
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Towards Declarative Statistical
Inference

Gitte Vanwinckelen

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

September 2017

Supervisor:
Prof. dr. ir. Hendrik Blockeel

Towards Declarative Statistical Inference

Gitte VANWINCKELEN

Examination committee:
Prof. dr. ir. Dirk Vandermeulen, chair
Prof. dr. ir. Hendrik Blockeel, supervisor
Prof. dr. Jesse Davis
Prof. dr. Sien Moens
Prof. dr. Peter Flach
(University of Bristol)

dr. ir. Joaquin Vanschoren
(Eindhoven University of Technology)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of
Engineering Science (PhD):
Computer Science

September 2017

© 2017 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Gitte Vanwinckelen, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Acknowledgements

At last, as I am writing these acknowledgements, the journey that is my doctoral
project has come to an end. The journey has been challenging, sometimes even
frustrating, but nevertheless exciting and rewarding in the end. The adventure
started during my Master in Artificial Intelligence, when I met my inspiring
master thesis supervisors, Kurt Driessens, Martijn van Otterlo, and Sofie Pollin.
This master’s thesis ignited a creative and inquisitive spark, and before I knew
it, the next academic year I was writing up my first attempt at research, and
submitting it to the DySPAN conference. At the same time, this also fired the
starting gun for my PhD under the supervision of professor Hendrik Blockeel.

It is in that respect that I would first and foremost like to thank Hendrik for
guiding me through this journey. Looking back, my skills as a researcher have
matured quite a bit since the beginning. For a large part that is thanks to
Hendrik, who taught me how to be critical, and how to build up consistent,
logical and precise theories. Being a great writer himself, Hendrik was always
rather critical of my texts, but luckily for me, at the same time he was also very
patient. Consequently I learned how to keep my nose to the grindstone and
keep on improving, be it incrementally and with small steps. To summarize,
Hendrik taught me how to do science and how to write papers.

I would also like to thank professors Jesse Davis, Sien Moens, Joaquin Vanschoren
and Peter Flach for serving on my examination committee, and professor
Dirk Vandermeulen for chairing my preliminary and public PhD defenses.
Additionally, I am grateful to the sponsor of my work: FWO-Vlaanderen
(project G.0682.11 "Declaratieve experimentering voor automatisch leren”).

The DTAI department was a very pleasant place to work thanks to the many
colleagues and friends that I met there. Almost as soon as I started, I was
introduced by the ‘Greek’ crowd to the Mediterranean time of lunch: 13h30.
A big thanks to all my lunchmates throughout the years: Dimitar, Nick,
Theofrastos, Jan-Tobias, Christos, Koosha, Tom, Tomas, Zubair, Jerome, and

i

ii ACKNOWLEDGEMENTS

Lilian, Raoul, Pieter, Mathy, Rula, Jesper, Marco, and Milica. The conversations
we had were always entertaining and enriching. Moreover, with many of you
I also had some equally interesting coffee breaks, and the occasional chess or
table tennis game. The cultural diversity of the department is something that I
appreciated a lot, and opened up my perspective on the world. A special thanks
goes out to Dimitar, who made great iced coffee, and who was always available
for a chat that cheered up my day.

I would also like to thank Nima, Wannes, Jessa and Ondrej, for making the
office on the third floor almost like a second home for me during the 4.5 years
spent there. An extra thanks goes out here to Wannes for helping me on my way
in the beginning (and in fact also later on) with his broad technical knowledge.

Thanks to my (proof)readers for supporting me during the last mile by providing
me with their detailed comments: My promoter and examination committee,
Jessa, Kurt, Wannes, Ondrej, and Bert.

My PhD journey was a long one. In fact, even a bit longer than the average
one. In that respect, I would like to thank my team head at KBC, Raf Geens,
for being supportive, and giving me the flexibility for finishing up my text
while working on his team. Additionally, I would also like to thank my other
colleagues there, for creating a pleasant working environment, in a period that
was rather challenging for me.

Finally, I would like to thank my family for their emotional and financial support
that allowed me to attend higher education, and in the end obtain this PhD.
And last but not least, my loving partner Bert: Spending my weekends with him
allowed me to empty my mind and restart every week with fresh motivation.

Gitte Vanwinckelen
Heverlee, December 2017

Abstract

Wide-ranging digitalization has made it possible to capture increasingly larger
amounts of data. In order to transform this raw data into meaningful insights,
data analytics and statistical inference techniques are essential. However, while
it is expected that a researcher is an expert in their own field, it is not self-
evident that they are also proficient in statistics. In fact, it is known that
statistical inference is a labor-intensive and error-prone task. This dissertation
aims to understand current statistical inference practices for the experimental
evaluation of machine learning algorithms, and proposes improvements where
possible. It takes a small step forward towards the goal of automating the data
analysis component of empirical research, making the process more robust in
terms of correct execution and interpretation of the results.

Our first contribution is a synthesis of existing knowledge about error estimation
of supervised learning algorithms with cross-validation. We highlight the
distinction between model and learner error, and investigate the effect of
repeating cross-validation on the quality of the error estimate.

Next, we focus on the evaluation of multi-instance learning algorithms. Here,
instances are not labeled individually, but instead are grouped together in bags
and only the bag label is known. Our second contribution is an investigation of
the extent to which conclusions about bag-level performance can be generalized
to the instance-level. Our third contribution is a meta-learning experiment in
which we predict the most suitable multi-instance learner for a given problem.

The intricate nature of statistical inference begs the question whether this aspect
of research cannot be automated. One requirement for this is the availability of
a model representing all relevant characteristics of the population under study.
Bayesian networks are a candidate for this, as they concisely describe the joint
probability distribution of a set of random variables, and come with a plethora
of efficient inference methods. Our last contribution is a theoretical proposal of
a greedy hill-climbing structure learning algorithm for Bayesian networks.

iii

Beknopte samenvatting

Doorgedreven digitalisatie resulteert in steeds grotere hoeveelheden beschikbare
data. Om uit deze ruwe data nuttige inzichten te destilleren, is een goede
kennis van data-analyse en statistische inferentie methodes essentieel. Terwijl
we kunnen verwachten dat onderzoekers experts zijn in hun eigen vakgebied, is
het niet vanzelfsprekend dat zij ook expert zijn in de statistiek. Bovendien is
data-analyse een arbeidsintensieve en foutgevoelige taak. Dit proefschrift heeft
als doel statistische inferentie methodes voor de experimentele evaluatie van
machinale leeralgoritmes te begrijpen, en verbeteringen voor te stellen waar
mogelijk. Het is een kleine stap vooruit in de richting het automatiseren van het
data-analyse gedeelte van empirisch onderzoek, waardoor het proces robuuster
wordt in termen van correcte uitvoering en interpretatie van de resultaten.

De eerste bijdrage is een synthese van de bestaande kennis over performantie
schatting van gecontroleerde leeralgoritmes met cross-validatie. We onderschei-
den de performantie van een model en van een leeralgoritme, en onderzoeken
het effect van herhaalde cross-validatie op de kwaliteit van de schatting.

Vervolgens focussen we op de evaluatie van multi-instance leeralgoritmes. Deze
algoritmes leren een model van voorbeelden die gegroepeerd zijn, en enkel het
groepslabel bekend is. De tweede bijdrage is een onderzoek naar de relatie tussen
de performantie van deze algoritmes op groepsniveau en op het niveau van
individuele voorbeelden. De derde bijdrage is een meta-leren experiment waarin
we het meest performante algoritme voor een bepaald probleem voorspellen.

Het complexe karakter van statistische inferentie roept de vraag op of dit aspect
van wetenschappelijk onderzoek geautomatiseerd kan worden. Een vereiste is de
beschikbaarheid van een statistisch model van de onderzochte populatie. Een
Bayesiaans netwerk is geschikt omdat het bondig de gezamenlijke kansverdeling
van een set stochastische variabelen beschrijft, en er efficiente inferentie methodes
beschikbaar zijn. Onze laatste bijdrage is een theoretisch voorstel van een greedy
hill-climbing algoritme voor het leren van de structuur van dit netwerk.

v

Contents

Abstract iii

Contents vii

1 Outline 1

1.1 Context . 1

1.1.1 Machine learning . 1

1.1.2 Statistical inference . 2

1.1.3 Performance measures 3

1.1.4 Towards declarative statistical inference 4

1.2 Dissertation statement . 5

1.3 Contributions . 5

1.4 Structure of the dissertation . 6

1.5 Other publications . 8

2 Case study: Predictive web analytics 9

2.1 Introduction . 9

2.2 Data and prediction task . 10

2.3 Short overview of the steps in model development 11

2.4 Data exploration . 11

vii

viii CONTENTS

2.4.1 Transformation to log space 11

2.4.2 Cumulative visitor count 13

2.4.3 Website statistics . 14

2.4.4 Time dependence . 16

2.5 Data preprocessing . 16

2.5.1 Data cleaning . 17

2.5.2 Feature extraction . 17

2.6 Modeling . 20

2.7 Evaluation and interpretation . 21

2.7.1 Evaluation . 21

2.7.2 Interpretation . 23

2.8 Conclusion . 23

3 Model evaluation with cross-validation 25

3.1 Introduction . 25

3.2 Preliminaries . 28

3.2.1 Learning task . 28

3.2.2 Error measures . 28

3.2.3 Cross-validation error estimator 30

3.2.4 Estimator quality . 31

3.3 Estimating the conditional error 32

3.3.1 Algorithmic stability . 32

3.3.2 Stochasticity of cross-validation 33

3.3.3 Sample variance of leave-one-out cross-validation 34

3.4 Estimating the unconditional error with repeated cross-validation 37

3.4.1 Variance decomposition 37

3.4.2 Variance estimation . 38

CONTENTS ix

3.5 Experiments . 40

3.5.1 Does cross-validation estimate the conditional or uncon-
ditional error, or neither? 40

3.5.2 Comparing learners with cross-validation 42

3.6 Conclusions . 45

4 Bag- versus instance-level performance in multi-instance learning 49

4.1 Introduction . 49

4.2 Multi-instance learning: Preliminaries 51

4.2.1 Definition and terminology 51

4.2.2 Connection between f and F 52

4.2.3 Instance-level versus bag-level accuracy 53

4.2.4 Mathematical analysis of the relationship between bag-
level and instance-level accuracy 54

4.3 Literature on (standard) multi-instance learning 57

4.3.1 Algorithms and applications 57

4.3.2 Learning task: Definition 12 versus Definition 13 58

4.3.3 Performance measure: Bag-level versus instance-level . . 59

4.4 Experimental analysis of the relationship 60

4.4.1 Experimental setup . 61

4.4.2 Results . 64

4.4.3 Experimental analysis of the relationship between bag
level and instance level accuracy over multiple datasets 68

4.5 Comparison of multi-instance and single-instance learning
algorithms . 73

4.6 Conclusions . 78

5 A meta-learning system for multi-instance classification 80

5.1 Introduction . 80

x CONTENTS

5.2 Definition and terminology . 81

5.3 Our approach . 82

5.4 The meta-learning dataset . 83

5.5 Multi-instance learner performance 83

5.6 Experiments . 84

5.6.1 Experimental setup . 84

5.6.2 Results: UCI datasets 85

5.6.3 Results: Text datasets 87

5.6.4 Results: SIVAL datasets 88

5.7 Conclusions . 89

6 Bayesian network structure learning in the presence of sampling
variance 91

6.1 Introduction . 91

6.2 Bootstrapping . 92

6.3 Greedy hill-climbing . 93

6.4 Structure learning with sample variance 95

6.4.1 Rationale . 95

6.4.2 Bayesian bootstrap . 97

6.4.3 Racing . 98

6.5 Model selection uncertainty quantification 99

6.5.1 Introduction . 99

6.5.2 Bayesian model averaging 100

6.5.3 Variance estimation . 101

6.6 Related work . 102

6.7 Conclusions and future work 103

7 Conclusion 105

CONTENTS xi

7.1 Summary of contributions . 105

7.1.1 Statistical inference with cross-validation 105

7.1.2 Multi-instance learning 106

7.1.3 Bayesian network structure learning 107

7.1.4 Recommendations . 108

7.2 Future work . 108

7.2.1 Translating computational learning theory results about
cross-validation into practice 108

7.2.2 A declarative experimentation system 109

7.2.3 Causal Bayesian networks 113

7.2.4 Transfer learning for Bayesian networks 114

7.2.5 Building a knowledge base for statistical inference . . . 114

A Variance of repeated cross-validation 117

A.1 Variance of cross-validation . 117

A.2 Variance of repeated cross-validation 119

List of Publications 135

Chapter 1

Outline

1.1 Context

1.1.1 Machine learning

Recently, the verb ‘learning’ acquired a new meaning: It is no longer exclusively
associated with humans and animals; but computers, or machines, are added
to the list of possible subjects. It probably comes as no surprise to the reader
that machine learning is the topic of this dissertation. This subfield of artificial
intelligence is concerned with the study of algorithms that have as a goal learning
patterns from data. The challenge is that these patterns should not only apply
to the data from which they were extracted, but they should also generalize to
unseen data.

Wide-ranging digitalization has resulted in an abundance of data in almost
every industry and science, making machine learning a trending topic. Building
a statistical model, however, is a challenging and complex task. The data
almost always has to undergo several cleaning and preprocessing steps before
being useful. Also the selection of the algorithm requires careful thought: In
order to obtain a high-quality model, the inductive bias of the algorithm has
to match the characteristics of the data at hand. In-depth knowledge of both
machine learning and the problem setting are therefore required. The job is not
finished after the model is constructed: The results still have to be analyzed
and interpreted. This is the focal point of this dissertation, namely performance
evaluation of statistical models.

1

2 OUTLINE

1.1.2 Statistical inference

Since the goal in machine learning is to develop models that generalize to unseen
data, the available data is considered just a sample from the population of
interest. If we would repeat the experiment, we would almost certainly draw
another sample from the population, and obtain slightly different results. The
goal is therefore to quantify the uncertainty about the performance of the
model on the population. This setup is reminiscent of frequentist philosophy.
Confidence intervals or hypothesis tests are indeed very often the method of
choice to analyze and present performance results. Estimation of the sample
variance of the performance estimate lies at the core of this approach.

To obtain an unbiased estimate of the performance of the model, and
consequently avoid overfitting, it is good practice to train and test the model
on two independent datasets. This poses a dilemma: On one hand, the more
training data is available, the more accurate the model will be. On the other
hand, the more test data is available, the more accurate the performance
estimation will be. The most widely accepted solution to this problem is
the use of resampling estimators. Several variants exist, such as for instance:
cross-validation, bootstrapping, or repeated hold-out. Currently, k-fold cross-
validation seems to be the method of choice in machine learning research, where
k can range from two to the number of instances in the dataset. Sometimes
the cross-validation procedure is also repeated on random shuffles of a dataset,
after which the results are averaged.

A resampling method bears a similarity with learning algorithms: Namely, its
goal is to predict which model or learner will have best predictive performance
on a given task. Consequently, resampling estimators can also be considered
to have an inductive bias. It is perhaps because there is no clear description
of the set of assumptions that this bias consists of, that the selection of the
most appropriate resampling method for a given problem, and the tuning of its
parameters, is still a debated topic today.

One important assumption for instance is about the scope of the problem:
Do resampling estimators estimate the performance of the model that can be
constructed on the available dataset, or do they estimate the performance of
the underlying learning algorithm, on the population from which the available
data is just a random sample? The interpretation of the results obtained by
resampling, and the most appropriate statistical inference method for analysis
of these results, depends entirely on the answer to this question. Investigation
of this issue is one of the topics of this dissertation.

CONTEXT 3

1.1.3 Performance measures

Another aspect of model performance evaluation is the choice of the performance
measure. A performance measure is defined as the expected loss of a modelM
over the entire population P : Ex∼P [l(M(x))], with the loss function l measuring
the distance between a prediction and the true label of an instance. For the
choice of the loss function there are many options. The function most often used
for binary classification for instance is 0/1 loss, which equals zero if the label
and the prediction are identical, and one otherwise. The performance measure
associated with 0/1 loss is accuracy (acc). Sometimes also 1−acc, or error, is
used. Other popular performance measures for classification are ‘Area Under
the ROC Curve’ (AUC-ROC) and the F1-score. For regression, mean squared
error (MSE) is common due to its convenient mathematical properties. MSE is
sometimes also used for classification algorithms that produce continuous class
probabilities.

A model can score excellently on one performance measure, yet poorly on another.
One should therefore think carefully about what aspects of the learning task are
important. A typical example of this can be found in text classification, where
the task is to assign categories to text fragments. Often the number of categories
is large, whereas the number of texts that belong to a certain category is small.
Almost never assigning a certain category to the text fragments will then result
in an accuracy close to 100% for that category. Obviously, this does not give an
accurate description of the performance of the model. This is the reason why
in the field of natural language processing, the prevalent performance measures
are precision, recall and the F1 score.

In this dissertation, we study the choice of performance measure in the context
of multi-instance learning. As in traditional supervised learning, the goal here
is to learn a model from labeled instances that can predict the label of future
instances. Instances are however not labeled individually, but instead they are
grouped together in bags and only the bag label is known. Besides the choice
between the above discussed measures, here one also has the choice between
computing the performance with respect to classifying bags, or with respect to
classifying individual instances. It seems that currently most researchers choose
to evaluate their models at the bag level. We investigate whether this bag-level
performance of multi-instance learners can be extrapolated to instance-level
performance.

4 OUTLINE

1.1.4 Towards declarative statistical inference

The previous sections already gave a few examples of the challenges that are
encountered during statistical model development. They demonstrate that the
process is complex and requires a thorough understanding of machine learning
and statistics. In fact, even for machine learning researchers themselves it is
impossible to know all the available methods, their assumptions, and their
advantages and disadvantages (Demsar 2006; T. G. Dietterich 1998). Moreover,
issues already arise with tasks that appear rather simple at first sight.

Consider for instance the task of inferring from the error estimates on a test
sample, which one of two binary classifiers performs best on a given population.
Since binary classification error is defined as the proportion of examples for
which the predicted label is different from the true label, a hypothesis test for
binomially distributed variables is suitable for this task. While several alternative
hypothesis tests exist for comparing binomial proportions, the most well-known
variant relies on the approximation of the binomial error distribution by a normal
distribution. This approximation is justified by the central limit theorem, which
states that for n independent and identically distributed variables xi with finite
variance σ2 and mean µ, the sampling distribution of their average x̄n converges
in probability almost surely to a normal distribution N (µ, σ2

n) as the number
of data points n goes to infinity. If the assumptions of this theorem are indeed
satisfied, computing the hypothesis test is no more than applying a cookie-cutter
method. It is, however, not so obvious that they are fulfilled. For instance, how
do we know when the sample size is ‘sufficiently large’? The most concrete,
formal, answer comes from the Berry-Esseen theorem, which tells us that the
rate of convergence of x̄n towards µ is at least n− 1

2 . A practical rule of thumb
derived from this theorem is that the central limit theorem is valid starting from
30 instances. However, the validity of this recommendation should always be
evaluated in its specific context. For variables with heavy-tailed distributions,
for instance, it is known that the minimum sample size required for their average
to be approximately normally distributed is significantly larger (Wilcox 2010).

Another assumption of the theorem that requires special attention is the
independence of the averaged variables. In real world experiments, random
variables are seldom entirely independent. The questions is then at what point
the dependencies become sufficiently weak to be negligible? When evaluating a
classifier on a test set, for instance, dependencies exist between the errors on
the individual instances, because they originate from predictions by the same
classifier. These dependencies are generally ignored, but the main reason for
this is likely that one is unaware of them, rather than that this was a conscious
decision.

DISSERTATION STATEMENT 5

Examples such as these beg the question whether it is appropriate to put the
burden of statistical analysis entirely on the shoulders of the researcher. While
to a large extent, the problems can be mitigated by involving a statistical
expert, a more efficient solution would be if the researcher could formulate
their hypothesis, and the remainder of the experimentation process would be
executed by a designated software system. Such a software system would most
likely consist of the following components: First, a declarative language in which
the statistical queries can easily be formulated. Second, an inference engine
that provides the execution strategies for these queries. Finally, a method to
translate the declarative queries to the procedural inference engine.

In the last part of this dissertation we focus on the inference engine of such
a declarative inference system. A suitable candidate for this component is
a Bayesian network model. The structure of such a network encodes the
independences between a set of random variables set, so that inference becomes
tractable. In fact, a wide variety of fast, efficient probabilistic inference methods
is available for these models. In theory, the structure of such a network could
be specified by the researcher, but it is quite likely that the dependencies
between the variables are unknown, or even more so, the subject of the research.
Consequently, we propose that they should be learned automatically from the
data. Since we only have a sample of the population available, however, there
will be uncertainty about the correct model. In fact, multiple competing models
may remain after structure learning. This is the final topic of this dissertation:
A structure learning algorithm for Bayesian networks that takes into account
model selection uncertainty caused by sample variance.

1.2 Dissertation statement

The high-level objective of this dissertation is the understanding and
improvement of current statistical inference practices for the evaluation of
supervised machine learning algorithms. It takes a small step forward towards
the goal of automating the data analysis component of empirical research,
making the process more robust in terms of correct execution and interpretation
of the results.

1.3 Contributions

The first contribution of this dissertation is a synthesis of the existing
knowledge about error estimation of predictive models with cross-validation. The

6 OUTLINE

insights that are gathered in this work are otherwise scattered in the literature,
ranging from basic statistical research, through (applied) machine learning,
to bioinformatics. We found that the results of existing empirical research
are sometimes conflicting, probably because of the variety of experimental
settings. The choices are indeed extensive: The evaluation of models versus
learners, the choice of datasets and learning algorithms, but also the choice of the
parameters of cross-validation itself. Theoretical papers do not always offer more
insight to the average reader: They often require expert knowledge of statistics
and learning theory. In this dissertation we collect insights from all these
papers and present a comprehensive and clear overview of their conclusions.
These conclusions are supplemented with experiments focused on repeated
cross-validation.

The second contribution is an investigation of the extent to which the
conclusions of experimental studies of multi-instance learning algorithms
evaluated in terms of bag-level performance can be generalized to the instance-
level. We show theoretically that there is no one-to-one mapping between
instance level and bag level accuracy. We support these results with an extensive
empirical evaluation of the performance of fourteen multi-instance learners on
both synthetic and real-world datasets, in terms of accuracy and AUC-ROC.

The third contribution of this dissertation is a meta-learning experiment in
which we automatically learn the most suitable multi-instance learner for a
given problem. For this aim, we extend the landmarking approach introduced
by Pfahringer et al. (2000) to the multi-instance learning setting. Landmarking
is the application of a set of quick and simple learning algorithms on a problem,
in order to predict the performance of slower, more complex algorithms.

The final contribution is a Bayesian network structure learning algorithm
that fits into the frequentist framework: If we would repeat the experiment,
we would almost certainly draw another sample from the population leading
to slightly different results. This sample uncertainty is taken into account by
incorporating bootstrapping into the structure learning algorithm. The efficiency
of the algorithm is increased by using a Bayesian version of the bootstrap, and
applying a racing algorithm. The algorithm is a practical demonstration of how
a frequentist problem can be approached from within a Bayesian framework. It
is worth noting that this last contribution is purely theoretical, and experiments
are still needed to confirm the viability of the approach.

1.4 Structure of the dissertation

The structure of the dissertation is as follows:

STRUCTURE OF THE DISSERTATION 7

Chapter 2 introduces the process of statistical model development with a
discussion of our submission to the 2014 ECML-PKDD Predictive Web Analytics
Challenge. Along the way, several concepts, methods, and terminology that
will be used later on in the text are introduced. This chapter is based on the
following workshop paper:

G. Vanwinckelen and W. Meert (2014). “Predicting the popularity of online
articles with random forests”. In: ECML/PKDD Workshop on Predictive
Web Analytics. France, September

Chapter 3 presents a synthesis of the existing knowledge about error estimation
of supervised models with cross-validation. The conclusions are supported by
an experimental study of the performance of repeated cross-validation for
estimating the error of a learner or a model. This chapter is based on the
following workshop papers and publication:

G. Vanwinckelen and H. Blockeel (2012). “On estimating model accuracy
with repeated cross-validation”. In: Proceedings of the 21st Belgian-Dutch
Conference on Machine Learning (BeneLearn). Belgium, May
G. Vanwinckelen and H. Blockeel (2014b). “Look before you leap: Some
insights into learner evaluation with cross-validation”. In: ECML/PKDD
Workshop on Statistically Sound Data Mining. France, September
G. Vanwinckelen and H. Blockeel (2014c). “Look before you leap: Some
insights into learner evaluation with cross-validation (Poster)”. In: Intelligent
Data Analysis. Belgium, October

In chapter 4 we show that there is not always a one-on-one mapping between
the instance-level accuracy and bag-level accuracy of multi-instance learners.
It is supplemented with an extensive empirical evaluation of the bag-level and
instance-level performance of multi-instance learning algorithms in terms of
accuracy and AUC. The chapter is based on the following publication:

G. Vanwinckelen, V. Tragante Do O, D. Fierens, and H. Blockeel (2014).
“Instance-level accuracy versus bag-level accuracy in multi-instance learning”.
In: Data Mining and Knowledge Discovery

Chapter 5 presents an exercise in meta-learning, aiming to automatically select
the best performing multiple-instance learner for a given problem. This chapter
is based on the following journal paper:

G. Vanwinckelen and H. Blockeel (2014a). “A meta-learning system for
multi-instance classification”. In: ECML/PKDD Workshop on Learning from
Multiple Contexts. France, September

8 OUTLINE

Chapter 6 introduces a Bayesian network structure learning algorithm that
explicitly takes into account sampling variance by means of bootstrapping.
This work is unpublished, but it is inspired by the proposal for a declarative
experimentation system introduced in Section 1.1.4 and presented in the abstract:

G. Vanwinckelen and H. Blockeel (2013). “A declarative query language for
statistical inference”. In: ECML/PKDD Workshop on Languages for Data
Mining and Machine Learning. Czech Republic, September

1.5 Other publications

In addition to the work presented in this dissertation, the author has also
published the following conference paper:

G. Vanwinckelen, M. V. Otterlo, K. Driessens, and S. Pollin (2011).
“Power control for secondary users based on distributed measurements”. In:
IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks
(DySPAN). Germany, May

She also contributed to the project presented in this poster:

G. Vanwinckelen, D. Verbeeck, W. Meert, and H. Blockeel (2013). “Optimal
mobile connectivity using a practical coverage map”. In: LICT Scientific
symposium on adaptivity in ICT. Belgium, September

Chapter 2

Case study: Predictive web
analytics

This chapter introduces the process of model development in machine learning
by means of a case study from the 2014 ECML/PKDD discovery challenge
(Vanwinckelen and Meert 2014). The topic of this challenge was predictive web
analytics, more specifically the prediction of the popularity of online content.
Our approach won second place for predicting the number of visitors and the
number of Facebook likes of a webpage, and first place for predicting the number
of tweets that mention a certain webpage.

2.1 Introduction

Fueled by prospects of better catering to user’s interests, predictive web analytics
is a topic that has been receiving growing interest. The underlying goal is of
course increasing revenue by allowing for more focused advertising. Besides
predicting the popularity of the actual content (e.g., news articles, blog posts,
YouTube videos), the problem can be broadened to predicting the popularity
of content on social media sites. A significant portion of internet users today
depends on sites like Facebook and Twitter for connecting with content that
interests them. Having a presence on social media is thus important for content
providers because it increases the exposure and popularity of their articles.
Understanding the interactions between social media presence and content
popularity therefore contributes to the appeal of predictive web analytics. This
is also the goal of the ECML/PKDD challenge: The development of a model

9

10 CASE STUDY: PREDICTIVE WEB ANALYTICS

predicting the future number of visits and social media citations of a web page
based on its past popularity. The model development process can be divided
into different subtasks that are also applicable to other prediction problems. We
use the ECML/PKDD challenge as a stepping-stone to describe these different
tasks. We start by providing a detailed overview of the data and the prediction
task.

2.2 Data and prediction task

The data in the predictive web analytics challenge consists of a collection of time
series that were gathered by the real-time analytics engine Chartbeat. For each
of a set of hundred websites, a collection of 600 URLs was monitored during
48 hours. Every five minutes, information was collected about the number of
visitors in that interval, the number of times the URL appeared in a Twitter
message, the number of times a Facebook message containing the URL was
liked, and the average time a visitor was active on the page. Additionally, the
website’s ID, and the weekday and hour the URL was posted is available. The
time recorded is presumed to be server side time but this was not explicitly
stated in the original data description. It was ensured by the organizers that
each URL has at least ten visits.

The prediction task is defined as follows: Based on the time series data from
the first hour, predict for each URL the total number of visitors, tweets, and
likes after 48 hours.

A secret test set was used to objectively compare the solutions of the competitors.
It consisted of half of the 600 URLs for each of the hundred web domains, and
contains only the data from the first hour. The other half of the data was fully
disclosed to the participants for training and evaluation purposes.

The prediction of the three targets on the secret test set had to be submitted to
the organizers for evaluation. The quality of the solutions is measured by the
mean squared error (MSE) of log(x+ 1), with x one of the three targets. Note
that from now on we will denote log(x+ 1) as log1p(x). Since the first ranking
criterion is the MSE for the number of visitors, priority is given to this target.

SHORT OVERVIEW OF THE STEPS IN MODEL DEVELOPMENT 11

2.3 Short overview of the steps in model develop-
ment

This section gives a general overview of the model development process for a
practical application. Each of these steps is described in more detail in the
upcoming sections, with a focus on the aspects relevant to the ECML/PKDD
challenge.

Data exploration The first step of the process is to obtain an understanding
of the structure of the data. For this task, we make use of descriptive
statistics and visualizations.

Preprocessing Raw data is often of poor quality: Missing values or erroneous
information are ubiquitous. A number of preprocessing steps are therefore
needed to obtain a clean dataset that yet still contains all the information
needed to produce a usable model. Preprocessing encompasses a range
of subtasks, including outlier detection, missing value treatment, feature
scaling, selection and generation, and dimensionality reduction.

Modeling One or more machine learning algorithms are applied to the prepared
data. While this is the core of the process, it is usually also the part that
takes the least amount of time.

Evaluation After the models are constructed, we select one of them for the
final application. Model preference depends on several factors: Is a black-
box model acceptable or does the model need to be interpretable? Which
performance characteristics are most important? Performance comparison
is usually based on statistical inference techniques such as hypothesis
testing.

2.4 Data exploration

In order to be able to make the right design choices later on, it is important
to have a good understanding of the structure of the data. This is typically
accomplished by visualization and descriptive statistical analysis.

2.4.1 Transformation to log space

Earlier research on online content popularity prediction found a linear
relationship between the log visitor counts at two different moments in time

12 CASE STUDY: PREDICTIVE WEB ANALYTICS

(a) ρs = 0.73, ρp = 0.74 (b) ρs = 0.82, ρp = 0.84 (c) ρs = 0.72, ρp = 0.73

(d) ρs = 0.32, ρp = 0.36 (e) ρs = 0.32, ρp = 0.32 (f) ρs = 0.43, ρp = 0.39

Figure 2.1: The first three scatter plots show log1p(x1h) versus log1p(x48h)
with x either equal to visits, twitter , or facebook. The last three scatter plots
show the log1p(visits48h) versus log1p(x1h).

(Castillo et al. 2014; Szabo and Huberman 2010). If there is also a strong linear
relationship between the predictors and the target for the problem at hand, this
facilitates our model choice. A log-linear model would then be an appropriate
choice.

To avoid having to take the logarithm of 0, we use the log1p instead of the log
transformation. Figure 2.1a plots the log1p transform of the total number of
visitors after one hour, log1p(visits1h), versus the total number of visitors after
48 hours, log1p(visits48h). Similar scatter plots are shown for the number of
tweets and likes in Figures 2.1b and 2.1c.

For each target, we also compute the Spearman rank and the Pearson correlation
(respectively ρs and ρp, shown below each plot). The Spearman rank coefficient
measures the monotonic relationship between two variables, while the Pearson
coefficient measures the linear relationship. Both take values between -1 and 1,
with values close to |1| indicating a strong correlation. We are mostly interested
in the linear correlation, but differences between the two correlation coefficients
could provide us with additional useful information.

We find that for all the variables there is indeed a linear relationship between

DATA EXPLORATION 13

(a) Website 31 (b) Website 49 (c) Website 69 (d) Website 76

Figure 2.2: The cumulative visitor count time series for 30 random URLs from
four different websites.

the count after one hour and after 48 hours. The Spearman and the Pearson
correlations are approximately identical, indicating that the relationship is
mostly linear and there are no outliers. This can also be derived from the
figures. The correlation is highest between measurements of the same variable
at 1h and 48h, with the correlation between the number of tweets being strongest
(ρs = 0.82, ρp = 0.84). This may explain why the models presented in Section 2.7
perform best for predicting the number of tweets.

The correlation between the visitor count after 48h and the other 1h variables
(tweets, likes and time) is not very strong. If we would like our model to extract
useful information from these variables also, a log-linear model might not be
sufficient.

2.4.2 Cumulative visitor count

Figure 2.2 shows the 48-hour cumulative time series of the number of visits for
30 random URLs from four different websites. The first hour after the URL
was posted is indicated by a vertical red line.

While these figures show just a small sample of URLs, the plots nevertheless
hint that the characteristics of the curves may be different for each website.
We observe for instance a difference in the minimum and maximum number of
visitors, and in the spread of the final total visitor count.

