEX: see also [138, Sect. 6] and [115, Sect. 4]. Because F is
a one-way function, its security analysis follows the one of XE, and this issue
does not apply.

Also from an efficiency point of view, there is a difference between the masking
of F̃ in p-omd and in Spoed. In more detail, p-omd uses the Gray code
masking (also used in OCB1 and OCB3) while for Spoed we have opted to
describe it with powering-up (used in OCB2 and in various CAESAR candidates).
Krovetz and Rogaway demonstrated that Gray codes are more efficient than
powering-up [101], but on the downside they require more precomputation.
Granger et al. [76] revisited the principle of masking of tweakable blockciphers,
and presented a masking technique based on word-based linear feedback shift
registers that improves over both Gray codes and powering-up in terms of
efficiency and simplicity. The new masking technique can be implemented with
Spoed with no sacrifice in security (and the result of Lemma 13 still applies).

Proof of Theorem 6

Let K ∈ {0, 1}k. Note that all evaluations of FK are done in a tweakable
manner, namely via (6.17). We replace these tweakable evaluations of FK
by a random tweakable compression function R̃

$←− F̃unc([1, 2n/2] × [0, 1] ×
{0, 1}n, {0, 1}2n, {0, 1}n). Note that for both confidentiality and integrity, the
underlying F̃K is invoked at most σ times. In other words, this step induces a
penalty of (cf. Lemma 13)

Advp̃rf
F̃

(σ, t) ≤ 1.5σ2

2n + Advprf
F (2σ, t′) ,

where t′ ≈ t. This step leads to an idealized version of Spoed, called IdSpoed.
IdSpoed is depicted in Figure 6.3. Concretely, we have obtained that

Advconf
Spoed(nr, q, `, σ, t) ≤ Advconf

IdSpoed(nr, q, `, σ) + 1.5σ2

2n

+ Advprf
F (2σ, t′) ,

Advint
Spoed(nr, qE, qD, `, σ, t) ≤ Advint

IdSpoed(nr, qE, qD, `, σ) + 1.5σ2

2n

+ Advprf
F (2σ, t′) ,

where t dropped out of the advantage function for IdSpoed because it has
become irrelevant (formally, we proceed by considering an adversary that is
unbounded in time). We prove in Lemma 14 that its confidentiality security
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Figure 6.3: IdSpoed encryption, which outputs C = left|M |(C1‖ · · · ‖C`−1) and
T .

satisfies Advconf
IdSpoed(nr, q, `, σ) = 0, and in Lemma 15 that it provides integrity

up to bound Advint
IdSpoed(nr, qE, qD, `, σ) ≤ `qD

2n + qD
2τ .

Lemma 14. The advantage of any nonce-respecting adversary trying to break
the confidentiality of IdSpoed is bounded as:

Advconf
IdSpoed(nr, q, `, σ) = 0 .

Proof. The functions R̃Ni,j for i = 1, . . . , ` − 1, j = 0, 1, and N ∈ {0, 1}n
are independently and randomly distributed compression functions. As the
adversary is assumed to be nonce-respecting, every nonce is used at most once.
Every nonce is used in at most ` calls to R̃, but these calls are by design all for
different tweaks (i, j) ∈ [1, 2n/2]× [0, 1]. Therefore, all responses are randomly
generated from {0, 1}n, and all ciphertext blocks and tag values are perfectly
random.

Lemma 15. The advantage of any nonce-respecting adversary trying to break
the integrity of IdSpoed is bounded as:

Advint
IdSpoed(nr, qE, qD, `, σ) ≤ `qD

2n + qD
2τ .

Proof. Assume that A has made encryption queries (N j , Aj ,M j) for j =
1, . . . , qE, and denote the ciphertexts and tags by (Cj , T j). Write (Zj1 , . . . , Z

j
`j ) =

GPADn,τ (Aj ,M j) and denote the in- and outputs of the random functions by
(sji , t

j
i ) for i = 1, . . . , `j .

Consider any forgery attempt (N,A,C, T ), and denote its length by `. Denote
the message computed upon decryption by M . Refer to the state values as
(si, ti) for i = 1, . . . , `, and write (Z1, . . . , Z`) = GPADn,τ (A,M). The forgery
is successful if T = leftτ (t`).
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Denote by col the event that there exists an encryption query j with N j = N ,
`j = `, and an index i ∈ {1, . . . , `}, such that

tji−1 ⊕ Z
0j
i ‖ Z

1j
i 6= ti−1 ⊕ Z0

i ‖ Z1
i ∧ tji = ti .

Note that, as the adversary is nonce-respecting, there is at most one query j
with N j = N . We have, using shorthand notation [i = `] for 0 if i 6= ` and 1 if
i = `,

Pr[col] ≤
∑̀
i=1

Pr[sji 6= si ∧ R̃Ni,[i=`](s
j
i ) = R̃Ni,[i=`](si)] ≤

`

2n . (6.20)

We make the following case distinction:

(i) N /∈ {N1, . . . , NqE}. This particularly means that R̃ has never been
queried for tweak (`, 1, N), and thus that R̃N`,1 responds with t`

$←− {0, 1}n.
The forgery is successful with probability 2−τ ;

(ii) N = N j for some (unique) j. As the different evaluations of IdSpoed
for different tweaks are independent, it suffices to focus on these two
construction queries (the j-th encryption query and the forgery). We
proceed with a further case distinction:

– ` 6= `j . This, again, means that R̃ has never been queried for tweak
(`, 1, N). The forgery is successful with probability 2−τ ;

– ` = `j . We proceed with a further case distinction:
– s` 6= sj`j . In this case, R̃ has been queried before for tweak

(`, 1, N), but only once (as the adversary must be nonce-
respecting) and never on input s`. Consequently, the response
t` is uniformly drawn from {0, 1}n and the forgery is successful
with probability 2−τ ;

– s` = sj`j . As the forgery must be different from the encryption
queries, and as GPADn,τ is an injective mapping, this case implies
the existence of a non-trivial state collision. Hence, the forgery
is successful with probability at most Pr[col].

Concluding, the forgery is successful with probability at most Pr[col] + 2−τ ,
where Pr[col] is bounded in (6.20). A summation over all qD forgery attempts
(cf. [22]) gives our final bound.
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Figure 6.4: Spoednic encryption, which outputs C = left|M |(C1‖ · · · ‖C`−1)
and T . Here, L = FK(N‖0) and L′ = FK(N‖1).

