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Abstract

After recalling the first Brillouin zone (BZ) and the first irreducible Brillouin zone
(IBZ) of a lattice in terms of its plane crystallographic group, we investigate the
danger of restricting a band-gap detection to the contour of the IBZ, instead of its
full IBZ. Based on hundreds of porous phononic crystal simulations, we provide
for the 17 plane crystallographic groups (i) statistics of the band-gap localizations,
(ii) probabilities to get non-full band-gaps, and (iii) averages of the bandwidth er-
ror made when only the IBZ contour is considered. It is found that for phononic
crystals, the IBZ contour provides accurate results only for highly symmetric lat-
tices.
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1. Introduction

For time independent harmonic systems, the properties of a wave propagat-
ing along an axis do not depend on its sense [1]. For this reason, the irreducible
Brillouin zone (IBZ) is half of the Brillouin zone (BZ), and can be even reduced
when the unit cell possesses some internal symmetries. For instance, for a square
or a hexagonal unit cell with its bisectors and diagonals mirror symmetric, the
first IBZ is reduced to a triangle covering an eighth or a twelfth of the first BZ,
respectively [2]. These two crystallographic groups (p4mm and p6mm) are the
most common ones in literature, and the first IBZ is most of the time correctly
addressed (see for instance [3]). However, for periodic structures with symme-
tries of lower order, the first IBZ differs from these two previous examples and
is often wrongly addressed, as attested by a literature review over the past decade
presented in Table 1.

The reason of this misunderstanding could be that the theory for the plane
crystallographic group [4] and the space group [5] is addressed to group theory
experts, while massive developments of non-symmetric structures are driven by
the potentials of metamaterials, and are often covered by non-physicists (e.g. en-
gineers). It is our first goal in Section 2 to recall the strategy to identify the plane
crystallographic group of a given lattice and then, provide the first BZ and IBZ for
each plane crystallographic group (since only the first BZ and IBZ are considered
in this manuscript, the term “first” is removed next for a sake of brevity). Note
that for quasi-one and quasi-two dimensional waves propagating in two and three-
dimensional glide or screw symmetric structures, a reduction of the unit cell size
is also possible. Indeed, one can take advantage of the glide or the screw periods,
instead of the (longer) translational periodicity [6, 7].

In Section 3, the localization of the band-gap extrema is investigated with
respect to the IBZ. Indeed, the band-gap detection is often restricted to the IBZ
contour, whereas some counterexamples exist for non-symmetric periodic lattices
[17, 20, 53] and for lattices with a mirror reflection [20, 33]. Some additional
cases that exhibit similar band-gap properties but for which the symmetry order
of the lattice is higher are provided in this manuscript. Moreover, examples are
also provided for which band-gaps observed on the IBZ contour are not full (no
omnidirectional band-gap).

Finally, hundreds of different porous phononic crystals (plane strain aluminum
with periodic vacuum holes) are simulated, and for each plane crystallographic
group, we provide statistics of the band-gap localization, probabilities that a band-
gap detected on the IBZ contour is not full, and estimates of the bandwidth error
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Table 1: Some references using the IBZ, ranked according to the plane crystallographic group
(PCG) of the investigated lattice. See Section 2 for the nomenclature. By misdefined, it is meant
that what is stated as the IBZ is not correct, but this might have no influence on the results. Note
that in [8–15], the definition of the IBZ (the area) is wrong, but its contour is correct.

PCG IBZ correctly addressed IBZ misdefined
p1 [16–20] [21]
p2 [22, 23]
p4 [24] [8–12, 23]
p1m1 [20, 25] [26]
p1g1
p2mm [27–31]
p2mg [29]
p2gg [19]
c1m1 [32–34] [16, 35, 36]
c2mm [37–39] [24]
p3 [13, 15]
p6 [40] [10, 14, 41]
p4mm [3, 9, 10, 16, 18, 24, 26, 37, 42–50]
p4gm [19, 41, 42]
p3m1 [15, 51] [36]
p31m
p6mm [3, 10, 18, 33, 39, 52]

when the band-gap detection is restricted to the IBZ contour. Conclusions follow.