Most growth curves are smooth and saturate fairly quickly. Some curves,
however, follow a more ‘erratic’ growth path. Sudden bumps could be caused
by the website using a model where popular stories are promoted to a front
page, thus suddenly experiencing a surge in visitors because the URL gets more
exposure (Lerman and Hogg 2010). Web domains that do not follow this model
would not show this behavior. This type of growth poses a problem for learning,
because when these bumps occur after the 12th datapoint (the boundary of

14 CASE STUDY: PREDICTIVE WEB ANALYTICS

10 20 30
website

0

1

2

3

4

5

lo
g
(1

+
v
is

it
s_

4
8
h
)

Figure 2.3: Box plots of log1p(visits48h) for a random selection of 30 websites,
ordered by increasing average visitor count.

the 1h input data), the final visitor count will be difficult to predict. It could
therefore be beneficial to remove these observations, as they introduce noise
that confuses the learner.

2.4.3 Website statistics

More indications that the characteristics of the web domains differ are found
when constructing box plots for log1p(visits48h). Figure 2.3 shows the results
for a random sample of 30 web domains, ordered by the mean number of visitors.
The mean is indicated by a blue dot and the median by a red line. The upper
and lower limits of the box represent respectively the first and third quartile.
The length of the whiskers corresponds to 1.5 times the interquartile range
(IQR), and outliers are indicated individually by ‘+’.

Figure 2.3 shows some interesting differences between the web domains: Websites
with a small mean number of visitors have a median number of visitors that is
typically smaller than the mean. This suggests a left skewed distribution where
most URLs receive few visitors, and a few URLs receive a large number of
visitors. This trend reverses for websites with a large mean number of visitors,
suggesting a right skewed distribution for those web domains. This is confirmed
by Figure 2.4, showing the histogram of log1p(visits48h) of the least popular
web domain (a) (smallest mean visitor count), and that of the most popular
web domain (b) (largest mean visitor count).

DATA EXPLORATION 15

0 1 2 3 4 5
log(1+visits_48h)

0

10

20

30

40

50

60

(a)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
log(1+visits_48h)

0

10

20

30

40

50

60

(b)

Figure 2.4: Histograms of log1p(visits48h) of respectively the website with (a)
the smallest mean visitor count, and with (b) the largest mean visitor count.

(a) (b)

Figure 2.5: (a) Scatter plot of log1p(visits48h) versus posted hour and weekday,
together with the mean visitor count plotted in red. (b) Smoothed time series
of the mean number of posted URLs.

We also notice a difference in the spread of the visitor counts, where unpopular
web domains have a smaller visitor count spread than popular web domains.
This is especially true for the visitor counts in the first quartile.

We conclude that the statistical properties of the visitor counts differ for each
web domain. It would therefore be reasonable to learn a model for each domain
separately.

16 CASE STUDY: PREDICTIVE WEB ANALYTICS

2.4.4 Time dependence

Because the day and hour a URL was posted is known, we can investigate if
the time series for the visitor count exhibits periodicity. Figure 2.5a shows a
scatter plot of log1p(visits48h) in function of the day and time the URL was
posted, together with the mean number of visitors, indicated in red. A new day
starts at midnight and is indicated by a red vertical line; noon is indicated by a
black dotted line. Based on previous research, we expected to find a trend in
the popularity of the URLs, with for instance URLs posted at noon being more
popular than URLs posted for instance at 4am (Szabo and Huberman 2010).
However, no significant periodicity that would indicate such a daily trend was
detected in this signal.

Another aspect is the number of URLs posted at each point in time, shown in
Figure 2.5b. In this case, a trend is observed, which can be visualized using
an exponential moving average with a window size of 6 hours. We see that
regardless of the day, most URLs are posted somewhere during the evening,
and few URLs are posted before noon. Furthermore, we see that most URLs
are posted on Monday, and after that there is a decreasing trend with the least
number of URLs posted on Friday.

These results suggest that most content providers are from the same region,
whereas the readers are from various regions. When we constructed similar plots
for smaller, random subsets of websites, we did notice periodicity in the visitor
count in some of the subsets. This indicates that readers of a single website are
in fact often from the same region. Unfortunately, the trends are obfuscated
when the data from the different sites is merged due to the presence of time
zones. This is another indication that it may be useful to learn a separate model
for each web domain.

2.5 Data preprocessing

Preprocessing is a very extensive field and it is not the purpose of this section
to give a complete overview. Instead, we focus on the techniques that are most
useful in the predictive web analytics challenge. For a more detailed overview
we refer the reader to the literature (Kotsiantis et al. 2006; I. H. Witten et al.
2016).

DATA PREPROCESSING 17

2.5.1 Data cleaning

The expression ‘garbage in, garbage out’ is highly relevant in the context of
machine learning model development. The quality, representational format, and
size of the dataset all have a high impact on model performance. Data errors
and irrelevant or redundant information create noise that makes it more difficult
for an algorithm to crystallize the data into a useful signal. One of the goals of
preprocessing is to deliver a clean dataset that is free of these issues.

The dataset of the predictive web analytics challenge is already of reasonable
quality. It contains for instance no missing values, and it was ensured by the
creators that each URL has at least ten visits. A useful data cleansing step
would be to remove the time series in the dataset that show erratic behavior
after the 12th data point, as shown in the cumulative visitor count Figure 2.2.
When these fluctuations show no correlation with the data during the first hour,
they are unpredictable and may distort the model. However, this strategy was
left as future work in the current proposal.

2.5.2 Feature extraction

Besides data cleaning, preprocessing also encompasses feature selection and
transformation. Feature selection can be seen as a form of dimensionality
reduction and presents several advantages. It reduces the required dataset size
for learning, and prevents overfitting. Feature transformation can be interpreted
broadly, ranging from rescaling to generating entirely new features. The purpose
is to reshape the data into a format that is suitable for the bias of a learning
algorithm. For instance, algorithms that rely on distances are known to be
sensitive to variables being measured on a different scale, so normalization is
recommended in such cases. Generating entirely new features generally requires
a thorough understanding of the problem at hand, although automatic feature
generation is also an active research topic (Markovitch and Rosenstein 2002).

Feature selection and transformation are issues that require special attention in
the current setting: Since the data consists of time-series, it will either have
to be transformed into attribute-value data or it will have to be processed
by a special-purpose learning algorithm. For simplicity we choose the former
approach, i.e., treat the problem as a regular supervised learning problem. The
challenge is then to extract uncorrelated features from the time series data that
still contain all the required information.

In the exploratory data analysis we saw that a linear relationship exists between
the log1p of the total number of visitors during the first hour and after 48 hours.

18 CASE STUDY: PREDICTIVE WEB ANALYTICS

A similar effect was observed for the number of tweets, likes and active time. A
first step is therefore to reduce the four original time series (visits, tweets, likes,
and active time) to log1p(1 + x), with x one of the four measured quantities.

Time series not only contain information about counts, they also have a global
shape that emerges from local correlations between data points nearby in time.
One way of extracting this information is to transform the time series to the
frequency domain by means of the Fourier transform. Because we are interested
in the growth characteristics of the visitor count instead of temporal fluctuations,
we apply the transformation to the cumulative visitor count series instead of
the original series.

Applying the Discrete Fourier transformation on a cumulative time series of
1 hour sampled every 5 minutes results in 12 complex frequency components,
with Fourier frequencies ranging from the DC component 0Hz up to the highest
frequency 3.310−3Hz. The imaginary part of the coefficients contains no useful
information for popularity prediction, so we only retain the moduli of the
complex Fourier coefficients. Because the time series is real, the real part of the
coefficients is an even function, so all the required information is available in
the DC-component together with the first six moduli. Instead of a time series
we now have a series ordered in the frequency domain. In order to keep the
number of features low we average the coefficients: The DC component may be
a useful feature by itself, as it can be interpreted as the average visitor count
during the first hour. We average the fourth and fifth coefficient, and the sixth
to seventh coefficient.

Figure 2.6 provides some insight into the information contained in the Fourier
transform of the time series. It visualizes three cumulative visitor count curves
(black) together with their Fourier approximation based on the DC-component,
the harmonic with the lowest frequency, and its complex conjugate. The first
seven Fourier coefficient moduli are shown below. Notice how the second time
series is rather smooth. In the frequency domain this translates into a DC
component that is much larger than the harmonic coefficients. The third time
series on the other hand, contains a ‘bump’ in the time domain around the
fourth data point, resulting in larger harmonic components coefficients.

Our exploratory data analysis also found a relationship between the time a
URL was posted and the visitor count for subsets of web domains. Timing
information should therefore also be included in the feature set. We only include
a feature based on the hour the URL is posted, and not on the weekday, as
often for a given website there was no data available for each weekday. The 24
hour interval can be divided into four intervals: [0h,6h), [6h,12h), [12h,18h),
and [18h,24h) representing respectively night, morning, afternoon, and evening.

DATA PREPROCESSING 19

2 4 6 8 10 12

0
2

4
6

8

time index

lo
g(

1+
vi

si
ts

_1
h)

2 4 6 8 10 12

0
2

4
6

8

time index
lo

g(
1+

vi
si

ts
_1

h)

2 4 6 8 10 12

0
2

4
6

8

time index

lo
g(

1+
vi

si
ts

_1
h)

0
20

40
60

80

1e−3 Frequency (Hz)

M
od

(F
ou

rie
r

co
ef

f.)

0 2.8 8.3 13.9

0
20

40
60

80

1e−3 Frequency (Hz)

M
od

(F
ou

rie
r

co
ef

f.)

0 2.8 8.3 13.9

0
20

40
60

80
1e−3 Frequency (Hz)

M
od

(F
ou

rie
r

co
ef

f.)
0 2.8 8.3 13.9

Figure 2.6: Top: Cumulative 1 hour visitor count (black), DC component of the
Fourier transform (red), Fourier series consisting of the DC, the 1st harmonic,
and its complex conjugate (blue). Bottom: Frequency spectrum of the Fourier
transform of the time series above.

To summarize, our dataset consists of three types of features:

• The log1p of the sum of the counts for the first hour of data for each of
the four original time series (visits, tweets, likes, and active time).

• Three features containing time series ‘shape’ information, derived from
the Fourier transform of the cumulative time series for visits.

• A feature that represents the time of the day a URL is posted.

Note that we approached the problem of feature generation and selection
in an intuitive, ‘manual’ way. Alternatively, we could have also generated
and selected features in a more systematic way by first computing several
alternatives and afterwards applying a search algorithm to select the best
performing combinations.

20 CASE STUDY: PREDICTIVE WEB ANALYTICS

2.6 Modeling

The next modeling step is to select the learning algorithm with the best matching
inductive bias for the problem setting. The exploratory data analysis indicated
a linear relationship between the log of past and future counts of visits, tweets
and likes. It seems that a linear regression model would therefore be appropriate.
As a safeguard against overfitting, we will use the lasso, also known as L1-
regularization. The advantage of the lasso is that it facilitates interpreting the
model, as it forces part of the coefficients to be zero. The analysis also indicated
that the statistical properties of the data differ for each web domain. We could
therefore learn a different model for each web domain. This is possible because
the data in the secret test set stems from the same websites as those in the
training set. A disadvantage of this approach though, is that the size of the
training set for each model is significantly reduced as it is restricted to one out
of hundred domains.

An alternative to learning multiple models is to build a single model on the
full dataset and including the web domain ID as a feature. The advantage is
that web domains significantly differing in characteristics from the others will
naturally be modeled differently. When applying linear regression, however, this
requires introducing a dummy indicator variable Di = I[Di = i] for each ID.
Without this adaptation, the web domain ID would be interpreted as a numeric
variable, while it is actually a factor. Regularization is then certainly necessary,
as this approach creates many extra variables.

We also test a random forest learner, as available in the R package cparty
(Hothorn et al. 2006). The reason being that random forests regularly provide
the top contribution in machine learning competitions (Ben 2012; González-
Brenes and Matías 2011; Sculley 2012). Their success is explained by the fact
that they perform well on high-dimensional problems, which are notoriously
difficult to model. Furthermore, good performance can be achieved without
much parameter tuning.

The inductive bias of a random forest is that the data can be modeled as a
collection of decision trees, which partition the data recursively. An important
advantage of decision trees is that they allow for an easy understanding of the
model, as the partitioning can be graphically represented as a rooted directed
tree. A disadvantage of decision trees is that they are instable with respect to
changes to the training data. However, random forests solve this problem by
creating many trees, each learned on a different bootstrap sample created from
the original dataset. Combining the predictions of all these trees, for instance by
averaging, results in a smoother decision boundary showing less variation when
making small changes to the training data. Similar to the regression model, we

EVALUATION AND INTERPRETATION 21

Visits Tweets Likes
Per domain 3RHO MSE
RF trees 50, split 3 0.90 0.47 1.92
RF trees 500, split 3 0.90 0.47 1.92
Linear regression 1.03 0.39 1.79
All domains 10KCV MSE
RF trees 50, split 3 1.23 0.69 2.37
RF trees 500, split 3 1.19 0.68 2.41
Lasso λ 10KCV optim. 1.32 0.62 2.33
Submitted (per domain) 3RHO MSE
RF trees 500, split all 0.76 0.35 1.50
RF trees 500, split all (test) 0.99 0.65 1.38

Table 2.1: Performance results for the random forest (RF) and (penalized)
linear regression models. The number of trees in the random forest was either
50 or 500. The number of variables eligible for a node split was either 3 or all.

can construct one random forest per web domain, or alternatively construct one
large random forest, possibly with the web domain ID as a feature. In theory,
dummy variables are not needed here for representing these web IDs, although
certain random forest implementations do require this.

2.7 Evaluation and interpretation

2.7.1 Evaluation

In this section we evaluate the performance (MSE(log1p(x48h))) of the models
proposed in the previous section: a lasso model and a random forest (RF),
either learned per web domain or on all domains at once. In order to avoid
winning the competition by overfitting, it is only allowed to submit a limited
number of models to be evaluated on the secret test set. Before submitting,
we therefore have to estimate model performance on the training data. This
means we have to split our original dataset into training and test sets. The
conventional solution for this are resampling methods. The advantages and
disadvantages of this approach are discussed in detail in the next chapter. One
popular resampling method is k-fold cross-validation (KCV), where the dataset
is randomly divided into k equally sized, non-overlapping subsets called folds.
Each of these folds is in turn used as a test set, where the remaining folds
are used as a training set. the final performance estimate is the mean of the
estimates on each test set. Another alternative is repeated hold-out with random

22 CASE STUDY: PREDICTIVE WEB ANALYTICS

resampling (RHO). Here, the dataset is repeatedly split into train/test subsets
without taking into account overlap between the different subsets.

We demonstrate both of these resampling methods in our study: Tenfold cross-
validation is used for evaluating the models learned on the entire dataset, while
three times repeated hold out using 1/3 sized test sets is used for evaluating the
models learned per web domain. Note that using different resampling methods
for these two types of models has no significant influence on our conclusions.
Even if we would have used the same resampling method, the results would still
be difficult to compare because of the large difference in training set sizes in
both cases.

The random forest and lasso models are tested in two different settings: one
model per web domain, and one model on the entire dataset. The results in
Table 2.1 indicate that the domain specific models perform better. However, as
already mentioned, we should be careful with comparing. First, the sizes of the
training sets differ significantly in the two cases. Second, there are indications
that despite our precautions, the domain specific models are still overfitting.
This can be seen from the reduced performance of the random forest model on
the secret test set for visits and tweets in comparison to the performance in the
repeated hold-out evaluation.

The random forest learners seem to perform better than the lasso, despite the
fact that we more carefully tuned the parameter of the lasso. We determined
the optimal value of the penalization parameter λ by using nested tenfold
cross-validation. For the model per domain, the optimal value always turned
out to be 0, which amounts to simple linear regression. For the random forest,
we only experimented with a forest of 50 and 500 trees. These results show
that varying the number of trees does not significantly influence performance.
We also experimented with either allowing all features to be chosen in node
splits, or only a subset of three. The subset size was based on a rule of thumb
recommending the square root of the number of features. It seems that choosing
from all variables leads to the best performance.

Finally, we note that in an effort to boost performance, we also include the sum
of log1p(

∑
visits) and log1p(

∑
active_time) as a feature in the submitted

model. This feature has a high Spearman rank correlation with respect to the
visitor count (0.72), although we expect it to be highly correlated with both
log1p(

∑
visits) and log1p(

∑
active_time).

CONCLUSION 23

var. imp. ± stdev
Visits 1.842± 0.144
DC Fourier 0, 304± 0.026
Fourier 2-4 0.117± 0.012
Fourier 5-7 0.062± 0.12
Tweets 0.029± 0.002
Visit time 0.021± 0.002
Post hour 0.017± 0.002
Likes 0.006± 0.001

Table 2.2: Average variable importances (10f-cv) for the eight features of the
random forest constructed on the full dataset of 100 web domains.

2.7.2 Interpretation

In many applications it is important to not only have good performance, but
also to understand the determining factors of a model’s performance. A decision
tree is easy to interpret: We can deduce which variables correlate strongest with
the target based on their position in the tree. Although we can still inspect
the individual trees, this interpretability is somewhat lost for a random forest.
Instead, we have to rely on more sophisticated solutions such as for example
computing variable importances. We give a basic description of this concept,
for more details we refer to (Strobl et al. 2008).

The computation of variable importances is similar to the process of selecting
a leaf to split, i.e, by means of a permutation test. First, we let every tree in
the forest predict the out-of-bag cases. Next, we permute the input variable
of interest for the out-of-bag samples, and make predictions again for these
modified examples. The variable importance then equals the difference in
accuracy between the original and the modified tree, averaged over all trees.

For conciseness we only discuss the variable importances for predicting the
visitor count. The results presented in Table 2.2 show that, not surprisingly,
the 48 hour visitor count is the most powerful feature for predicting this count.
Interestingly, the most important features after that are the averaged Fourier
coefficients. The other features were not found to have much predictive power.

2.8 Conclusion

This chapter walked the reader through the steps of the model development
process. As an example we used the ECML/PKDD 2014 Discovery Challenge,

24 CASE STUDY: PREDICTIVE WEB ANALYTICS

where the goal was to predict the popularity of a web page based on time series
data from the Chartbeat web analytics engine. The approach submitted in the
competition consisted of learning a random forest on a set of features derived
from time series data, capturing information about the initial visitor count, the
growth rate, and temporal effects.

Several other approaches that were not investigated in this chapter can still be
thought of. First, algorithms specifically designed to handle time series can be
investigated. Second, our data analysis suggests that some groups of websites
show similar behavior, but when merging all of them together, specificities are
averaged out. A solution to this problem is to learn a single model per website.
The disadvantage is that this significantly decreases the size of the training
set. A noteworthy alternative is to cluster websites that show similar behavior.
Finally, since the goal of the challenge was to predict three correlated targets,
an interesting direction might be multivariate prediction.

Chapter 3

Model evaluation with
cross-validation

This chapter investigates the estimation of the prediction error of a learner or
model with cross-validation. First, we make the reader aware that there are
two different definitions of the prediction error. Next, we investigate which
of these two error measures cross-validation estimates. Special attention is
paid to leave-one-out cross-validation. Finally, we explore whether repeated
cross-validation results in more reliable estimates of learner accuracy than a
single cross-validation. This work contains material from the following papers:
(Vanwinckelen and Blockeel 2012, 2014b,c).

3.1 Introduction

Most machine learning tasks can be addressed using multiple alternative learning
methods. Empirical performance evaluation plays an important role here. The
behavior of all these methods is not always theoretically well-understood, and if
it is, it is important to stress the real-world implications. Therefore, almost all
papers contain some form of performance evaluation, which usually estimates
the quality of models resulting from the machine learning effort (for instance,
predictive performance), the computational effort required to obtain these
models, or other performance criteria.1

1In line with most machine learning literature, and somewhat at variance with the statistical
literature, the term “model” here refers to the result of the learning effort (e.g., a specific
decision tree), not to the type of model considered (e.g., “decision trees”).

25

26 MODEL EVALUATION WITH CROSS-VALIDATION

For predictive models, a major criterion is usually the accuracy of the predictions,
or more generally, the expected “loss”, using a loss function that compares
the predicted values with the correct ones. Much of the research in machine
learning focuses on developing better learning methods, that is, methods that
are more likely to return models with a lower expected loss.

This goal statement is still somewhat vague, and can be interpreted in multiple
ways. From the no-free-lunch theorems (Wolpert 1996), we know that, averaged
over all possible learning tasks, all learners perform equally well, so the goal
only makes sense when the set of tasks is restricted to, for instance, a specific
application domain. A specific learning task can be formalized using a single
population. The task is then to learn a model for this population from a dataset
sampled at random from it. The following two different versions of this task
can then be distinguished.

1. Given a dataset D from population P , and a set of learners, which learner
learns from D the most accurate model on P?

2. Given a population P , and a set of learners, which learner is expected to
yield the most accurate model on P , when given a random sample of a
particular size from P?

In statistical terminology, these versions correspond to finding the learner that
minimizes the conditional and unconditional error, respectively.

The first question is relevant for researchers who evaluate the learning algorithms
using the same dataset that an end user will use to build a model. The second
question is relevant when the end user’s dataset is not available to the researcher.

Authors rarely clarify which of these two questions they try to answer when
evaluating learning methods. This is often clear from the context. For instance,
when testing a learning method on UCI datasets (Lichman 2013), one is clearly
not interested in the models learned from these datasets, but in the behavior
of the learner on other, similar learning problems, where “similar” is to be
interpreted here as “learning from a dataset of similar size, sampled from a
population with a distribution similar to that of the UCI datasets population2”.
On the other hand, when learning predictive models from a given protein-protein
interaction network, one may well be interested in the predictive quality of
these specific models.

2The qualification “of similar size” for the dataset is needed because the quality of a
learned model depends on the size of the dataset from which it was learned (see, e.g., (Perlich
et al. 2003)), and the qualification of the distribution is needed because it is well-known that
no learner can be optimal for all population distributions (Wolpert 1996)

INTRODUCTION 27

In the statistical literature, the two questions are clearly distinguished, and
studied separately. However, this literature is not always very accessible to the
machine learning audience; relevant information is spread over many different
articles that are often quite technical. Consequently, researchers are not always
aware of the distinction, and so the question is not made explicit. This carries
a risk, because both questions require a different approach, and leaving the
question implicit may obfuscate the fact that incorrect statistical methods are
used.

When no large dataset is available, one particular statistical sampling method,
k-fold cross-validation, has become a standard in machine learning. What
constitutes a small dataset is not always clear and so we can find cross-validation
in a wide range of research papers. The statistical properties of this estimator
have been studied in detail, and in order to improve the quality of the error
estimate, a number of variants have been proposed. It is for instance often
advocated that in order to reduce the variance of the cross-validation estimator,
the procedure should be repeated a number of times and the average over these
results should be taken.

It is not clear, however, whether this recommendation actually improves
the quality of the estimate. To answer this question, we would first have
to understand which of the above questions cross-validation actually helps
answering. The cross-validation estimate is computed on a single sample, so it
is not illogical to assume it is an accurate estimator for the error of a model
learned on the given sample. On the other hand, the estimate is computed as
the average error of models learned on training sets that were derived from the
sample, so perhaps it is an estimator for the error of the learner. The answers
to these questions can be found in the statistical literature, but it is our goal to
make this information more accessible.

The remainder of the chapter is organized as follows. In Section 3.2 we first
provide a number of general definitions that are needed in the rest of the
chapter. Section 3.3 discusses cross-validation as an estimator for the conditional
error, with a specific focus on leave-one-out cross-validation. Section 3.4 then
discusses the issues with using repeated cross-validation as an estimator for the
unconditional error. We supplement our discussion with two experiments focused
on repeated cross-validation in Section 3.5. The first experiment investigates
whether repeated cross-validation estimates the error of a model or a learner.
The second experiment investigates the uncertainty about selecting the winning
model when comparing two models with cross-validation. We conclude in
Section 3.6.

28 MODEL EVALUATION WITH CROSS-VALIDATION

3.2 Preliminaries

3.2.1 Learning task

We focus on the setting of learning predictive functions from examples of input-
output pairs. In the following, 2S denotes the power set of S and YX denotes
the set of all functions from X to Y. We formalize learning tasks as follows.

Definition 1 (predictive learning). A predictive learning task is a tuple
(X ,Y, p, T, C), where X is called the input space, Y is called the output space
and p is a probability distribution over X × Y. The training set is defined as
T ⊆ X × Y, and C : YX × P → R (with P the set of all distributions over
X × Y) is some criterion to be optimized.

The probability distribution p is called the population distribution, or simply
population. The instances in T are usually assumed to have been drawn
independently from distribution p. Without loss of generality, we assume from
here on that C is to be minimized.

Definition 2 (learner). A learner L is a function with signature L : 2X×Y →
YX .

Definition 3 (performance). Given a learning task (X ,Y, p, T, C), a learner
L1 has better performance than a learner L2 if C(L1(T), p) < C(L2(T), p).

Note that, as the goal of predictive learning is to find a model that can make
predictions for instances we have not seen before, the quality criterion for
the resulting model is based on the population p, not on the training set T .
Differently from T , however, p is not known to the learner. It is often also not
known to the researcher evaluating the method.

In the following, we assume that the output space Y is one-dimensional. If
Y is a set of nominal values, the learning task is called classification; if Y is
numerical, the task is called regression.

3.2.2 Error measures

Much of the relevant literature on the estimation of learning performance with
resampling estimators focuses on regression and classification tasks, and uses
error as a performance measure. A few examples are (Borra and Ciaccio 2010;
Burman 1989; T. G. Dietterich 1998; Efron 1983; Hanczar and Dougherty
2010). We start with repeating some basic definitions used in that context. For

PRELIMINARIES 29

simplicity, our definitions focus on classification. They are, however, easily
extensible to regression.

In the following, Prx∼p[C] denotes the probability of a Boolean function C of
x evaluating to true, and Ex∼p[f(x)] denotes the expected value of f(x), when
x is drawn according to p. For a set T , we use the notation T ∼ p to denote
that all elements of T are drawn independently according to p.

The concept of “error” can be defined on two levels: that of learners, and that
of learned models (classifiers). The error of a classifier is defined as follows:

Definition 4 (error). The error of a classifier m is the probability of making
an incorrect prediction for an instance drawn randomly from the population.
That is,

ε(m) = Pr(x,y)∼p[m(x) 6= y] (3.1)

For learners, two types of error are typically distinguished: The conditional and
the unconditional error (Hastie et al. 2001, Chapter 7).

Definition 5 (conditional error). The conditional error of a learner L for a
dataset T , denoted as εc(L, T), is the error of the model that it learns from T .

εc(L, T) = ε(L(T)), with mT = L(T). (3.2)

Definition 6 (unconditional error). The unconditional error of a learner L at
size n, denoted εu(L, n), is the expected error of the model learned by L from a
random dataset of size n. It is the mean of the conditional error εc(L, T) taken
over all datasets of size n that can be sampled from population p.

εu(L, n) = E{T∼p:|T |=n}[εc(L, T)]. (3.3)

These two different types of error are clearly related to the two different questions
mentioned in the introduction. The conditional error of a learner is relevant
if the dataset T used for the estimation is identical to the one that will be
used by other researchers when learning predictive models for the population.
The unconditional error is relevant if the dataset T used for the estimation is
representative for, but not identical to, the datasets that other researchers will
use. It estimates the expected performance of the learner on similar datasets
(that is: datasets of the same size sampled from the same distribution), rather
than its performance on the given dataset.

In the remainder of this text, we focus on error as the criterion to be optimized,
but it is clear that for any loss function, a distinction can be made between the
conditional and unconditional version of that loss.

30 MODEL EVALUATION WITH CROSS-VALIDATION

3.2.3 Cross-validation error estimator

As the population p is usually unknown, the true error (conditional or
unconditional) cannot be computed but must be estimated using the training
set T . Many different estimation methods have been proposed, but by far the
most popular estimators are based on cross-validation. They all rely on the
notion of empirical error:

Definition 7 (Empirical error). The empirical error of a model m on a set of
instances S, denoted ε̂(m,S), equals

ε̂(m,S) = |{(x, y) ∈ S|m(x) 6= y}|
|{(x, y) ∈ S}| .

In k-fold cross-validation, a dataset T is randomly divided into k equally sized
(up to one instance) non-overlapping subsets Ti, called folds. For each fold Ti,
a training set Tri is defined as T \ Ti, a model mi is learned from Tri, and mi’s
error is estimated on Ti. The mean of all these error estimates is returned as
the final estimate.

Definition 8. The k-fold cross-validation estimator, denoted ε̂cv(L, T), consists
of partitioning T in k subsets T1, T2, . . . , Tk such that |Ti| − |Tj | ≤ 1 ∀ i, j, and
computing

ε̂cv(L, T) = 1
k

k∑
i=1

ε̂i(L(T \ Ti), Ti)

We call the assignment of the instances in T into k non-overlapping subsets the
partitioning of the data. A particular partitioning of the data will be denoted
by π.

If the number of folds k equals the number of instances |T | in the dataset, the
resampling estimator is called leave-one-out cross-validation. This special case
is usually studied separately.

Definition 9. The leave-one-out cross-validation estimator, denoted ε̂loo(L, T),
is

ε̂loo(L, T) = 1
|T |

|T |∑
i=1

ε̂i(L(T \ {ti}), {ti})

with T = {t1, t2, . . . , t|T |}.

Contrary to ε̂cv, which is a stochastic function, ε̂loo is deterministic, as there is
only one way to partition a set into singleton subsets.

PRELIMINARIES 31

Repeated k-fold cross-validation computes the mean of n different k-fold cross-
validations on the same dataset, each time using a different random partitioning
πj .

Definition 10. The r-times repeated k-fold cross-validation estimator is

ε̂rcv(L, T) = 1
r

r∑
j=1

ε̂cv,πj
(L, T).

In practice, a stratified version of these estimators is often used. In stratified
cross-validation, the random folds are chosen such that the class distribution in
each fold is maximally similar to the class distribution in the whole set. Note
that stratification is not possible in the case of leave-one-out cross-validation.

3.2.4 Estimator quality

From the frequentist viewpoint, the error of both a learner or a model is a
statistical parameter that can be estimated by repeatedly sampling p and
applying cross-validation to that sample. The cross-validation estimator
is thus a random variable itself, with a probability distribution called the
sampling distribution. The quality of the estimator is described in terms of the
characteristics of this sampling distribution, with a focus on mean and variance.

The difference between the mean of the sampling distribution and the parameter
is called the bias of the estimator. It measures the systematic deviation of the
estimator from the parameter when the data population is repeatedly sampled:

B(ε̂, ε) = E[ε̂]− ε.

The variance of the estimator measures how much it varies around its own
expected value. It is defined as follows:

Var(ε̂) = E[(ε̂−E[ε̂])2].

Notice that contrary to bias, variance is independent of the estimand. In our
specific case, it is thus the same whether one wants to estimate the conditional
or the unconditional error.

The concept of variance is not restricted to estimators only. We can for instance
also define the sample variance of the conditional errors themselves εc(L, T).

The bias and variance of the estimator are usually combined into a single quality
measure, the mean squared error of the estimator:

32 MODEL EVALUATION WITH CROSS-VALIDATION

MSE(ε̂, ε) = E[(ε̂− ε)2] = Var(ε̂) +B2(ε̂, ε)

Note that the above concepts are quite different from the bias and variance of
the learner itself. It is perfectly possible that a learner with high bias and low
variance (say, linear regression) is evaluated using an estimator with low bias
and high variance.

3.3 Estimating the conditional error

3.3.1 Algorithmic stability

Cross-validation involves splitting the available dataset T into a training and
a test set. The model m′ that is learned on the training set generated
by the estimator will thus differ from the model m that is learned on the
complete dataset T . Typically, the training set is smaller than T , and therefore
systematically produces models with a larger error. It is well known that this
makes the estimator pessimistically biased with regard to both the conditional
and the unconditional error (Hanczar and Dougherty 2010; Kohavi 1995).

However, cross-validation is unbiased for the unconditional error on training
sets of size n(k − 1)/k (Bengio and Grandvalet 2004; Borra and Ciaccio 2010).
Indeed, under the assumptions that the instances are i.i.d., and each sample T
is drawn from the population with equal probability, the difference ε̂cv − εc will
on average be equally often negative as it will be positive.

The pessimistic bias for the conditional error cannot be overcome in the same
way. Reducing the size of T , changes the classifier L(T) and thus we are no
longer considering the same learning problem. A solution for this problem is to
choose a k that is large relative to n, with leave-one-out cross-validation being
the most optimal choice in this respect. For simplicity, we will from now on
focus on leave-one-out cross-validation, but the discussion is relevant for any
large value of k.

Under certain conditions, leave-one-out cross-validation is indeed reliable to
estimate the conditional error (Chapelle et al. 2002; Elisseeff, Pontil, et al. 2003;
Molinaro et al. 2005). A necessary condition is that the learning problem is
stable. The theory of algorithmic stability is rather technical, and multiple
definitions of stability have been proposed, so we will only provide an intuitive
explanation with the goal of helping the reader understand why stability is a
desirable property. For technical details, we refer to (Bousquet and Elisseeff
2002; Devroye, Wagner, et al. 1980; Kearns and Ron 1999; Kumar et al. 2013).

ESTIMATING THE CONDITIONAL ERROR 33

An unstable learning problem is a problem where small changes to the training
set cause large changes to the model predictions. The stability of a learning
problem is a combination of both the properties of the learner and the data:
When a learner generates complex models that have many tunable parameters,
these models can adapt well to a specific dataset, leading to instability of the
predictions with respect to changes in the training set. This contrasts with
learners that makes strong assumptions about the data (their bias): The model
parameters will remain more stable when changes are made to the training set,
and consequently so will the predictions of the model. Stability is thus related
to the bias-variance trade of the learning algorithm. A number of learning
algorithms, such as regularized least-squares regression and certain types of
SVMs have been proven to be stable according to the definition of stability
given in (Kumar et al. 2013).

Next to the learning algorithm, the characteristics of the data also influence
stability. Smaller datasets for instance make a learning problem more unstable.
Also outliers in the dataset can cause a learning problem to be unstable. A toy
example of an unstable learning problem is the application of a majority vote
classifier on a dataset that contains 50% positive instances and 50% negative
instances. When applying leave-one-out cross-validation on such as dataset, all
the instances will be predicted incorrectly.