6.4 SPOEDNIC

Spoed is simpler and more efficient than p-omd, but it also falls victim to
nonce-misuse attacks. In this section, we introduce Spoednic, a strengthened
version of Spoed that retains some level of security if the nonce is reused. As a
matter of fact, Spoednic differs from Spoed in (and only in) the fact that it
uses an additional subkey L′ = FK(N‖1) to blind the input values Z0

i . More
formally, Spoednic inherits the syntax and generalized padding from Spoed
(see Section 6.3.1 and Appendix A). The data processing is fairly similar to
that of Spoed (Section 6.3.2); we only present the depiction in Figure 6.4
and the formal description in Algorithms 6.3–6.4. Both algorithms differ from
Algorithms 6.1–6.2 only in lines 3 and 6. Spoednic boils down to Spoed
(Figure 6.2) when setting L′ = 1 instead of L′ = FK(N‖1).
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Algorithm 6.3 Spoednic encryption
E
Input: (K,N,A,M)
Output: (C, T )
1: (Z1, . . . , Z`) = GPADn,τ (A,M)
2: m = d|M |/ne
3: L = FK(N‖0), L′ = FK(N‖1)
4: t0 = 0n
5: for i = 1, . . . , `− 1 do
6: ti = FK(ti−1 ⊕ 2iL⊕ (Z0

i ·L′) ‖
Z1
i )

7: Ci = ti ⊕ Z0
i+1

8: end for
9: t` = FK(t`−1 ⊕ 2`3L⊕ Z0

` ‖ Z1
` )

10: C = left|M |(C1‖ · · · ‖C`−1)
11: T = leftτ (t`)
12: Return (C, T )

Algorithm 6.4 Spoednic decryption D
Input: (K,N,A,C, T )
Output: M or ⊥
1: (Z1, . . . , Z`) = GPADn,τ (A,C)
2: m = d|C|/ne , ρ = |C| mod n
3: L = FK(N‖0), L′ = FK(N‖1)
4: t0 = 0n , M0 = Z0

1
5: for i = 1, . . . , `− 1 do
6: ti = FK(ti−1⊕ 2iL⊕ (Mi−1 ·L′) ‖
Z1
i )

7: if i < m then Mi = ti ⊕ Z0
i+1

8: if i = m then Mi = leftρ(ti) ⊕
Z0
i+1

9: if i > m then Mi = Z0
i+1

10: end for
11: t` = FK(t`−1 ⊕ 2`3L⊕ Z0

` ‖ Z1
` )

12: M = left|C|(M1‖ · · · ‖M`−1)
13: T ′ = leftτ (t`)
14: Return T = T ′ ? M : ⊥

6.4.1 Security of SPOEDNIC

We prove that Spoednic achieves confidentiality against nonce-respecting
adversaries and integrity against both nonce-respecting and nonce-misusing
adversaries. Note that we do not claim confidentiality against nonce-misusing
adversaries.
Theorem 7. We have

Advconf
Spoednic(nr, q, `, σ, t) ≤ 1.5σ2

2n + Advprf
F (3σ, t′) ,

Advint
Spoednic(nr, qE, qD, `, σ, t) ≤

1.5σ2

2n + `qD
2n + qD

2τ + Advprf
F (3σ, t′) ,

Advint
Spoednic(nm, qE, qD, `, σ, t) ≤

1.5σ2

2n + `q2
E/2
2n + `qEqD

2n + qD
2τ + Advprf

F (3σ, t′) ,

where t′ ≈ t.

The proof of Theorem 7 is given below. It again relies on a preliminary result
on a tweakable keyed compression function, which we now prove.
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We will use a slightly more complex version of the tweakable keyed compression
function used to prove the security of Spoed, where the masking using Z0

i · L′
is included within the function. The proof is a fairly straightforward extension
of the one for Lemma 13.
Lemma 16. Let F : {0, 1}k × {0, 1}2n → {0, 1}n be a keyed compression
function. Let T = [1, 2n/2]× [0, 1]× {0, 1}n × {0, 1}n, and define F̃ : {0, 1}k ×
T × {0, 1}2n → {0, 1}n as

F̃ (K, (α, β,A,N), S) = F (K, (2α3β · FK(N‖0)⊕A · FK(N‖1) ‖ 0n)⊕ S) .
(6.21)

Then, we have

Advp̃rf
F̃

(q, t) ≤ 1.5q2

2n + Advprf
F (3q, t′) ,

where t′ ≈ t.

Proof. The proof is a slight extension of the one for Lemma 13, where now we
have twice as many subkeys. We only sketch the major differences.

Again, the first step is the replacement of FK for K $←− {0, 1}k by a random
function R : {0, 1}2n → {0, 1}n. As every query to F̃ renders at most 3
evaluations of F , this step induces a penalty of Advprf

F (3q, t′), where t′ ≈ t, and
allows to consider
F̃ : ((α, β,A,N), S) 7→ R((2α3β ·R(N‖0)⊕A ·R(N‖1) ‖ 0n)⊕ S) , (6.22)

based on R $←− Func({0, 1}2n, {0, 1}n). Switching to an information theoretic,
deterministic, adversary A is done in the same way as in Section 6.3.3.

Let R $←− Func({0, 1}2n, {0, 1}n) and R̃ $←− F̃unc(T , {0, 1}2n, {0, 1}n). Consider
any fixed deterministic adversary A. In the real world, it has access to F̃ of
(6.22), while in the ideal world it has access to R̃, and its goal is to distinguish
both worlds. It makes q queries to the oracle, which are summarized in a view

νF = {(α1, β1, A1, N1, S1, T1), . . . , (αq, βq, Aq, Nq, Sq, Tq)} .
As an extension to the proof of Lemma 13, we now reveal to the adversary two
subkey transcripts νL and νL′ , the former captures the evaluations R(N‖0) and
the latter the evaluations R(N‖1) for all N ∈ {N1, . . . , Nq}. More formally,
let {M1, . . . ,Mr} be a minimal set that includes N1, . . . , Nq. Then, after the
interaction of A with its oracle, we reveal

νL = {(M1, L1), . . . , (Mr, Lr)} ,

νL′ = {(M1, L
′
1), . . . , (Mr, L

′
r)} .
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In the real world, the subkeys are generated as Li = R(Mi‖0) and L′i = R(Mi‖1),
while in the ideal world they are randomly generated dummy subkeys Li, L′i

$←−
{0, 1}n. The complete view is defined as ν = (νF , νL, νL′).