2. Irreducible Brillouin zone in terms of the plane crystallographic group

Wave propagation in quasi-two-dimensional periodic structures is investigated
with the Bloch theorem, restricting the analysis to a single unit cell, and taking
advantage of periodic boundary conditions [1]. We denote rP the position of the
point P within the reference cell, and by ρP = rP + n1e1 + n2e2 the same po-
sition P relative to the {n1 n2}-th unit cell, where e1 and e2 are the basis vectors
of the direct lattice. The reciprocal basis vectors are denoted ei (i = 1, 2) and are
given by eiej = δij . Assuming a harmonic wave with angular frequency ω and
amplitude û, the wave displacement u(rP , t) at time t and position rP is given by

u(rP , t) = ûek·rP−iωt, (1)
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where i2 = −1, k = µ1e
1 + µ2e

2 is the wave vector, and µ1 = k · e1 and
µ2 = k · e2 are the complex propagation constant components. The wave at the
point ρP yields

u(ρP , t) = u(rP , t)e
n1µ1+n2µ2 . (2)

The unit cells are parallelograms witch can take 5 different shapes (the 5 two-
dimensional Bravais lattices), namely oblique, rectangular, rhombic, square, and
hexagonal [2]. The direct and reciprocal vectors for each cell are given in Table 2
and are illustrated in Fig. 1. Instead of representing the BZ by a parallelogram,
one should use a hexagon, as shown in Fig. 1. The hexagonal representation of the
BZ is preferred to the parallelogram one, since the longest possible wave-length
can be used when all the directions are considered [1]. Note that rectangles and
squares are particular hexagons for which two opposite sides have a length null.
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Figure 1: The oblique (a), rectangular (b), rhombic (c), square (d), and hexagonal (e) unit cells
with corresponding BZ. The symbol 	 indicates that the IBZ in gray, corresponding to the groups
p1 or p2, can be arbitrarily rotated around the center Γ.

In addition to its various shapes, a unit cell can possess additional rotational,
glide and mirror reflection symmetries, forming the 17 different plane crystallo-
graphic groups, also called the plane symmetry groups or the wallpaper groups
(see Fig. 2). But before its description, another group is introduced: the point
group.

The point group of a two-dimensional unit cell is composed by two families,
the cyclic point group denoted Cn, when only rotations are involved, and the dihe-
dral point group, Dn, for which the unit cell possesses at least one mirror or glide
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Table 2: Direct and reciprocal basis vectors for the 5 Bravais lattices.
e1 e2 e1 e2

Obl. a(1, 0) b(cos θ, sin θ) 1
a
(1,− tan−1 θ) 1

b
(0, sin−1 θ)

Rec. a(1, 0) b(0, 1) 1
a
(1, 0) 1

b
(0, 1)

Rho. a(1, 0) a(cos θ, sin θ) 1
a
(1,− tan−1 θ) 1

a
(0, sin−1 θ)

Squ. a(1, 0) a(0, 1) 1
a
(1, 0) 1

a
(0, 1)

Hex. a(1, 0) a(1
2
,
√

3
2

) 1
a
(1,− 1√

3
) 1

a
(0, 2√

3
)

reflection symmetry. The subscript n indicates the highest order of the rotational
symmetry (rotation by 360◦/n).

The plane crystallographic group describes periodic lattices and is denoted
by two or four characters for the cyclic and dihedral point group, respectively
[54–56]. If no mirror or glide reflection is present, the nomenclature is pn and is
equivalent to Cn, except that pn is restricted to the description of periodic lattice.
When mirror or glide reflections are present, the crystallographic denotation is
pnxy or cnxy. The first letter “p” or “c” holds for a primitive or centered unit cell,
respectively. The two last letters indicate symmetries relative to the main axis of
the lattice (the main axis is arbitrarily chosen between the two translation axes,
except if only one of them (being the main one) is perpendicular to a mirror axis).
The letters “x” and “y” can take the values “m”, “g”, or “1”, holding for mirror re-
flection, glide reflection, or none, respectively. Moreover, “x” indicates symmetry
of axis perpendicular to the main axis whereas “y” indicates if the symmetry axis
is parallel or tilted by 180◦/n with respect to the main axis. For instance, p4gm
means that the lattice has 4-fold rotations, a glide reflection perpendicular to the
main axis, and a mirror axis at 45◦. Once the periodicity of the lattice is identified,
Tables 3-4 and Fig. 2 can be used to determine the plane crystallographic group
of the considered lattice.