When a learning problem is unstable, the leave-one-out cross-validation estimator
has large variance in comparison to cross-validation estimators with lower k, so
it is not reliable. This is well known, but it is our impression that the meaning
of this statement is not always well understood. Perhaps this is because there
are several random factors that influence the cross-validation estimate, which
impedes a good understanding of the concept ‘variance of the cross-validation
estimator’.

Another difficulty is understanding the link between the stability of the learning
problem and the variance of leave-one-out cross-validation. It is indeed not
self-evident how the instability of predictions on a single sample can cause the
large variability of the estimator over multiple samples. The remainder of this
section is therefore focused on understanding the above statement in relation
to the different random factors that influence the cross-validation estimate.

3.3.2 Stochasticity of cross-validation

Most estimators considered in basic statistics are deterministic functions.
Consider for instance the sample average as an estimator for the population
mean: Given a sample, the average is uniquely determined. It is consequently
intuitively clear that “variance” refers to the variance induced by the randomness

34 MODEL EVALUATION WITH CROSS-VALIDATION

of the sample; that is, a different sample would result in a different average,
and the variance of these estimates is what the term “variance” refers to here.

The cross-validation estimator, however, is stochastic: It depends on random
choices (typically some random partitioning or resampling π of the data). Hence,
even if the learner L and sample T are fixed, these estimators have a non-zero
variance.

We call this variance the internal variance of the estimator. It is the variance
of the estimator over all possible partitionings or resamplings π of the dataset
T . The naming is in line with the literature, (Efron and R. Tibshirani 1997;
Hanczar and Dougherty 2010; Kim 2009).

Definition 11. Internal variance of the (un)conditional error estimator

Varπ(ε̂(L, T)) = Eπ[(ε̂−Eπ[ε̂])2]. (3.4)

The internal variance of the leave-one-out cross-validation estimator is zero.
This is because there is only one way of partitioning the dataset such that
each instance becomes a test instance once. This contrasts with k-fold cross-
validation, where multiple partitionings of a sample are possible and so different
estimates can be obtained from that sample.

When it is stated that the leave-one-out cross-validation estimator has large
variance, what is meant is the variance of the error over different samples, i.e.,
the sample variance:

VarT (ε̂) = ET [(ET [ε̂]− ε̂)2] = ET [(εu − ε̂)2]. (3.5)

The substitution of ET [ε̂] by εu is possible because the bias of leave-one-out
cross-validation is in most cases negligible. Note that the sample variance
of leave-one-out cross-validation should not be confused with the variance of
the individual errors for a given sample: var(e) = Ei[(Ei[e]− e)2], with e the
leave-one-out error on instance i.

3.3.3 Sample variance of leave-one-out cross-validation

In what follows, we connect the sample variance of the leave-one-out cross-
validation estimator to the stability of the individual errors. We start by
rewriting the sample variance as defined in 3.5 by using the ‘variance sum
law for dependent variables’. This law states that the variance of the sum of
dependent variables equals the sum of the covariances of these variables. Since
cross-validation is an average of the individual errors on a given sample, the

ESTIMATING THE CONDITIONAL ERROR 35

variance can be written as the average covariance between the individual errors:

VarT (ε̂loo) = 1
n2 (

n∑
i=1

VarT (ei) +
n∑

i,j=1
CovT (ei, ej)), with i,j ∈ T. (3.6)

The covariance between the errors on two distinct instances e1 and e2 from the
same sample is defined as:

CovT (e1, e2) = ET [(ET [e1]− e1)(ET [e2]− e2)] = ET [(εu − e1)(εu − e2)] (3.7)

Since the training sets overlap there is dependence between the predictions, so
CovT (e1, e2) will contribute to VarT (ε̂loo).

The covariance between an error ei and itself is a special case and is simply its
sample variance. It can be computed as:

VarT (ei) = ET [(ET [ei]− ei)2] = ET [(εu − ei)2] (3.8)

Bengio and Grandvalet (2004) proved that the variance of an individual error
is the same regardless of which instance is selected. Similarly, the covariance
between two randomly selected errors from the sample is the same regardless of
which two instances are selected. Intuitively, this can be understood by realizing
that all instances are independently sampled from the same population (i.i.d.),
so they are interchangeable when computing the leave-one-out cross-validation
estimate.

If we substitute the variance and covariance terms in formula 3.6 by respectively
formula 3.8 and 3.7, and we take into account that the covariances of the
errors from the same sample are identical, the variance of the leave-one-out
cross-validation estimator can be written as:

VarT (ε̂loo) = 1
n2 (nET [(εu − e)2] + n(n− 1)ET [(εu − ei)(εu − ej)])

= 1
n

n∑
i=1

n∑
j=1

ET [(εu − ei)(εu − ej)]
(3.9)

Additionally, we know that εu is the mean of the conditional errors εc over all
datasets of size n. Assume for simplicity that the number of datasets is finite
and equal to N . We can then write εu as the sum of the conditional error on
the same dataset T0 from which ei and ej were sampled, and a constant term
which is the average of the conditional errors on the other samples:

εu = ET [εc] = 1
N

∑
εc = εc(T0) +

∑
T\T0

εc(Ti)
N − 1 = εc(T0) + C.

36 MODEL EVALUATION WITH CROSS-VALIDATION

If we plug this into formula 3.9, we find that the variance of ε̂loo depends on
the difference between the conditional error for a sample T0 and the errors on
the individual instances in that sample: εc(T0)− ei∈T0 . Actually, εc(T0) can be
replaced by any term that is constant for a given sample. This can be another
leave-one-out cross-validation error generated from T0, or the leave-one-out
cross-validation estimate ε̂loo(L, T0) itself; all of these are unbiased estimates of
εu.

From this derivation we can conclude that for the variance of the leave-one-out
cross-validation estimator to be small, all individual leave-one-out errors ei on a
given sample have to be as similar as possible. By definition, this is true when
a learning problem is stable: The generated surrogate models will be similar to
each other and to the original model. When we present the same instance to all
these models, the surrogate predictions will be similar, and accordingly will the
errors.

It is a pitfall to conclude from this that the variance of the leave-one-out
errors on the sample that we have available, Var(ei|T) = Ei[(Ei[ei]− ei)2|T],
is a measure for the stability of the learning problem. We cannot derive any
information from this computation because part of the variability is caused
by the differences of the test instances. What is needed is the errors of the
surrogate models on the same test instance. Beleites and Salzer (2008) tried to
obtain this by choosing k smaller than n, and using repeated cross-validation
so that the error of different surrogate models can be compared on the same
test instance.

If the stability conditions are satisfied, it is approximately correct to assume
that all leave-one-out predictions are generated from the same model, one that is
similar to the model build on the original dataset T . The confidence interval for
the error of a binary classifier can then for instance be accurately approximated
by the well-known formula p̂± zα

√
1
n p̂(1− p̂), with p̂ equal to the proportion of

errors (Kearns and Ron 1999). Note that this is a well-known formula to compute
a confidence interval for a classifier evaluated on an independent hold-out test
set of n instances.

If the learning problem is unstable, computing Var(ei|T) is not very insightful,
because it is unclear what it represents; the leave-one-out errors are the result
of predictions from different classifiers.

To summarize, for unstable learning problems, leave-one-out-cross-validation
is an imprecise estimator for both the conditional and the unconditional error.
For stable learning problems, however, leave-one-out-cross-validation or k-fold
cross-validation with large k/n ratio can be used to estimate the conditional
error. Unfortunately, it is not easy to know if a learning problem is stable.

ESTIMATING THE UNCONDITIONAL ERROR WITH REPEATED CROSS-VALIDATION 37

3.4 Estimating the unconditional error with re-
peated cross-validation

In the previous section we established that cross-validation is an unbiased
estimator for the unconditional error for training sets of size n(k − 1)/k. It is
often advocated to average over multiple cross-validations of the same sample to
estimate the error of a learner with the goal of obtaining an estimator with lower
variance. In this section we discuss whether this recommendation is indeed
useful.

3.4.1 Variance decomposition

In the previous section, we introduced the concept of internal variance of
the k-fold cross-validation estimator. We defined it as the variance of the
cross-validation estimates over all possible partitionings π of a given dataset T .

It is often forgotten though that there is also another source of variance of the
cross-validation estimator, namely the variance induced by the choice of the
sample, or the sample variance. By applying the law of total variance, the total
variance of the cross-validation estimator can be written as a combination of
the internal and the sample variance:

Var(ε̂) = VarT (Eπ[ε̂|T]) + ET [Varπ(ε̂|T)]. (3.10)

Notice how the total variance is not simply the sum of the internal and the
sample variance: two modifications are needed. First, because the internal
variance may differ from sample to sample, we take the expected value of the
internal variance over all possible samples. Second, to avoid taking the internal
variance into account twice, the sample variance is computed for the expected
value of the cross-validation estimator over all possible partitionings of a given
sample T . This decomposition is not new, it has been mentioned in other works
on cross-validation (Hanczar and Dougherty 2010; Nadeau and Bengio 1999).

For a more intuitive understanding, we illustrate the variance decomposition
in Figure 3.1. The figure shows how different samples T can be drawn from a
population p. On each sample the conditional error εc(L, T) can be computed.
This gives rise to the sample variance of εc. On the same sample we can also
compute a cross-validation estimate for εc or εu. For this, multiple partitionings
π into folds are possible, with each partitioning resulting in a different estimate
ε̂(L, T, π). We say that the cross-validation estimator has internal variance. The
sample variance of the cross-validation estimator measures how the expected

38 MODEL EVALUATION WITH CROSS-VALIDATION

εc(L,T)2

εc(L,T)1

εu(L,N)

Var (εc(L,T))
T

Var ((L,T,π)) ε̂

ε̂(L,T ,)
2

π ε̂E []
π

π

Var () ε̂E []
π T

2

Figure 3.1: Illustration of the relationships between εc, εu, and the components
of the mean squared error of the cross-validation estimator ε̂ for these two
population parameters.

value of the cross-validation estimator varies over all possible partitionings of a
sample T . This quantity is not necessarily equal to the sample variance of εc.
Finally, we also note that Eπ[ε̂(L, T)] is not necessarily equal to εc(L, T); the
estimator may be biased.

3.4.2 Variance estimation

It has been established in several experimental studies that repeated cross-
validation indeed has smaller variance than a single cross-validation (Borra
and Ciaccio 2010). As the number of repetitions over which we average the
cross-validation estimates increases, the internal variance in fact converges to
zero. Formula 3.10 then reduces to:

Var(ε̂) = VarT (Eπ[ε̂|T]) (3.11)

with the Eπ[ε̂|T] the repeated cross-validation estimate on a given sample T .

An estimator that has small variance has a number of advantages. Obviously,
the obtained estimate will be more precise. But it also improves the replicability
of the experiment: When setting up a new experiment on the same sample,
the likelihood of obtaining the same or a similar result increases (R. Bouckaert
2004). In the end, this facilitates the reproducibility of scientific research.

ESTIMATING THE UNCONDITIONAL ERROR WITH REPEATED CROSS-VALIDATION 39

The problem with repeated cross-validation is, however, that it is impossible
to estimate the remaining term in formula 3.11 because we only have a single
sample available. A common misconception is that the sample variance of the
estimator can be approximated because several ‘subsamples’ are generated by
the procedure. One can think of several methods to compute an estimate of
the sample variance of the cross-validation estimator:

• The variance can be estimated based on the variance of the individual
errors. For a binary classifier for instance, the formula p(1−p)

n can be used,
with p being the proportion of erroneous predicted instances.

• Another method is to first compute the average error for every fold, and
afterwards compute the variance of these fold error estimates.

• Finally, we could use repeated cross-validation and compute the variance
of the different cross-validation estimates.

One can probably think of other procedures to obtain a variance estimate, but
these are all in vain: Bengio and Grandvalet (2004) proved theoretically that
the variance of the cross-validation estimator cannot generally be estimated
unbiasedly from a single sample Bengio and Grandvalet 2004. The main reason
for this is that the generated training sets are not independent samples because
they share instances. The estimation methods presented above would all lead
to a liberal estimate of the variance, meaning they would all underestimate the
total variance. The consequences are that confidence intervals will be too small,
and the probability of making a type I error when applying a hypothesis test
will be larger than the advertised significance level.

This issue is not solved by applying repeated cross-validation. In fact, this
introduces even more dependencies because the test sets now also overlap3. We
should add some nuance to the above discussion: There exist several variance
estimators that are asymptotically unbiased as the sample size goes to infinity.
The issue is therefore most urgent for small samples.

There is currently no consensus on a recommended method for estimating
the variance of the cross-validation estimator. Consequently, there is also no
recommended method for constructing a confidence interval for the learner
error, or to compare learners with a hypothesis test. We briefly list a selection
of proposals that have better statistical properties than the estimation methods
listed above.

3In the appendix, we prove that when the number of repetitions goes to infinity, the formula
for the variance of repeated cross-validation has the same structure as that of leave-one-out
cross-validation.

40 MODEL EVALUATION WITH CROSS-VALIDATION

In order to compare two learners, T. G. Dietterich (1998) recommended 5
times 2-fold cross-validation in combination with a modification of the paired
t-test. Later, this test was fine-tuned by Alpaydm (1999). Bouckaert showed
that Dietterich’s test has low replicability. He argues that, ideally, the test’s
outcome should be independent of the sample partitioning. He proposes using
ten times repeated tenfold cross-validation in combination with a t-test with
adjusted degrees of freedom (R. R. Bouckaert 2003). Nadeau and Bengio propose
a procedure to obtain an unbiased variance estimate for training sets of size
n/2. However, the computation effort increases significantly in comparison to
a single cross-validation, without a reduction of the variance. Grandvalet and
Bengio (2006) propose a test that relies on a conservative estimate of the error
correlations so that variance is always overestimated. Finally, Markatou et al.
suggest a variance estimator that outperforms the estimator used by Grandvalet
et al. by using additional information from the data and learning algorithm
(Markatou et al. 2005).

3.5 Experiments

Our experiments try to answer the following questions:

• Does cross-validation estimate the conditional error, the unconditional
error, both, or neither?

• When comparing two models learned on a specific dataset, and ignoring
statistical testing, how often does cross-validation correctly identify the
model with the smallest prediction error?

3.5.1 Does cross-validation estimate the conditional or uncon-
ditional error, or neither?

Our first experiment investigates whether the cross-validation estimator
estimates the conditional error, the unconditional error, both, or neither. We do
this by computing a cross-validation estimate ε̂(L, T) on a given dataset T of
size 100, and comparing it to the true εc and εu. These last two would normally
not be available to the researcher, but we circumvent this problem by using a
very large dataset D as our population, so that we can compute all necessary
quantities. The details of the experiment are described in algorithm 1:

The experiment is repeated for 100 different samples from D. εu is computed
as the average of the conditional errors over all these samples. We follow

EXPERIMENTS 41

Algorithm 1 Experimental procedure
1: Given: A large dataset D (data population), a learner L, and a cross-

validation estimator CV .
2: D is partitioned into a small dataset T of N instances and a large dataset
D \ T .

3: We use T to:
4: Compute εc(L, T) by learning a model on T and evaluating it on D \ T .
5: Compute a cross-validation estimate ε̂(L, T) and compare it to εc and
εu.

the procedure that is often used in real experiments: We compute ε̂(L, T) on
a single dataset from the population. The only variability of the estimator
therefore arises from the random partitioning of the dataset. Using repeated
cross-validation instead of regular cross-validation decreases this variance. As
we vary the number of cross-validation repetitions from 1 to 50, the estimator
converges to an unknown value, which is hopefully εc or εu, but this is to be
investigated.

As our data populations, we use the following datasets (# instances) chosen
for their large size: Abalone (4177), adult (48842), king rook vs king (28056),
mushroom (8124), and nursery (12960). The learning algorithms are: Naive
Bayes (NB), nearest neighbors with 4 (4NN) and 10 neighbors (10NN), logistic
regression (LR), the decision tree learner C4.5 (DT), and a Random Forest
(RF). We also perform the experiment for a different number of folds of the
cross-validation estimator, using 2-fold, 10-fold and 30-fold cross-validation. For
every sample T from D we plot the model accuracy (blue) as computed by the
repeated cross-validation estimator against the number of repetitions. The true
conditional (green) and unconditional error (red) are also shown. Figure 3.2
presents a random selection of the results.

The results demonstrate that repeated cross-validation indeed decreases the
internal variance Varπ(ε̂) so that the estimate lies closer to Eπ[ε̂c]. However,
we also see that ε̂rcv does not converge to the conditional error, nor to the
unconditional error. The estimator clearly has a systematic deflection, Eπ[ε̂c]−ε,
which is different for every problem. Although, averaging over ten to twenty
repetitions reduces the deviation. This is not true in every setting: The tenfold
cross-validation estimate obtained for C4.5 on nursery, for instance, diverges
from both εc and εu. Another example is naive Bayes on nursery with 2-fold
cross-validation. In this case, the estimator converges to the conditional error,
but not the unconditional error.

42 MODEL EVALUATION WITH CROSS-VALIDATION

0 10 20 30 40 5010

15

20

25

30

(a) 4NN on kr-vs-k, 2fcv

0 10 20 30 40 5060

65

70

75

80

(b) 10NN on nursery, 2fcv

0 10 20 30 40 5080

82

84

86

88

90

(c) C4.5 on nursery, 10fcv

0 10 20 30 40 5020

22

24

26

28

30

(d) Random forest on kr-vs-k,
10fcv

0 10 20 30 40 5070

75

80

85

90

(e) Logistic regression on adult,
10fcv

0 10 20 30 40 5080

82

84

86

88

90

(f) Naive Bayes on nursery, 2fcv

Figure 3.2: The horizontal axis shows the number of cross-validation repetitions.
The vertical axis shows the the repeated cross-validation estimator for accuracy
(blue), the conditional error [accuracy] (green), and the unconditional error
[accuracy] (red).

3.5.2 Comparing learners with cross-validation

In the previous experiment we established that the repeated cross-validation
estimate computed on a single dataset does not consistently converge to ε̂c
and ε̂u when increasing the number of repetitions. However, if the difference
between the estimator and the parameter is similar for every learner, two
learning algorithms can still be compared by means of cross-validation. This is
investigated in our next experiment. We focus on estimating εc, but it would
be interesting to extend these experiments to εu.

We again apply algorithm 1, but with one adjustment. Instead of one learner L,
we apply step four and five on two learners L1 and L2, computing εc and ε̂ for
both learners. We perform these computations for both learners on the same
datasets T with exactly the same settings for the cross-validation estimator.
The resampling estimators are again 2-fold, 10-fold and 30-fold cross-validation,
computed with 1 and 30 repetitions.

EXPERIMENTS 43

Based on the results for 100 samples from D, we construct a contingency table
as follows, where we denote ε̂(Li, T) as ε̂i and εc(Li, T) as εc,i:

εc,1 > εc,2 εc,1 ≤ εc,2
ε̂1 > ε̂2
ε̂1 ≤ ε̂2

Our results are presented in Tables 3.1, 3.2, and 3.3 at the back of this chapter4.
As can be seen from these tables, 10-fold and 30-fold cross-validation outperform
2-fold cross-validation in detecting the winning model most often. Repeated
cross-validation performs slightly better than regular cross-validation. This is
consistent with the observations from our previous experiment, that repeated
cross-validation often results in a more accurate estimate of εc and εu.

It is interesting to see that when one learner is not clearly better than the other,
cross-validation has difficulty selecting the winning model. Consider for instance
the comparison of Naive Bayes and C4.5 on adult in Table 3.1. εc(C4.5) is
smallest for more than half of the samples. However, for many samples where
C4.5 wins, naive Bayes is selected by the cross-validation estimator as the
winner. The opposite does not happen so often; on a sample where Naive Bayes
wins, the cross-validation estimator often also selects Naive Bayes.

Let us focus on the case of 2-fold cross-validation for this problem, and compute
the following conditional probabilities. By L1 > L2, we indicate that L1 wins
against L2, i.e., the conditional error of L1 is smaller than that of L2.

• P (NB > DT |CVNB > CVDT) = 25/62 = 0.4

• P (NB ≤ DT |CVNB > CVDT) = 37/62 = 0.6

• P (NB > DT |CVNB ≤ CVDT) = 7/38 = 0.18

• P (NB ≤ DT |CVNB ≤ CVDT) = 31/38 = 0.82

From these estimated probabilities we see that when the cross-validation
estimator indicates that naive Bayes has a smaller conditional error, this is only
true in 40% of cases. When cross-validation indicates that C4.5 wins, however,
we have 82% certainty that this is indeed true. The reason is perhaps that
overall, C4.5 wins on most samples: 68 out of 100 samples. Therefore, changes
made by the cross-validation estimator in the sample will most likely create a
sample for which the decision tree wins.

4Because of the long runtime, 30-fold cross-validation on kr-vs-k is not included.

44 MODEL EVALUATION WITH CROSS-VALIDATION

We can also compute the opposite conditional probabilities:

• P (CVNB > CVDT |NB > DT) = 25/32 = 0.78

• P (CVNB ≤ CVDT |NB > DT) = 7/32 = 0.22

• P (CVNB > CVDT |NB ≤ DT) = 37/68 = 0.54

• P (CVNB ≤ CVDT |NB ≤ DT) = 31/68 = 0.56

We see that when we select a sample on which we know naive Bayes wins, it is
78% certain that cross-validation will detect this. However, when we select a
sample for which we know the decision tree wins, the cross-validation estimate
is no better than a random guess (50% probability).

Another example is the comparison of naive Bayes and the random forest with
2-fold cross-validation on kr-vs-k (Table 3.1). Here, the random forest wins on
more than half of the samples. The estimated conditional probabilities are as
follows:

• P (NB > RF |CVNB > CVRF) = 2/5 = 0.4

• P (NB ≤ RF |CVNB > CVRF) = 3/5 = 0.6

• P (NB > RF |CVNB ≤ CVRF) = 33/95 = 0.35

• P (NB ≤ RF |CVNB ≤ CVRF) = 62/95 = 0.65

Again, on a sample where the random forest wins, the probability that the same
conclusion is reached by the cross-validation estimator is larger than 0.5, while
the opposite is true when naive Bayes wins.

• P (CVNB > CVRF |NB > RF) = 2/40 = 0.05

• P (CVNB ≤ CVRF |NB > RF) = 38/40 = 0.95

• P (CVNB > CVRF |NB ≤ RF) = 3/65 = 0.05

• P (CVNB ≤ CVRF |NB ≤ RF) = 62/65 = 0.95

Here, the results are even more extreme than in the previous example. Regardless
of whether a sample is selected for which we know the random forest wins, or
naive Bayes, the cross-validation estimator concludes with high probability that
the random forest wins.

CONCLUSIONS 45

3.6 Conclusions

This chapter discussed a number of crucial points to take into account when
estimating the error of a predictive model with cross-validation. It is motivated
by the observation that, although being an essential task in machine learning
research, there does not seem to be a consensus on how to perform this task.

A take-home message is that the researcher should always be clear on whether
they are estimating the error of a model, i.e., the conditional error, or that of
learner, i.e., the unconditional error. Estimating one or the other requires a
different approach.

We saw for instance that cross-validation is not very suitable for estimating the
error of a specific model, due to its pessimistic bias, which is most evident on
small samples. Although leave-one-out cross-validation does not suffer from
this bias, it is often also unreliable due to its large sample variance. We
showed how this sample variance is a direct consequence of the instability of the
generated surrogate models. While this variability is not always problematic,
the circumstances under which it is not, are difficult to verify in practice.

In machine learning research, the relevant quantity is most often not the error
of the specific model, but instead that of the learner. k-fold cross-validation is
in principle suitable for this task, as it is an unbiased estimator for the learner
error on training sets of size n(k − 1)/k. Moreover, past experimental research
has shown that its variance is acceptable when the samples are sufficiently
large, and the number of folds is around ten. The estimate is, however, often
presented together with a measure of its reliability, such as a confidence interval
or an estimate of its variance. This is problematic because it is known that the
sample variance is almost always underestimated when using a single sample.
Currently, there is no consensus on the most optimal estimation method.

A common mistake is to estimate the sample variance by computing the variance
of the individual errors, or that of the cross-validation errors in the individual
folds. We made it clear that this internal variance is not a valid substitute
for the sample variance. This can be seen by realizing that it converges to
zero when the number of cross-validation repetitions over which is averaged
increases. A performance difference between two learners can thus always be
detected with (incorrect) statistical testing by using a sufficiently large number
of repetitions. It should be noted though that repeated cross-validation is
not a wasted computational effort. Because of the variance reduction, ten to
twenty repetitions usually lead to a more reliable learner error estimate. It is a
misconception, however, to believe that the estimate converges to the learner
error when averaging over increasingly more repetitions. A systematic difference
will remain due to bias and sample variance.

46 MODEL EVALUATION WITH CROSS-VALIDATION

L1, L2 folds 2 10 30

NB-DT

adult [25 37
7 31], [14 48

1 37] [32 30
7 31], [28 34

5 33] [32 30
6 32], [37 25

4 34]

kr-vs-k [8 8
36 48], [8 8

30 54] [8 8
29 55], [8 8

15 69]

nursery [53 12
24 11], [61 4

27 8] [52 13
13 22], [52 13

11 24] [50 15
12 23], [49 16

9 26]

NB-4NN

adult [51 24
5 20], [50 25

3 22] [67 8
1 24], [69 6

1 24] [70 5
1 24], [71 4

1 24]

kr-vs-k [22 15
30 33], [20 17

34 29] [19 18
20 43], [17 20

19 44]

nursery [99 1
0 0], [100 0

0 0] [97 3
0 0], [100 0

0 0] [96 4
0 0], [98 2

0 0]

NB-10NN

adult [34 34
6 26], [26 42

6 26] [47 21
3 29], [51 17

5 27] [59 9
4 28], [57 11

1 31]

kr-vs-k [23 16
38 23], [20 19

36 25] [12 27
21 40], [15 24

18 43]

nursery [99 0
1 0], [99 0

1 0] [95 4
1 0], [97 2

1 0] [94 5
1 0], [95 4

1 0]

NB-LR

adult [9 25
15 51], [4 30

4 62] [13 21
12 54], [12 22

12 54] [15 19
13 53], [19 15

15 51]

kr-vs-k [10 28
21 41], [10 28

16 46] [18 20
14 48], [16 22

11 51]

nursery [27 4
55 14], [30 1

65 4] [15 16
23 46], [21 10

19 50] [14 17
16 53], [18 13

16 53]

NB-RF

adult [5 30
8 57], [2 33

4 61] [12 23
13 52], [8 27

9 56] [11 24
15 50], [14 21

11 54]

kr-vs-k [2 3
33 62], [2 3

19 76] [3 2
20 75], [3 2

18 77]

nursery [42 16
25 17], [52 6

32 10] [47 11
14 28], [48 10

12 30] [42 16
10 32], [48 10

10 32]

Table 3.1: Contingency tables for the comparison of naive bayes (NB) with
a C4.5 decision tree (DT), 4 nearest neighbors (4NN), 10 nearest neighbors
(10NN), logistic regression (LR), and a random forest (RF).

CONCLUSIONS 47

L1, L2 folds 2 10 30

DT-4NN

adult [84 16
0 0], [98 2

0 0] [91 9
0 0], [96 4

0 0] [91 9
0 0], [91 9

0 0]

kr-vs-k [50 41
4 5], [56 35

6 3] [55 36
3 6], [55 36

5 4]

nursery [95 5
0 0], [100 0

0 0] [95 5
0 0], [100 0

0 0] [96 4
0 0], [99 1

0 0]

DT-10NN

adult [50 38
4 8], [60 28

3 9] [64 24
6 6], [64 24

6 6] [62 26
5 7], [61 27

6 6]

kr-vs-k [57 33
6 4], [54 36

5 5] [45 45
6 4], [44 46

6 4]

nursery [96 4
0 0], [100 0

0 0] [93 7
0 0], [99 1

0 0] [94 6
0 0], [98 2

0 0]

DT-LR

adult [1 7
28 64], [0 8

21 71] [1 7
31 61], [2 6

26 66] [4 4
26 66], [3 5

26 66]

kr-vs-k [33 50
6 11], [23 60

7 10] [37 46
9 8], [36 47

8 9]

nursery [4 5
39 52], [6 3

40 51] [4 5
15 76], [4 5

16 75] [3 6
17 74], [5 4

22 69]

DT-RF

adult [2 5
14 79], [0 7

2 91] [2 5
29 64], [0 7

15 78] [2 5
24 69], [1 6

20 73]

kr-vs-k [11 18
28 43], [6 23

8 63] [13 16
29 42], [9 20

21 50]

nursery [7 26
24 43], [5 28

7 60] [13 20
24 43], [14 19

15 52] [15 18
23 44], [18 15

22 45]

Table 3.2: Contingency tables for the comparison of a decision tree (DT) with 4
nearest neighbors (4NN), 10 nearest neighbors (10NN), logistic regression (LR),
and a random forest (RF).

48 MODEL EVALUATION WITH CROSS-VALIDATION

L1, L2 folds 2 10 30

4NN-10NN

adult [0 1
7 92], [0 1

0 99] [0 1
11 88], [1 0

7 92] [1 0
7 92], [1 0

8 91]

kr-vs-k [32 30
21 17], [33 29

21 17] [27 35
18 20], [24 38

12 26]

nursery [10 15
31 44], [15 10

30 45] [11 14
23 52], [11 14

23 52] [13 12
22 53], [12 13

24 51]

4NN-LR

adult [0 0
8 92], [0 0

0 100] [0 0
2 98], [0 0

1 99] [0 0
3 97], [0 0

3 97]

kr-vs-k [18 25
15 42], [19 24

9 48] [21 22
21 36], [22 21

16 41]

nursery [0 0
2 98], [0 0

0 100] [0 0
0 100], [0 0

0 100] [0 0
0 100], [0 0

0 100]

4NN-RF

adult [0 0
2 98], [0 0

0 100] [0 0
3 97], [0 0

1 99] [0 0
3 97], [0 0

2 98]

kr-vs-k [0 1
30 69], [0 1

25 74] [0 1
32 67], [0 1

26 73]

nursery [0 0
1 99], [0 0

0 100] [0 0
0 100], [0 0

0 100] [0 0
0 100], [0 0

0 100]

10NN-LR

adult [1 1
25 73], [2 0

18 80] [2 0
13 85], [2 0

8 90] [2 0
16 82], [2 0

13 85]

kr-vs-k [8 30
20 42], [13 25

10 52] [21 17
25 37], [24 14

21 41]

nursery [0 0
0 100], [0 0

0 100] [0 0
0 100], [0 0

0 100] [0 0
0 100], [0 0

0 100]

10NN-RF

adult [0 1
19 80], [0 1

14 85] [1 0
11 88], [0 1

10 89] [0 1
18 81], [1 0

16 83]

kr-vs-k [0 0
25 75], [0 0

18 82] [0 0
43 57], [0 0

36 64]

nursery [0 0
1 99], [0 0

0 100] [0 0
2 98], [0 0

0 100] [0 0
2 98], [0 0

0 100]

LR-RF

adult [18 37
15 30], [14 41

19 26] [25 30
24 21], [24 31

26 19] [28 27
25 20], [28 27

28 17]

kr-vs-k [2 2
47 49], [2 2

43 53] [1 3
40 56], [2 2

32 64]

nursery [28 55
5 12], [24 59

3 14] [61 22
9 8], [66 17

12 5] [57 26
12 5], [70 13

12 5]

Table 3.3: Contingency tables for 4 nearest neighbors (4NN), 10 nearest
neighbors (10NN), logistic regression (LR), and a random forest (RF).

Chapter 4

Bag- versus instance-level
performance in multi-instance
learning

This chapter analyzes the relationship between instance-level and bag-level
accuracy of multi-instance algorithms. We demonstrate both theoretically and
empirically that these two performance measures are not strongly correlated.
This research has been published in the Data Mining and Knowledge Discovery
journal: (Vanwinckelen, Tragante Do O, et al. 2014), which is an extension
of the work presented at the Benelux Conference on Artificial Intelligence
(Tragante do O et al. 2011).

4.1 Introduction

In their seminal paper on multi-instance learning, T. Dietterich et al. (1997)
define the multi-instance learning task as follows: We are given a set of bags
of instances. Each instance has an unknown label (positive or negative). Each
bag has a known label, which is positive if and only if at least one instance
in the bag is positive, and negative otherwise. The task is to learn, from this
information, a classifier that can predict the label of instances, and hence also
of bags.

Dietterich et al.’s article has given rise to a variety of learning approaches, as

49

50 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

well as some theoretical work on the problem. Although many papers refer to
Dietterich et al’s problem definition, the term “multi-instance learning” has
gradually become used in a broader sense, namely, any kind of learning in a
context where a single example is a bag of instances. The requirements that a
label is associated with each instance , and that the label of a bag is positive if
and only if it contains at least one positive instance, are then dropped. Some
authors refer to this broader setting as “generalized multi-instance learning” as
opposed to Dietterich et al.’s “standard multi-instance learning”. In this chapter,
when we refer to multi-instance learning, we refer to the “standard” setting.

Within standard multi-instance learning, there are two interpretations of the
problem; one is that the task is to learn a classifier for bags, the other that the
task is to learn a classifier for single instances. In the standard setting, these
two are equivalent, so one could argue it does not matter which interpretation is
used. But this is not entirely the case: as we will argue further on, it is possible
that, among two classifiers, the one with best performance for bag classification
has worst performance for instance classification, and vice versa.

Although Dietterich et al. explicitly stated that they wanted to learn an instance
classifier, their evaluation is based on bag classification. They do not mention
the reason for this, but at least two reasons are plausible. First, from a predictive
point of view, bag classification performance is indeed relevant for the problem
they focused on (classifying molecules as having the “musk” property or not),
even if, from the point of view of knowledge discovery, the task is to identify
the conditions C under which an instance is positive (which makes instance
classification performance more relevant).