Bad Transcripts. Formally, we say that a view ν is bad if it satisfies one of
the following conditions:

Bad1. There exist (α, β,A,N, S, T ) ∈ νF , (N,L) ∈ νL, (N,L′) ∈ νL′ , and
(M∗, L∗) ∈ νL ∪ νL′ such that:

(2α3β · L⊕A · L′ ‖ 0n)⊕ S = M∗ ‖ 0n ∨M∗ ‖ 1n ;

Bad2. There exist distinct (α, β,A,N, S, T ), (α∗, β∗, A∗, N∗, S∗, T ∗) ∈ νF ,
(N,L), (N∗, L∗) ∈ νL, and (N,L′), (N∗, L′∗) ∈ νL′ such that:

(2α3β · L⊕A · L′ ‖ 0n)⊕ S = (2α
∗
3β
∗
· L∗ ⊕A∗ · L′∗ ‖ 0n)⊕ S∗ .

Probability of Bad Transcripts. Consider a view ν in the ideal world R̃.
We will consider both bad events separately.

Bad1. Consider any query (α, β,A,N, S, T ) ∈ νF with corresponding subkeys
(N,L) ∈ νL and (N,L′) ∈ νL′ , and let (M∗, L∗) ∈ νL ∪ νL′ . Note that
we have q choices for the query from νF , and q possible values M∗ (even
though νL ∪ νL′ may contain up to 2q tuples). The queries render a bad
view if

2α3β · L⊕A · L′ = S0 ⊕M∗ .

As in the ideal world L $←− {0, 1}n, this equation is satisfied with probability
1/2n. Summing over all possible choices of queries, Bad1 is satisfied with
probability at most q2/2n;

Bad2. Consider any distinct (α, β,A,N, S, T ), (α∗, β∗, A∗, N∗, S∗, T ∗) ∈ νF ,
(N,L), (N∗, L∗) ∈ νL, and (N,L′), (N∗, L′∗) ∈ νL′ (

(
q
2
)
choices in total).

The queries render a bad view if

2α3β · L⊕A · L′ ⊕ S0 = 2α
∗
3β
∗
· L∗ ⊕A · L′∗ ⊕ S∗0 ∧ S1 = S∗1 .

The case N 6= N∗ and the case N = N∗ but 2α3β 6= 2α∗3β∗ are
as in Lemma 13. Similarly, if N = N∗ but A 6= A∗, we can rely
on the randomness of L′ to argue that the condition is satisfied with
probability 1/2n. On the other hand, if (α, β,A,N) = (α∗, β∗, A∗, N∗),
this necessarily implies that S 6= S∗, making above condition false.
Concluding, Bad2 is satisfied with probability at most

(
q
2
)
/2n.
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We thus obtained that Pr[X
R̃
∈ Vbad] ≤ 1.5q2/2n.

Good Transcripts. The analysis is fairly identical to the one of Lemma 13,
and hence omitted.

The proof is concluded via (6.19) and above computations.

Proof of Theorem 7

Let K ∈ {0, 1}k. Note that all evaluations of FK are done in a tweakable
manner, namely via (6.21). We replace these tweakable evaluations of FK by a
random tweakable compression function R̃ $←− F̃unc([1, 2n/2]× [0, 1]× {0, 1}n ×
{0, 1}n, {0, 1}2n, {0, 1}n). Note that for both confidentiality and integrity, the
underlying F̃K is invoked at most σ times. In other words, this step induces a
penalty of (cf. Lemma 16)

Advp̃rf
F̃

(σ, t) ≤ 1.5σ2

2n + Advprf
F (3σ, t′) ,

where t′ ≈ t. This step leads to an idealized version of Spoednic, called
IdSpoednic. IdSpoednic is depicted in Figure 6.5. Concretely, we have
obtained that

Advconf
Spoednic(nr, q, `, σ, t) ≤ Advconf

IdSpoednic(nr, q, `, σ) + 1.5σ2

2n

+ Advprf
F (3σ, t′) ,

Advint
Spoednic(n, qE, qD, `, σ, t) ≤ Advint

IdSpoednic(n, qE, qD, `, σ) + 1.5σ2

2n

+ Advprf
F (3σ, t′) ,

where n ∈ {nr, nm}, and where t dropped out of the advantage function for
IdSpoednic because it has become irrelevant. The remainder of the proof
centers around this scheme. For the nonce-respecting setting, the bounds of
Lemma 14 and Lemma 15 carry over almost verbatim, with the same security
bound. We consider integrity in the nonce-misuse setting in Lemma 17 and
prove that Advint

IdSpoednic(nm, qE, qD, `, σ) ≤ `q2
E/2
2n + `qEqD

2n + qD
2τ .

Lemma 17. The advantage of any nonce-misusing adversary trying to break
the integrity of IdSpoednic is bounded as:

Advint
IdSpoed(nm, qE, qD, `, σ) ≤ `q2

E/2
2n + `qEqD

2n + qD
2τ .
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Figure 6.5: IdSpoednic encryption, which outputs C = left|M |(C1‖ · · · ‖C`−1)
and T . The boxes in R̃ indicate that Z0

i also functions as a tweak.

Proof. At a high level, the proof follows the one of Lemma 15, with the difference
that now, potentially, nonces may be the same leading to a slightly different
bound.

Assume that A has made encryption queries (N j , Aj ,M j) for j = 1, . . . , qE,
and denote the ciphertexts and tags by (Cj , T j). Write (Zj1 , . . . , Z

j
`j ) =

GPADn,τ (Aj ,M j) and denote the in- and outputs of the random functions by
(sji , t

j
i ) for i = 1, . . . , `j .

Denote by colE the event that there exist two distinct encryption queries j, j′
with N j = N j′ , and an index i ∈ {1, . . . , `j}, such that

tji−1 ‖ Z
1j
i 6= tj

′

i−1 ‖ Z
1j′
i ∧ tji = tj

′

i .

We have, using shorthand notation [i = `] for 0 if i 6= ` and 1 if i = `,

Pr[colE ] ≤

qE∑
j,j′=1
j 6=j′

min{`j ,`j
′
}∑

i=1
Pr[sji 6= sj

′

i ∧ R̃
N
i,[i=`j ](Z

0j
i , s

j
i ) = R̃N

i,[i=`j′ ](Z
0j′
i , sj

′

i )] ≤
`
(
qE
2
)

2n .

(6.23)

The remainder of the analysis is under the assumption that ¬colE applies, and
we add the term of (6.23) at the end.

Consider any forgery attempt (N,A,C, T ), and denote its length by `. Denote
the message computed upon decryption by M . Refer to the state values as
(si, ti) for i = 1, . . . , `, and write (Z1, . . . , Z`) = GPADn,τ (A,M). The forgery
is successful if T = leftτ (t`).