Based on the work of Cracknell [4] and assuming time-invariant media, the
IBZ are illustrated for the 17 plane crystallographic groups in Fig. 2, and informa-
tion on the IBZ are tabulated in Table 4.

For unit cells belonging to the cyclic groups, the corresponding BZ are also
in the cyclic group. It means that the IBZ can be arbitrarily rotated around Γ
(no mirror symmetry) and this justify the presence of the symbol 	 on the BZ.
Consequently, there is an infinite number of possible polygons for the IBZ, and
two of them are illustrated in Fig. 3a. However, it is more convenient to use the
IBZ for which the corners correspond to the points X , M , Y , N etc., and we
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Table 3: The plane crystallographic group of a lattice in terms of its highest order of rotational
symmetry and its reflection axis [56].

Highest
rotation?

Has mirrors?
Yes No

360◦/6 p6mm p6

360◦/4
Has mirrors at 45◦?

p4
Yes: p4mm No: p4gm

360◦/3
Has rotation centre off mirrors?

p3
Yes: p31m No: p3m1

360◦/2

Has perpendicular mirrors?
Has glide?

Yes No
Has rotation centre off mirrors?

p2mg Yes: p2gg No: p2
Yes: c2mm No: p2mm

None
Has glide axis off mirrors? Has glide?

Yes: c1m1 No: p1m1 Yes: p1g1 No: p1

Table 4: Plane crystallographic group (PCG), point group (PG), possible unit cell shape, IBZ
definition and its contour, and BZ/IBZ size ratio r. d and r stands for the direct and reciprocal
spaces, respectively.

PCGd PGd Obl Rec Rho Squ Hex PCGr PGr IBZ IBZ contour r
p1 C1 X X X X X p2 C2

	
ΓXMYNZOX̄Γ

ΓXMΓY NΓZOΓ 2
p2 C2

p4 C4 X p4 C4 	 ΓXMY Γ ΓXMΓ

4

p1m1
D1

X X p2mm D2 ΓXMY Γ ΓXMY Γ
p1g1
p2mm

D2p2mg
p2gg
c1m1 D1 X X c2mm D2 ΓŌXMΓ ΓŌXMΓ
c2mm D2

p3 C3 X p6 C6
	

ΓXMY Γ
ΓXMΓ 6

p6 C6

p4mm
D4 X p4mm D4 ΓXMΓ ΓXMΓ 8

p4gm
p3m1

D3 X p6mm D6 ΓXMΓ ΓXMΓ 12p31m
p6mm D6
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Figure 2: BZ and IBZ for the 17 plane crystallographic groups. The Bravais lattices are given for
the most general configurations, see Table 4 for all compatible ones. For sake of clarity, the direct
and reciprocal basis vectors are omitted here, but are reported in Fig. 1. The glide reflection axes
are also omitted for p3m1, p31m, and p6mm.

arbitrary define the first side of the polygon by ΓX for primitive unit cells and by
ΓŌ for centered unit cells, the other corners of the polygon being defined in the
counterclockwise direction.