The second reason is more pragmatic: in the Musk datasets, the true instance
labels are not known, only the bag labels are. That is, the correct solution to the
multi-instance learning problem is not known, and hence cannot be compared
to. This contrasts with the normal evaluation procedures used in machine
learning: there, the labels of test instances are not given to the learner, but they
are known to the researcher, and used to evaluate the learner’s performance.
In multi-instance learning, when individual instance labels are not known, a
comparably reliable evaluation procedure is not available. Evaluation based on
bag classification may then be the best available alternative.

Up till now, however, it has not been investigated how valid bag classification
evaluation is, as an approximation to instance classification evaluation. That is,
when model A is shown to have better bag classification performance on some
dataset than model B, is it reasonable to assume it will also have better instance
classification performance? Many papers implicitly make this assumption.

In this chapter, we evaluate that assumption for two performance measures:

MULTI-INSTANCE LEARNING: PRELIMINARIES 51

Accuracy and Area Under the ROC Curve (AUC). We show that instance
classification accuracy is not a monotonic function of bag classification accuracy.
When ranking multi-instance classifiers according to one or the other, the
correlation between them is positive, but substantially lower than one. Our
experiments show that the same holds for AUC. We quantify the probability of
choosing a suboptimal model when bag classification performance is substituted
for instance classification performance. We also discuss what this entails in
practice for some published results. Our main conclusion is that research on
multi-instance classification would benefit from datasets with known instance
labels, allowing for more accurate evaluation.

The chapter is structured as follows. We first review the basics of multi-
instance learning and briefly discuss the mathematical relationship between
instance- and bag-level classification performance (Section 4.2). Next, we
discuss the literature on multi-instance learning and emphasize the different
interpretations of the learning task being used, and the link with the two different
evaluation settings (Section 4.3). This section primarily focuses on accuracy as
a performance measure. Next, we empirically analyze the relationship between
bag-level performance and instance-level performance for both accuracy and
AUC (Section 4.4). Finally, we empirically assess the benefit of special-purpose
multi-instance learners versus reduction to regular single-instance learning, and
compare this to earlier results (Section 4.5).

4.2 Multi-instance learning: Preliminaries

4.2.1 Definition and terminology

Let X be the instance space and B = {pos, neg} the binary set of class labels.
Standard binary classification, which we here call the single-instance setting,
can be defined as follows. We are given a dataset D consisting of elements
(xi, f(xi)) with xi ∈ X an instance and f(xi) ∈ B its label according to an
unknown function f : X → B. The learning task is to find the function f .

The multi-instance learning setting is typically defined as follows (T. Dietterich
et al. 1997). We are given a dataset that consists of bags Bi of instances; the
number of instances in a bag is variable. Each instance is described by a single
vector xij ∈ X . An instance can be positive or negative, but the instance
labels are not given. Instead, we are given bag labels, and we know that a bag
is labeled positive if it contains at least one positive instance, and negative
otherwise. From this information, we are to learn a function that can classify
instances or bags.

52 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

The first interpretation of the task is that an instance classifier is learned. This
corresponds to the following definition.

Definition 12 (Multi-instance learning, interpretation 1).
Given: a datasetD consisting of elements (Bi, F (Bi)) with Bi a bag of instances
{xi1, . . . ,xini

} and F (Bi) ∈ B its label; there exists an unknown function
f : X → B for which it holds that

F (B) =
{
pos if ∃x ∈ B : f(x) = pos,
neg otherwise. (4.1)

Find: f .

The second interpretation of the task is identical except that now the bag
labeling function F is to be learned.

Definition 13 (Multi-instance learning, interpretation 2).
Given: the same information as in Definition 12.
Find: F .

Both definitions are used in the literature (we present an overview later on),
and both are interpretations of what we call “standard” multi-instance learning.

As said, there is also “generalized” multi-instance learning (M. Zhang 2009).
Here, the task is to learn F , but contrary to standard multi-instance learning,
Equation 4.1 need not hold, and the notion of an instance classifier f may
not even exist. For that reason, this analysis is relevant only for standard
multi-instance learning.

4.2.2 Connection between f and F

Equation 4.1 shows that f uniquely determines F . The converse is also true:
given F , it must hold that

f(x) = F ({x}). (4.2)

This follows formally from Definition 12: Since Equation 4.1 holds for all bags,
it holds also for singletons, and for a singleton {e} we have F (e) = pos↔ ∃x ∈
B : f(x) = pos⇔ f(e) = pos.

Let B be the function that transforms an instance classifier into an equivalent
bag classifier; that is, F = B(f) if and only if Equation 4.1 holds. Similarly, let
I be the function that transforms a bag classifier F into an instance classifier f ;
that is, f = I(F) if and only if Equation 4.2 holds. In standard multi-instance

MULTI-INSTANCE LEARNING: PRELIMINARIES 53

learning, the transformations I and B are guaranteed to be each other’s inverse:
I(B(f)) = f and B(I(F)) = F .

Equation 4.1 is well-known to all multi-instance learning researchers, but the
fact that Equation 4.2 trivially follows from it does not seem to have been given
much consideration. It has been used implicitly in some cases; for instance,
Zhou, Xue, et al. (2005) propose an algorithm for detecting regions of interest
in images (Citation-ROI) that is really an application of the above rule for a
particular multi-instance learner (Citation-kNN), though not presented as such.

4.2.3 Instance-level versus bag-level accuracy

From now on, we distinguish the real target concepts underlying the learning
problem, denoted f and F as before, from the actual classifiers constructed by
a multi-instance learner when applied on a dataset, denoted f̂ and F̂ . Some
multi-instance learners return an instance classifier f̂ ; for these, we define the
corresponding bag classifier as F̂ = B(f̂). Other multi-instance classifiers return
a bag classifier; for these, we define f̂ = I(F̂). For the real target concepts, we
have f = I(F) and F = B(f) as before.

We call a classifier perfect when it has zero error. Any method that learns a
perfect bag classifier (F̂ = F) learns a perfect instance classifier (f̂ = I(F̂) =
I(F) = f), and vice versa. However, when learning from data, we typically do
not find perfect classifiers; the learned function f̂ (or F̂) only approximates f
(or F).

We can distinguish two accuracy measures for a classifier (f̂ , F̂) on a given
multi-instance dataset.

• Bag-level accuracy aB is the proportion of bags for which the predicted
label equals the true label. It measures how well F̂ approximates F .

• Instance-level accuracy aI is the proportion of instances for which the
predicted label equals the true label. It measures how well f̂ approximates
f .

Given the one-to-one relationship between F and f (Equations 4.1 and 4.2), one
might expect that there is a similar link between the corresponding accuracy
measures, aB and aI . This is not the case, as we show next.

54 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

4.2.4 Mathematical analysis of the relationship between bag-
level and instance-level accuracy

Under the simplifying assumption that instances in a bag are independent from
each other, we can analyze the relationship between aI and aB analytically,
showing that there is no one-to-one correspondence between them in this special
case (and hence, not in the general case either).

Specifically, we consider the following generative process: a random number of
instances are drawn randomly and i.i.d., and put in a bag; the bag is labeled
positive if and only if at least one of these instances is positive. The dataset
consists of a number of bags, all generated in this way. The instance distribution
and bag size distribution can be any distribution.

Accuracy is a weighted average of the true positive rate TP (the proportion
of positive cases that are predicted positive) and the true negative rate TN
(the proportion of negative cases predicted negative). Let TPI and TN I be the
instance-level true positive/negative rate of f̂ over the whole instance population.
The expected instance-level accuracy of f̂ on a set of NI instances, among which
p positives and n negatives, is then

aI = p · TPI + n · TN I

NI
. (4.3)

The expected bag-level accuracy aB of the corresponding F̂ on a set of NB
bags, the elements of which are drawn i.i.d. from that population, is

aB =
∑
Bk∈B+ a

+
B(Bk) +

∑
Bk∈B− a

−
B(Bk)

NB
(4.4)

a−B(Bk) = TNnk

I , (4.5)

a+
B(Bk) = 1− TNnk

I (1− TPI)pk (4.6)

with B+ and B− the set of positive and negative bags, respectively, and with pk
and nk the number of positive/negative instances in bag Bk. Equation 4.4 writes
the expected bag-level accuracy as an average of the expected classification
accuracy of positive and negative bags. Equation 4.5 follows from the fact that
a negative bag is predicted correctly if all its instances are correctly predicted
negative. Equation 4.6 follows from the fact that a positive bag is predicted
correctly if it is not predicted as negative; and a bag is predicted negative when
all its negative members are correctly predicted negative (probability TNnk

I),
and all its positive members are incorrectly predicted negative (probability
(1− TPI)pk).

MULTI-INSTANCE LEARNING: PRELIMINARIES 55

Table 4.1: The instance- and bag-level accuracy of two classifiers, C1 (TN I=0.7,
TPI=0.2) and C2 (TN I=0.2, TPI=0.9), for two different bag configurations.

C1 C2

aI
6
7 · 0.2 + 1

7 · 0.9 = 0.3 6
7 · 0.7 + 1

7 · 0.2 = 0.63
aB,cnf.1

1
2 (0.75 + 1 − 0.71(1 − 0.2)1) = 0.30 1

2 (0.25 + 1 − 0.21(1 − 0.9)1) = 0.50
aB,cnf.2

1
2 (0.71 + 1 − 0.75(1 − 0.2)1) = 0.78 1

2 (0.21 + 1 − 0.25(1 − 0.9)1) = 0.60

Together, Equations 4.3 to 4.6 show that, for a given aI , there is not a single
corresponding value of aB (and vice versa): this value depends on the size of
the bags Bk and the instance class distribution, which are problem-dependent,
and on TPI and TN I , which are classifier-dependent. Hence, even on the
same problem, different classifiers may exhibit a different relationship between
bag-level and instance-level accuracy. Among two classifiers, one classifier may
score best on one measure and worst on the other.

This is demonstrated by the following example. Consider applying two classifiers
C1 and C2 on a dataset that is balanced on the bag level. A fraction of 1/7 of
the instances are positive and 6/7 are negative. Classifier C1 has TN I,1 = 0.2
and TPI,1 = 0.9, and C2 has TN I,2 = 0.7 and TPI,2 = 0.2. Using Equation 4.3,
we find that the instance-level accuracy of the two classifiers is respectively
aI,1 = 0.3 and aI,2 = 0.63. We create two different bag configurations from
these instances. In the first configuration, negative bags contain five instances
and positive bags contain one positive and one negative instance. In the second
configuration, negative bags contain a single instance, and positive bags contain
five negative and one positive instance. Applying Equations 4.3 to 4.6 for both
bag configurations, Table 4.1 shows that depending on the configuration, either
aB,1 is larger than aB,2 or vice versa.

The discussion also shows that aI is in a sense more ‘stable’ than aB. If a
model is found to have a particular aB on some test set, it may actually achieve
a significantly different bag accuracy when predicting labels of bags that are
significantly larger or smaller. (As an extreme example, if in a test set all
bags are singletons, aB becomes equal to aI). Note also that, given a class
distribution and a bag size distribution, TN I and TPI determine the expected
values of both aI and aB . From this point of view, they are more fundamental
than aI and aB .

Figure 4.1 illustrates the relationship between aI and aB on 500 randomly

56 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

Figure 4.1: Scatter plot showing for 500 problems with a randomly chosen TPI ,
TNI , class distribution and bag size distribution, the corresponding aI and aB .
aI and aB correlate positively, but do not determine each other.

Figure 4.2: Increasing the proportion of positive instances in the instance
population from 0 to 1 may affect both aI and aB positively (left; TPI = 0.8,
TN I = 0.6), affect one positively and the other negatively (middle: TPI = 0.4,
TN I = 0.6), or have a more complicated effect (right; TPI = 0.4, TN I = 0.99).

generated datasets.1 The simulation shows clearly that aI and aB correlate
positively but do not determine each other.

Figure 4.2 shows how the class distribution affects aI and aB, for a fixed
TN I and TPI . Depending on the value of TN I and TPI , more positives in
the instance population may increase both aI and aB (left), increase one but
decrease the other (middle), or have a more complicated effect (right; here, a
maximal aB is obtained when aI is either very high or very low).

1For each dataset, the size of a bag is between 1 and the maximum bag size for that
dataset, which is randomly drawn from [3,10]. For each dataset, the maximum proportion of
positives in a bag is drawn from [0,1]. Finally TNI and TPI are drawn from [0.5,1]

LITERATURE ON (STANDARD) MULTI-INSTANCE LEARNING 57

4.3 Literature on (standard) multi-instance learn-
ing

There is a large literature on multi-instance learning. This section is not meant
to provide a complete overview, but merely to illustrate the points being made
in this work regarding variation in learning tasks and evaluation measures.

4.3.1 Algorithms and applications

Many algorithms for (standard) multi-instance learning have been developed.
Perhaps the simplest approach is to label each instance with the label of its bag,
then apply a standard learner to this dataset to obtain f̂ . Many instances will
get a positive label in the training set even if they are really negative, but the
opposite will not occur; thus, multi-instance learning reduces to learning from a
dataset with one-sided class noise (Blum and Kalai 1998). Such an approach
was used as a “straw man” approach by T. Dietterich et al. (1997), and shown
not to work well, although Ray and Craven (2005) later showed that this may
depend strongly on the application.

Many authors have proposed algorithms that explicitly address the peculiarities
of the multi-instance setting, such as Axis-Parallel Rectangles (T. Dietterich
et al. 1997), Diverse Density (Maron and Lozano-Pérez 1998) and its extension
EM-DD (Q. Zhang and Goldman 2001), neural networks (Ramon and De Raedt
2000), the k-nearest neighbor algorithm Citation-kNN (Wang and Zucker 2000),
the decision tree algorithms ID3-MI (Zucker and Chevaleyre 2001) and MITI
(Blockeel et al. 2005), the rule learning algorithm RIPPER-MI (Zucker and
Chevaleyre 2001), the SVM algorithms MI-SVM, mi-SVM (Andrews et al. 2003)
and DD-SVM (Chen and Wang 2004), the logistic regression algorithm MILR
(Ray and Craven 2005) and the ensemble algorithms MI-Ensemble (Zhou and
M. Zhang 2003) and MI-Boosting (Xu and Frank 2004). As the overview shows,
many of these algorithms are inspired by single-instance learning algorithms.

Applications of multi-instance learning include content-based image retrieval
(Andrews et al. 2003; Fu et al. 2011; Li et al. 2009; Maron and Ratan 1998;
Zhou, Xue, et al. 2005), music retrieval (Mandel and Ellis 2008), protein family
modeling (Tao et al. 2004) and medical applications (Fung et al. 2007) such as
drug activity prediction (T. Dietterich et al. 1997). In image retrieval, many
researchers have proposed the use of multi-instance learners to learn what the
user’s interest is. That is, given a series of pictures that are of interest to the
user, presumably because they contain some object of interest (among other
things), a multi-instance learner can be used to learn a function that can predict

58 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

for new pictures whether they contain the object of interest or not. Some
researchers consider as a separate task the detection of the regions of interest
in these pictures (Fu et al. 2011; Li et al. 2009; Zhou, Xue, et al. 2005). Using
our terminology, this boils down to identifying f .

4.3.2 Learning task: Definition 12 versus Definition 13

According to Definition 12, the goal is to learn an instance classifier, i.e., an
approximation f̂ to f . According to Definition 13, the goal is to learn a bag
classifier, i.e., an approximation F̂ to F . Both interpretations are used in the
literature:

• In their seminal paper about multi-instance learning, T. Dietterich et al.
(1997) (p.34) state: “the goal of the machine learning algorithm will be to
construct an approximation ĝ to the internal function g”, which in our
notation is function f . This means that Dietterich et al use Definition 12.
This definition is also used by Blum and Kalai (1998), who note that multi-
instance learning is a special case of learning from one-sided class noise.
Some theoretical results regarding PAC learning axis-parallel rectangles in
this setting (Auer, Long, et al. 1998; Blum and Kalai 1998; Long and Tan
1998) also use Definition 12, as do various other papers (e.g., (Blockeel
et al. 2005; Maron and Lozano-Pérez 1998)).

• The Encyclopedia of Machine Learning (Ray, Scott, et al. 2011) uses
Definition 13. Many papers use this definition as well (e.g., (Fung et al.
2007; Maron and Ratan 1998; Wang and Zucker 2000; Q. Zhang and
Goldman 2001; Zucker and Chevaleyre 2001)).

It seems that the use of these two different interpretations of the learning task
can be explained historically. When T. Dietterich et al. (1997) introduced multi-
instance learning, they considered Definition 12, i.e., learn f . In subsequent
papers, there seems to be a shift in emphasis from the learning task to the
data format. That is, many multi-instance papers clearly specify the format
of the training data but leave it implicit whether the goal is to learn f or
F . Furthermore, multi-instance classifiers are typically evaluated in terms of
bag-level performance, which relates to F rather than f . This seems to have
contributed to the second interpretation of the learning task (learn F) becoming
more popular in recent papers.

LITERATURE ON (STANDARD) MULTI-INSTANCE LEARNING 59

4.3.3 Performance measure: Bag-level versus instance-level

Most papers evaluate classifiers according to bag level performance, regardless
of whether Definition 12 or 13 is used. This is true for Dietterich et al, and
for the large majority of cases we looked at (Andrews et al. 2003; Blockeel
et al. 2005; T. Dietterich et al. 1997; Fung et al. 2007; Maron and Lozano-Pérez
1998; Ramon and De Raedt 2000; Ray and Craven 2005; Tao et al. 2004; Wang
and Zucker 2000; Xu and Frank 2004; Q. Zhang and Goldman 2001; Zhou
and M. Zhang 2003; Zucker and Chevaleyre 2001). The reason for this is most
likely that computing aI requires knowing the instance labels, which in most
datasets are unknown. Exceptions are one paper on music information retrieval
by Mandel and Ellis (2008), who explicitly state that they are interested only in
aI ; a number of papers on content-based image retrieval (CBIR); and a recent
theoretical study by Doran and Ray (2014).

In CBIR, two different tasks are often considered: (a) retrieving images that
contain a particular type of object, and (b) identifying the region in the picture
where that object occurs; this is also called ROI (region-of-interest) detection
(Fu et al. 2011; Li et al. 2009; Zhou, Xue, et al. 2005). Both learning problems
can be seen as multi-instance learning, with images as bags and the different
regions or segments as instances. Bag-level performance is then more relevant
for task (a), instance-level performance for task (b), though for task (b) an
alternative measure called success rate is often used: The classifier indicates for
every bag predicted positive one instance that is most likely to be positive; the
success rate is the proportion of positive bags for which a truly positive instance
is indicated. Both forms of instance-level evaluation can only be automated
if individual instance labels are available, which is often not the case; for this
reason, several researchers (Fu et al. 2011; Shao et al. 2008) evaluate the ROI
performance not quantitatively but only qualitatively, by manually inspecting
detected ROIs for a small subset of all images.

Doran and Ray (2014) define a number of desirable but mutually exclusive
properties of MI approaches based on support vector machines, and study how
these affect performance; they find that the effect differs depending on whether
one considers bag classification or instance classification. Their results are
consistent with ours.

In summary, with a few exceptions as mentioned above, the large majority of
the literature on multi-instance learning considers bag-level evaluation only.
Given that in some applications instance-level performance is important too,
this raises the question: what does bag-level performance tell us about instance
level performance? Or, more concretely in the case of accuracy: to what extent
does a high bag-level accuracy aB imply a high instance-level accuracy aI?

60 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

This question has not been addressed in the multi-instance literature, where
aI and aB are often implicitly assumed highly correlated, or, on the contrary,
no relationship whatsoever is assumed (viewing ROI detection and CBIR as
separate tasks). We address this question in the next section, and do the same
for AUC.

4.4 Experimental analysis of the relationship

As shown in Sections 4.2.4 and 4.3, aI and aB cannot be expressed as a
function of each other, let alone a monotonic function, and yet multi-instance
classifiers are often evaluated based on bag-level performance, even when instance
classification is desired. The question is then, how relevant such an evaluation is
in practice. We investigate this empirically. While our theoretical analysis only
covered accuracy as a performance measure, our empirical analysis also includes
a comparison between instance-level AUCI and bag-level AUCB . Multi-instance
datasets are typically imbalanced on the instance-level, with many more negative
instances than positive ones, so in these cases AUC may be a more appropriate
performance measure than accuracy.2

The first question we wish to address is: When comparing multiple classifiers
on the same dataset, to what extent does a high bag-level accuracy imply a high
instance-level accuracy, and vice versa? We will quantify this in two ways.
First, the rank correlation ρ(aI , aB) between the instance-level and bag-level
accuracy of multiple classifiers on a given dataset can be computed. Second, the
probability that a classifier scores higher on instance-level accuracy, given that
it scores higher on bag-level accuracy, P (aI(C1) > aI(C2)|aB(C1) > aB(C2)),
with Ci randomly chosen classifiers. While the first is a standard measurement
for comparing rankings, the second is of practical importance: When we want
to select, among two classifiers, the one with highest aI , but instead choose the
one with highest aB (or vice versa), what is the probability that we have chosen
the correct one?

The comparison of multiple classifiers on the same dataset is of practical
importance because it is frequently encountered in experimental evaluation.
However, in order to understand the influence of the choice of the learner and
the characteristics of the dataset on the relationship between bag- and instance-
level performance, we ask a second question: When evaluating a particular
learner on multiple datasets, to what extent does a high bag-level accuracy imply
a high instance-level accuracy, and vice versa? We explore this question by

2Another solution to this problem is to use weighted accuracy: 0.5(TP + TN). We also
computed this performance measure; this did not give substantially different results.

EXPERIMENTAL ANALYSIS OF THE RELATIONSHIP 61

constructing a scatter plot for each learner, plotting instance-level performance
versus bag-level performance.

4.4.1 Experimental setup

Datasets.

In order to evaluate instance-level performance, we need multi-instance datasets
that include not only the bag labels, as usual, but also the true instance
labels. Most of the common benchmark multi-instance (MI) datasets, such as
Musk (T. Dietterich et al. 1997), only contain bag labels and hence cannot be
used for our purpose. MI datasets with known instance labels seem to be rare
and are often not publicly available. Partly for that reason, we use a mix of
real-world and semi-synthetic datasets. The latter are datasets that are based
on a real-world single-instance dataset, but turned into a multi-instance dataset
by grouping instances into bags and assigning labels to these bags according to
the standard MI assumption.

Real-world: SIVAL. The SIVAL repository (Settles et al. 2008)3 is from the
area of content-based image retrieval (CBIR). It contains 1500 images where
each image contains one out of 25 different complex objects. The images are
partitioned into 31 or 32 segments, i.e., the instances. An instance in this
dataset consists of 30 features expressing color and texture information about
the image segment and its four closest neighbors. The repository contains
25 multi-instance datasets where in turn each of the 25 objects is considered
positive, while the other 24 objects are considered negative. Each of the 25
constructed datasets sets consists of 60 positive and 60 negative bags. In positive
bags, the percentage of positive instances varies from 3.1% to 90.6%, with an
average of 25.5%.

Semi-synthetic: Text categorization. We use 20 MI text categorization
datasets extracted by Settles et al. (2008) from the 20 newsgroups corpus.4
Each dataset contains 100 bags and is balanced on the bag level. The size
of the bags (number of instances) varies from 8 to 84, with an average of 40.
A bag is a collection of short texts from the newsgroups. In positive bags,
the percentage of positive instances varies from 2% to 7%, with an average of
3.6%. This is a high-dimensional dataset; each instance is characterized by 200
TFIDF features. The bags were artificially created by in turn considering one
newsgroup as positive, while taking the other newsgroups as negative and i.i.d.

3Data available on http://pages.cs.wisc.edu/~bsettles/amil/.
4Data available on http://lamda.nju.edu.cn/data_MItext.ashx.

http://pages.cs.wisc.edu/~bsettles/amil/
http://lamda.nju.edu.cn/data_MItext.ashx

62 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

sampling texts from the newsgroups such that around 3% of the texts in a bag
are from the positive category.

Semi-synthetic UCI datasets. We have constructed some more semi-
synthetic MI datasets from five source datasets taken from the UCI repository
(Lichman 2013): Adult (Kohavi 1996), Pima Indians Diabetes (Smith et al.
1988), Spam (Cranor and LaMacchia 1998), Tic-Tac-Toe (Aha 1990) and Blood
Transfusion Service Center (Yeh et al. 2009). We selected these datasets because
they are imbalanced, which is useful for constructing MI datasets, since MI
datasets that are balanced on the bag-level contain more negative than positive
instances. All datasets are binary classification problems; we kept the labels
unchanged, except for Tic-Tac-Toe, where we inverted the instance labels in
order to have a majority of negatives.

We have constructed multiple MI datasets by choosing instances i.i.d. and
grouping them into bags, controlling for bag size and positive/negative ratio
in positive bags. We say that a MI dataset is in bag-configuration ‘X/Y ’ if
each bag in the dataset contains Y instances, and each positive bag contains X
positive instances. For each source dataset, we use MI datasets in configurations
1/2, 1/3 and 2/3; for the two largest (Adult and Spam) we additionally use 1/4,
2/4, 1/5, 2/5, 1/10 and 2/10. All MI datasets are balanced on the bag level:
50% of the bags is positive and 50% is negative. To construct a MI dataset in
a particular bag-configuration, we randomly sampled the required number of
positive instances and negative instances from the respective source dataset.
The number of bags in each MI dataset is the highest possible number for which
we can sample without replacement before exhausting the source dataset, except
for Adult, where for computational reasons we retained only 1200 bags for each
label, randomly chosen.

Table 4.2 gives an overview of all the resulting MI datasets. The UCI datasets
are complementary to the SIVAL and newsgroup datasets in the sense that they
have large training set sizes, few features and relatively small bag sizes.

Learning algorithms.

We have performed experiments with fourteen MI algorithms available in the
Weka data mining tool (I. Witten and Frank 2005): MIDD (Diverse Density)
(Maron and Lozano-Pérez 1998), MIEMDD (Expectation-Maximization Diverse
Density) (Q. Zhang and Goldman 2001), MDD (Modified Diverse Density with
collective assumption) (Dong 2006), MISVM, which is a Weka implementation
of the maximum pattern margin formulation mi-SVM by (Andrews et al. 2003),
MIOptimalBall (Auer and Ortner 2004), MILR (Logistic Regression) (Ray and
Craven 2005), logistic regression with the arithmetic mean model, referred

EXPERIMENTAL ANALYSIS OF THE RELATIONSHIP 63

Table 4.2: Multi-instance dataset properties: Number of bags, number of
instances per bag and percentage of positive instances per bag. The percentage
of positive bags is 50% for all datasets. (‘Ad.’: Adult, ‘TTT’: Tic-Tac-Toe, ‘Db.’:
Diabetes, ‘Sp.’: Spam, ‘Tr.’: Transfusion)

Dataset #bags #inst.
bag

%pos.
bag Dataset #bags #inst.

bag
%pos.

bag

Ad. 1/2 1200 2 50 Sp. 1/2 1858 2 50
Ad. 1/3 1200 3 33.3 Sp. 1/3 1114 3 33.3
Ad. 1/4 1200 4 25 Sp. 1/4 796 4 25
Ad. 1/5 1200 5 20 Sp. 1/5 618 5 20
Ad. 1/10 1200 10 10 Sp. 1/10 292 10 10
Ad. 2/3 1200 3 66.6 Sp. 2/3 1392 3 66.6
Ad. 2/4 1200 4 50 Sp. 2/4 928 4 50
Ad. 2/5 1200 5 40 Sp. 2/5 696 5 40
Ad. 2/10 1200 10 20 Sp. 2/10 308 10 20
TTT 1/2 416 2 50 Tr. 1/2 356 2 50
TTT 1/3 250 3 33.3 Tr. 1/3 226 3 33.3
TTT 2/3 312 3 66.6 Tr. 2/3 178 3 66.6
Db. 1/2 332 2 50 SIVAL 1500 [31, 32] [3.1, 90.6]
Db. 1/3 198 3 33.3 Text 100 [8, 84] [2, 7]
Db. 2/3 248 3 66.6

to as MILRC from now on (Dong 2006), MIRI (Bjerring and Frank 2011),
AdaBoost.M1 (Freund and Schapire 1995) with a Multi Instance Tree Inducer
(MITI) as base classifier (Blockeel et al. 2005), Citation-kNN (Wang and Zucker
2000), TLD (Two-Level Distribution) (Xu 2003), SimpleMI with the J48 classifier
(Dong 2006), MIWrapper with the J48 classifier (Frank and Xu 2003), and
MISMO, which is a Weka implementation of the normalized set kernel (NSK)
by Gärtner et al. (2002).

The parameter settings are as follows. MISMO uses the radial basis function
(RBF) kernel with γ equal to 0.01 and the regularization parameter C equal to
1. MISVM uses the linear kernel with the regularization parameter C being 1.
We also ran MISVM with the RBF kernel but found that this kernel did not
lead to good performance on the newsgroup and SIVAL datasets. For MILR,
the ridge coefficient equals 10−6. For Citation-kNN the number of citations and
references both equal 5.

Section 4.5 also compares a number of single instance algorithms to the
corresponding multi-instance variants. Table 4.9 gives an overview of the
corresponding algorithms. For logistic regression the ridge coefficient equals
10−6. For Nearest neighbors the number of neighbors is 5. We also apply SMO

64 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

MI training data
bag config. X/Y

(bag labels given, instance
labels not given)

MI learning
algorithm

MI classifier

compute
bag-level

performance

compute
instance-level
performance

bag config. X/Y
MI test data

aB IAUCa IAUCB

Figure 4.3: Overview of the experimental setup.

with an RBF kernel with γ and C equal to respectively 0.01 and 1. Finally, for
J48 the confidence factor is 0.25 and the minimum number of instances per leaf
2.

Note that the algorithmic performances could be improved with parameter
optimization. However, this would not influence the observed relative differences
between instance-level and bag-level results. Due to computational limitations,
we therefore limited the experiments to default parameter values.

Setup.

Figure 4.3 summarizes the experimental setup. We measure the bag-level
performance and instance-level performance of each MI learning algorithm on
each MI dataset with accuracy (respectively aB and aI) and AUC (AUCB and
AUCI), using 10-fold bag-level stratified cross-validation.

4.4.2 Results

Rank correlations.

First, we have computed for each dataset the Spearman rank correlation
ρ(aI , aB) between instance- and bag-level accuracy of the different methods:

ρ(aI , aB) =
∑
j(r

j
I − r̄I)(r

j
B − r̄B)√∑

j(r
j
I − r̄I)2∑

j(r
j
B − r̄B)2

,

EXPERIMENTAL ANALYSIS OF THE RELATIONSHIP 65

where rjI is the rank of the j-th learning algorithm in terms of instance-level
accuracy (j = 1 . . . 10), r̄I is

∑10
j=1 r

j
I/14, and rjB and r̄B are defined similarly

in terms of bag-level accuracy. The Spearman correlation is 1 if aI and aB yield
exactly the same ranking, −1 if they yield exactly opposite rankings, and 0 for
independent rankings. The same formula can be used for AUC.

For each data category (SIVAL, newsgroup or UCI), we show three representative
results. For evaluation in terms of accuracy, these are shown respectively in
Figures 4.4, 4.5 and 4.6. For each dataset, a plot visualizes the agreement
between the instance-level and bag-level ranking: For the 14 learners, the aI
and aB they resulted in (for that particular dataset) are ranked, and each aI is
connected with the corresponding aB . The extent to which the lines cross is a
visual indication of the disagreement between the two measures. Overall, the
results show that, while there is clearly some correlation between aI and aB , it
is relatively weak. It happens quite often that a learner performs well in terms
of aB but poorly in terms of aI , and vice versa (many crossing lines).

Figures 4.7, 4.8 and 4.9 show the results of the similar analysis for AUC. Here
we observe that the rank correlations are highest for the UCI datasets and
lowest for the SIVAL datasets. For the UCI datasets, ρ(AUCI , AUCB) is often
close enough to one to consider AUCI a good approximation of AUCB, and
vice versa. For the newsgroup and SIVAL datasets this is not the case.

The results for the remaining datasets are similar and are available upon request
to the authors.

Probabilistic analysis.

As an alternative to the use of rank correlations, we also perform a probabilistic
analysis. We compute a 95% Wilson confidence interval for P (aI(C1) >
aI(C2)|aB(C1) > aB(C2)), i.e., the probability that classifier C1 outperforms
classifier C2 in terms of instance-level accuracy, given that it outperforms it
in terms of bag-level accuracy. We use PI|B as shorthand for this probability.
Following the usual way of estimating conditional probabilities, PI|B is estimated
as

P̂I|B =
∑
C1

∑
C2 6=C1

I
(
aI(C1) > aI(C2) & aB(C1) > aB(C2)

)∑
C1

∑
C2 6=C1

I
(
aB(C1) > aB(C2)

) ,

where the sums range over the different classifiers learned by our 14 learners
on the considered dataset, and I(c) is 1 if c is true and 0 otherwise. Intuitively,
PI|B indicates how well observations in terms of aB are expected to transfer to
aI . The converse probability, PB|I = P (aB(C1) > aB(C2)|aI(C1) > aI(C2)), is
estimated similarly. Similar formulas can also be used for AUC.