Denote by colD the event that there exists an encryption query j with N j = N ,
`j = `, and an index i ∈ {1, . . . , `}, such that

tji−1 ‖ Z
1j
i 6= ti−1 ‖ Z1

i ∧ tji = ti .
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We have

Pr[colD | ¬colE ] ≤
qE∑
j=1

∑̀
i=1

Pr[sji 6= si ∧ R̃Ni,[i=`](s
j
i ) = R̃Ni,[i=`](si)] ≤

`qE
2n .

(6.24)

We make the following case distinction:

(i) N /∈ {N1, . . . , NqE}. This particularly means that R̃ has never been
queried for tweak (`, 1, Z0

` , N), and thus that R̃N`,1(Z0
` , ·) responds with

t`
$←− {0, 1}n. The forgery is successful with probability 1/2τ ;

(ii) N = N j for j ∈ {1, . . . , q′E} for some 1 ≤ q′E ≤ qE. Note that we have
implicitly reordered the encryption queries such that the ones for nonce
N are the first q′E. This is without loss of generality, as the different
evaluations of IdSpoednic for different tweaks are independent. We
proceed with a further case distinction:

– ` /∈ {`1, . . . , `q′E}. This, again, means that R̃ has never been queried
for tweak (`, 1, Z0

` , N). The forgery is successful with probability
1/2τ ;

– ` = `j for j ∈ {1, . . . , q′′E} for some 1 ≤ q′′E ≤ q′E. Note that we have
implicitly reordered the encryption queries such that the ones for
nonce N and length ` are the first q′′E . This is, again, without loss of
generality. We proceed with a further case distinction:

– s` /∈ {s1
`1 , . . . , s

q′′E

`
q′′E
}. In this case, R̃ has been queried before for

tweak (`, 1, ∗, N), where ∗ denotes any tweak input Z0j
` which is

left irrelevant, but never on input s`. Consequently, the response
t` is uniformly drawn from {0, 1}n and the forgery is successful
with probability 1/2τ ;

– s` = sj`j for some j ∈ {1, . . . , q′′E}. As the forgery must be
different from the encryption queries, as GPADn,τ is an injective
mapping, and moreover as ¬colE , this case implies the existence
of a non-trivial state collision. Hence, the forgery is successful
with probability at most Pr[colD | ¬colE ].

Concluding, the forgery is successful with probability at most Pr[col | ¬colE ] +
1/2τ , where Pr[col | ¬colE ] is bounded in (6.24). A summation over all qD
forgery attempts (cf. [22]) gives the final bound.
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6.5 Adding RUP Security to Encryption Schemes

In this section we introduce our generic method of adding RUP security to a
class of encryption schemes. Following Shrimpton and Terashima [151], we take
a modular approach in designing our construction. We start by describing a
generic construction, and discuss informally why it enhances the security of
the underlying encryption scheme. The generic construction achieves RUPAE,
meaning it provides both authenticity and confidentiality even if unverified
plaintext is released. A formal security argument for the construction is given
in Section 6.5.2. In Section 6.5.3 we show how GCM’s components can be used
to instantiate the generic construction. Finally, in Section 6.5.4 we discuss how
this construction can be used to prevent the crypto-tagging attack on Tor.

6.5.1 Generic Construction

Let (Enc,Dec) be an encryption scheme with key space K, nonce space N,
message space M, and ciphertext space C. Let (E,D) be a tweakable block
cipher with T = N × C, X = N, and key space K. Let α ∈ {0, 1}τ be some
pre-defined constant. Then, define the separated AE scheme (SEnc,SDec,SVer)
as follows. The key space is K2, with keys denoted by (K,L), the nonce space
is N, the message space is M, and the ciphertext space is N× C:

SEncNK,L(M) :=
(

ECL (N), C
)

(6.25)

with C := EncNK(α ‖M) (6.26)

SDecK,L(S,C) := right|C|−τ
(

DecN
′

K (C)
)

(6.27)

with N ′ := DCL (S) (6.28)

SVerK,L(S,C) :=
(

leftτ
(

DecN
′

K (C)
)

?= α
)
. (6.29)

The construction is depicted in Figure 6.6.

The construction adds robustness to the encryption scheme (Enc,Dec) by
compressing the ciphertext via the tweak of the tweakable block cipher, and
using that information to encrypt the nonce. As a result, during decryption, if
any bit of the ciphertext is modified, then the ciphertext will result in a different
tweak, and the tweakable block cipher will decrypt the nonce into some random
value, which is used as the nonce for Dec. By assumption, Dec will output
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Figure 6.6: Adding RUP security to an existing encryption scheme

garbage, or more precisely, plaintext which is unrelated to any other plaintext
queried.

Similarly, if the ciphertext is kept the same, and the encrypted nonce, S, is
modified, then the tweakable block cipher will be queried on an input for which it
has not been queried before with the given tweak computed from the ciphertext.
As a result, the decryption of S will be random, and Dec’s output will look
random as well.

With respect to authenticity, our construction follows the encode-then-encipher
paradigm [26], which uses redundancy in the plaintext in order to guarantee
authenticity. The level of authenticity is determined by the length of the
constant α (namely τ): if verification can be removed, then α’s length is set
to zero. However, the only requirement from α is to be known to both parties,
and users may use any predictable bits already present in the plaintext, or the
nonce if it is anyway synchronized.

6.5.2 Formal Security Argument for the Generic Construction

We start by defining two reductions which use an adversary A playing the
RUPAE game against the construction S = (SEnc,SDec,SVer). Let B = (E,D)
denote the tweakable block cipher and E = (Enc,Dec) the encryption scheme.
Furthermore, let $S = ($SEnc, $SDec,⊥), $B := (π, π−1), where (π, π−1) is from
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the definition of SPRP security in Eq. (6.16), and $E := ($Enc, $Dec). Then we
define the following two reductions:

1. A reduction B〈A〉 to the SPRP quality of the tweakable block cipher
B, meaning B〈A〉 will attempt to distinguish B from $B, using A, an
algorithm which is expecting either S or $S. The reduction B generates a
key K independently, and uses K to simulate the encryption scheme E.
Then, B runs A, and responds to A’s queries by reconstructing S using
its own oracles, either B or $B, and the simulated E.

2. A reduction C〈A〉 to the SRND quality of the encryption scheme E. In
contrast with B, the reduction C simulates $B instead of B. Then using
its own oracles, either E or $E, and $B, C reconstructs S.