The contour of the IBZ is now discussed. For the reciprocal space with mirror
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symmetries, the choice of IBZ is unique and the contour of the IBZ is defined as
the boundaries of the IBZ. For the cyclic groups, since the IBZ can be arbitrarily
rotated, the definition of the IBZ contour does not really exist (there is an infinite
number of possible contour that covers the full BZ). However, as the goal of the
present paper is to provide probabilities of band-gap extrema to be on a given path,
a contour is constructed artificially by considering the bisectors and the diagonals
inside the IBZ. Taking advantage of the cyclic rotation and the translational pe-
riodicity of the BZ, some portions are found redundant, and a possible minimum
path is highlighted in dashed black lines for each IBZ (see Figs. 2 and 3). This
artificial path that does not correspond to any possible contour is refereed next as
the virtual IBZ contour. For instance, in the reciprocal space of symmetry p4, if
the square ΓXMY Γ is considered as the IBZ, the path following the contour and
its diagonal is defined by the polyline ΓXMΓYMΓ. However, the cyclic group
of the BZ is C4 meaning that the dispersion curves on the segment ΓX will be
identical as the one on ΓY (the following notation is introduced to denote this
equality: ω−→

ΓX
= ω−→

ΓY
). For the same reason, ω−−→

MY
= ω−−→

OX̄
, and due to the pe-

riodicity of the reciprocal space, ω−−→
OX̄

= ω−−→
MX

such that one get ω−−→
MY

= ω−−→
MX

.
Consequently, the virtual IBZ contour for the reciprocal space of symmetry p4 is
the polyline ΓXMΓ.

For those groups, the fact that the virtual contour differs from the IBZ bound-
ary is a common source of confusion (see Table 1). For instance, for square unit
cells, the group p4 (Fig. 3a) the virtual contour is the same as the IBZ contour
of the group p4mm (Fig. 3d), whereas the IBZ area is two times larger and can
be the one of the group p2mm (Fig. 3b) or the group c2mm (Fig. 3c). Another
common source of error for centered unit cells (e.g. Fig. 3c) is the fact that their
IBZ orientations is shifted by 45◦ with respect to the ones of some primitive unit
cells (e.g. Fig. 3b).

Now that the IBZ and its contour are defined, the goal of the next section is
to see for the 17 lattices what are the consequences of restricting the band-gap
analysis to the IBZ contour.

3. Band-gaps and IBZ contours

In the literature, the band-gap detection is often restricted to the IBZ contour,
while it has been shown for the groups p1 [17, 20, 53], p1m1 [20], and c1m1 [33]
that band-gap extrema can be located inside the IBZ. In this section, the probabil-
ity of occurrence of such an event for each of the 17 plane crystallographic groups
will be provided. But before, a structure already investigated in the literature is
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Figure 3: BZ and IBZ for square unit cells with reciprocal space of symmetry p4 (a), p2mm (b),
c2mm (c), and p4mm (d). Note that in (a), the IBZ is not unique and can be arbitrarily rotated.

revisited, to show that the band-gaps observed on the IBZ contour are not always
full. In this section, all numerical computations are performed using Matlab.

3.1. Band-gap present on the IBZ contour, but not full
In this example, the Sierpinski triangle fractal porous phononic crystal investi-
gated in [36] is revisited. We focus on the case of the first fractal level of the
right-angled isosceles triangle (Fig. 4a) with a porosity of 40%. The unit cell, of
length l = 0.02 m, is divided into a grid of 30×30, and each pixel of this grid is di-
vided into two right-angled isosceles triangle finite elements, as shown in Fig. 4b.
As in [36], the pore are vacuum, and the plane strain matrix material is aluminum,
of density ρ = 2700 kg m−3, and first and second Lamé coefficient λ = 68.3 GPa
and µ = 28.3 GPa, respectively. The normalized frequency is ω0 = 2πct/l, where
ct =

√
E/ρ/2/(1 + ν), E = µ(3λ+ 2µ)/(µ+ λ) and ν = λ/2/(µ+ λ).

The square unit cell has one of its diagonals mirror symmetric; the group is
c1m1, and the IBZ is the triangle ΓŌXMΓ. The dispersion curves for this path
are provided in Fig. 4c and a band-gap can be observed around ω/ω0 = 0.36.
However, when the dispersion surfaces over the full IBZ are considered (Fig. 4d),
no full band-gap is obtained. The band-gap is not omnidirectional. This can be a
problem experimentally, where a predicted wave attenuation will not be observed.
The next part investigates the probability of occurrence of such an event for each
plane crystallographic groups.