66 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

aI aB

MISVM 10.876 1
0.883MIRI 20.873 2
0.842MIDD 30.871 3

0.908

MILR 40.865 4
0.750MIEMDD 50.864 5

0.700

MIOptimalBall 60.860 6 0.700

AdaBoostM1 70.858 7

0.775

TLD 80.762 8

0.517

MIWrapper-J48 90.715 9 0.550

Citation-kNN5 100.701 10

0.417

SimpleMI-J48 110.649 11 0.508

MILRC 120.644 12

0.383

MDD 130.618 13
0.433

MISMO 140.292 14

0.642

(a) ρ=0.84

aI aB

MIRI 10.870 1

0.750

MISVM 20.867 2

0.758

MIOptimalBall 30.860 3

0.867

MIDD 40.858 4

0.817

MIEMDD 50.857 5

0.800

MILR 60.851 6

0.725

AdaBoostM1 70.848 7

0.783

MISMO 80.846 8

0.775

MIWrapper-J48 90.788 9
0.692TLD 100.783 10
0.708

MDD 110.690 11
0.492SimpleMI-J48 120.683 12
0.642

Citation-kNN5 130.677 13
0.333MILRC 140.652 14
0.458

(b) ρ=0.80

aI aB

MILR 10.836 1 0.917

MIRI 20.820 2
0.867MISVM 30.817 3

0.725

MIEMDD 40.799 4
0.800MIDD 50.795 5

0.767

MIOptimalBall 60.792 6

0.800

AdaBoostM1 70.787 7

0.875

MISMO 80.787 8

0.792

MIWrapper-J48 90.750 9

0.783

MILRC 100.749 10 0.717

TLD 110.744 11
0.633Citation-kNN5 120.720 12

0.367

SimpleMI-J48 130.714 13

0.700

MDD 140.677 14
0.567

(c) ρ=0.79

Figure 4.4: Accuracy Rankings on SIVAL data: instance-level accuracy aI
versus bag-level accuracy aB for the SIVAL datasets. ρ is the resulting rank
correlation. (a) ajaxorange, (b) wd40can, (c) greenteabox.

aI aB

MISVM 10.988 1

0.710

AdaBoostM1 20.986 2

0.590

MILR 30.986 3
0.750

MIDD 40.983 4

0.440

MIRI 50.980 5
0.590TLD 60.975 6

0.790

MIOptimalBall 70.972 7

0.480

MIEMDD 80.969 8
0.520SimpleMI-J48 90.802 9

0.670

MISMO 100.671 10

0.670

Citation-kNN5 110.585 11
0.510

MIWrapper-J48 120.549 12 0.500

MILRC 130.500 13

0.500

MDD 140.494 14

0.520

(a) ρ=0.41

aI aB

TLD 10.979 1 0.699

AdaBoostM1 20.978 2

0.544

MIDD 30.978 3

0.593

MISVM 40.978 4
0.617

MILR 50.972 5

0.624

MIRI 60.966 6

0.484

MISMO 70.965 7
0.586

MIEMDD 80.956 8 0.527

MIOptimalBall 90.951 9

0.604

SimpleMI-J48 100.848 10

0.427

MIWrapper-J48 110.727 11
0.507

Citation-kNN5 120.723 12

0.517

MILRC 130.505 13

0.502

MDD 140.478 14
0.442

(b) ρ=0.73

aI aB

MILR 10.988 1

0.630

MISVM 20.987 2
0.700

AdaBoostM1 30.987 3

0.540

MIDD 40.981 4

0.490

MIRI 50.978 5
0.540TLD 60.977 6
0.610

MIOptimalBall 70.972 7

0.490

MIEMDD 80.966 8 0.530

MILRC 90.843 9 0.500

SimpleMI-J48 100.713 10

0.670

Citation-kNN5 110.627 11 0.500

MIWrapper-J48 120.621 12

0.500

MDD 130.442 13
0.440MISMO 140.088 14

0.630

(c) ρ=0.31

Figure 4.5: Accuracy Rankings on newsgroup data: (a) alt atheism, (b) comp
graphics, (c) comp os ms-windows misc.

aI aB

MILR 10.802 1
0.669MISVM 20.792 2

0.645

MIDD 30.789 3

0.689

MIEMDD 40.778 4
0.668

AdaBoostM1 50.770 5

0.626

MIOptimalBall 60.749 6

0.581

MIWrapper-J48 70.728 7

0.622

TLD 80.716 8

0.649

MILRC 90.703 9

0.649

MDD 100.694 10

0.643

MIRI 110.685 11
0.593SimpleMI-J48 120.647 12
0.622

Citation-kNN5 130.625 13
0.521MISMO 140.437 14

0.623

(a) ρ=0.64

aI aB

MISVM 10.961 1

0.640

AdaBoostM1 20.959 2
0.710

MILR 30.947 3
0.680

MIDD 40.947 4

0.640

MIOptimalBall 50.941 5

0.618

MIRI 60.938 6

0.674

MIWrapper-J48 70.908 7

0.546

MIEMDD 80.867 8

0.530

MISMO 90.860 9

0.658

SimpleMI-J48 100.791 10

0.622

TLD 110.664 11

0.592

MILRC 120.562 12

0.557

Citation-kNN5 130.551 13
0.400MDD 140.470 14
0.461

(b) ρ=0.73

aI aB

MISVM 10.835 1

0.512

MIDD 20.830 2
0.623MILR 30.827 3

0.627

AdaBoostM1 40.812 4

0.562

MIOptimalBall 50.793 5

0.588

MIEMDD 60.792 6 0.592

MIRI 70.721 7

0.535

TLD 80.707 8
0.569MIWrapper-J48 90.637 9

0.626

MILRC 100.579 10

0.608

MDD 110.565 11

0.599

Citation-kNN5 120.541 12

0.497

SimpleMI-J48 130.491 13 0.510

MISMO 140.222 14

0.571

(c) ρ=0.24

Figure 4.6: Accuracy rankings on UCI data: (a) Diabetes 1/2, (b) Spam 1/10,
(c) Transfusion 1/3.

EXPERIMENTAL ANALYSIS OF THE RELATIONSHIP 67

AUCI AUCB

Citation-kNN5 10.833 1

0.314

TLD 20.752 2

0.517

MIWrapper-J48 30.695 3

0.593

MILRC 40.657 4

0.297

MDD 50.616 5

0.412

AdaBoostM1 60.601 6

0.900

MIRI 70.584 7

0.842

MISVM 80.581 8

0.883

MIDD 90.568 9

0.966

MILR 100.567 10

0.756

SimpleMI-J48 110.556 11 0.491

MIOptimalBall 120.535 12

0.700

MISMO 130.513 13

0.718

MIEMDD 140.475 14

0.596

(a) ρ=-0.41

AUCI AUCB

Citation-kNN5 10.825 1

0.255

TLD 20.806 2

0.708

MIDD 30.753 3

0.898

MIWrapper-J48 40.744 4

0.740

MDD 50.735 5

0.598

MILRC 60.708 6

0.482

SimpleMI-J48 70.650 7

0.606

MIRI 80.607 8
0.750

AdaBoostM1 90.602 9

0.876

MISVM 100.579 10

0.758

MILR 110.562 11

0.743

MIOptimalBall 120.550 12

0.867

MISMO 130.500 13

0.851

MIEMDD 140.464 14

0.890

(b) ρ=-0.56

AUCI AUCB

Citation-kNN5 10.829 1

0.286

MILRC 20.804 2

0.840

MDD 30.758 3

0.618

TLD 40.739 4

0.633

MIWrapper-J48 50.738 5

0.838

MILR 60.698 6

0.974

MIRI 70.588 7

0.867

SimpleMI-J48 80.588 8

0.675

AdaBoostM1 90.581 9

0.913

MISVM 100.575 10 0.725

MIDD 110.543 11

0.874

MIOptimalBall 120.526 12

0.800

MISMO 130.500 13

0.816

MIEMDD 140.408 14

0.902

(c) ρ=-0.43

Figure 4.7: AUC Rankings on SIVAL data: (a) ajaxorange, (b) wd40can, (c)
greenteabox.

AUCI AUCB

TLD 10.933 1 0.790

MILR 20.892 2 0.779

AdaBoostM1 30.820 3

0.650

MISMO 40.756 4
0.676MISVM 50.731 5

0.710

SimpleMI-J48 60.616 6

0.698

MIRI 70.612 7 0.590

MIWrapper-J48 80.595 8

0.518

MILRC 90.567 9 0.537

Citation-kNN5 100.533 10

0.499

MIOptimalBall 110.493 11

0.480

MIDD 120.384 12

0.418

MIEMDD 130.244 13

0.558

MDD 140.220 14

0.534

(a) ρ=0.82

AUCI AUCB

TLD 10.688 1 0.696

MILR 20.678 2 0.643

AdaBoostM1 30.669 3

0.553

MISMO 40.662 4

0.590

MISVM 50.612 5

0.613

MIRI 60.569 6

0.484

SimpleMI-J48 70.545 7

0.376

MIWrapper-J48 80.520 8

0.472

Citation-kNN5 90.504 9 0.543

MIOptimalBall 100.493 10

0.606

MILRC 110.492 11

0.567

MIDD 120.464 12

0.608

MDD 130.252 13 0.459

MIEMDD 140.247 14

0.521

(b) ρ=0.46

AUCI AUCB

MILRC 10.759 1

0.544

AdaBoostM1 20.724 2

0.506

TLD 30.702 3

0.610

MIWrapper-J48 40.691 4

0.560

MILR 50.672 5

0.685

MISMO 60.659 6

0.644

SimpleMI-J48 70.644 7

0.673

MISVM 80.622 8

0.700

MIRI 90.574 9
0.540

Citation-kNN5 100.549 10
0.500MIOptimalBall 110.500 11

0.490

MIDD 120.403 12 0.494

MDD 130.222 13
0.454MIEMDD 140.203 14

0.536

(c) ρ=0.52

Figure 4.8: AUC Rankings on newsgroup data: (a) alt atheism, (b) comp
graphics, (c) comp os ms-windows misc.

AUCI AUCB

MILR 10.797 1 0.735

MIDD 20.795 2
0.720MIEMDD 30.793 3
0.721

MILRC 40.793 4 0.703

MDD 50.777 5 0.687

MISMO 60.776 6 0.678

AdaBoostM1 70.730 7 0.658

TLD 80.729 8 0.645

MIWrapper-J48 90.682 9
0.626SimpleMI-J48 100.671 10
0.600MISVM 110.666 11

0.642

Citation-kNN5 120.644 12

0.514

MIOptimalBall 130.628 13 0.578

MIRI 140.618 14

0.590

(a) ρ=0.96

AUCI AUCB

MILR 10.889 1
0.717AdaBoostM1 20.874 2
0.773

MIDD 30.863 3
0.690MILRC 40.787 4

0.573

MIRI 50.747 5 0.675

MIWrapper-J48 60.708 6

0.560

SimpleMI-J48 70.702 7 0.636

Citation-kNN5 80.682 8

0.411

MIOptimalBall 90.667 9
0.616

TLD 100.664 10
0.596

MISVM 110.652 11

0.640

MDD 120.621 12
0.470MIEMDD 130.608 13
0.557

MISMO 140.579 14

0.703

(b) ρ=0.45

AUCI AUCB

MILRC 10.733 1

0.644

MILR 20.728 2
0.677

MIDD 30.720 3
0.652

MDD 40.713 4
0.628MIEMDD 50.672 5
0.619MIWrapper-J48 60.665 6

0.650

MISMO 70.658 7
0.586AdaBoostM1 80.641 8
0.585TLD 90.625 9
0.580Citation-kNN5 100.599 10

0.425

SimpleMI-J48 110.596 11

0.498

MIOptimalBall 120.577 12

0.593

MIRI 130.565 13

0.531

MISVM 140.512 14

0.513

(c) ρ=0.83

Figure 4.9: AUC rankings on UCI data: (a) Diabetes 1/2, (b) Spam 1/10, (c)
Transfusion 1/3.

68 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

Table 4.3: Probabilistic analysis on SIVAL for accuracy. 95% confidence
intervals for the probability that aI is higher, given that aB is higher (P̂I|B).

Dataset P̂I|B Dataset P̂I|B
ajaxorange [0.74, 0.90] dataminingbook [0.75, 0.90]
apple [0.47, 0.67] rapbook [0.40, 0.60]
banana [0.50, 0.70] feltflowerrug [0.63, 0.81]
bluescrunge [0.59, 0.78] translucentbowl [0.64, 0.82]
dirtyworkgloves [0.55, 0.74] greenteabox [0.72, 0.88]
juliespot [0.59, 0.78] cardboardbox [0.57, 0.76]
checkeredscarf [0.49, 0.69] dirtyrunningshoe [0.27, 0.47]
wd40can [0.73, 0.89] largespoon [0.38, 0.58]
candlewithholder [0.71, 0.87] goldmedal [0.58, 0.77]
glazedwoodpot [0.45, 0.66] spritecan [0.67, 0.84]
cokecan [0.76, 0.91] stripednotebook [0.70, 0.86]
smileyfacedoll [0.77, 0.91] fabricsoftenerbox [0.69, 0.86]

Note that when no two classifiers have the same rank, the denominator equals
0.5 and PI|B and PB|I are identical. In fact, P̂I|B and P̂B|I are nearly identical
for all datasets. Therefore, we only show the confidence intervals for P̂I|B .

Tables 4.3, 4.4, and 4.5 show the results for accuracy, and Tables 4.6, 4.7, and
4.8 for AUC. Note that if aI and aB were unrelated to each other, we would
have P̂I|B = P̂B|I = 0.5, while if aI and aB always agreed with each other,
we would have P̂I|B = P̂B|I = 1.0. This means that the probabilities that we
measured indicate that there is some agreement between aI and aB , but it is far
from consistent. Choosing the best bag classifier (among two given classifiers)
quite often does not yield the best instance classifier, and vice versa. These
conclusions are consistent with our previous rank analysis, and quantify the
practical implications.

4.4.3 Experimental analysis of the relationship between bag
level and instance level accuracy over multiple datasets

This section addresses the following question: Given a multi-instance algorithm,
how do instance-level and bag-level performance correlate with each other over
multiple datasets. By studying this relationship for a specific learner, we learn
about the effect of the inductive bias of that learner on the correlation between
instance- and bag-level performance.

EXPERIMENTAL ANALYSIS OF THE RELATIONSHIP 69

Table 4.4: Probabilistic analysis on newsgroup for accuracy. 95% confidence
intervals for the probability that aI is higher, given that aB is higher (P̂I|B).

Dataset P̂I|B Dataset P̂I|B
alt atheism [0.53, 0.73] rec sport hockey [0.77, 0.91]
comp graphics [0.66, 0.83] sci crypt [0.56, 0.75]
comp os ms-windows misc [0.53, 0.73] sci electronics [0.60, 0.79]
comp sys ibm pc hardware [0.56, 0.75] sci med [0.65, 0.82]
comp sys mac hardware [0.63, 0.81] sci space [0.70, 0.86]
comp windows x [0.67, 0.84] soc religion christian [0.56, 0.75]
misc forsale [0.43, 0.63] talk politics guns [0.52, 0.72]
rec autos [0.70, 0.87] talk politics mideast [0.62, 0.80]
rec motorcycles [0.65, 0.82] talk politics misc [0.39, 0.59]
rec sport baseball [0.64, 0.82] talk religion misc [0.44, 0.64]

Table 4.5: Probabilistic analysis on UCI data for accuracy. 95% confidence
intervals for the probability that aI is higher, given that aB is higher (P̂I|B).

Dataset P̂I|B Dataset P̂I|B
Adult 1/2 [0.73, 0.89] Spam 2/3 [0.70, 0.86]
Adult 1/3 [0.70, 0.86] Spam 1/4 [0.75, 0.90]
Adult 2/3 [0.63, 0.81] Spam 2/4 [0.77, 0.91]
Adult 1/4 [0.64, 0.82] Spam 1/5 [0.80, 0.93]
Adult 2/4 [0.64, 0.82] Spam 2/5 [0.71, 0.87]
Adult 1/5 [0.60, 0.79] Spam 1/10 [0.71, 0.87]
Adult 2/5 [0.65, 0.83] Spam 2/10 [0.71, 0.87]
Adult 1/10 [0.57, 0.76] Tictactoe 1/2 [0.68, 0.85]
Adult 2/10 [0.61, 0.80] Tictactoe 1/3 [0.68, 0.85]
Diabetes 1/2 [0.64, 0.82] Tictactoe 2/3 [0.72, 0.88]
Diabetes 1/3 [0.49, 0.69] Transfusion 1/2 [0.45, 0.65]
Diabetes 2/3 [0.63, 0.81] Transfusion 1/3 [0.47, 0.67]
Spam 1/2 [0.77, 0.91] Transfusion 2/3 [0.44, 0.65]
Spam 1/3 [0.77, 0.91]

Algorithms

We first briefly introduce how each algorithm learns a classifier. We partition
the algorithms in two groups, inspired by the taxonomies introduced by Amores
(2013) and Foulds and Frank (2010).

The first group of algorithms, which we will call standard MI algorithms, learn
an instance classifier f and follow the standard MI assumption, meaning they
learn an instance classifier that classifies a bag as positive if at least one of the

70 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

Table 4.6: Probabilistic analysis on SIVAL for AUC. 95% confidence intervals
for the probability that AUCI is higher, given that AUCB is higher (P̂I|B).

Dataset P̂I|B Dataset P̂I|B
ajaxorange [0.29, 0.49] dataminingbook [0.52, 0.72]
apple [0.37, 0.57] rapbook [0.57, 0.76]
banana [0.34, 0.54] feltflowerrug [0.30, 0.50]
bluescrunge [0.42, 0.62] translucentbowl [0.46, 0.66]
dirtyworkgloves [0.37, 0.57] greenteabox [0.24, 0.43]
juliespot [0.52, 0.72] cardboardbox [0.34, 0.54]
checkeredscarf [0.48, 0.68] dirtyrunningshoe [0.45, 0.65]
wd40can [0.19, 0.37] largespoon [0.35, 0.55]
candlewithholder [0.37, 0.57] goldmedal [0.44, 0.64]
glazedwoodpot [0.47, 0.67] spritecan [0.29, 0.49]
cokecan [0.25, 0.44] stripednotebook [0.45, 0.65]
smileyfacedoll [0.34, 0.54] fabricsoftenerbox [0.15, 0.32]

Table 4.7: Probabilistic analysis on newsgroup for AUC. 95% confidence intervals
for the probability that AUCI is higher, given that AUCB is higher (P̂I|B).

Dataset P̂I|B Dataset P̂I|B
alt atheism [0.75, 0.90] rec sport hockey [0.66, 0.83]
comp graphics [0.56, 0.75] sci crypt [0.77, 0.91]
comp os ms-windows misc [0.56, 0.75] sci electronics [0.65, 0.83]
comp sys ibm pc hardware [0.64, 0.82] sci med [0.77, 0.91]
comp sys mac hardware [0.72, 0.88] sci space [0.81, 0.94]
comp windows x [0.82, 0.95] soc religion christian [0.73, 0.89]
misc forsale [0.80, 0.93] talk politics guns [0.71, 0.87]
rec autos [0.67, 0.84] talk politics mideast [0.73, 0.89]
rec motorcycles [0.80, 0.93] talk politics misc [0.67, 0.84]
rec sport baseball [0.82, 0.95] talk religion misc [0.70, 0.86]

instances is classified as positive. No further information about the properties
of the bag as a whole is used. This group consists of the following seven
algorithms: MIDD, MIEMDD, MISVM, MIOptimalBall, MILR, MIRI, and
AdaBoost.M1-MITI.

The remaining seven algorithms depart from the standard MI assumption in
different ways. While different subcategories can be defined to group them,
for our purposes it is sufficient to label them as non-standard MI algorithms.
MIWrapper-J48 transforms the multi-instance problem into a single-instance
problem by applying the bag label to every instance. It assumes that every
instance in a bag contributes equally to the bag label, contrary to the standard

EXPERIMENTAL ANALYSIS OF THE RELATIONSHIP 71

Table 4.8: Probabilistic analysis on UCI data for AUC. 95% confidence intervals
for the probability that AUCI is higher, given that AUCB is higher (P̂I|B).

Dataset P̂I|B Dataset P̂I|B
Adult 1/2 [0.81, 0.94] Spam 2/3 [0.72, 0.88]
Adult 1/3 [0.71, 0.87] Spam 1/4 [0.61, 0.80]
Adult 2/3 [0.80, 0.93] Spam 2/4 [0.61, 0.80]
Adult 1/4 [0.76, 0.91] Spam 1/5 [0.58, 0.77]
Adult 2/4 [0.78, 0.92] Spam 2/5 [0.59, 0.78]
Adult 1/5 [0.73, 0.89] Spam 1/10 [0.57, 0.76]
Adult 2/5 [0.72, 0.88] Spam 2/10 [0.51, 0.71]
Adult 1/10 [0.63, 0.81] Tictactoe 1/2 [0.78, 0.92]
Adult 2/10 [0.64, 0.82] Tictactoe 1/3 [0.76, 0.91]
Diabetes 1/2 [0.86, 0.97] Tictactoe 2/3 [0.86, 0.97]
Diabetes 1/3 [0.72, 0.88] Transfusion 1/2 [0.80, 0.93]
Diabetes 2/3 [0.76, 0.91] Transfusion 1/3 [0.75, 0.90]
Spam 1/2 [0.75, 0.90] Transfusion 2/3 [0.80, 0.93]
Spam 1/3 [0.68, 0.85]

MI assumption, where a single positive instance makes a bag positive. SimpleMI-
J48, MILRC, and MDD map the instances in a bag to a single feature vector
by averaging each feature over these instances. Learning a classifier is based
on aggregate information about a bag, instead of on the individual instances.
Finally, Citation-kNN, MISMO, and TLD use knowledge about the bag as a
whole to learn a classifier. Citation-kNN and MISMO use respectively a distance
or kernel function defined over the bag, and TLD learns a classifier from both
the distributional properties of the instances as well as the bags.

While this work focuses on the standard MI problem, we also included algorithms
that do not follow this assumption. One might argue that these algorithms
are not designed to classify instances. However, a distinction should be made
between the problem definition (standard MI learning) and the solving technique
(the learner). As our experiments show, some of the non-standard MI algorithms
are indeed suitable for classifying instances and sometimes even outperform the
standard MI algorithms on this task. An additional argument for including
these algorithms is that researchers may not always be aware of the assumptions
an algorithm makes and may compare different types of algorithms. Our
experiments thus reflect a realistic situation.

72 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

Results

The theoretical relationship between aI and aB was demonstrated in Figure 4.1
in section 4.2.4 with a scatter plot showing aI and aB on a set of random artificial
MI problems. We now experimentally construct similar scatter plots for each of
our fourteen learners, indicating for each individual result the category of the
dataset: SIVAL (red square), newsgroup (green circle), or UCI (blue triangle).
Figure 4.10 shows the results measured in accuracy and Figure 4.11 in AUC.
We summarize our most important findings.

First, we see that the domain of the dataset is an important factor for
determining both instance- and bag-level performance. In all figures, the results
are clearly clustered according to category.

Second, we see that, despite assuming the existence of instance labels, standard
MI algorithms do not always have good instance-level performance. For instance,
Figure 4.11 shows that for the SIVAL datasets, AUCI is often smaller than
AUCB . Inspecting the individual predictions showed that negative instances are
almost always predicted correctly, but positive instances are not necessarily. It
has been observed before by Liu et al. (2012) that, while standard MI algorithms
assign instance labels, they focus on maximizing bag-level performance. The
classifiers are thus often good at identifying the most positive instance in a bag,
but not at finding all positive instances in a bag.

Since in our datasets the majority of instances are negative, bad performance on
the positive instances does not necessarily translate into smaller accuracy. This
is clearly visible in Figures 4.10 and 4.11 for some algorithms on the newsgroup
datasets: While AUCI is small, aI is always close to one. A skewed instance label
distribution is common for multi-instance data. Therefore, accuracy may not
always be the most appropriate performance measure for multi-instance problems.
Instead, AUC or weighted accuracy could be used. It also demonstrates that
the performance measure influences the correspondence between instance- and
bag-level performance. For instance, for the SIVAL datasets we often see that
for the standard MI algorithms aI is larger than aB , whereas AUCI is smaller
than AUCB .

We focus the remaining part of our discussion on the non-standard MI algorithms.
Since these algorithms do not adhere to the standard MI assumption, one might
expect that they will be worse at classifying instances.

An example is MISMO on the SIVAL datasets. It can be seen from Figure 4.10
that instance-level accuracy varies over a wide range. MISMO tends to either
predict all instances in the test set as positive, or negative. This disagreement
between instance- and bag-level accuracy of MISMO has been noted before by

COMPARISON OF MULTI-INSTANCE AND SINGLE-INSTANCE LEARNING ALGORITHMS 73

Doran and Ray (2014), who showed that the set kernel used by MISMO can
separate bags even when the corresponding instance kernel cannot separate the
instances. It seems that for the SIVAL datasets, the classifier has learned to
separate bags based on overall properties of the bags, whereas, judging from the
higher AUCI , for the newsgroup and UCI datasets individual properties of the
instances are used. This again demonstrates the importance of the characteristics
of the datasets in the relationship between instance- and bag-level performance.

A non-standard MI algorithm that can classify instances well is Citation-kNN.
The scatter plot shows that on most UCI and SIVAL datasets, AUCI is higher
than AUCB .

Finally, we observe that the distance based approaches, i.e., Citation-kNN,
MIOptimalBall and the Diverse Density variants, do not perform well on the
newsgroup datasets, both in terms of bag- and instance-level AUC. For MDD
and MIEMDD, the AUC for the newsgroup datasets is even smaller than 0.5.
By inspecting the individual predictions, we saw that not a single positive
instance is classified positive, whereas a small number of negative instances are
incorrectly classified as positive. This is explained by the presence of many
irrelevant attributes (Dooly et al. 2003), and the high dimensionality of the
data, which makes distance less effective as a measure of similarity.

From this discussion we conclude that the relationship between instance- and
bag-level performance is determined by the domain of the dataset, the learner
assumptions, and the performance measure. However, even if the correlation
between, for instance, aI and aB, were perfectly linear for each classifier, the
regression slope could still differ, resulting again in different rankings of classifiers
in terms of instance- and bag-level accuracy.

Note that these results are consistent with the results in Section 4.4.2. For
instance, we see in Figure 4.10 that AdaBoost.M1 consistently has better aI
than aB on the newsgroup datasets, and that this is again observed in the
rankings of the fourteen learners on the separate datasets in Figure 4.5.

4.5 Comparison of multi-instance and single-instance
learning algorithms

In the multi-instance literature, experimental studies have mostly been
conducted in terms of bag-level performance (Andrews et al. 2003; Blockeel
et al. 2005; T. Dietterich et al. 1997; Fung et al. 2007; Maron and Lozano-Pérez
1998; Ramon and De Raedt 2000; Ray and Craven 2005; Tao et al. 2004; Wang
and Zucker 2000; Xu and Frank 2004; Q. Zhang and Goldman 2001; Zhou and

74 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(a) MIDD

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(b) MIEMDD

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(c) MISVM

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(d) MIOptimalBall

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0
b
a
g
-l

e
v
e
l

(e) MILR

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(f) MIRI

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(g) AdaBoost.M1

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(h) MIWrapper

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0
b
a
g
-l

e
v
e
l

(i) SimpleMI

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(j) MILRC

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(k) MDD

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(l) MISMO

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(m) CitationKNN

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(n) TLD

Figure 4.10: Bag-level versus instance-level accuracy for each classifier over the
UCI (blue triangle), newsgroup (green circle), and SIVAL (red square) datasets.

COMPARISON OF MULTI-INSTANCE AND SINGLE-INSTANCE LEARNING ALGORITHMS 75

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(a) MIDD

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(b) MIEMDD

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(c) MISVM

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(d) MIOptimalBall

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0
b
a
g
-l

e
v
e
l

(e) MILR

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(f) MIRI

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(g) AdaBoost.M1

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(h) MIWrapper

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0
b
a
g
-l

e
v
e
l

(i) SimpleMI

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(j) MILRC

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(k) MDD

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(l) MISMO

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(m) CitationKNN

0.0 0.2 0.4 0.6 0.8 1.0
instance-level

0.0

0.2

0.4

0.6

0.8

1.0

b
a
g
-l

e
v
e
l

(n) TLD

Figure 4.11: Bag-level versus instance-level AUC for each classifier over the UCI
(blue triangle), newsgroup (green circle), and SIVAL (red square) datasets.

76 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

Table 4.9: Multi-instance (MI) algorithms and their corresponding single-
instance (SI) algorithm.

MI algorithm SI algorithm
MIWrapper-J48 (Frank and Xu 2003) J48 (Quinlan 2003)
SimpleMI-J48 (Dong 2006) J48 (Quinlan 2003)
Citation-kNN (Wang and Zucker 2000) kNN (Aha et al. 1991)
MILR (Ray and Craven 2005) Logistic (Cessie and Houwelingen 1992)
MISMO (Xu 2003) SMO (Platt 1999)
AdaBoost.M1-MITI AdaBoost.M1-J48
(Freund and Schapire 1995), (Freund and Schapire 1995),
(Blockeel et al. 2005) (Quinlan 2003)

M. Zhang 2003; Zucker and Chevaleyre 2001). Now that we have established
that the correlation between instance-level and bag-level performance is weak,
the question is whether the conclusions from these studies also apply in terms
of instance-level performance or not. Below we investigate one particular aspect
of this question, namely: when evaluated in terms of instance-level performance,
do multi-instance learning algorithms indeed perform better on multi-instance
problems than single-instance learning algorithms do? Similar to (Ray and
Craven 2005), we limit our study to AUC.

The context of this question is that multi-instance (MI) learning can be tackled
with single-instance (SI) algorithms: simply label each instance with the label
of its bag and apply a standard SI learning algorithm to the resulting dataset.
Consequently, many instances will have a positive label even if they are really
negative. The opposite will not occur, so we get a dataset with one-sided class
noise. The question is then how well SI learning performs on this dataset, as
compared to MI learning on the original MI dataset. This has been investigated
in the literature with mixed results: T. Dietterich et al. (1997) found the SI
approach not to work well, while Ray and Craven (2005) provide a more complex
picture, showing that this depends on the data and the actual learner used.
Both papers measured performance on the bag-level only. Here, we investigate
the same question but in terms of instance-level performance.

The experimental setup is similar to that of the previous section, although
here we only use a selection of six MI learning algorithms that are based on
some SI algorithm. These six algorithm pairs are listed in Table 4.9. On each
dataset, we compare the instance-level AUC of each MI algorithm with that
of its corresponding SI algorithm. A scatter plot is constructed for each pair
of learners, plotting the SI and MI AUC of the learner on each dataset. The
results are shown in Figure 4.12.

COMPARISON OF MULTI-INSTANCE AND SINGLE-INSTANCE LEARNING ALGORITHMS 77

In many cases the MI algorithms do not clearly outperform their SI counterparts.
This is for instance the case for SimpleMI-J48 and MIWrapper. Both these
algorithms are based on the application of J48 on a single-instance dataset
derived from the original multi-instance dataset. SimpleMI does this by
averaging the features over all instances in a bag. MIWrapper, similar to
our own conversion of the multi-instance datasets, assigns the bag label to
each instance in the bag, after which it also reweighs the instances so that
each bag has the same weight independent of the number of instances in it.
However, in our experiments this extra step did not influence the performance
much because except for the text datasets all bags have more or less the same
size. Consequently, the difference between the performance of MIWrapper-J48
and J48 is very small. Moreover, for the text datasets, which have varying
bag sizes, the reweighing does not always lead to improved performance of
MIWrapper-J48.

SimpleMI-J48 outperforms J48 only for the text datasets. We already saw in
Section 4.4.3 that SimpleMI-J48 has good performance for the text datasets,
both for bag- and instance-level classification. The fact that the text data has
many irrelevant attributes with a value close to zero, explains why averaging
works well here.

AdaBoost.M1-MITI clearly outperforms J48 for the text datasets, and it has a
slight advantage on the UCI data. On the SIVAL datasets, AdaBoost.M1-J48
mostly wins against AdaBoost.M1-MITI.

There is almost no difference between the performance of Citation-kNN and
single-instance kNN. With only a single instance in a test bag, identifying
references with the minimal Hausdorff distance is the same as finding the
nearest neighbor in the training set. Furthermore, the results show that the
closest citations are mostly identical to the closest references and using them
does not make a big difference in performance.

Lastly, MI-Logistic regression (MILR) often wins against its single-instance
variant for the text and UCI datasets The same goes for MISMO, which we
also observed not to work well for instance-level classification on the SIVAL
datasets.

These results supplement Ray and Craven’s conclusions, showing again a mixed
picture. Whether an MI learner outperforms its SI counterpart depends on
the domain of the dataset in combination with the type of learner. It happens
frequently that an SI learner performs almost as well as an MI learner, or even
outperforms it.

78 BAG- VERSUS INSTANCE-LEVEL PERFORMANCE IN MULTI-INSTANCE LEARNING

0.0 0.2 0.4 0.6 0.8 1.0
multi-instance

0.0

0.2

0.4

0.6

0.8

1.0

si
n
g
le

-i
n
st

a
n
ce

(a) SimpleMI–J48

0.0 0.2 0.4 0.6 0.8 1.0
multi-instance

0.0

0.2

0.4

0.6

0.8

1.0

si
n
g
le

-i
n
st

a
n
ce

(b) MIWrapper–J48

0.0 0.2 0.4 0.6 0.8 1.0
multi-instance

0.0

0.2

0.4

0.6

0.8

1.0

si
n
g
le

-i
n
st

a
n
ce

(c) AB-MITI–AB-J48

0.0 0.2 0.4 0.6 0.8 1.0
multi-instance

0.0

0.2

0.4

0.6

0.8

1.0

si
n
g
le

-i
n
st

a
n
ce

(d) CitationkNN–kNN

0.0 0.2 0.4 0.6 0.8 1.0
multi-instance

0.0

0.2

0.4

0.6

0.8

1.0

si
n
g
le

-i
n
st

a
n
ce

(e) MILR–Logistic

0.0 0.2 0.4 0.6 0.8 1.0
multi-instance

0.0

0.2

0.4

0.6

0.8

1.0

si
n
g
le

-i
n
st

a
n
ce

(f) MISMO–SMO

Figure 4.12: Instance-level AUC of single-instance versus multi-instance
algorithms. (‘AB’ stands for AdaBoost.M1)

4.6 Conclusions

In the current literature on multi-instance learning, almost all empirical
evaluations use bag-level classification performance. However, in a multi-instance
setting, the task of classifying instances is often interesting by itself as well.
but very little is known about how well methods typically perform on this task,
and to what extent conclusions of experimental studies in terms of bag-level
performance can be generalized to the instance-level. The aim of this chapter
was to investigate this.