Theorem 8. The advantage of any nonce-respecting RUPAE adversary A
attempting to distinguish S from $S, making at most q SEnc queries, and at
most v SDec and SVer queries, is upper bounded by

2 v(q + v)
|N| − q − v + v

2τ + SPRPB(B〈A〉) + SRNDE(C〈A〉) . (6.30)

Proof. Let SΠ,Σ denote S using Π as tweakable block cipher and Σ as encryption
scheme. By definition, we seek to bound

RUPAE(A) = ∆
A

(
SB,E ; $S

)
. (6.31)

Applying the triangle inequality, we get

∆
A

(
SB,E ; $S

)
≤ ∆

A

(
SB,E ; S$B,E

)
+ ∆

A

(
S$B,E ; $S

)
(6.32)

Using reduction B〈A〉, we know that

∆
A

(
SB,E ; S$B,E

)
≤ ∆

B〈A〉
(B ; $B) . (6.33)

Therefore we can focus on
∆
A

(
S$B,E ; $S

)
(6.34)

which in turn is bounded from above by

∆
A

(
S$B,E ; S$B,$E

)
+ ∆

A

(
S$B,$E ; $S

)
. (6.35)

The analysis of these two remaining terms relies on computing the probability
that A makes a query which results in a nonce collision during a decryption
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query, thereby violating the SRND game’s requirement. In the analysis below,
we find that the probability of such an event is at most

ε := v(q + v)
|N| − q − v . (6.36)

Therefore, using the reduction C〈A〉 we know that the first term of (6.35) is
bounded by

ε+ ∆
C〈A〉

(E ; $E) , (6.37)

and the bound for
∆
A

(
S$B,$E ; $S

)
(6.38)

is given below.

Say that A generates SEnc inputs (N1,M1), (N2,M2), . . . , (Nq,Mq), and SDec
and SVer inputs (S1, C1), (S2, C2), . . . , (Sv, Cv), where (Si, Ci) could be the
input to either an SDec or SVer query. Let N∗i denote the nonce input to $Dec
resulting from the query (Si, Ci), that is

N∗i = π−1,Ci(Si) . (6.39)

Similarly, define M∗i and α∗i such that

α∗i ‖M∗i = $N
∗
i

Dec(Ci) . (6.40)

We call N∗i , M∗i , and α∗i the “decrypted” nonces, plaintexts, and constants,
respectively.

If the nonces Ni and N∗j are distinct from each other then the SRND game’s
requirement is respected, hence $E will always give uniformly distributed and
independent output.

Let event denote the event that either Ni = Nj for 1 ≤ i < j ≤ q, or N∗i = N∗j
for 1 ≤ i < j ≤ v, or Ni = N∗j for 1 ≤ i ≤ q and 1 ≤ j ≤ v. Then, by the
fundamental lemma of game playing [27], (6.38) can be bounded by

Pr[event] + Pr[∃ i s.t. α∗i = α | ∗event] , (6.41)

where event is the negation of event. Given event, the nonce input to $Dec will
always be distinct, hence the α∗i are independent and uniformly distributed,
which means the quantity on the right is bounded above by v/2τ .

Therefore we focus on the probability of event, i.e., that there is a collision in
the Ni and N∗j . By hypothesis, A is nonce-respecting, hence we know that
Ni 6= Nj for 1 ≤ i < j ≤ q. Therefore we focus on the case that a decrypted
nonce collides with some Ni, or another decrypted nonce.
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Consider the query (Si, Ci) associated to the i-th decrypted nonce N∗i , and say
that event has not yet been triggered. Let (Nj ,Mj) be a previous SEnc query,
and (Sj , Cj) its corresponding output. By hypothesis, (Sj , Cj) 6= (Si, Ci). If
Cj 6= Ci, then the tweak input to (π, π−1) will be different for the SEnc and
SDec or SVer queries, hence the probability that N∗i collides with Nj is at most
1/ |N|. If Cj = Ci, then Sj 6= Si, which means that (π, π−1) is queried under
the same tweak for both the SEnc and SDec or SVer queries. However, the
probability that

Nj = π−1,Cj (Sj) = π−1,Ci(Si) = N∗i (6.42)
is at most 1/(|N| − q − v).

Now consider the probability that an SEnc query (Ni,Mi) is such that Ni
equals N∗j for some previous SDec or SVer query. Since the adversary’s view is
independent of N∗j , it can guess N∗j with probability at most 1/(|N| − q − v).
Therefore, the probability that a decrypted nonce collides with some nonce Nj
is at most

qv

|N| − q − v . (6.43)

Given that no decrypted nonces collide with any nonce Nj , we are left with
the event that two decrypted nonces collide with each other. However, similar
reasoning as above shows that this probability is bounded above by

v2

|N| − q − v , (6.44)

Putting the above computations together, if A makes q SEnc queries, and v
SDec and SVer queries, then (6.38) is bounded above by

v(q + v)
|N| − q − v + v

2τ . (6.45)

6.5.3 GCM-RUP

We illustrate an instantiation of the construction using familiar primitives,
namely those used to construct GCM [111,112]. The resulting instantiation uses
three independent keys, but only makes three minor modifications to AES-GCM
in order to achieve RUP security:

1. the plaintext is prepended by a string of zero bits of length τ ;



DESIGN OF SYMMETRIC-KEY MECHANISMS 141

2. the nonce N instead of GHASH(ε,N) is used to generate the mask for the
polynomial hash; and

3. the output of GHASH is XORed with the nonce before it is encrypted.

See Figure 6.7 for an illustration.

N

GHLε /96

/32 inc32 inc32 inc32 inc32

EK1 EK1 EK1 EK1

leftτ+|M |

+

M0τ

EncK1

GHK2EK3

+

+

S

A

C
EK2,K3

Figure 6.7: Instantiation of our construction using GCM’s components. Changes
from GCM are indicated using a dashed pattern, and the dotted boxes point
out the underlying encryption scheme and tweakable block cipher. Filled circles
indicate duplication of the values. GH is GHASH, and /m indicates the number
of bits on a wire. The value L is EK1(0n), A represents associated data, and ε
is the empty string.