3.2. Band-gaps, IBZ contours and statistics
The goal of this part is to answer to the three following questions:

• For full band-gaps, what is the probability that an extremum is not located
on the IBZ contour, but inside?
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surfaces for the full BZ (d). The band-gap, in gray, is not omnidirectional.

• When the analyses is restricted to the IBZ contour, what is the probability
that the observed band-gap is not full?

• When the analyses is restricted to the IBZ contour, what is the averaged
bandwidth error?

To give an answer to the questions raised above, the mono-material phononic
crystal used in the previous example is reconsidered, although the results might
strongly depend on the physics (Bragg/resonance scattering, EM/ED waves...).
The aim of this work is to highlight the differences on the above questions for the
different symmetries.
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3.2.1. Problem description
To get such statistics, hundreds of different geometries have to be simulated.

To this end, two unit-cell types are considered; square and hexagonal ones, allow-
ing to test the 17 symmetries (see two examples in Fig. 5). The square unit cell is
modeled by a grid of size n × n, where each pixel can take the value 0 (vacuum)
or 1 (matter, presence of one element). This give 2(n2) possible combinations, but
most of them are not valid. Indeed, the following constraints have to be respected:

• All the elements should form a single group. Two elements are consid-
ered grouped if they share an edge. Note that connections at the corner are
considered in the physical model (see an example in Fig. 5a), but are not
accounted for when detecting the groups to avoid freely rotating elements.

• To fulfil the periodic boundary conditions, the matter should join each edge
of the unit cell. Moreover, there should be at least one element by edge
mirror symmetric with its opposite edge.

• The unit cell has to respect the desired symmetry group: it is necessary to
check that the unit cell is the minimum one, and that there are no higher
symmetries embedded in the unit cell. For example, for a p2mm pattern,
the bisectors are mirror axes, but if the diagonals are also mirror axes, the
resulting group is p4mm.

For a grid of 8 × 8, there are 1.8 × 1019 possible combinations, but the configu-
rations that fulfil the above requirements are too few to be detected in a reason-
able computational time. In order to reduce the number of grids to be tested, the
symmetry is imposed first. This is possible for all the groups except for p1 (no
symmetry to be imposed), for which the grid is reduced to 6× 6. At the end, there
are 150 possible grids having the group p4mm, whereas for the other symmetries,
a subset of around 200 different geometries is selected. Note that the subset is
not composed by the 200 first grids, but the selected patterns are spread among all
valid combinations. Indeed, in the way we implement it, only one pixel changes
between two consecutive combinations such that a subset formed by consecutive
combinations would not be representative.

For hexagonal unit cells, the idea is strictly identical, except that the grid is
sheared and inclined by an angle of π/3, and each element is cut in two, resulting
to an equilateral triangular mesh. The grid is 8×8 for p2, c1m1, c2mm and p6mm,
whereas it is 6× 6 for p1, p3, p6, p3m1 and p31m.

For a given pattern, each element is then split into 9 (3 by directions) to gener-
ate smaller finite elements. Indeed, the mesh size h has to be smaller than 1/8 of
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(a) (b)

Figure 5: Examples of a p4mm square (a) and a p6mm hexagonal (b) discretized unit cell.

the minimum wavelength. Consequently, the considered frequencies are smaller
than wmax = w0L/8/h.

When discrete dispersion curves or surfaces are obtained, one should distin-
guish between band-gaps and curve/surface intersections. Given two dispersion
curves, the angles α and β are computed at a given discrete wavenumber as illus-
trated in Fig. 6. If α > β, the curves are intersecting (Fig. 6c). A band-gap is
present if α < β for all the discrete points of the curve (Fig. 6a). Moreover, the
second derivative of the point before in the lower band has to be negative, whereas
the second derivative of the point after in the upper band has to be positive. Using
this method, some band-gaps can be miss-detected, as shown in Fig. 6b, but the
quality of the detection improves when the discretization is refined (see zoomed
area). A balance between the quality of the results, and the computation time has
to be find. In the present work, the two reciprocal vectors are both discretized by
120 steps, and it has been checked visually for a sample of simulations that the
detection is properly processed. Band-gaps between two surfaces are detected by
investigating band-gaps between two curves along four directions, as illustrated
in Fig. 6d. Note that the proposed method does not guaranty that some curves
intersect in some other directions, but better solutions are unknown to the author’s
knowledge. Nevertheless, this method seems to work while inspecting some dis-
persion bands.