First, we examined the correlation between instance-level performance and
bag-level performance of a set of classifiers, when ranking them according to
one or the other. We find that this correlation is relatively weak, both in terms
of accuracy and AUC. The “best” bag classifiers do not necessarily yield the
best (or even good) instance classifiers. Our experiments are consistent with
our theoretical analysis, and additionally demonstrate that the strength of the
correlation varies with the specific problem, i.e., the domain of the dataset and
the chosen performance measure.

Second, we examined the relationship between instance-level and bag-level
performance of a single classifier over multiple datasets. We again found a mixed
picture where the correspondence between instance- and bag-level performance
of a learner on a give dataset depends on the the data domain, the performance

CONCLUSIONS 79

measure (accuracy or AUC), and the learner in question. These results provide
some explanation for the difference in rankings of a set of classifiers in terms of
bag- and instance-level performance.

Finally, we also investigated whether multi-instance learning algorithms perform
better than their single-instance counterparts (on one-sided noisy data) in
terms of instance-level AUC. We found that single-instance algorithms often
outperform multi-instance algorithms, but this again depends on the specific
problem.

Given the relatively weak correlation between bag-level and instance-level
performance, we conclude that it is advisable for researchers proposing novel
multi-instance algorithms to test their methods on both levels, or to state
explicitly which level is of interest to them, and evaluate according to that level.
Moreover, our experimental results showed that multi-instance classifiers are
very sensitive to the context in which they are used, and this should be taken
into account when evaluating multi-instance algorithms.

Chapter 5

A meta-learning system for
multi-instance classification

In this chapter we investigate whether we can predict which multi-instance
learning algorithm performs best on a given dataset according to a chosen
performance measure. The work is based on the workshop paper (Vanwinckelen
and Blockeel 2014a).

5.1 Introduction

Machine learning is largely an empirical science. When a researcher develops a
new learning algorithm, they typically evaluate it by comparing its performance
with that of existing algorithms on a collection of datasets. From these
experiments, we try to understand which types of problems are suitable for a
certain algorithm, and which are not. A more systematic approach to understand
the inductive bias of different learners is to derive meta-characteristics from
each dataset, and learn a model that can predict which learner best suits which
dataset. This is the purpose of meta-learning. Several such studies have been
conducted in the past. For an overview, we refer to (Giraud-Carrier 2008;
Vilalta and Drissi 2002).

One subfield of machine-learning is multi-instance learning. The term multi-
instance learning has been used with slightly different meanings in the past.
Here, we use it in the sense of what is sometimes called “generalized multi-
instance learning”. Instances are organized into bags that are labeled positive

80

DEFINITION AND TERMINOLOGY 81

or negative; the number of instances in a bag is not fixed. The task is to learn
a function that predicts the label of a bag. Due to the variable size of bags,
a bag cannot be represented as a single vector without loss of information;
multi-instance learners somehow have to handle this complication.

Several types of multi-instance learners have been proposed in the past, and
they vary quite strongly in terms of the assumptions they make. This begs
the question whether one can predict, using a meta-learning approach, which
methods are suitable for which data sets. In this chapter, we present preliminary
work in this direction. The contributions are as follows.

First, we propose a number of dataset descriptors that are specific to the
multi-instance setting, and evaluate their relevance experimentally.

Second, we propose and evaluate two landmarking approaches for multi-instance
classification. The term landmarking was first introduced by Pfahringer et al.
(2000) for regular ‘single-instance’ learning. It refers to running a number of
computationally cheap classifier systems on a dataset, and recording the behavior
of these systems, in the hope that this will provide information regarding what
methods (including much more expensive ones) are suitable for this dataset.
As multi-instance methods tend to be computationally expensive by nature,
we use single-instance learners for landmarking; this implies that the multi-
instance datasets somehow have to be turned into (necessarily non-equivalent)
single-instance datasets. We investigate two different methods for doing so.

The remainder of the chapter is structured as follows. In Section 2, we introduce
terminology on multi-instance learning. In Section 3, we present our meta-
learning approach. In Section 4, we describe our meta-dataset, including the
multi-instance learners and the datasets on which it is based. In Section 5, we
report experimental results, and in Section 6 we conclude.

5.2 Definition and terminology

Let X be the instance space and B = {pos, neg} the binary set of class labels.
Standard binary classification, which we here call the single-instance setting,
can be defined as follows. We are given a dataset D consisting of elements
(xi, f(xi)) with xi ∈ X an instance and f(xi) ∈ B its label according to an
unknown function f : X → B. The learning task is to find the function f .

The generalized multi-instance learning setting is defined as follows. We are
given a dataset that consists of bags Bi of instances where each bag has a label;
the number of instances in a bag is variable. Each instance is described by a
single vector xij ∈ X . There exists a relationship between the properties of the

82 A META-LEARNING SYSTEM FOR MULTI-INSTANCE CLASSIFICATION

instances in a bag and its bag label, but this relationship is unknown. From
this information, we are to learn a function that can classify bags.

The meta-learning task we consider is defined as follows. We are given
information about a collection of multi-instance classification tasks, consisting
of the evaluation of different multi-instance learners l1, l2, ... on a set of datasets
D1, D2, For each of these tasks we also have an estimate of the performance
of the resulting classifier l(D) in terms of the Area Under the ROC Curve
(AUC). From this information we want to predict which learner to apply when
presented with a new dataset. We therefore construct a meta-dataset Dm by
extracting various properties from the original multi-instance learning tasks.
Each instance in Dm consists of the extracted properties of one multi-instance
task D, and is labeled with the multi-instance learner l that achieved the best
performance on D. This results in a new standard supervised learning problem.

5.3 Our approach

Extracting statistical and information theoretic properties from the original
datasets is one approach of constructing a meta-dataset. Examples of such
properties include number of features, number of classes, ratio of examples to
features, correlation between features and target concept, number of nominal
attributes (Giraud-Carrier 2008). For multi-instance learning, these properties
can be extended with statistical information about the number of instances in
a bag.

Another approach which was first introduced by Pfahringer et al. (2000) and
is reported to have stronger predictive power than statistical properties, is
landmarking. A landmarker is a fast and cheap learner that indirectly gives us
information about the properties of a dataset.

Applying multi-instance algorithms can be computationally expensive, therefore
we first derive new single-instance datasets from the original multi-instance
datasets, on which we will then apply a set of landmarkers. Whether these
new classification tasks are equivalent with the original ones depends on the
properties of the original multi-instance data and learner assumptions. We
derive the new datasets in two different ways:

1. We label each instance with the label of its bag. Many instances will
have a positive label in the dataset even if they are really negative. The
opposite will not occur, so we get a dataset with one-sided class noise.
This approach corresponds with the standard multi-instance assumption

THE META-LEARNING DATASET 83

that a bag is labeled positive if at least one of the instances in that bag is
labeled positive.

2. We map the instances in a bag to a single feature vector by averaging each
feature over these instances. We now learn a classifier based on aggregate
information about a bag, instead of on the individual instances. This
approach corresponds with a type of collective assumption where every
instance contributes to the bag label.

As landmarkers we chose four learners with reasonably different biases:

• A decision stump based on the attribute that maximizes the gain-ratio

• Naive Bayes

• Nearest neighbors with one neighbor

• Logistic regression

5.4 The meta-learning dataset

The meta-learning dataset is based on the evaluation of fourteen multi-instance
learners on datasets from three different domains in terms of AUC. These
evaluations have been performed in the context of related work on multi-
instance learning (Vanwinckelen, Tragante Do O, et al. 2014). The description
of the datasets and multi-instance learners is also adopted from this text.
Reusing experiments allows for easy investigation of the behavior of learning
algorithms under different conditions, an idea that has been put forward before
by Vanschoren and Blockeel (2008) with the introduction of an experiment
database.

5.5 Multi-instance learner performance

We measure the AUC of each MI learning algorithm on each MI dataset. For
the SIVAL datasets we perform 20 independent runs for each image class and
average these results. For each run 20 randomly drawn positive bags and 20
randomly drawn negative bags were selected for training. For the text datasets
and the UCI datasets we use 10-fold cross-validation.

Figure 5.1 presents the global rankings of the fourteen learners taken over all
datasets from each category (SIVAL, text and UCI datasets) with a critical

84 A META-LEARNING SYSTEM FOR MULTI-INSTANCE CLASSIFICATION

difference (CD) diagram as described by Demsar (2006). This CD diagram
is obtained by computing a ranking of the algorithms for each dataset and
afterwards computing average ranks. A Friedman test is used to test if the
performance difference between the algorithms is statistically significant at
p = 0.05. If this is the case, we proceed with a post hoc Nemenyi test to find
pairwise significant performance differences between the algorithms. The mean
rank of each algorithm over all datasets of a given category is indicated on
the horizontal axis. The highest rank corresponds to the best performance.
Algorithms that are connected do not have significantly different performance.

The diagrams make clear that the AUC varies over a wide range. The overall
rankings depend on the characteristics of the datasets and is different for each
domain of datasets. The top three algorithms for the UCI datasets are MIDD,
MILR, and AdaBoost.M1 with MITI as base learner. The classifier that is
ranked highest most often is AdaBoost.M1-MITI, for 44.4% of the datasets.
For the newsgroup datasets MILR is ranked highest most often, on 50% of
the datasets. TLD is also a top performer which it was not for the UCI
datasets. This algorithm models the class conditional probability distributions
of the features. An approach that is appropriate for the text data where
the features actually represent word frequencies, an approximation of word
probability. We can see that the distance based approaches such as the different
versions of Diverse Density (MDD, MIEMDD and MIDD), MIOptimalBall, and
CitationKNN do not perform well on the text datasets. This is explained by
the high dimensionality of the datasets (200 features). Finally, on the SIVAL
datasets MIDD has the highest AUC most often, on 44.0% of the datasets.

5.6 Experiments

5.6.1 Experimental setup

In total we evaluated fourteen learners, which results in a multi-class meta-
learning problem. However, treating the problem as such did not result in any
useful model. The meta-properties that can distinguish between the multi-
instance learners are different for each algorithm. We therefore convert the
problem into a set of binary classification problems by predicting for each
possible combination of two learners which one will win. With fourteen learners,
there are 91 pairs of classifiers. As a meta-learner we chose an unpruned CART
decision tree learner with a maximum depth of two to avoid overfitting1. We
evaluated the meta-model in terms of accuracy.

1Decision tree pruning is currently unsupported in the used toolbox scikit-learn 0.14.

EXPERIMENTS 85

CD

1413121110 9 8 7 6 5 4 3 2 1

2.2222 CitationKNN
3.8889 MIOptimalBall
4.4074 TLD
4.7593 MISVM
5.7407 SimpleMI
7.3148 MIRI
7.537 MDD7.5556MILRC

7.6296MIWrapper

8MIEMDD

9.5MISMO

11.7778AdaBoostM1

12.2593MILR

12.4074MIDD

(a) UCI

CD

1413121110 9 8 7 6 5 4 3 2 1

2.825 MDD
4.075 MIOptimalBall

4.1 MILRC
4.425 MIEMDD

4.7 MIDD
4.825 CitationKNN

5.5 MIWrapper8.625MIRI

9.5AdaBoostM1

9.75MISMO

10.125SimpleMI

11.325MISVM

12.35TLD

12.875MILR

(b) Text

CD

1413121110 9 8 7 6 5 4 3 2 1

1.96 CitationKNN
3.44 SimpleMI
4.52 MISVM
5.16 MIRI
6.4 TLD

6.48 MILRC
8 MDD8.4MIOptimalBall

8.8MILR

9.52AdaBoostM1

9.8MIEMDD

9.88MISMO

10.24MIWrapper

12.4MIDD

(c) SIVAL

Figure 5.1: Critical difference diagrams for the global ranking of all learning
algorithms in terms of AUC aggregated over all UCI, text, or SIVAL datasets

Because we have three categories of datasets of which the properties are very
different, we performed experiments for each category of datasets and evaluated
the meta-model with leave-one-out cross-validation.

5.6.2 Results: UCI datasets

In Section 5.3 we discussed a number of statistical and information-theoretic
meta-properties that can be extracted from the multi-instance datasets.
However, because we have datasets from three different domains, where in
each domain most of these properties are very similar, we initially only use the
number of features an instance has, and the noise level of the dataset. Figure 5.2
shows the results for the evaluation of the decision tree model learned from
the UCI meta-dataset. The figure compares the predictive accuracy of the
meta-model with that of a classifier that always predicts the majority class
(which corresponds to always using the multi-instance learner that is best on
average). Blue circles represent classifier pairs for which the meta-model has
highest accuracy, red circles for which the majority class predictor does. The

86 A META-LEARNING SYSTEM FOR MULTI-INSTANCE CLASSIFICATION

MIDD
MILR

AdaB.

MISMO

MIEMDD

Wrapper
MILRC

MDD
MIRI

Sim
ple
MISVM

TLD
OptBall

Cita
tio

n

MIDD

MILR

AdaB.

MISMO

MIEMDD

Wrapper

MILRC

MDD

MIRI

Simple

MISVM

TLD

OptBall

Citation

Figure 5.2: Comparison of a majority class predictor with a decision tree meta-
model for the UCI datasets. Meta-properties are the number of features of an
instance and noise level of the dataset.

MIDD
MILR

AdaB.

MISMO

MIEMDD

Wrapper
MILRC

MDD
MIRI

Sim
ple
MISVM

TLD
OptBall

Cita
tio

n

MIDD

MILR

AdaB.

MISMO

MIEMDD

Wrapper

MILRC

MDD

MIRI

Simple

MISVM

TLD

OptBall

Citation

(a)

MIDD
MILR

AdaB.

MISMO

MIEMDD

Wrapper
MILRC

MDD
MIRI

Sim
ple
MISVM

TLD
OptBall

Cita
tio

n

MIDD

MILR

AdaB.

MISMO

MIEMDD

Wrapper

MILRC

MDD

MIRI

Simple

MISVM

TLD

OptBall

Citation

(b)

Figure 5.3: (a) Comparison of a majority class predictor with a decision tree
meta-model based on landmarking for the UCI datasets. (b) Landmarkers with
highest gain-ratio for classifier pairs where the meta-model performs best.

area of the circle is proportional to the difference in accuracy between the two
models.

The high accuracy of the meta-model on many classifier pairs in comparison to
that of the majority classifier shows that the number of features and the noise
level are useful properties for determining the most performance multi-instance
learner. Investigating the decision trees, we see that the number of features is

EXPERIMENTS 87

most often the determining factor in predicting the winning classifier. Each of
the five source datasets (Adult, Diabetes, Spam, Tic-tac-toe, and Transfusion)
from which the multi-instance datasets were constructed has a different number
of features. This means that the meta-model is mostly learning to distinguish
between these five dataset types.

In a next experiment, we predict the learner with the highest AUC based
exclusively on the eight landmarking properties defined in Section 5.3.
Figure 5.3a shows the results for this experiment. We observe that the
landmarking approach has worse performance than the previous approach.
Although there are a few cases where the landmarking model performs
best. Examples are (MILR,MIDD), (MIRI,MIEMDD), (MIRI,MILRC), and
(TLD,CitationKNN).

Figure 5.3b shows the importance of the different landmarkers by showing for
each pair of classifiers the landmarker that was selected as the root node of the
decision tree meta-model when trained on the complete meta-dataset, i.e., the
landmarker with the highest information gain ratio. The symbols are defined
as follows. Green landmarkers are computed on the averaged single-instance
datasets, and gray landmarkers on the one-sided noisy single-instance datasets.
The decision stump, naive Bayes, nearest neighbors, and logistic regression
classifier are respectively identified by a empty, colored, hatched (//), and
dotted symbols (.). We only show the landmarkers where the meta-model
outperformed the majority class predictor. From this figure, we see that the
landmarker with the highest gain ratio often changes from one classification
pair to the other.

5.6.3 Results: Text datasets

Exclusively based on number of features and the training set size, we cannot
make predictions for the text and SIVAL datasets because these properties are
the same for each dataset from these domains. We therefore employ landmarkers
again. As can be seen from Figure 5.4a, our meta-model does not perform very
well on the text datasets. In most cases it is better to predict the multi-instance
algorithm that performs best on the majority of text datasets. Figure 5.4b
again shows the landmarkers having the highest gain-ratio for the cases where
the meta-model wins.

88 A META-LEARNING SYSTEM FOR MULTI-INSTANCE CLASSIFICATION

MILR
TLD

MISVM
Sim

ple
MISMO

AdaB.
MIRI

MDD
OptBall

MILRC

MIEMDD
MIDD

Cita
tio

n

Wrapper

MILR

TLD

MISVM

Simple

MISMO

AdaB.

MIRI

MDD

OptBall

MILRC

MIEMDD

MIDD

Citation

Wrapper

(a)

MILR
TLD

MISVM
Sim

ple
MISMO

AdaB.
MIRI

MDD
OptBall

MILRC

MIEMDD
MIDD

Cita
tio

n

Wrapper

MILR

TLD

MISVM

Simple

MISMO

AdaB.

MIRI

MDD

OptBall

MILRC

MIEMDD

MIDD

Citation

Wrapper

(b)

Figure 5.4: (a) Comparison of a majority class predictor with a decision tree
meta-model based on landmarking for the text datasets. (b) Landmarkers with
highest gain-ratio for classifier pairs where the meta-model performs best.

MIDD
Wrapper

MISMO
MIEMDD

AdaB.
MILR

OptBall
Citation

Simple
MISVMMIRI

TLD
MIRC

MDD

MIDD
Wrapper

MISMO
MIEMDD

AdaB.
MILR

OptBall
Citation
Simple
MISVM

MIRI
TLD

MIRC
MDD

MIDD

Wrapper

MISMO

MIEMDD
AdaB.

MILR

OptBall

Cita
tio

n
Sim

ple
MISVM

MIRI
TLD

MIRC
MDD

MIDD

Wrapper

MISMO

MIEMDD

AdaB.

MILR

OptBall

Citation

Simple

MISVM

MIRI

TLD

MIRC

MDD

Figure 5.5: (a) Comparison of a majority class predictor with a decision tree
meta-model based on landmarking for the SIVAL datasets. (b) Landmarkers
with highest gain-ratio for classifier pairs where the meta-model performs best.

5.6.4 Results: SIVAL datasets

For the SIVAL datasets our meta-model based on landmarking again did not
outperform the majority class predictor in many cases, as can be seen from
Figure 5.5a. Regarding the most important landmarkers, Figure 5.5b shows
that for the SIVAL datasets this is frequently naive Bayes, trained on one-sided

CONCLUSIONS 89

MIDD
Wrapper

MISMO
MIEMDD

AdaB.
MILR

OptBall
Citation

Simple
MISVMMIRI

TLD
MIRC

MDD

MIDD
Wrapper

MISMO
MIEMDD

AdaB.
MILR

OptBall
Citation
Simple
MISVM

MIRI
TLD

MIRC
MDD

Figure 5.6: Comparison of a majority class predictor with a meta-model based
on the mean and variance of the percentage of positive instances in a bag
(SIVAL data).

noisy data. This is in contrast with the UCI datasets, where this landmarker
was selected only once for (SimpleMI,MILRC).

As an alternative, we therefore investigated if the distribution of positive
instances in a bag has any predictive power. Our meta-properties in this case
are the average percentage of positive instances in a bag (an indication of
the noise level of the dataset), and the variance of the percentage of positive
instances over all bags in a given dataset. Note that this information would
not be available in a generalized multi-instance setting. Nevertheless, this is
an interesting property to investigate. Figure 5.6 shows the results of this
experiment. As can be seen, the distribution of positive instances in a bag
influences the performance of the multi-instance learners. Inspecting the learned
decision trees, we see for example that for MDD, MILRC, TLD, and MIWrapper,
the decision tree learns that AdaBoost.M1-MITI outperforms these classifiers on
datasets with a large percentage of positive instances, i.e., a low noise level. It
is known that for regular supervised learning, AdaBoost is prone to overfitting
on noisy datasets. This also appears to be the case for multi-instance learning.

5.7 Conclusions

In recent years, several algorithms have been proposed specifically for multi-
instance learning. In this chapter, we investigated if we can predict which
algorithm is most suitable for a given multi-instance dataset. We experimented
with extending the landmarking approach introduced by Pfahringer et al. (2000)

90 A META-LEARNING SYSTEM FOR MULTI-INSTANCE CLASSIFICATION

to the multi-instance setting. We found that which meta-features have best
predictive performance depends on the domain of the datasets, and the multi-
instance learners that are compared. A meta-model that was learned on one
domain does not necessarily transfer to another domain. These observations
have consequences for empirical research on multi-instance learning. They
illustrate that it is insufficient to evaluate multi-instance learners on datasets
from a single problem domain. Instead, evaluation should include datasets from
several domains, or otherwise the domain selection introduces a bias.

A weak point of this study is the limited availability of meta-data: Each
observation in the meta-learning dataset is a ‘costly’ run of an algorithm on
a dataset. As a result of the small sample size, performance evaluation was
based on leave-on-out cross-validation. However, as we discussed in chapter 3
the estimates obtained by this resampling method typically have large sample
variance, so they are not very reliable. In our study we restricted ourselves
to the performance results obtained in chapter 4. It would be worthwhile to
extend the meta-learning dataset with more performance results, for instance
on synthetic datasets.

Chapter 6

Bayesian network structure
learning in the presence of
sampling variance

6.1 Introduction

When we perform an experiment in machine learning, we do so with the data
that is available. However, most of the time we are not really interested in the
results for that particular dataset. Instead, we are interested in the results for
a certain data population from which that dataset is a sample.

Consider the following example. In his 1936 paper, Fisher introduced the famous
‘iris’ dataset that contains measurements from 50 iris flowers categorized into
three subspecies (Fisher 1936). With the available data, we could learn a model
to predict the subspecies on 2/3 of the observations, and use the other 1/3
to estimate the prediction error of the learned model. In this case, we are
estimating the prediction error of the model learned on that specific dataset. It
is more likely, however, that we are interested in the performance of the learner
on any random sample of 33 iris flowers of these three subspecies, instead of
the specific sample available. In that case, the performance of the learner will
differ depending on which sample we have available. Part of the problem then
becomes how to quantify this sample variance.

Bayesian network learning has a similar setup: We have a data sample available
from which we can learn a structure and estimate the conditional probabilities

91

92 BAYESIAN NETWORK STRUCTURE LEARNING IN THE PRESENCE OF SAMPLING VARIANCE

of the variables. However, had we drawn another sample, it would have likely
resulted in a slightly different network. This model selection uncertainty, or
sample variance, is usually not taken into account in the learning process.
Instead, the focus usually lies on learning a single optimal network structure
with fixed parameter values. It is only after the network has been learned, in
the inference phase, that the probabilistic character of data is again taken into
account.

The goal of this chapter is to develop a structure learning algorithm that
takes into account model selection uncertainty because of sample variance. In
Section 6.2, we explain how this sample variance is simulated by means of
bootstrapping. By treating the problem as a statistical decision problem we
arrive at a bagging algorithm, as described in Section 6.4.1. As a secondary
result, we expect that this algorithm will result in higher quality structures
than competing structure learning algorithms. Although this chapter does not
include experiments, the latter follows from the related work of Elidan (2011)
(see Section 6.6).

Our starting point is frequentist in nature: We try to infer a model structure
from limited available data that can be repeatedly sampled from a population.
This entails that if we could learn the model on the entire data population
there would be no uncertainty left. Section 6.4.2 explains how this frequentist
problem setting can also be fitted into a Bayesian framework. We make use
of this insight to increase the computational efficiency of the algorithm. We
are able to reduce the computational effort even more by making use of the
statistical racing technique explained in Section 6.4.3. Finally, in Section 6.5 we
explain how we can perform inference when more than one network structure
remains after racing.

6.2 Bootstrapping

Our goal is to find a set of Bayesian network structures that most faithfully
represents the correlations between the variables in a data population from which
we only have one sample available. Network structure quality can be measured
by several scoring functions such as BDeu, MDL, BIC or AIC. Studying the
differences between these scoring functions is not in scope of this work; any of
these can be chosen.

When there is sample uncertainty, the score of a network will be a random
variable with a probability distribution over all possible samples from the
population at hand. Since we only have partial information about the data
population (a sample), the sampling distribution of the scores of a network is

GREEDY HILL-CLIMBING 93

unknown, but we can approximate it by means of bootstrapping. The underlying
idea of this technique is that the sampling distribution of a statistic (the network
score) can be approximated by the distribution of estimates computed on
data samples that are obtained by repeatedly sampling the original dataset
with replacement. A detailed introduction to bootstrapping is (Efron and
R. J. Tibshirani 1994).

One approach of using bootstrapping to simulate the sampling variance of the
network structures, is to learn an optimal network structure independently on
each bootstrap sample, as was done in (Friedman, Goldszmidt, et al. 1999). This
method has two disadvantages though: First, learning the optimal structure of a
Bayesian network is an NP-hard problem, meaning that, at least for now, exact
algorithms always have exponential time complexity (Chickering 1996). Learning
a structure on each bootstrap sample is thus computationally expensive. In
comparable problem settings, the number of bootstrap samples is usually set
to a 100 or more (Elidan 2011; Friedman, Goldszmidt, et al. 1999). Second,
by conducting each search independently we are not taking into account the
distributional properties of the score, which may provide useful information for
the search.

As an alternative, we propose a probabilistic structure learning algorithm that
uses all the bootstrap samples in a single procedure. Based on a decision theoretic
approach, we identify which properties of the score distribution should be taken
into account. The output of the procedure is a set of network structures for
which we are confident that they have a high score for the given data population.

6.3 Greedy hill-climbing

Formally, a Bayesian network is a directed acyclic graph G(V,E) that represents
a joint probability distribution over set of random variables V = {X1, ..., Xm}
by factoring it as a product of local conditional probability distributions. Each
variable Xi is represented by a node, and each dependency between two variables
Xi and Xj is indicated by a directed edge E(i, j). We will call the set of variables
on which a node Xi is dependent the parents Pai of Xi. In this work, we only
consider distributions of discrete variables. We denote the number of states of
a variable Xi as ri. The local conditional probability distributions are modeled
as conditional probability tables (CPTs). The structure learning task can be
described as finding the optimal Bayesian network structure with respect to a
dataset D consisting of N observations.

Structure learning methods can be classified into two broad categories:
Constraint based and search-and-score algorithms. Our approach fits into

94 BAYESIAN NETWORK STRUCTURE LEARNING IN THE PRESENCE OF SAMPLING VARIANCE

the latter category: The algorithm explores the states-space of structures to
find the structure that maximizes a predefined scoring function. The number of
possible network structures grows exponentially in the number of variables so it
is impossible to score every possible structure. Search algorithms usually make
use of a heuristic to restrict the search space so that only the most promising
candidates are visited, and getting stuck in local minima is avoided.

The focus of this work lies on how to adapt such an algorithm to handle sample
variance. Our proposal can be used in combination with several existing search-
and-score algorithms, but for demonstration purposes we have chosen to adapt
the greedy hill-climbing algorithm. The reason is that it is used by many authors
as a baseline for newly developed algorithms because of its relatively simple
setup and yet good performance. We provide a short description of the original
algorithm, before discussing our adaptations in Section 6.4.

Greedy hill-climbing starts with one specific network. This can be a random
network, the empty network or a network that includes prior structure knowledge.
The heuristic used by greedy hill-climbing is that network quality can be
improved by only changing a small part of the graph at the time, i.e., making
a local change. Such a change is restricted to one edge addition, deletion or
reversal for each node. Usually there is also a maximum put on the number of
parents a node can have. The quality of an adaptation is evaluated by means
of a scoring function. In this work we choose the popular Minimum Description
Length (MDL) function.

If we denote the number of observations consistent with Pai=pai as Npai
, and

the number of observations consistent with {Pai=pai ∧ Xi = xi} as Nxi,pai
,

then the MDL of a graph G can formally be written as:

MDL(G) =
m∑
i=1

MDL(Xi|Pai) (6.1)

MDL(Xi|Pai) = H(Xi|Pai) + logN

2 K(Xi|Pai) (6.2)

H(Xi|Pai) = −
∑
xi,pai

Nxi,pai
log

Nxi,pai

Npai

(6.3)

K(Xi|Pai) = (ri − 1)Πpai
rl (6.4)

Several alternative scoring functions exist, but they all have two important
properties in common: First, the score is decomposable, meaning that it can be
expressed as the sum of the scores of the different nodes. This allows to evaluate
local changes quickly because the entire score does not have to be recomputed

STRUCTURE LEARNING WITH SAMPLE VARIANCE 95

each time. Second, the computation of the score can be reduced to computing
a set of sufficient statistics. For discrete networks, these are the counts Npai

and Nxi,pai .

In order to avoid getting stuck in a local minimum, a tabu list is maintained.
This is a list of the k most recently visited structures so that we can avoid
revisiting these. If the algorithm would still get stuck, a number of random
edge changes can be performed in order to escape the minimum. If, after a
certain number of steps, there is no more score improvement the search ends.

The greedy hill-climbing algorithm can be improved even further in multiple
ways, for instance by integrating the sparse candidate algorithm of Friedman,
Nachman, et al. (1999). Such additional, more advanced improvements are
currently not in scope of our work.

A practical implementation of greedy hill-climbing requires setting a number of
parameters that influence algorithmic performance. We propose to use the same
parameter settings as Teyssier and Koller (2012): These authors found that
starting with an empty network resulted in good performance. The optimal
size of the tabu list and the number of random moves between each restart was
determined by systematic search. The number of moves without improvement
before restarting was selected to be the same as the size of the tabu list. The
number of candidate parents per node was chosen between 10 and 30, depending
on the size of the data set and the number of nodes in the network to be
discovered.

6.4 Structure learning with sample variance

6.4.1 Rationale

Without sample variance, it is straightforward to compare the scores of two
network structures, as they are deterministic. In the current setting, however,
we have to compare the probability distributions of the scores of the structures.
The change that leads to the largest score improvement ‘over all bootstrap
samples’ with respect to the current structure should be accepted. The question
then is which properties of the score sampling distribution should be involved
in this comparison.

The answer is simpler than expected and can be found in decision theory. One
of the central questions in this field is the optimal choice of an agent between
actions when the outcomes of those actions are uncertain. It is straightforward
to see the correspondence with our problem: We have an imaginary agent

96 BAYESIAN NETWORK STRUCTURE LEARNING IN THE PRESENCE OF SAMPLING VARIANCE

moving through the state-space of structures in search of the optimal structure
with respect to the MDL score. An action corresponds to choosing a certain
network structure, and the outcome of that action (the score) is uncertain
because of sample variance.

In the context of game theory and economics, Von Neumann and Morgenstern
(2007) showed that when an agent is rational, the optimal decision for the above
problem is the decision that maximizes expected utility. A utility function is a
very general concept that measures the value that an agent attaches to a certain
outcome. In economics, value judgments are often subjective and rooted in the
psychology of an agent. In our setting, however, utility is based on probability
theory and Occam’s razor, as it is simply the MDL score of a network. The
expected utility is the weighted average of the utility of each of the possible
outcomes, where the weight is the probability that the act will lead to that
outcome. Each bootstrap sample is assumed to be equally likely possible so the
weights are uniform.

An alternative way of arriving at expected utility maximization is by an
interpretation of the law of large numbers (Feller 1968): Imagine that the
agent would have to make the same choice repeatedly; each setting would be
independent from the others and the scores in each setting would be identically
distributed. Informally stated, the weak law of large numbers then tells us
that the average amount of ‘utility’ gained per trial over the long run is
overwhelmingly likely to be close to the expected value of an individual trial.
This means that if we maximize expected utility, we are maximizing gains in
the long term. Recall from the introduction that understood sample variance
as originating from a repeated experiment, so the above is exactly what we are
interested in.

The law of large numbers transforms an average over a series of repeated
experiments in an expected value of a variable that is defined for a choice that
in principle only needs to made once. It thus gives us a handle on how to make
a decision in such a one-time situation.

To conclude, in order to navigate through the state-space of network structures
with the greedy hill-climbing algorithm, we use as a scoring function the mean
score over bootstrap samples. This approach must sound familiar to the machine
learning audience, as it is the bagging approach described by Breiman (1996).
Bagging is known to produce high quality models in noisy settings because it
reduces the variance of a learner, thereby preventing overfitting. Our discussion
provides a novel perspective on bagging: It can be viewed as a useful summary
of the information contained in the sampling distribution of the utility function
of a learner. Under the assumption of rationality, maximizing the bagged score
is the optimal decision strategy in the presence of sample variance.

STRUCTURE LEARNING WITH SAMPLE VARIANCE 97

6.4.2 Bayesian bootstrap

Computing the network scores on each of the bootstrap samples requires
keeping track of the counts on each of those samples. In order to avoid this
computationally expensive task, we propose to use the Bayesian bootstrap
introduced by Rubin et al. (1981) as an alternative for the traditional bootstrap
procedure described in Section 6.2.

Recall that in bootstrapping, we randomly resample a dataset D with n
observations with replacement. In theory, an observation can thus be present
in a bootstrap sample anywhere from 0 to n times. The distribution of these
counts is a multinomial, with the number of trials being equal to n, and the
event probabilities all being 1

n .

An alternative perspective is that we keep the observations in the dataset fixed,
but sample a weight for each observation from the set {0, 1

n ,
2
n ,

3
n , ...1} such

that the sum of the weights equals 1. The weights can then be interpreted as
normalized counts from the multinomial described above.