Section 1.2.5 contains a description of the GCM components that we use
to describe the instantiation, including the function GHASH, defined in
Algorithm 1.1, and CTR mode, defined in Algorithm 1.2. Note that our
formalization above did not include associated data, whereas GCM-RUP does,
however it is straightforward to extend the definitions and generic construction
to include it.
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Since the generic construction’s security relies on generating random nonce
input during decryption, in order to maintain the same security level as GCM,
the nonce size in the instantiation is fixed to be the same as the block size.
The encryption scheme underlying the instantiation, (Enc,Dec), is the same
as GCM without authentication, or in other words CTR mode, therefore Enc
and Dec are identical, and so the SRND quality of (Enc,Dec) can be measured
by looking only at Enc-queries. This allows us to use the GCM confidentiality
result of Niwa et al. [121,122], which gives (Enc,Dec) an SRND-bound of

0.5(σ + q + d+ 1)2

2n + 64 · q(σ + q + d)
2n , (6.46)

where σ is the total number of blocks queried, q the number of Enc queries, d
the number of Dec queries, and the nonce length is n bits, which is the block
size as well.

Security of the underlying tweakable block cipher follows from the XTX
construction of Minematsu and Iwata [117], where we extend the tweak space of
a block cipher to arbitrary tweak size by XORing GHASH to both the input and
output of the block cipher. Hence the SPRP-quality of the underlying tweakable
block cipher is

q2(`+ 1)
2n , (6.47)

where q is the total number of queries made to the tweakable block cipher, and
` is the maximal tweak length, or in other words, the maximal ciphertext and
associated data length in blocks.

Putting together the results along with the result of Section 6.5.2, we get the
following bound for the instantiation.
Theorem 9. Let A be a RUPAE-adversary against the instantiation making at
most q SEnc queries, and v SDec and SVer queries. Say that at most σ blocks
are queried, with ` the maximum ciphertext and associated data block length of
any query, then A’s advantage is at most

0.5(σ + q + v + 1)2

2n + 64 · q(σ + q + v)
2n +

(q + v)2(`+ 1)
2n + 2v(q + v + 1)

2n − q − v . (6.48)

If q + v ≤ 2n−1, then since q + v ≤ σ, the bound can be simplified to
3 · 64 · σ2

2n + σ2(`+ 1)
2n , (6.49)

which is similar to GCM’s security bounds [84,121].
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6.5.4 Tor

Tor [66] is a circuit-based low-latency anonymous communication service.
The core idea underlying Tor is onion routing, a distributed overlay network
designed to anonymize TCP-based applications, presented by Syverson, Reed
and Goldschlag in [153].

Generally speaking, Tor communication is encrypted and relayed by nodes in
the Tor-network via circuits. When building circuits, clients exchange keys
with several nodes, usually 3, where each node only knows its predecessor and
successor.

Clients prepare messages using multiple layers of encryption. First, the message
is encrypted using the key and nonce shared with the circuit’s last node. The
resulting ciphertext is then encrypted again with the keys and nonce of the
one-before-last node. This process is repeated for each node, until the first
node’s key is used.

The output of the multi-layered encryption is then sent from the client to the
first node, which decrypts one layer, and forwards the result to the next node.
In every step, another layer of encryption is removed, and the message is passed
forward, until it reaches the last node. The last node authenticates and forwards
the message to the intended recipient outside of the Tor network.

The crypto-tagging attack

By design, the Tor protocol offers an end-to-end integrity check, which the exit
node handles by computing a sha-1 digest of the decrypted message. Such a
check prevents e.g., attacks by rogue nodes which “tag” the encrypted message,
and then search outbound communication for the corresponding corrupted
traffic.

In 2012, an anonymous email was sent to the Tor developers mailing list
describing the crypto-tagging attack [154]. In this attack, two nodes, the first
and last, collude by tagging and untagging messages upon entry and exit to
the network, respectively, thereby making the changes transparent to all other
parties.3 Due to the mode of operation used for encryption, namely CTR mode,
the corrupted bits do not spread across the word and are maintained through all
decryptions. They can then be removed by the exit node by just knowing their
location. Furthermore, since the integrity check is only performed by the exit

3Tagging can be done in several ways. We mention here only one: the entry node XORs
an identifying string to the message they are passing. Untagging is done by XORing the same
identifier by the exit node.
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node, the corruption cannot be detected by intermediate nodes in the circuit.
Moreover, the attack is amplified by the fact that if only one of the nodes (i.e.,
either the entry node or the exit node) is malicious, the tagged message cannot
be verified, and the circuit is destroyed. Any new circuit where only one of the
nodes is malicious will also be destroyed, thus biasing the set of possible circuits
towards compromised ones.

An obvious solution to this problem is to add an authentication tag to each
layer of the encryption, allowing intermediate nodes to verify the data passed
through them and act according to some policy. However, in the discussion
following the attack, such a solution was ruled out due to two main problems: (i)
by adding authentication tags, the available bandwidth for sending messages is
reduced, and (ii) the circuit’s length could be revealed, an undesirable property
in such systems.

Avoiding the attack

We propose a different approach allowing intermediate nodes to release unverified
plaintext, using the generic construction proposed in Section 6.5.1. The only
change from the above procedure for preparing the message is how the nonces
are chosen.

As before, Tor-clients start by encrypting the plaintext with the key and nonce
of the last node using CTR mode. Then, the ciphertext is compressed and used
as a tweak for the encryption of the nonce as per Figure 6.6a. Afterwards, the
encrypted nonce, S, is used as the nonce for the next layer of encryption, i.e.,
with the keys of the one-before last node. This is repeated for each node of the
circuit all the way to the first one. The result is a multi-layered application of
our construction where the first layer receives the nonce and the plaintext as
input, and each subsequent layer receives the previous layer’s output. The new
RUP secure layered encryption mode of operation is presented in Figure 6.8,
where each layer can be realized using e.g., the robust version of GCM presented
in Section 6.5.3 with |α| = 0.

When the message is ready, the client sends the ciphertext, along with the
3-times encrypted nonce to the first node. The first node uses the decryption
algorithm as per Figure 6.6b to remove the outermost encryption, and forwards
the result, as well as the now 2-times encrypted nonce, to the next node. After
the last layer of encryption is removed by the last node, it authenticates the
message and sends it to the intended recipient.

The security against an adversary trying to mount the crypto-tagging attack
comes from the fact that any change to the ciphertext will affect the entire
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Figure 6.8: A RUP-secure 3-node layered encryption. The three layers are
distinguished by their keys: (K1, L1), (K2, L2), and (K3, L3).

message, effectively decrypting it to garbage. In other words, once decrypted
by a non-colluding node, the crypto-tag corrupts the nonce, which will then
be used to decrypt the message into garbage. Using the Tor terminology, by
the time the message reaches the exit node, the crypto-tag can no longer be
removed and the message is unrecognizable and should thus be dropped and
the circuit is torn down.