3.2.2. Results
When full band-gaps are present, positions of the extrema relative to the BZ

are plotted in Fig. 7, for the plane crystallographic groups possessing square and
hexagonal BZ. The first overall observation is that the extrema are more located
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Figure 6: Examples of a band-gap (a,b) and dispersion curves intersection (c). The large circles
and small dots represent coarse and fine discretization of the wave vectors, respectively. For (b),
the band-gap is detected with the fine discretization, but not with the coarsest one. For dispersion
surfaces, the detection is done in the 4 directions (d).

on the mirror axes of the BZ, if present (no mirror axis for the cyclic group).
Moreover, the more there are reflection axes, the less extrema are inside the IBZ.
However, there are some portions of the IBZ contour for which the probability is
low:

• For the two groups possessing centered square unit cells (c1m1, c2mm), al-
most no extrema are located on the segments composing the BZ contour
(e.g. ]XM [ or ]XŌ[). It is explained by the fact that these axes are not mir-
ror axes. Consequently, when the analysis is restricted to the IBZ contour,
these portions can be avoided. However, the probability at the middle of
the edges (i.e. X) is important, and since the band-gap detection cannot be
operated from a single point, at least one segment should be kept.

• For the groups p1g1, p1m1, p2gg, p2mg, p2mm and p4mg, some portions of
the BZ contour are without extrema, but we don’t have proper explanations
for these cases.
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Figure 7: Localization in the BZ of 300 randomly selected full band-gap extrema, for the different
plane crystallographic groups possessing square (2) or hexagonal (7) BZ. The scale indicates the
percentage of times a position of the IBZ is targeted.

As a consequence of the absence of extremum at some portions of the IBZ contour,
the band-gaps are more present in some directions. This is highlighted by the polar
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plots of the band-gap orientations provided in Fig. 8. For instance p4gm will be
more directional than p4mm. As also expected, when the lattice has no mirror
axis, all the directions are targeted even if some peaks are present at multiples of
45◦ for the square unit cells and 30◦ for the hexagonal ones. Indeed, several band-
gaps can share a same location (see the color scale of Fig. 7), being especially true
at the positions indicated by letters (e.g. Γ, X , M ). If one is looking for a unit
cell with some required band-gap directions, these wind roses can be used to fix
the unit cell symmetry at an early stage of the design process.

The probability that a full band-gap extremum is located on the contour is
given in Table 5 (although it has been shown that some portions of the IBZ have a
really low probability to have extrema, both real or virtual full contours are con-
sidered, for conservative reasons). It is found that this probability increases with
the symmetry order of the lattice, in agreement with the previous observations.
However, contrary to what is often stated in the literature, for the fully symmetric
square unit cell p4mm, the probability is not 100% (see the point in the middle
of the IBZ in Fig. 7). The unit cell design resulting to this result is shown in
Fig. 5a and details on the dispersion surfaces are shown in Fig. 9a. For p6mm,
considering our simulations, the probability is 100%. This does not guaranty the
nonexistence of contradictory examples, but it can be said that for this group, the
band-gap extrema are located on the IBZ contour.

Based on these results, one could think that restricting to the contour to retrieve
band-gaps is sufficient, but this does not mean that the band-gaps are full. Indeed,
the probability of occurrence of such an event is not null, even for the case p6mm,
as also shown in Table 5. This non-null percentage results from one unit cell
design shown in Fig. 5b and for which, the dispersion curve and surfaces are
shown in Figs. 9b-c. In conclusion, even with highly-symmetric porous phononic
crystals, when looking for band-gaps, one can first consider the contour to see
if band-gaps are possible, but then, the omnidirectionality has to be confirmed
considering the full IBZ as proceeded for instance in [57].