Notice that the set of weights is discrete and the granularity is determined
by the size of the dataset. From this viewpoint, it is natural to smooth the
weights so that they can be anywhere between 0 and 1. This is what the
Bayesian bootstrap does, by sampling the weights from a Dirichlet distribution
Dir(α1, ..., αn) with αi = 1 for i ∈ [1, n]. Rubin et al. (1981) showed that this
corresponds with using as a prior over the observations a symmetric Dirichlet
distribution with α = 0, also known as the Haldane prior. After seeing the data,
the posterior distribution of the weights becomes Dir(1,...,1n).

It is interesting to note that the Dir(1,...,1n) distribution is actually known itself
as an uninformative prior, namely the Bayes-Laplace prior. It is yet another
interpretation of ignorance about the weights of the observations than the
Haldane prior, which is based on the principle of insufficient reason introduced
by Bayes and Price (1763) and Laplace (1840). In the words of Peterson (2017),
the principle theorizes that: “If one has no reason to think that one state of the
world is more probable than another, then all states should be assigned equal
probability”. In the Bayesian framework this means that every combination of
weights has equal probability. If we ignore the discrete character of the weights
of the frequentist bootstrap, it indeed corresponds to each bootstrap sample
being equally likely.

If we now concretely want to compute the score of a network with the Bayesian
bootstrap, equation 6.3 in Section 6.3 has to be modified. Since each observation
receives a weight between zero and one, we replace the counts Npai

by
∑
wpai

,
i.e., the sum of the weights of the number of observations consistent with

98 BAYESIAN NETWORK STRUCTURE LEARNING IN THE PRESENCE OF SAMPLING VARIANCE

Pai=pai. We do the same for Npai,xi
. Equation 6.3 becomes:

H(Xi|Pai) = −
∑
xi,pai

∑
wxi,pai

· log
∑
wxi,pai∑
wpai

(6.5)

For each of the counts Npai and Npai,xi , we now keep track of the sum of the
weights consistent with these variable instantiations. When new weights are
sampled, the counts stay the same, and only their weights are updated.

The final score of a network is the average over all B weight set samples:

MDLbag(G) = 1
B

B∑
j=1

m∑
i=1

Hj(Xi|Pai) + logN

2 Kj(Xi|Pai) (6.6)

6.4.3 Racing

It is impossible to generate all possible weight combinations from the Dirichlet
distribution for the dataset at hand. Consequently, the expected value of the
bootstrap distribution of the scores of a structure is unknown. It is, however,
well approximated by the average score of the available bootstrap samples. By
the weak law of large numbers we know that the margin of error for the expected
value can be reduced to an arbitrary small constant as long as we average over a
sufficiently large number of bootstrap samples. Unfortunately, the exact number
of bootstrap samples to achieve an acceptable approximation quality is difficult
to determine. To be on the safe side, we can choose a large number, but this
wastes computational resources. Furthermore, for some structures it may be
clear very quickly that they are not going to be selected because their average
score differs substantially from the best average score. For these structures, it is
expected that less bootstrap samples are needed to reject them in comparison
to structures with higher scores. In conclusion, ideally, we do not want to
generate more bootstrap samples than is strictly necessary. This is the objective
of sequential sampling, also called racing algorithms.

In the proposed racing technique, we compute confidence intervals for the
bootstrap scores to eliminate non-promising candidate structures as soon as
possible. When the upper bound of such a confidence interval is smaller than the
lower bound of the confidence interval of the best structure (the structure with
the confidence interval that has the largest upper-bound), the former structure
can be eliminated. As soon as one of the confidence intervals lowest bounds
is larger than any of the other confidence intervals upper bounds, we know
that this structure is significantly better than all the other structures so we
can replace the current network structure by that one. Note that the width of

MODEL SELECTION UNCERTAINTY QUANTIFICATION 99

the confidence intervals should be adapted to account for multiple comparisons.
For instance by using the Bonferroni correction.

Given a sufficient number of bootstrap samples, the central limit theorem
justifies computing a t-distribution based confidence interval for the the average
score of a structure. To ensure that the average scores indeed approximately
follow a t-distribution, we can for instance start with at least 15 weight samples.
The number of weight samples can be incremented either by one, or stepwise.
This should be investigated experimentally. Another parameter of the racing
algorithm is the significance level, or the nominal coverage probability, of the
confidence intervals. Finally, in order to ensure that the algorithm always
terminates we should also set a maximum on the number of bootstrap weight
samples. If no statistically significant better candidate structure than the
currently best structure can be determined after the maximum number of
samples, greedy hill climbing can either terminate, or a number of random edge
changes can be made. After the structure learning algorithm terminates, the
parameters θi of the Bayesian network can be learned by means of maximum
likelihood estimation, which, in the case of discrete variables, boils down to
setting them to the estimated conditional probability estimates based on the
ratio of the counts Nxi,pai

and Npai
available from the dataset.

6.5 Model selection uncertainty quantification

6.5.1 Introduction

Once the structure and parameters of the Bayesian network are learned, it can
be used to answer probabilistic queries about the data population it models. A
typical query is for instance the computation of the marginal probability P (X)
of a subset X of variables in the network. Another example is the conditional
probability P (X|E = e)), taking into account evidence about the values of
another subset of variables E. For generality, we will hereafter denote these
types of probabilities as θ.

Several specialized methods have been developed for efficiently inferring the
probabilities θ from a known network (Neapolitan et al. 2004). It is possible,
however, that the greedy hill-climbing algorithm returns multiple Bayesian
network structures, whose scores cannot statistically be distinguished from each
other. It is indeed well known that, when the sample size is relatively small in
comparison to the hypothesis space, several alternative graph structures can
be supported by the data. I.e., these structures receive a high goodness-of-fit
score, or have a high posterior probability (Dash and Cooper 2004; Friedman

100 BAYESIAN NETWORK STRUCTURE LEARNING IN THE PRESENCE OF SAMPLING VARIANCE

and Koller 2003). This is a problem of practical importance as small sample
sizes are common in fields such as medicine, psychology and biology. In this
section we explain how we can use such a set of networks to answer probabilistic
queries about the variables.

6.5.2 Bayesian model averaging

A widely accepted solution when being confronted with several competing
models is to use Bayesian Model Averaging (BMA) (Burnham and Anderson
2003; Raftery et al. 2005) . This method extends Bayes’ theorem for updating
probabilities in the light of new evidence (the data D) to the model selection
phase. As shown in formula 6.7, the posterior probability of a model Gi equals
the likelihood of the data given that model P (D|Gi), multiplied by the prior
probability of the model P (Gi). To obtain a probability, a normalization factor
P (D) is applied. However, when the purpose is only to compare models relative
to each other, this factor can be left out.

P (Gi|D) = P (D|Gi)P (Gi)
P (D) (6.7)

The final BMA prediction ˆ̄θ is then the weighted average of the predictions θ̂i
over all k individual models Gi, where the weights are equal to the posterior
model probabilities P (Gi|D): ˆ̄θ =

∑k
i=1 wiθ̂i .

When the number of possible models is very large models, as is usually the
case when learning the structure of a Bayesian network, small weights can
be disregarded to reduce the computational cost. This will however require
renormalization of the weights as follows:

P̂ (Gi|D) = P̂ (Gi, D)∑
Gi∈G P̂ (Gi, D)

, (6.8)

with G the set of k selected models.

In the current setting, we retain the k best network structures whose scores
cannot statistically be distinguished from each other. Consequently, P̂ (Gi|D)
will be 1/k for each of the selected networks. Note that this is likely a very
coarse approximation of the true probabilities P (Gi|D).

MODEL SELECTION UNCERTAINTY QUANTIFICATION 101

6.5.3 Variance estimation

Bayesian model averaging also provides a method for estimating the variance of
a BMA prediction θ̂ as follows:

var(ˆ̄θ) =
k∑
i=1

wi[(θ̂i − ˆ̄θ)2 + var(θ̂i|Gi)], with (6.9)

• wi = P̂ (Gi|D) is the estimated posterior probability of network Gi

• θ̂i is the estimate of the conditional probability θi inferred from Gi

• ˆ̄θ =
∑k
i=1 wiθ̂i is the BMA estimate of θi.

The formula, borrowed from Burnham and Anderson (2004), is the sum of
two terms: The first term is the variance of the mean prediction over the
retained network structures. The second is the weighted expected variance of
the estimates conditional on one of the structures, Gi, being the best. The
second term would be zero if the parameter estimates in a network would always
be exact, but we will now argue that this is not the case, and also explain how
to estimate var(θ̂i|Gi):

The traditional approach to learning the parameters of a Bayesian network is
maximum likelihood estimation (MLE), i.e., choosing the parameter estimates
that maximize the likelihood of the data D given the network structure G.
Recall that in the case of discrete variables, the MLE estimate θ̂i of a parameter
equals the ratio of the counts Nxi,pai

and Npai
. Since we assume the data D is

only a sample from a population, any inferred probability estimates θ̂i from Gi
are random variables that are a function of that sample.

It has been proven that the sampling distribution of the MLE estimator is
asymptotically normally distributed, provided certain regularity conditions are
satisfied. An estimate of the variance of the sampling distribution of θ̂i in the
case of binary variables then for instance equals θ̂i(1− θ̂i)/n, with n the size of
D. Moreover, θ̂i is an unbiased estimate of the mean of this distribution.

Each MLE parameter estimate θ̂i is an independent asymptotically normally
distributed variable. The independence follows from the fact that a Bayesian
network factorizes the joint probability distribution of a set of variables into a
product of conditional probabilities, one for each variable. Each of these terms
can again be decomposed by making use of the structure of the CPTs.

102 BAYESIAN NETWORK STRUCTURE LEARNING IN THE PRESENCE OF SAMPLING VARIANCE

6.6 Related work

The work most closely related to ours is that of Elidan (2011), who uses a
bagged log-likelihood score to find an optimal Bayesian network structure for
a given dataset. His starting point is the traditional view in machine learning
that bagging reduces the variance of a learner, and that it therefore improves
structure learning on small sample sizes. He also proposes an EM extension of
his approach for the case of incomplete data. The end result is a single network
structure that can be used for inference and prediction.

Our goal on the other hand is to take into account sample variance when learning
a Bayesian network structure. We approached the problem from the perspective
of optimal decision taking in the presence of uncertainty. Additionally, the
methodology in both papers differs: While Elidan uses actual bootstrap samples,
we use the Bayesian bootstrap. We find that Bayesian bootstrapping facilitates
score computation. Furthermore, it is known to have slightly smaller variance
than traditional bootstrapping (Clyde and Lee 2001). We use a racing algorithm
to determine the optimal number of bootstrap samples.

There are a few exceptions to deterministic structure learning algorithms.
Friedman, Goldszmidt, et al. (1999), for instance, study the robustness of network
features based on DAGs by means of learning different network structures on
each bootstrap sample. Similar to our work, the authors assume there is a single
‘true’ but unknown Bayesian network. Their goal is to assess the confidence
that certain structural elements are present in that network. Their method
can also be used to quantify uncertainty about inferred probabilities. It does
not directly lead to a single network structure, but they propose to use the
confidence in the network features for guiding the search process for the optimal
network structure.

Another structure learning algorithm that takes uncertainty into account is that
of Eaton and Murphy (2012), they rely on Bayesian model averaging, and use
an MCMC method to sample from the space of DAGs.

Racing algorithms for model selection have a long history and have been used
before in a hill-climbing procedure. One of the first authors to investigate
racing for this goal is Greiner (1996), who introduces the PALO probabilistic
hill-climbing approach. He uses the Hoeffding bound to determine statistical
differences between scores. The advantage of the Hoeffding inequality is that it
is distribution independent. The disadvantage is that it is quite a conservative
bound.

Hulten and Domingos (2002) also use Hoeffding races for Bayesian network
structure learning. They make use of the decomposability of the structure score

CONCLUSIONS AND FUTURE WORK 103

to be able to parallelize the racing process. Both Hulten and Domingos (2002)
and Greiner (1996) use racing to determine the size of a single sample, whereas
we use it to determine the number of bootstrap samples.

6.7 Conclusions and future work

One of the goals of machine learning is to design learning algorithms that can
accurately capture the relationships between different attributes in a dataset.
While it is almost never explicitly stated, what is most often meant by ‘a dataset’
is a random sample from a given population, instead of a specific dataset. The
goal of our work is to explicitly take this sampling variance into account in the
Bayesian network structure learning process. The obtained network structure
should thus be optimal with respect to the data population.

Our approach uses a greedy hill-climbing algorithm to explore the space of
network structures. Sample uncertainty is taken into account in this search
process by using a general principle from decision theory. Namely, that
when facing a decision under uncertainty the rationally optimal decision is
to choose the action with the highest expected utility. Concretely, this results
in maximizing the average score over the bootstrap samples, also known as
bagging. Our work thus puts bagging into a new perspective: Maximizing the
bagged score is an optimal decision strategy in the presence of sample variance.

We suggest two methods to improve the computational efficiency of our algorithm.
First, because we use the Bayesian bootstrap, we do not have to compute the
sufficient statistics of the MDL score for each bootstrap sample. Instead, we only
compute the statistics once for the original sample and update their weights.
Second, we apply a racing algorithm to determine the minimally required
number of bootstrap samples to decide on the optimal network change when
hill-climbing. While this does not improve the asymptotic time complexity of
the algorithm, it does improve practical runtime.

Experiments would be needed to confirm the viability of our approach. However,
as discussed in Section 6.6, both bagging and racing have been proven to be
effective in related research so we expect positive confirmation of our proposals.
It would be interesting to verify whether bagging with the Bayesian bootstrap
results in better network structures than bagging with the regular bootstrap.

Our work can be extended in several directions. First, the Bayesian bootstrap
uses the Haldane prior as the probability distribution of the weights of the
observations. It would be interesting to investigate the effect of other objective

104 BAYESIAN NETWORK STRUCTURE LEARNING IN THE PRESENCE OF SAMPLING VARIANCE

priors on the learning algorithm. Such research could also result in alternatives
to bootstrapping.

Finally, we have three proposals for improving the racing algorithm. The
first proposal is with respect to the multiple comparison correction. While
the Bonferroni correction is an obvious choice, it is known that this leads to
conservative confidence intervals. Ramdas and Balsubramani (2015) show that
tighter intervals can be constructed by making use of the dependencies between
iterations of a sequential sampling procedure. They only discuss the two-sample
case, but it should be possible to extend this method to multiple comparisons.

Second, the racing algorithm accepts a change as soon as it is a statistically
significant improvement over the current structure, disregarding all other
structures in the race. Several structures may, however, be better than the
current one, so it could be interesting to explore local changes to each of these
structures in parallel.

Finally, if more than one structure change leads to approximately the same
average score improvement, we can decide which structure to choose by taking
into account the trade-off between exploration of the state-space and exploitation
of known qualitative solutions. If we intend to ‘exploit’, we prefer the change for
which we are most certain that the expected improvement is achieved. On the
other hand, if we are stuck in a local minimum, or the improvements are small,
we can ‘explore’ by choosing the structure change with the highest uncertainty
about its score.

Chapter 7

Conclusion

This chapter summarizes the contributions presented in this dissertation and
discusses a number of directions for future work.

7.1 Summary of contributions

Recent advances in computer science and electronics have made it possible to
capture increasingly larger amounts of data in all fields of science and industry.
In order to gain insights from this raw data, a thorough knowledge of statistics
is often required. While it is expected that a researcher or engineer is an expert
in their own field, it is not self-evident that that person is also proficient in
statistics, which is a vast and complex field by itself. Although machine learning
is a field that is closely related to statistics, we find that it is affected by the
same problems. This dissertation aims to better understand current statistical
inference practices in machine learning and proposes improvements were needed.
The focus lies on the evaluation of supervised machine learning algorithms.

7.1.1 Statistical inference with cross-validation

The first contribution of this dissertation is a synthesis of the existing knowledge
about error estimation of predictive models with cross-validation. While the
presented insights are available in the literature, they are often scattered
over different papers or even over different research fields. Moreover, the
theoretical papers on the topic often require expert knowledge of statistics and

105

106 CONCLUSION

learning theory. This leads to a catch-22 situation, in which researchers in
need of this statistical knowledge cannot acquire it, because of their lack of
statistical knowledge. Empirical research does not always offer a solution, as
the conclusions of different papers can be conflicting because of the variety of
possible experimental settings. We have collected insights from the literature
and presented them in a clear and comprehensive way.

We started from the insight that a model learned on a given training set should
be evaluated differently than a learning algorithm applied on a random sample
from a given population. Since cross-validation generates alternative training
sets from the original data, it is not very suitable for evaluating specific models.
The difference with the original training set can be minimized by choosing
leave-one-out cross-validation, but unfortunately the results of this method
are unreliable when dealing with unstable learning problems. While there are
several theoretical definitions of unstable learning problems, definitions that
can be used in practice are currently lacking.

We found confirmation in the literature that the current practice of evaluating
learners with repeated cross-validation, with k typically around ten, indeed
results in reliable performance estimates. The issue, however, is that these
estimates are often presented together with a measure of confidence, while
it has been proven that such a measure can not reliably be estimated based
on a single sample. A common mistake is to estimate the sample variance of
the error of a learner by computing the variance of the individual errors, or
that of the cross-validation errors on the individual folds. These estimates,
however, have no connection with the true sample variance. We demonstrated
this by showing that the variance of repeated cross-validation goes to zero when
the number of repetitions over which is averaged increases. A performance
difference between two learners can therefore always (incorrectly) be detected
with statistical testing by using a sufficiently large number of repetitions.

It should be noted that repeated cross-validation is not a waste of computational
effort. The sample variance of this estimator is usually smaller than that of a
single cross-validation, leading to more reliable and reproducible error estimates.
It is a misconception, though, that increasing the number of repetitions causes
the estimate to converge to the true learner error. A systematic difference will
always remain, due to the selection of a single sample.

7.1.2 Multi-instance learning

Our second contribution is in the area of multi-instance learning, a special type
of semi-supervised learning. Similar to supervised learning, the goal is to learn a
model from labeled instances that can predict the label of future instances. The

SUMMARY OF CONTRIBUTIONS 107

difference is that instances are not labeled individually, but instead they are
grouped together in bags and only the bag label is known. We determined to
what extent conclusions of experimental studies where performance evaluation
happens on the bag level can be generalized to the instance level. We showed
theoretically that there is no one-on-one mapping between instance- and bag
level accuracy. Our results are supported by an extensive empirical evaluation
of the performance of fourteen multi-instance learners on both synthetic and
real-world datasets, in terms of accuracy and AUC-ROC. We found several
examples of multi-instance learners that outperformed other learners on the
bag level, but performed worse on the instance level.

Due to the fact that a bag consists of several instances, multi-instance learning
algorithms usually have a high computational complexity. Our third contribution
is therefore to investigate if we can predict in advance which algorithms would
perform best for a given problem domain, so that we can avoid running the
underperforming algorithms. As this task can be interpreted as ‘learning about
learning’, it is known as meta-learning. The dataset from which we aim to
learn this information consists of a set of statistical and information-theoretic
meta-properties, together with a number of landmarkers (Pfahringer et al. 2000).
These are a set of simple algorithms with a reduced running time in comparison
to the original algorithms. The idea is that if the inductive bias of a landmarker
is similar to that of the original algorithm, their predictive performance will be
correlated. We found that the predictive power of the meta-features depended
strongly on the domain. The small size of the training set did not allow us to
gain more insights. This is a general problem with meta-learning, since each
observation is a ‘costly’ run of an algorithm on a dataset.

7.1.3 Bayesian network structure learning

Our final contribution is a greedy hill-climbing algorithm to learn the structure
of a Bayesian network. This algorithm assumes a frequentist setup: If we would
repeat the experiment, we would almost certainly draw another sample from
the population leading to slightly different results. This sample uncertainty is
simulated by incorporating bootstrapping into the structure learning process.
It is known that bootstrapping is a resource intensive technique, so we improve
the computational efficiency of the algorithm by using a Bayesian version of
the bootstrap, and incorporating a racing algorithm. The proposed structure
learning algorithm is a practical example of how a frequentist problem can
be approached from a Bayesian viewpoint. It is worth noting that this final
contribution is purely theoretical, and experiments are still needed to confirm
the viability of the approach.

108 CONCLUSION

7.1.4 Recommendations

To conclude, we present a set of recommendations that follow from the research
in this thesis:

• Always be clear on whether you are estimating the error of a model,
or that of learner. Estimating model error with k-fold cross-validation
requires a stable learning problem combined with a large number of
folds; Estimating the learner error is best done with ten-times ten-fold
repeated cross-validation. On average over different problem domains,
this parameter setting minimizes the sample variance of the performance
estimate.

• Define the goal of the research precisely, and use the metric most suitable
for this goal. In the case of multi-instance learning specifically, do not use
bag-level accuracy as a proxy for instance-level accuracy.

7.2 Future work

In the following, we discuss some ideas for future research related to the topics
presented in this dissertation.

7.2.1 Translating computational learning theory results about
cross-validation into practice

Recent work in the area of statistical learning theory clearly demonstrates a
relationship between the increased variance of a learner error estimate obtained
with k-fold cross-validation in comparison with the true error, and the stability
of the learning problem (Elisseeff, Pontil, et al. 2003; Kearns and Ron 1999;
Kumar et al. 2013). In general, the aim of these papers is the derivation of a
bound on the probability that the cross-validation error differs by more than ε
from the true error. For this they rely on existing or newly proposed formal
definitions of algorithmic stability.

What is still missing, however, is a translation of this theory to techniques that
can determine the stability of a learning problem in practice. Being able to
distinguish cases where traditional statistical inference techniques are applicable,
from the problematic cases, would have a large impact on empirical machine
learning research. A starting point would be to apply these theoretical stability
criteria on learner-data combinations frequently used in experimental machine

FUTURE WORK 109

learning research. A hurdle — perhaps the reason such study is still missing
— is that most theoretically proposed stability measures are computationally
expensive. Ideally, a practically usable, general stability criterion should be
developed. This could then lead to calibrated confidence intervals and hypothesis
tests that take into account the distinct characteristics of a learning problem.

7.2.2 A declarative experimentation system

A final direction for future work is the design of a declarative query language
and inference system that can be used to analyze data generated from empirical
research. Preliminary work in this direction was presented in:

G. Vanwinckelen, V. Tragante Do O, D. Fierens, and H. Blockeel (2014).
“Instance-level accuracy versus bag-level accuracy in multi-instance learning”.
In: Data Mining and Knowledge Discovery

Empirical testing of a hypothesis currently demands a lot from a scientist
in terms of setting up experiments, analyzing the results, and ensuring all
this is done correctly. In all steps of this process the scientist needs to be
mindful of applying the proper statistical methodology in order to be able to
draw meaningful conclusions at the end. This is not only a labor-intensive
process, but also error-prone (Button et al. 2013; McIntyre and McKitrick 2005;
Simmons et al. 2011). As statistics provides us with a plethora of data analysis
and inference methods, it is practically impossible for a scientist to have full
knowledge of all existing methods and the statistical assumptions behind them.
What is more, nowadays statistical analyses are being increasingly performed
by non-statisticians, making the problem even more vital (Leek 2013).

An obvious solution for avoiding incorrect statistical analysis is to take the
statistical part of the experimentation process out of the hands of the user.
Involving a statistical expert in a research or industry project, however, can be a
costly affair. A more efficient solution would be if the researcher could formulate
their hypothesis, and the remainder of the experimentation process would
be automated. This solution is reminiscent of the declarative programming
paradigm, where one does not specify how to compute something, but rather
what to compute, leaving the actual procedure as a decision for the compiler.
Declarative languages have been successful in several areas. The quintessential
example is the domain specific language SQL for querying relational databases.
In the field of logic programming, Prolog is a well known example. But
declarative languages have also been designed for solving problems in artificial
intelligence. Notable examples are Problog for probabilistic logic programming
(De Raedt and Kimmig 2015), MiningZinc for constraint processing (Guns

110 CONCLUSION

et al. 2013), BiQL for graph querying (Dries et al. 2012), and SCCQL for
constraint-based clustering (Adam et al. 2013).

The three main design principles of such a system should be as follows:

Simple First, someone who is not an expert in statistics should be able to
formulate a query in the language and get meaningful results. We only
expect high-level knowledge from a user of concepts such as for instance
probability distributions, their expected value and variance, and confidence
intervals. We do not for instance expect the user to know all the different
methods to compute a confidence interval, and the situations in which
they are applicable.

Population based Second, the system is population based: When we perform
an experiment in machine learning, we do so with the data that is available.
However, most of the time we are not really interested in the results for
that particular set of data. Instead, we are interested in the results for
a certain data population from which the dataset is a sample. Consider
the computation of the accuracy of a decision tree on a test set. It is
likely that the accuracy on that specific dataset is not our main interest.
Instead, we see it as an estimate of the accuracy of the decision tree on the
population from which the test set is a random sample. The declarative
system should be able to express estimator uncertainty and also be able
to reason with it.

Declarative Finally, the system is declarative: The language allows to
formulate what should be computed and not how it should be computed.
The advantage is that users are shielded from having to make low-level
decisions. When presented with a declarative query, the system should be
able to automatically deduce the most appropriate method for a given task,
possibly aided by background information. Typical decisions in statistical
inference problems are about the sampling method, the minimum sample
size, and the method to compute a confidence interval.

A starting point for the syntax of the language could be SQL, the prototypical
declarative language for relational databases. Conceptually, the difference with
SQL is that the latter only assumes the existence of finite datasets. While it
contains keywords for requesting the computation of descriptive statistics such
as an average or a standard deviation, these have a different interpretation than
intended in our system, because they assume the data is complete. There is no
concept of a — possibly infinite — population and the sample variance that
originates from only having a sample available from that population.

FUTURE WORK 111

Consider for instance a query requesting an interval estimate of the mean height
of a population of male students:

ESTIMATE mean(Height)
FROM Student
WHERE gender=‘male’
ENSURING CONF(P) > 0.8

The query consists of four main parts. The first component specifies the
population parameter that we want to estimate and is indicated by the keyword
‘ESTIMATE’. In the example, the estimated statistic is the expected value of a
continuous random variable, but other types of statistics can also be requested,
such as for instance the probability that a variable takes on a certain value, or
its variance. This part of the query corresponds with the ‘SELECT’ part of an
SQL query.

The second query component corresponds with the ‘FROM’ part of an SQL
query, in that it defines the sources of the data that will be used in the other
two parts of the query. In fact, we use the same keyword, but it should be
interpreted differently: ‘Student’ is the entire population under study, from
which we have available a sample, for instance in the form of a simple database
table.

Third, the ‘WHERE’ clause is optional, and specifies only to use the observations
that fulfill the specified condition(s).

The final ‘ENSURING’ clause is also optional. It allows to specify the statistical
accuracy of the population parameter estimate. In the example a constraint is
put on the minimum coverage level of the confidence interval for the variable
‘Height’, namely 80%. Alternatively, this could also be a constraint on the
maximum variance of the estimate.

Inference engine

The declarative system could rely on a Bayesian network to represent the
population and perform inference. A Bayesian network, or belief network,
provides a concise description of a joint probability distribution of a set of
random variables E, by factoring it as a product of local conditional probability
distributions. The reasons for choosing this representation are threefold: First,
a mature probabilistic reasoning framework already exists for these models.
Second, since Bayesian networks are generative models, meaning that the joint
probability of all the variables in the data population P (X,Y) is modeled, all

112 CONCLUSION

Figure 7.1: Example of a Bayesian network (‘Burglary’)

aspects of a dataset can be queried. Finally, Bayesian network allow for an
intuitive interpretation of the existence of an edge between two variables: In
the case of causal modeling, an edge between two variables A and B can be
interpreted as ‘A causes B’. This interpretation makes it easy for a researcher
to construct a Bayesian network based on their expertise in a certain domain.
Moreover, discovering cause-effect relationships is often the goal of scientific
experimentation, which is indeed the application of the declarative system.

Figure 7.1 shows an example of a Bayesian network with five variables (Friedman
Goldszmidt). The network consists of five discrete variables, each with a local
CPT. Taking into account the conditional dependencies in the network, the
joint probability distribution can compactly be written as:

P (B,E,A, J,M) = P (J |A)P (M |A)P (A|B,E)P (B)P (E)

Using the syntax of the example in the previous section, an example of a query
about the burglary example is as follows:

ESTIMATE P(JohnCalls=1)
FROM Burglary
WHERE Alarm=1
ENSURING CONF(P) > 0.95

In this query, the user asks for an estimate of the probability that John calls
when the alarm goes off. The answer should be presented in the form of a
confidence interval, of which the confidence level is at least 95%.

FUTURE WORK 113

7.2.3 Causal Bayesian networks

As mentioned in the previous section, one of the applications of Bayesian
networks is causal modeling. We explain this concept in more detail by means
of an example from Spirtes (2010). Imagine that an insurance company wants
to include the probability of having a heart attack in the next five years in
their charging rate, and they believe the habit of drinking red wine influences
that probability. Sex and bmi are also known to have an influence on heart
attacks, so the population under study only consists of males with bmi 25. The
insurance company is not interested in changing the behavior of their clients,
they only want to be able to predict the probability of someone having a heart
attack. It may be that customers who drink red wine are also from a better
socio-economic background, and that this is the real cause of them having a
lower chance of a heart attack, but this is of no interest to the company. The
task in this setting is predictive modeling, and it is the task that was considered
in this dissertation.

This contrasts with the typical purpose of scientific research, namely discovering
causal relationships: Consider for instance a study by the health department
in which the goal is to determine the influence of drinking red wine on the
probability of having a heart attack. The goal of the department is to identify
recommendations for a healthier lifestyle so they are interested in the causal
connection between red wine and heart attacks. If red wine drinkers have a
lower probability of having a heart attack because of socio-economic reasons
then a recommendation will have no effect, because it would only change the
population of red wine drinkers. To determine a causal connection between
drinking red wine and hear attacks, manipulated probabilities are needed. That
is, the researcher has to investigate the probability of having a heart attack
among people who have been assigned to drink red wine, and not among those
who chose it by themselves.

We imagine that a declarative inference system would be most useful in this last
setting, so the focus should be on causal modeling. A starting point would be to
study the ‘do-calculus’ introduced by (Pearl 2003) to calculate with manipulated
probabilities. Another interesting direction is active learning. In this context
the work of (Tong and Koller 2001) is interesting, in which it is investigated
how to select the most informative experiments for determining the structure
of a causal Bayesian network.

114 CONCLUSION

7.2.4 Transfer learning for Bayesian networks

One of the key assumptions in this dissertation is the existence of a population
from which we only have a sample available. In many studies, data collection is
a time-consuming and expensive task, leading to small sample sizes. This may
be an issue for the practical applicability of the declarative experimentation
system, where we represent the dependencies in the data in the form of a
Bayesian network. When insufficient data is available, the structure of such a
network is difficult to learn.

Transfer learning aims to overcome this problem by exploiting the common
characteristics between a problem domain with ample data and one with
little data. Two different tasks can be distinguished in this area: First, the
performance of a predictive model in a data-deficient domain can be improved
by including data from a related domain in the learning process. Second, the
information exchange is in both directions and models are learned on two
domains simultaneously. An interesting research direction is the development of
a transfer learning algorithm for learning the structure of a Bayesian network.

An interesting structure learning algorithm suitable for this purpose was recently
proposed by Schmidt et al. (2007): Here, a hill-climbing algorithm searches the
space of possible network structures, where the set of potential parents and
children of a node is pruned by means of L1-regression. Perhaps it is possible
to adapt this algorithm for transfer learning as follows: Park and Casella (2008)
showed that L1-regularization can also be seen as a Bayesian method, where
a Laplace prior with mean zero is placed on the coefficients of the regression
model. We could use the Bayesian lasso to learn the neighborhoods of the
nodes in a problem domain with ample data. Next, in the data-poor domain,
instead of instantiating the Bayesian lasso with priors centered at zero, we
center the priors at the coefficients learned in the other domain. It is also worth
investigating if this idea can be extended to the task of learning on two domains
simultaneously. For instance by making use of the Bayesian group lasso (Raman
et al. 2009).

7.2.5 Building a knowledge base for statistical inference

When evaluating a supervised learning algorithm, the experiment always consists
of the following components:

• The learning algorithm

• The population

FUTURE WORK 115

• The performance measure

• The sampling method

• The proper statistical inference method.

When designing a declarative experimentation system that can handle this task
automatically, the learning algorithm, population and performance measure
have to be provided by the user as they depend on his or her interest. Optionally,
the system could present results for a set of default performance measures. The
selection can depend on information submitted by the user about the problem
setting. The optimal sampling method and statistical inference method could
be automatically determined based on the other elements of the experiment.
Criteria that we imagine would have an influence on this decision are for instance
the size of the dataset, the number of features, and the learning algorithm. Such
criteria could be implemented in the form of an expert system consisting of a set
of ‘if-then-else’ rules. However, as was already discussed in this dissertation, for
certain tasks the optimal approach is still an open problem. In fact, new insights
and best practices for statistical inference are published almost everyday. It is
therefore impossible for a researcher who is not specialized in the topic to always
keep up with the latest developments. A solution would be to automatically
extract this knowledge from the scientific literature and store the learned facts
in a database that can be accessed by the expert system. Such a knowledge
base construction system would rely heavily on natural language processing
techniques. Examples of related existing systems are the DeepDive and the
Never Ending Language Learning project (Carlson et al. 2010; C. Zhang 2015).
We recognize this is a very challenging task, as the system will find a multitude
of conflicting facts derived in different experimental settings. Moreover, the
experimental settings associated with the rules and facts in the knowledge base
will never correspond exactly with the experimental setting under investigation.

Appendix A

Variance of repeated
cross-validation

In this appendix we apply the theoretical framework developed by Bengio
and Grandvalet (2004) for estimating the variance of cross-validation to
repeated cross-validation. We describe a preliminary proof that in some cases
repeating cross-validation error estimates indeed have reduced sample variance
in comparison to a single cross-validation. The variance reduction is largest for
twofold cross-validation.