For example, consider a circuit with three nodes, and say that (S1, C1), (S2, C2),
and (S3, C3) are the outputs of the first, second, and third layers of encryption,
respectively. In particular, the client uses (N,P ) to produce (S1, C1), then
(S1, C1) to produce (S2, C2), and (S2, C2) to produce (S3, C3). Finally, (S3, C3)
is sent to the first node. Say that the first node is malicious. It decrypts (S3, C3)
and obtains (S2, C2), then proceeds to tag (S2, C2) and passes (S′2, C ′2) instead
of (S2, C2) as it should do. Then, assuming the second node is honest, it will
follow the protocol and decrypt (S′2, C ′2). However, by the properties of our
construction, we know that the decryption will be random since (S2, C2) 6=
(S′2, C ′2), and in particular, the first node will not be able to predict anything
about (S′1, C ′1), i.e., the decryption of (S′2, C ′2). As a result, the second node
will pass (S′1, C ′1) to the third node, and the third node will not be able to
conclude anything, regardless of whether it shares information with the first
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node or not. More specifically, it would not be able to conclude the source and
the destination of the message.

The disadvantage to our approach is that 16 extra bytes must be expropriated
in order to send the encrypted nonce S. However, unlike adding per-hop
authentication tags, the reduction in available bandwidth to send messages is
fixed with respect to the circuit length. Furthermore, the solution can be built
efficiently using familiar components, and is simple enough to allow for fast
deployment. Finally, since the construction can use the plaintext’s inherent
redundancy for authentication, 8 bytes can be saved by dropping Tor’s sha-1
end-to-end authentication and using the algorithm described in Figure 6.6c
instead.

6.6 Summary and Future Work

In this chapter we apply the lessons we learned about cryptanalysis in the
previous chapters to build secure systems. The first contribution is a security
analysis of the authentication service offered by the Galileo project. This
analysis was performed as part of a larger project to design this service. After
choosing the TESLA protocol and adapting it the project’s needs, the analysis
provided in this Thesis was used to estimate the effort required by an adversary
who wants to attack the system, and to derive the security paramaters (e.g.,
key sizes) that make such effort infeasible.

The second contribution (spanning over two sections in this chapter) was to
fix and improve p-omd. The resulting schemes Spoed and Spoednic are
simplified, more efficient versions of p-omd. Spoednic also restores the lost
nonce-misuse resistance of p-omd.

The third contribution is a generic RUP-secure construction. After presenting
the construction we show how RUP security can be easily added to GCM by
a few small modifications. We discussed the Tor crypto-tagging attack and
showed how using a RUP-secure mode of operation would prevent it.

Future work

What is common to all contributions in this chapter is the use of mathematical
tools to argue their security. Such arguments are more common in developing
modes of operation (where it is called provable security) than in developing
primitives. Future research should try to lend some provable security notions
for the design of primitives (some of this is already being done). As a long term
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vision, symmetric-key designers should take an example from their asymmetric-
key counterparts and try to build primitives that are reducable to computationaly
hard problems. Then, when complexity theorists will finally do their part and
prove the existence of hard problems, symmetric-key cryptography would have
a chain of reductions (from a mode of operation to a primitive; from a primitive
to a hard problem) with quantifable security.

While trying to realize this long term vision, a more short term goal is to
fix existing problems. A patch is being prepared for Tor to replace its ad hoc
AES-CTR encryption and sha-1 end-to-end authentication with our GCM-RUP
design.





Chapter 7

Concluding Words

“It is not incumbent upon you to finish the task, but neither are
you free to absolve yourself from it”

- Ethics of the Fathers (Pirkei Avot), 2:16

It is not easy to conclude four years of work in a single chapter, especially when
there is still so much work to be done. In a way, this Thesis is that conclusion.
We shall nevertheless try to write a concluding chapter.1

In this Thesis I explored symmetric-key cryptography. Each of the previous
chapters tries to offer a glimpse into a different area within it. Since each
chapter already included a summary of its own content, as well as ideas for
future research specific to that chapter, I will try to focus this section on
explaining how each chapter fits within the larger picture, and how this Thesis
fits within the field of cryptography as a whole.

Deciding on the proper order of the content in this Thesis was not an easy
task. Nor was the decision about what to include and what to leave out. It is
easy to make an arbitrary decision on what should be the title of each chapter,
but a much harder job is to decide where each individual contribution belongs.
Overall, I think I did a good job in making these decisions. Although I expect
some readers would think a certain section more suitable in a different chapter,
I will try to explain the flow I chose.

1Luckily, some of this Author’s work was concluded in his master thesis, saving him the
trouble of concluding 7 years of work.
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As is always the case in academic writing, the first chapter provides an
introduction. In writing this section I had to make a decision: should I start
from the basics, define what a block cipher is from a mathematical point of
view, explain that a hash functions is a symmetric-key primitive although it
involves no key, or discuss the pros and cons of public-key encryption vis-à-vis
symmetric-key encryption.

I have decided otherwise for several reasons. First, I view such introduction as
being past-oriented which I find in contrast with my research which is meant
to be future-oriented. Early in the writing I realized that in order to keep this
Thesis to a reasonable size I would have to keep some of my work out. I had
therefore preferred in this case the future over the past, and tried to maximize
the inclusion of novel ideas and included in the introduction only those parts
that I felt that are necessary to understand this Thesis. I find this approach
to be beneficial to both experts in cryptography (who already know what a
redactable signature is) and for non-experts (who do not need to understand
the difference between a Hellman-table and a Rainbow-table).

Secondly, I felt that such structure better supports what a Ph.D dissertation
is supposed to be—a way for the candidate to prove that they are capable of
independent research. I have often heard that the only readers of my Thesis
would be the jury. In this Thesis I offer the best of me and it is now left for
their judgment. If, after reading this Thesis, they deem it insufficient and me
incapable of independent research at this time, no amount of introduction I
had to offer can change that. I hope that through the research presented in
this Thesis I implicitly also proved that I know the difference between a block
cipher and a mode of operation.

Thirdly, despite being widely accepted, there is yet another group of people
who is likely to read this Thesis—future students I may have. Let this Thesis
be their passage into working with me, how I view things and what kind of
research I am (at the time of submission) interested in. Therefore, Chapter 1
is an introduction to this Thesis and not an introduction to cryptography.
After a very brief explanation about the context of this Thesis it goes straight
to business and provides what information is useful in reading the rest: the
structure of this Thesis, mathematical background, and the structure of the
analyzed cryptosystems.