Finally, when the analysis is restricted to the IBZ contour, the bandwidth rel-
ative error is given by

ε =
BWIBZcont −BWIBZ

BWIBZcont
, (3)

where the band-gap bandwidth measured on the IBZ contour and the one from
the full surface are denoted by BWIBZcont and BWIBZ, respectively. From this
equation, if a band-gap extremum is located on the IBZ contour, the error will
be 0% whereas if the band-gap is not full, the error will be 100%. Band-gap
extrema located inside the IBZ will result to intermediate values. It is found that
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Figure 8: Averaged orientation of the full band-gaps extrema, for the different plane crystallo-
graphic groups possessing square (2) or hexagonal (7) BZ.

the bandwidth relative error is slightly larger than the percentage of non-full band-
gaps, meaning that when restricting the analysis to the IBZ contour, the main error
will be induced by the detection of non-full band-gaps.

17



Table 5: For the 17 plane crystallographic groups (PCG) with square (2) and hexagonal (7) unit
cells, statistics of the band-gap (BG) localizations, probabilities to get non-full band-gaps, and
averages of the bandwidth (BW) error made when only the IBZ contour is considered.

For full BG, %
on IBZ contour

If restricted to IBZ contour, % of
PCG non-full BG the BW error
p1 (2/7) 23.75/30.85 38.26/29.84 62.01/46.83
p2 (2/7) 40.60/41.86 62.80/62.93 71.52/68.53
p4 (2) 66.11 41.90 47.02
p1m1 (2) 90.93 4.11 8.26
p1g1 (2) 76.45 5.49 14.30
p2mm (2) 94.46 8.71 9.99
p2mg (2) 87.05 31.19 33.94
p2gg (2) 85.50 24.19 27.67
c1m1 (2/7) 84.28/81.98 4.01/6.52 9.24/10.78
c2mm (2/7) 91.07/91.80 17.16/12.07 18.41/13.18
p3 (7) 59.36 7.44 16.11
p6 (7) 61.42 38.94 44.26
p4mm (2) 99.43 3.30 3.30
p4gm (2) 97.86 2.09 2.70
p3m1 (7) 99.69 3.65 3.65
p31m (7) 99.21 0.26 0.30
p6mm (7) 100.00 0.42 0.42

As a last comment, for a crystallographic group having both a square and a
hexagonal representations, their respective probabilities are close, meaning that
the results are not so influenced by the geometry, but more by its symmetries.

4. Conclusions

When investigating periodic structures, it is primordial to know the crystal-
lographic group of the considered unit cell, and the first part of this manuscript
reviews how to identify it. The group symmetry of a lattice provides the IBZ,
avoiding the analysis over the full BZ. The second part of the manuscript gives in-
dications on the consequences of restricting the analysis to the IBZ contour. If the
lattice possesses only rotational symmetries, without any reflection axis, the prob-
ability that extrema are not located on the contour or that the band-gaps are not full
is high. This probability decreases with the number of reflection axes added, and
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Figure 9: (a) Fifteenth and sixteenth dispersion surfaces in the IBZ for the unit cell presented in
Fig. 5a. Note that a full band-gap is present between both bands, with the maximum of the fifteenth
band (red point) inside the IBZ. Fifteenth and sixteenth dispersion curves around the IBZ (b) and
dispersion bands in the BZ (c) for the unit cell presented in Fig. 5b. Note that the band-gap in gray
(b) is not full (c).

relative good results can be obtained for the fully symmetric square or hexagonal
unit cells. Although this can be sufficient at an early stage of the design process,
it does not provided a full guaranty that a band-gap is full or located on the IBZ
contour. Consequently, one can use the IBZ contour to pre-detect band-gaps, but
their omnidirectionalities have to be confirmed considering the full IBZ.

While this work has been conducted for porous phononic crystals, statistics
for different physics would deserve additional investigations.
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