My contribution starts in Chapter 2. In this chapter I present 4 contributions all
pertaining to existing theory of cryptanalysis (a summary of these contributions
can be found in Section 2.6). Existing theory is the giant whose shoulders
are used to see further. Developing new theories on top of quicksand hinders
scientific progress and I hope these contributions would help others avoid it.
Interestingly, all contributions of Chapter 2 are in the area of linear cryptanalysis.
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This is not to suggest that other areas are perfect and have nothing to correct,
but it does seem that, given our reliance on it, linear cryptanalysis is still not
nearly as well understood as it should be. I hope to spend much of my future
research time on linear cryptanalysis.

In Chapter 3 I try my luck in climbing the giant’s shoulders and see further.
Two new cryptanalytic methods are presented: RX-cryptanalysis and linear
cryptanalysis using low-bias approximations. In order not to repeat the ideas
for further research already mentioned in Section 3.3, I will limit myself to
saying that most cryptanalytic methods have not yet been discovered.

I have recently heard a fellow cryptographer occupying a middle level position
in another university saying that there is no future in cryptanalysis as we have
already achieved sufficient proficiency in designing symmetric-key primitives
and there is nothing more to discover. I utterly reject this sentiment. If at all,
we have passed a tipping point and are now designing insecure “lightweight”
algorithms, unidentified as such because we have not yet discovered the methods
for breaking them. It is very dangerous (and very natural) to believe that the
current state of affairs is complete, and it is as natural for this to be proven wrong.
Examples for this include mechanics (Newtonian vs. Quantum), crystallography
(Bravais lattices vs. Quasicrystals), economics (Classical vs. Behavioral), and
even cryptography (Symmetric vs. A-symmetric)! Admittedly, none of my new
methods will revolutionize cryptanalysis, but I hope that both can offer insights
as to where the revolution might lie.

Chapters 4–5 deal with those things that “have to be done”. Developing theories
and never using them is not called cryptography but mathematics. To justify
receiving tax payers money, a scientist must contribute to society. The way
I chose to do so is by evaluating the cryptographic security of the systems
people are using. Specifically, I attempted to do so by searching for undesirable
properties, either using automated tools, or manually. I tried to limit myself
to high-impact algorithms that are either being used or likely to be used by
the general public. Simon, Speck, and Gost2 are all algorithms designed by
governments which, as we are seeing again and again, can force their adoption
within products. An exception is p-omd which impressed me with its ingenuity
in processing the associated data part. While studying the trick they used I
realized that it was insecure. I outline ideas for further research on automated
tools in Section 4.3 and propose a systematic review of existing algorithms in
Section 5.4.

Finally, in Chapter 6 I put what I learned into use by helping in the design of
secure systems. As the title of this Thesis suggests, I am not a designer nor
do I not wish to become one. As a cryptanalyst, I can and did offer unique
insights on what is possible for an adversary to do and how to avoid certain
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problems. I find the result to be quite satisfying. Not many can say that they
affected the whole humanity by sending something to space as I did in being
a cog in the Galileo project. Not many can claim to offer help to so many
individuals unable to communicate freely as I am doing with the patch fixing
the Tor crypto-tagging attack. In between, while I do not expect Spoed and
Spoednic to attain wide use, I am proud in helping to salvage the clever trick
used by the p-omd designers, and hope that the idea of blinding a value before
absorbing it into the state will gain popularity. Other, long- and middle term
ideas for future research are discussed in Section 6.6.

There is yet so much for cryptography to achieve. Reflecting on the amount
of effort I spent on doing so little I realize that the cliché about science being
a team effort is true. I hope that my contributions, past, present, and future,
would help advance cryptanalysis, cryptography, science, and humankind.

The Author would like to thank whomever read this Thesis in full, reaching this
point. You are awesome.

—Concluded here on Dec. 22nd in Leuven—



Appendix A

Generalized Padding

We describe here the general padding scheme used by Spoed and Spoednic.
This algorithm for a general padding scheme was published in [15] together with
Spoed and Spoednic. It was not included as an integral part of this Thesis
since this Author was not a main contributor to this part of the work. It is
included here since it is necessary for the understanding of Sections 6.3–6.4.

We define the generalized padding function

GPADn,τ : {0, 1}∗ × {0, 1}∗ →
(
{0, 1}2n

)+
.

It is indexed by state sizes n, τ , and maps the associated data and message
to generalized message blocks. Formally, it is defined as follows: First, A
(associated data) and X (message or ciphertext) are padded into n-bit message
blocks A1‖ · · · ‖Aa = A‖0n−(|A| mod n) and X1‖ · · · ‖Xm = X‖0n−(|X| mod n),
respectively. Denote ` = max

{
m, da+m

2 e
}

+ 1, and define len(A,X) =
〈|A|〉n/2‖〈|X|〉n/2.1 The function GPADn,τ (A,X) outputs Z1, . . . , Z` as follows:

1As we show in Section 6.3.3 and Section 6.4.1, both ciphers claim only birthday-bound
security, and the limitation of the length of X and A to 2n/2 − 1 does not pose any issues.
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if a ≤ m:
Z1 = 〈τ〉n ‖ A1
Z2 = X1 ‖ A2
· · ·
Za = Xa−1 ‖ Aa
Za+1 = Xa ‖ 0n
· · ·
Z`−1 = Xm−1 ‖ 0n
Z` = Xm ‖ len(A,X)

if a > m, a+m even:
Z1 = 〈τ〉n ‖ A1
Z2 = X1 ‖ A2
· · ·
Zm+1 = Xm ‖ Am+1
Zm+2 = Am+2 ‖ Am+3
· · ·
Z`−1 = Aa−2 ‖ Aa−1
Z` = Aa ‖ len(A,X)

if a > m, a+m odd:
Z1 = 〈τ〉n ‖ A1
Z2 = X1 ‖ A2
· · ·
Zm+1 = Xm ‖ Am+1
Zm+2 = Am+2 ‖ Am+3
· · ·
Z`−1 = Aa−1 ‖ Aa
Z` = 0n ‖ len(A,X)

The encoding of the message length is included in order to circumvent the need
for a case distinction in the description of of the algorithms. Note that, in fact,
almost any injective padding rule would do the job; however, for our purposes
the described GPADn,τ is the most suitable. We generically write Zi = Z0

i ‖ Z1
i ,

and denote Zβ = Zβ1 ‖ · · · ‖Z
β
` for β ∈ {0, 1}.
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