A.1 Variance of cross-validation

Figure A.1: The structure of the covariance matrix of a threefold cross-validation
estimator on a sample of size n. The matrix is n× n. The size of the lightblue
blocks equals m×m (nk = m).

117

118 VARIANCE OF REPEATED CROSS-VALIDATION

In this section we concisely repeat the derivation of a formula for the variance
of the cross-validation error estimator as given in (Bengio and Grandvalet 2004).
It is important to realize that we assume here that k-fold cross-validation is
used to estimate the error of a learning algorithm L, applied on samples of size
n drawn from a population P .

We saw in Chapter 3 that this error estimate ε̂cv equals:

ε̂cv(L, T) = 1
k

k∑
i=1

ε̂i(L(T \ Ti), Ti) = 1
n

n∑
i=1

ei(L(T \ Ti), Ti)

In this formula, ei(L(T \ Ti), Ti) is an individual cross-validation error of the
model learned on the k − 1 folds {T \ Ti} on an instance from fold Ti.

Consider the cross-validation error vector e = (e1, e2, ..., en). By definition, the
variance of the cross-validation error estimate ε̂cv can be written as:

var(ε̂cv) = 1
n2

∑
i,j

= cov(ei, ej). (A.1)

Bengio and Grandvalet (2004) showed that the structure of the covariance
matrix of e = (e1, e2, ..., en) is as follows:

Theorem 1.

• All diagonal elements are identical: ∀i, var(ei) = σ2

• All off-diagonal elements of the k m ×m diagonal blocks are identical:
∀(i, j) ∈ Tk and j 6= i, cov(ei, ej) = ω, with m = n/k

• All the remaining entries are identical: ∀i ∈ Tl and j ∈ Tk and l 6=
k, cov(ei, ej) = γ

Figure A.1 gives an example of this structure for k = 3.

• The variance σ2 is the average (taken over training sets) variance of errors
for ‘true’ test examples when learner L is fed with training sets of size
m(k − 1).

• The within-block covariance ω would also apply to ‘true’ test examples;
it arises from the dependence of test errors stemming from the common
training set.

VARIANCE OF REPEATED CROSS-VALIDATION 119

• The between-blocks covariance γ is due to the dependence of training sets
(which share n(k− 2)/k examples) and the fact that test block Tk appears
in all the training sets Dl for l 6= k.

If we combine this with formula A.1, the variance of the cross-validation error
estimate can be written as a linear combination of the second moments σ, ω,
and γ:

var(εcv) = 1
n
σ2 + m− 1

n
ω + n−m

n
γ.

For leave-one-out cross-validation m = 1 so:

var(εloo) = 1
n
σ2 + n− 1

n
γ.

Notice that when n goes to infinity, the variance does not go to zero, but to γ.

A.2 Variance of repeated cross-validation

Figure A.2: The structure of the covariance matrix of the 4 times repeated
3-fold cross-validation estimator.

We now apply the same reasoning for deriving a formula for the variance of
R times repeated kfold cross-validation. In this case, the error vector has
nR elements: e = (e1,π1 , ..., en,π1 , ..., e1,πR

, ..., en,πR
), with πi denoting the i-th

repetition.

The covariance matrix of e has a similar structure as the structure of the
covariance matrix described in Theorem 1. There will be at most four distinct
covariance values: σ2, ω and γ as defined for cross-validation, for errors that
are computed on the same partition. We assume that all partitionings are
interchangeable, so the blocks on the diagonal of the covariance matrix are
simply copies of the covariance matrix of one-time cross-validation. Additionally,

120 VARIANCE OF REPEATED CROSS-VALIDATION

we define the covariance between the errors from two different repetitions:
α = cov(ei|πl, ej |πk). As an example, the structure of the covariance matrix of
four times repeated threefold cross-validation is shown in Figure A.2.

The variance of repeated cross-validation can then be written as:

var(εrcv) = σ2

nR
+ m− 1

nR
ω + n−m

nR
γ + R− 1

R
α

Let us try to determine α: We know that repeating leave-one-out cross-validation
does not reduce the error variance, as each repetition gives exactly the same
result. Therefore, the following equality should hold:

lim
R→∞

var(εrcv) = α = var(εloo) = 1
n
σ2 + n− 1

n
γ

However, because γ depends on the amount of overlap of the training sets, the
fact that the formulas have the same structure does not mean both variances
are equal for the same n.

Using the above result, we can write the variance of the repeated cross-validation
estimator as:

εrcv = σ2

n
+ m− 1

nR
ω + (n− 1

n
+ 1−m

nR
)γ

We can now answer the question if repeating cross-validation reduces the variance
in comparison to a single cross-validation:

var(εcv)-var(εrcv) = m− 1
nR

(R(ω − γ)− (ω + γ)) (A.2)

var(εcv)-var(limR→∞εrcv) = m− 1
n

(ω − γ) (A.3)

From Bengio and Grandvalet (2004) we know that:

0 ≤ σ2

0 ≤ ω ≤ σ2

− m

n−m
σ2 ≤ γ ≤ σ2.

When averaging over all possible partitionings, the maximum variance reduction
occurs when ω = σ2, and γ = − m

n−mσ
2. This means maximum correlation

between the errors computed for the same model, and a negative correlation

VARIANCE OF REPEATED CROSS-VALIDATION 121

between errors on different folds. Upon further inspection, the maximum
reduction in variance is attained when k = 2, as in that case γ = −σ2 and
ω = σ2.

The formula also shows, however, that it is possible that repeating cross-
validation has larger variance than single cross-validation. This happens when
γ > ω. Since γ is the covariance between the errors due to overlapping training
sets, we would expect this to happen most often when the number of folds is
large and tends towards n.

Bibliography

Adam, A., H. Blockeel, S. Govers, and A. Aertsen (2013). “SCCQL: A constraint-
based clustering system”, Joint European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML PKDD). Springer, pp. 681–
684.

Aha, D. (1990). “Incremental constructive induction: An instance-based
approach”, Proceedings of the 7th International Conference on Machine
Learning. Morgan Kaufmann, pp. 117–121.

Aha, D., D. Kibler, and M. Albert (1991). “Instance-based learning algorithms”,
Machine learning 6.1, pp. 37–66.

Alpaydm, E. (1999). “Combined 5×2cv F test for comparing supervised
classification learning algorithms”, Neural Computation 11.8, pp. 1885–1892.

Amores, J. (2013). “Multiple instance classification: Review, taxonomy and
comparative study”, Artificial Intelligence 201, pp. 81–105.

Andrews, S., I. Tsochantaridis, and T. Hofmann (2003). “Support vector
machines for multiple-instance learning”, Advances in Neural Information
Processing Systems 15 (NIPS). MIT Press, pp. 577–584.

Auer, P., P. Long, and A. Srinivasan (1998). “Approximating hyper-rectangles:
learning and pseudo-random sets”, Journal of Computer and System Sciences
57.3, pp. 376–388.

Auer, P. and R. Ortner (2004). “A boosting approach to multiple instance
learning”, Proceedings of the 15th European Conference on Machine Learning.
Vol. 3201. Lecture Notes in Computer Science. Springer, pp. 63–74.

Bayes, M. and M. Price (1763). “An Essay towards solving a Problem in the
Doctrine of Chances”, Philosophical Transactions of the Royal Society of
London 53, pp. 370–418.

123

124 BIBLIOGRAPHY

Beleites, C. and R. Salzer (2008). “Assessing and improving the stability
of chemometric models in small sample size situations”, Analytical and
Bioanalytical Chemistry 390.5, pp. 1261–1271.

Bengio, Y. and Y. Grandvalet (2004). “No Unbiased Estimator of the Variance of
K-Fold Cross-Validation”, Journal of Machine Learning Research 5, pp. 1089–
1105.

Ben, H. (2012). Air Quality Prediction Hackathon. http://blog.kaggle.com/
2012/05/01/chucking-everything-into-a-random-forest. Accessed:
2014-07-30.

Bjerring, L. and E. Frank (2011). “Beyond Trees: Adopting MITI to Learn
Rules and Ensemble Classifiers for Multi-Instance Data”, Proceedings of the
24th Australian Joint Conference on Artificial Intelligence. Perth, Australia.
Springer, pp. 41–50.

Blockeel, H., D. Page, and A. Srinivasan (2005). “Multi-instance tree learning”,
Proceedings of the 22d International Conference on Machine learning. ACM
Press, pp. 57–64.

Blum, A. and A. Kalai (1998). “A note on learning from multiple-instance
examples”, Machine Learning 30.1, pp. 23–29.

Borra, S. and A. D. Ciaccio (2010). “Measuring the prediction error. A
comparison of cross-validation, bootstrap and covariance penalty methods”,
Computational Statistics & Data Analysis 54.12, pp. 2976–2989.

Bouckaert, R. (2004). “Estimating Replicability of Classifier Learning Experi-
ments”, Proceedings of the International Conference on Machine Learning
(ICML).

Bouckaert, R. R. (2003). “Choosing Between Two Learning Algorithms Based on
Calibrated Tests”, Proceedings of the International Conference on Machine
Learning (ICML), pp. 51–58.

Bousquet, O. and A. Elisseeff (2002). “Stability and generalization”, Journal of
Machine Learning Research 2, pp. 499–526.

Breiman, L. (1996). “Bagging predictors”, Machine learning 24.2, pp. 123–140.
Burman, P. (1989). “A comparative study of ordinary cross-validation, v-fold

cross-validation and the repeated learning-testing methods”, Biometrika 76,
pp. 503–514.

Burnham, K. P. and D. R. Anderson (2003). Model selection and multimodel
inference: a practical information-theoretic approach. Springer Science &
Business Media. Chap. 4.

– (2004). “Multimodel inference: understanding AIC and BIC in model
selection”, Sociological methods & research 33.2, pp. 261–304.

http://blog.kaggle.com/2012/05/01/chucking-everything-into-a-random-forest
http://blog.kaggle.com/2012/05/01/chucking-everything-into-a-random-forest

BIBLIOGRAPHY 125

Button, K. S., J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint, E. S. Robinson,
and M. R. Munafò (2013). “Power failure: why small sample size undermines
the reliability of neuroscience”, Nature Reviews Neuroscience 14.5, pp. 365–
376.

Carlson, A., J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and
T. M. Mitchell (2010). “Toward an Architecture for Never-Ending Language
Learning.”, AAAI Conference on Artificial Intelligence. Vol. 5, p. 3.

Castillo, C., M. El-Haddad, J. Pfeffer, and M. Stempeck (2014). “Characterizing
the Life Cycle of Online News Stories Using Social Media Reactions”,
Proceedings of the 17th Conference on Computer Supported Cooperative
Work. ACM, pp. 211–223.

Cessie, S. le and J. van Houwelingen (1992). “Ridge Estimators in Logistic
Regression”, Applied Statistics 41.1, pp. 191–201.

Chapelle, O., V. Vapnik, O. Bousquet, and S. Mukherjee (2002). “Choosing
multiple parameters for support vector machines”, Machine Learning 46.1,
pp. 131–159.

Chen, Y. and J. Wang (2004). “Image categorization by learning and reasoning
with regions”, Journal of Machine Learning Research 5, pp. 913–939.

Chickering, D. M. (1996). “Learning Bayesian networks is NP-complete”,
Learning from data: Artificial intelligence and statistics V 112, pp. 121–130.

Clyde, M. and H. Lee (2001). “Bagging and the Bayesian bootstrap”, Artificial
Intelligence and Statistics. Morgan Kaufman Publishers.

Cranor, L. and B. LaMacchia (1998). “Spam!”, Communications of the ACM
41.8, pp. 74–83.

Dash, D. and G. F. Cooper (2004). “Model averaging for prediction with discrete
Bayesian networks”, Journal of Machine Learning Research 5, pp. 1177–1203.

Demsar, J. (2006). “Statistical Comparisons of Classifiers over Multiple Data
Sets”, Journal of Machine Learning Research 7, pp. 1–30.

De Raedt, L. and A. Kimmig (2015). “Probabilistic (logic) programming
concepts”, Machine Learning 100.1, pp. 5–47.

Devroye, L. P., T. Wagner, et al. (1980). “Distribution-free consistency results
in nonparametric discrimination and regression function estimation”, The
Annals of Statistics 8.2, pp. 231–239.

Dietterich, T., R. Lathrop, and T. Lozano-Pérez (1997). “Solving the multiple
instance problem with axis-parallel rectangles”, Artificial Intelligence 89.1-2,
pp. 31–71.

126 BIBLIOGRAPHY

Dietterich, T. G. (1998). “Approximate Statistical Test For Comparing
Supervised Classification Learning Algorithms”, Neural Computation 10.7,
pp. 1895–1923.

Dong, L. (2006). “A comparison of multi-instance learning algorithms”. MA
thesis. University of Waikato.

Dooly, D., Q. Zhang, S. Goldman, and R. Amar (2003). “Multiple Instance
Learning of Real Valued Data”, Journal of Machine Learning Research 3,
pp. 651–678. issn: 1532-4435.

Doran, G. and S. Ray (2014). “A theoretical and empirical analysis of
support vector machine methods for multiple-instance classification”,Machine
Learning 97.1-2, pp. 79–102. issn: 0885-6125.

Dries, A., S. Nijssen, and L. De Raedt (2012). “BiQL: a query language for
analyzing information networks”, Bisociative Knowledge Discovery. Springer,
pp. 147–165.

Eaton, D. and K. Murphy (2012). “Bayesian structure learning using dynamic
programming and MCMC”, arXiv preprint arXiv:1206.5247.

Efron, B. (1983). “Estimating the Error Rate of a Prediction Rule: Improvement
on Cross-Validation”. English, Journal of the American Statistical Association
78.382, pp. 316–331. issn: 01621459.

Efron, B. and R. Tibshirani (June 1997). “Improvements on Cross-Validation:
The .632+ Bootstrap Method”, Journal of the American Statistical
Association 92.438, pp. 548–560.

Efron, B. and R. J. Tibshirani (1994). An introduction to the bootstrap. CRC
press.

Elidan, G. (2011). “Bagged structure learning of bayesian network”, Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 251–259.

Elisseeff, A., M. Pontil, et al. (2003). “Leave-one-out error and stability of
learning algorithms with applications”, NATO science series sub series iii
computer and systems sciences 190, pp. 111–130.

Feller, W. (1968). An introduction to probability theory and its applications:
volume I. Vol. 3. John Wiley & Sons New York. Chap. 10.

Fisher, R. A. (1936). “The use of multiple measurements in taxonomic problems”,
Annals of human genetics 7.2, pp. 179–188.

Foulds, J. and E. Frank (2010). “A Review of Multi-Instance Learning
Assumptions”, Knowledge Engineering Review 25, pp. 1–25.

Frank, E. and X. Xu (2003). Applying propositional learning algorithms to
multi-instance data. Tech. rep. University of Waikato.

BIBLIOGRAPHY 127

Freund, Y. and R. Schapire (1995). “A Decision-theoretic Generalization of
On-line Learning and an Application to Boosting”, Proceedings of the 2d
European Conference on Computational Learning Theory. Springer-Verlag,
pp. 23–37.

Friedman, N., M. Goldszmidt, and A. Wyner (1999). “Data analysis with
Bayesian networks: A bootstrap approach”, Proceedings of the Fifteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc., pp. 196–205.

Friedman, N. and D. Koller (2003). “Being Bayesian about network structure.
A Bayesian approach to structure discovery in Bayesian networks”, Machine
learning 50.1-2, pp. 95–125.

Friedman, N., I. Nachman, and D. Peér (1999). “Learning bayesian network
structure from massive datasets: the «sparse candidate «algorithm”,
Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence.
Morgan Kaufmann Publishers Inc., pp. 206–215.

Fung, G., M. Dundar, B. Krishnapuram, and R. Rao (2007). “Multiple instance
learning for computer aided diagnosis”, Advances in Neural Information
Processing Systems 19 (NIPS). MIT Press, pp. 425–432.

Fu, Z., A. Robles-Kelly, and J. Zhou (2011). “MILIS: Multiple Instance
Learning with Instance Selection”, IEEE Transactions on Pattern Analysis
and Machine Intelligence 33.5, pp. 958–977. issn: 0162-8828.

Gärtner, T., P. Flach, A. Kowalczyk, and A. Smola (2002). “Multi-Instance
Kernels”, Proceedings of the 19th International Conference on Machine
Learning. Morgan Kaufmann, pp. 179–186.

Giraud-Carrier, C. (2008). “Proceedings of the 7th international conference on
machine learning and applications”,

González-Brenes, J. P. and C. Matías (2011). RTA Freeway Travel Time
Prediction. http://blog.kaggle.com/2011/03/25/jose-p- gonzalez.
Accessed: 2014-07-30.

Grandvalet, Y. and Y. Bengio (2006). “Hypothesis testing for cross-validation”,
Montreal Universite de Montreal, Operationnelle DdIeR 1285.

Greiner, R. (1996). “PALO: A probabilistic hill-climbing algorithm”, Artificial
Intelligence 84.1-2, pp. 177–208.

Guns, T., A. Dries, G. Tack, S. Nijssen, and L. De Raedt (2013). “MiningZinc: A
Modeling Language for Constraint-Based Mining.”, IJCAI. Vol. 13, pp. 1365–
1372.

Hanczar, B. and E. R. Dougherty (2010). “On the comparison of classifiers for
microarray data”, Current Bioinformatics 5, pp. 29–39.

http://blog.kaggle.com/2011/03/25/jose-p-gonzalez

128 BIBLIOGRAPHY

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical
Learning. 2nd ed. Springer.

Hothorn, T., K. Hornik, and A. Zeileis (2006). “Unbiased recursive partitioning:
A conditional inference framework”, Journal of Computational and Graphical
Statistics 15.3, pp. 651–674.

Hulten, G. and P. Domingos (2002). “Mining complex models from arbitrarily
large databases in constant time”, Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,
pp. 525–531.

Kearns, M. and D. Ron (1999). “Algorithmic stability and sanity-check bounds
for leave-one-out cross-validation”, Neural computation 11.6, pp. 1427–1453.

Kim, H. (2009). “Estimating classification error rate: Repeated cross-validation,
repeated hold-out and bootstrap”, Computational Statistics & Data Analysis
53.11, pp. 3735–3745.

Kohavi, R. (1996). “Scaling up the accuracy of naive-Bayes classifiers: A decision-
tree hybrid”, Proceedings of the 2d International Conference on Knowledge
Discovery and Data Mining. Vol. 7. AAAI Press, pp. 202–207.

Kohavi, R. (1995). “A study of cross-validation and bootstrap for accuracy
estimation and model selection”, International Joint Conference on Artificial
intelligence (IJCAI). 2. Morgan Kaufmann Publishers Inc., pp. 1137–1143.

Kotsiantis, S., D. Kanellopoulos, and P. Pintelas (2006). “Data preprocessing
for supervised leaning”, International Journal of Computer Science 1.2,
pp. 111–117.

Kumar, R., D. Lokshtanov, S. Vassilvitskii, and A. Vattani (2013). “Near-
optimal bounds for cross-validation via loss stability”, Proceedings of the
30th International Conference on Machine Learning (ICML), pp. 27–35.

Laplace, P. (1840). “Essai Philosophique sur les Probabilités (English translation:
A Philosophical Essay on Probability, Dover, New York, 1952)”, Bachelier,
Paris.

Leek, J. (2013). The vast majority of statistical analysis is not performed
by statisticians. http : / / simplystatistics . org / 2013 / 06 / 14 / the -
vast- majority- of- statistical- analysis- is- not- performed- by-
statisticians/. Accessed: 2013-06-24.

Lerman, K. and T. Hogg (2010). “Using a Model of Social Dynamics to Predict
Popularity of News”, Proceedings of the 19th International Conference on
World Wide Web. ACM, pp. 621–630.

Lichman, M. (2013). UCI Machine Learning Repository. url: http://archive.
ics.uci.edu/ml.

http://simplystatistics.org/2013/06/14/the-vast-majority-of-statistical-analysis-is-not-performed-by-statisticians/
http://simplystatistics.org/2013/06/14/the-vast-majority-of-statistical-analysis-is-not-performed-by-statisticians/
http://simplystatistics.org/2013/06/14/the-vast-majority-of-statistical-analysis-is-not-performed-by-statisticians/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 129

Liu, G., J. Wu, and Z. Zhou (2012). “Key Instance Detection in Multi-Instance
Learning.”, Proceedings of the 4th Asian Conference on Machine Learning.
Ed. by S. C. H. Hoi andW. L. Buntine. Vol. 25. JMLR Proceedings. JMLR.org,
pp. 253–268.

Li, Y., J. Kwok, I. Tsang, and Z. Zhou (2009). “A Convex Method for
Locating Regions of Interest with Multi-instance Learning”, Proceedings
of the European Conference on Machine Learning and Knowledge Discovery
in Databases. Bled, Slovenia: Springer-Verlag, pp. 15–30. isbn: 978-3-642-
04173-0.

Long, P. and L. Tan (1998). “PAC learning axis-aligned rectangles with respect
to product distributions from multiple-instance examples”, Machine Learning
30.1, pp. 7–21.

Mandel, M. and D. Ellis (2008). “Multiple-instance learning for music
information retrieval”, Proceedings of the 9th International Conference on
Music Information Retrieval, pp. 577–582.

Markatou, M., H. Tian, S. Biswas, and G. Hripcsak (Dec. 2005). “Analysis
of Variance of Cross-Validation Estimators of the Generalization Error”,
Journal of Machine Learning Research 6, pp. 1127–1168. issn: 1532-4435.

Markovitch, S. and D. Rosenstein (2002). “Feature generation using general
constructor functions”, Machine Learning 49.1, pp. 59–98.

Maron, O. and T. Lozano-Pérez (1998). “A framework for multiple-instance
learning”, Advances in Neural Information Processing Systems 11 (NIPS).
MIT Press, pp. 570–576.

Maron, O. and A. Ratan (1998). “Multiple-instance learning for natural scene
classification”, Proceedings of the 15th International Conference on Machine
Learning. Morgan Kaufmann, pp. 341–349.

McIntyre, S. and R. McKitrick (2005). “Hockey sticks, principal components,
and spurious significance”, Geophysical Research Letters 32.3.

Molinaro, A. M., R. Simon, and R. M. Pfeiffer (2005). “Prediction error
estimation: a comparison of resampling methods”, Bioinformatics 21.15,
pp. 3301–3307.

Nadeau, C. and Y. Bengio (1999). “Inference for the Generalization Error”,
Advances in Neural Information Processing Systems 12 (NIPS), pp. 307–313.

Neapolitan, R. E. et al. (2004). Learning bayesian networks. Vol. 38. Pearson
Prentice Hall. Chap. Part II.

Park, T. and G. Casella (2008). “The bayesian lasso”, Journal of the American
Statistical Association 103.482, pp. 681–686.

130 BIBLIOGRAPHY

Pearl, J. (2003). “Causality: models, reasoning and inference”, Econometric
Theory 19.675-685, p. 46.

Perlich, C., F. Provost, and J. S. Simonoff (Dec. 2003). “Tree Induction vs.
Logistic Regression: A Learning-curve Analysis”, Journal of Machine Learning
Research 4, pp. 211–255.

Peterson, M. (2017). An introduction to decision theory. Cambridge University
Press.

Pfahringer, B., H. Bensusan, and C. Giraud-Carrier (2000). “Meta-Learning by
Landmarking Various Learning Algorithms”, Proceedings of the International
Conference on Machine learning (ICML), pp. 743–750.

Platt, J. (1999). “Fast training of support vector machines using sequential
minimal optimization”, Advances in Kernel Methods-Support Vector Learning
208, pp. 185–208.

Quinlan, J. (2003). C4.5: programs for machine learning. Morgan Kaufmann.
Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski (2005). “Using

Bayesian model averaging to calibrate forecast ensembles”, Monthly Weather
Review 133.5, pp. 1155–1174.

Raman, S., T. J. Fuchs, P. J. Wild, E. Dahl, and V. Roth (2009). “The Bayesian
group-lasso for analyzing contingency tables”, Proceedings of the 26th Annual
International Conference on Machine Learning. ACM, pp. 881–888.

Ramdas, A. and A. Balsubramani (2015). “Sequential Nonparametric Testing
with the Law of the Iterated Logarithm”, stat 1050, p. 10.

Ramon, J. and L. De Raedt (2000). “Multi instance neural networks”,
Proceedings of the 17th International Conference on Machine Learning,
Workshop on Attribute-Value and Relational Learning, pp. 53–60.

Ray, S. and M. Craven (2005). “Supervised versus multiple instance learning:
An empirical comparison”, Proceedings of the 22d International Conference
on Machine Learning. Vol. 22. ACM Press, pp. 697–704.

Ray, S., S. Scott, and H. Blockeel (2011). “Multi-instance learning”, Encyclopedia
of Machine Learning, first edition, pp. 701–710.

Rubin, D. B. et al. (1981). “The bayesian bootstrap”, The annals of statistics
9.1, pp. 130–134.

Schmidt, M., A. Niculescu-Mizil, K. Murphy, et al. (2007). “Learning graphical
model structure using L1-regularization paths”, AAAI Conference on
Artificial Intelligence. Vol. 7, pp. 1278–1283.

Sculley, D. (2012). Results from a semi-supervised feature learning competition.
http://eecs.tufts.edu/~dsculley/papers/semisupervised-feature-
learning-competition.pdf. Accessed: 2014-07-30.

http://eecs.tufts.edu/~dsculley/papers/semisupervised-feature-learning-competition.pdf
http://eecs.tufts.edu/~dsculley/papers/semisupervised-feature-learning-competition.pdf

BIBLIOGRAPHY 131

Settles, B., M. Craven, and S. Ray (2008). “Multiple-instance active learning”,
Advances in Neural Information Processing Systems 20 (NIPS). MIT Press,
pp. 1289–1296.

Shao, J., D. He, and Q. Yang (2008). “Multi-semantic Scene Classification
Based on Region of Interest”, Proceedings of the International Conference on
Computational Intelligence for Modelling Control & Automation. Washington,
DC, USA: IEEE Computer Society, pp. 732–737. isbn: 978-0-7695-3514-2.

Simmons, J. P., L. D. Nelson, and U. Simonsohn (2011). “False-positive psychol-
ogy: Undisclosed flexibility in data collection and analysis allows presenting
anything as significant”, Psychological science 22.11, pp. 1359–1366.

Smith, J., J. Everhart, W. Dickson, W. Knowler, and R. Johannes (1988). “Using
the ADAP learning algorithm to forecast the onset of diabetes mellitus”,
Proceedings of the Symposium on Computer Applications and Medical Care,
pp. 261–265.

Spirtes, P. (2010). “Introduction to causal inference”, Journal of Machine
Learning Research 11.May, pp. 1643–1662.

Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis (2008).
“Conditional Variable Importance for Random Forests”, BMC Bioinformatics
9.307.

Szabo, G. and B. A. Huberman (Aug. 2010). “Predicting the Popularity of
Online Content”, Communications of the ACM 53.8, pp. 80–88.

Tao, Q., S. Scott, N. Vinodchandran, and T. Osugi (2004). “SVM-based
generalized multiple-instance learning via approximate box counting”,
Proceedings of the 21th International Conference on Machine learning.
Morgan Kaufmann.

Teyssier, M. and D. Koller (2012). “Ordering-based search: A simple and effective
algorithm for learning Bayesian networks”, arXiv preprint arXiv:1207.1429.

Tong, S. and D. Koller (2001). “Active learning for structure in Bayesian
networks”, International Joint Conference on Artificial intelligence (IJCAI).
Vol. 17. 1, pp. 863–869.

Tragante do O, V., D. Fierens, and H. Blockeel (2011). “Instance-level accuracy
versus bag-level accuracy in multi-instance learning”, Proceedings of the
23d Benelux Conference on Artificial Intelligence. url: https://lirias.
kuleuven.be/handle/123456789/316681.

Vanschoren, J. and H. Blockeel (2008). “Investigating classifier learning
behavior with experiment databases”, Data Analysis, Machine Learning
and Applications, pp. 421–428.

https://lirias.kuleuven.be/handle/123456789/316681
https://lirias.kuleuven.be/handle/123456789/316681

132 BIBLIOGRAPHY

Vanwinckelen, G. and H. Blockeel (2012). “On estimating model accuracy with
repeated cross-validation”, Proceedings of the 21st Belgian-Dutch Conference
on Machine Learning (BeneLearn). Belgium, May.

– (2013). “A declarative query language for statistical inference”, ECML/PKDD
Workshop on Languages for Data Mining and Machine Learning. Czech
Republic, September.

– (2014a). “A meta-learning system for multi-instance classification”, ECM-
L/PKDD Workshop on Learning from Multiple Contexts. France, September.

– (2014b). “Look before you leap: Some insights into learner evaluation with
cross-validation”, ECML/PKDD Workshop on Statistically Sound Data
Mining. France, September.

– (2014c). “Look before you leap: Some insights into learner evaluation with
cross-validation (Poster)”, Intelligent Data Analysis. Belgium, October.

Vanwinckelen, G. and W. Meert (2014). “Predicting the popularity of online
articles with random forests”, ECML/PKDD Workshop on Predictive Web
Analytics. France, September.

Vanwinckelen, G., M. V. Otterlo, K. Driessens, and S. Pollin (2011). “Power
control for secondary users based on distributed measurements”, IEEE
Symposium on New Frontiers in Dynamic Spectrum Access Networks
(DySPAN). Germany, May.

Vanwinckelen, G., V. Tragante Do O, D. Fierens, and H. Blockeel (2014).
“Instance-level accuracy versus bag-level accuracy in multi-instance learning”,
Data Mining and Knowledge Discovery.

Vanwinckelen, G., D. Verbeeck, W. Meert, and H. Blockeel (2013). “Optimal
mobile connectivity using a practical coverage map”, LICT Scientific
symposium on adaptivity in ICT. Belgium, September.

Vilalta, R. and Y. Drissi (2002). “A perspective view and survey of meta-
learning”, Artificial Intelligence Review 18.2, pp. 77–95.

Von Neumann, J. and O. Morgenstern (2007). Theory of games and economic
behavior. Princeton University Press.

Wang, J. and J. Zucker (2000). “Solving the multiple-instance problem: A lazy
learning approach”, Proceedings of the 17th International Conference on
Machine Learning. Morgan Kaufmann, pp. 1119–1126.

Wilcox, R. R. (2010). Fundamentals of modern statistical methods: Substantially
improving power and accuracy. Springer Science & Business Media. Chap. 7.

Witten, I. H., E. Frank, M. A. Hall, and C. J. Pal (2016). Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.

BIBLIOGRAPHY 133

Witten, I. and E. Frank (2005). Data Mining: Practical machine learning tools
and techniques.

Wolpert, D. H. (Oct. 1996). “The Lack of a Priori Distinctions Between Learning
Algorithms”, Neural Computation 8.7, pp. 1341–1390.

Xu, X. (2003). “Statistical learning in multiple instance problems”. MA thesis.
Department of Computer Science, University of Waikato.

Xu, X. and E. Frank (2004). “Logistic regression and boosting for labeled
bags of instances”, Proceedings of the Pacific Asia Conference on Knowledge
Discovery and Data Mining. Lecture Notes in Computer Science. Springer,
pp. 272–281.

Yeh, I., K. Yang, and T. Ting (2009). “Knowledge discovery on RFM model using
Bernoulli sequence”, Expert Systems With Applications 36.3P2, pp. 5866–
5871.

Zhang, C. (2015). “DeepDive: a data management system for automatic
knowledge base construction”. PhD thesis. University of Wisconsin-Madison.

Zhang, M. (2009). “Generalized multi-instance learning: Problems, algorithms
and data sets”, Proceedings of the WRI Global Congress on Intelligent Systems.
Vol. 3. Morgan Kaufmann, pp. 539–543.

Zhang, Q. and S. Goldman (2001). “EM-DD: An improved multiple-instance
learning technique”, Advances in Neural Information Processing Systems 14
(NIPS). MIT Press, pp. 1073–1080.

Zhou, Z., X. Xue, and Y. Jiang (2005). “Locating regions of interest in CBIR with
multi-instance learning techniques”, Proceedings of the 18th Australian Joint
conference on Advances in Artificial Intelligence. Springer-Verlag, pp. 92–101.
isbn: 3-540-30462-2, 978-3-540-30462-3.

Zhou, Z. and M. Zhang (2003). “Ensembles of multi-instance learners”,
Proceedings of the 14th European Conference on Machine Learning. Lecture
Notes in Computer Science. Springer, pp. 492–502.

Zucker, J. and Y. Chevaleyre (2001). “Solving multiple-instance and multiple-
part learning problems with decision trees and decision rules. Application to
the mutagenesis problem”, Proceedings of the 14th Biennial Conference of
the Canadian Society on Computational Studies of Intelligence: Advances in
Artificial Intelligence. Springer, pp. 204–214.

List of Publications

Journal Article

G. Vanwinckelen, V. Tragante Do O, D. Fierens, and H. Blockeel (2014).
“Instance-level accuracy versus bag-level accuracy in multi-instance learning”,
Data Mining and Knowledge Discovery

Conference Papers

G. Vanwinckelen, M. V. Otterlo, K. Driessens, and S. Pollin (2011). “Power
control for secondary users based on distributed measurements”, IEEE
Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN).
Germany, May

G. Vanwinckelen and H. Blockeel (2012). “On estimating model accuracy with
repeated cross-validation”, Proceedings of the 21st Belgian-Dutch Conference
on Machine Learning (BeneLearn). Belgium, May

Workshop Papers

G. Vanwinckelen and W. Meert (2014). “Predicting the popularity of online
articles with random forests”, ECML/PKDD Workshop on Predictive Web
Analytics. France, September

G. Vanwinckelen and H. Blockeel (2014a). “A meta-learning system for multi-
instance classification”, ECML/PKDD Workshop on Learning from Multiple
Contexts. France, September

135

136 LIST OF PUBLICATIONS

G. Vanwinckelen and H. Blockeel (2014b). “Look before you leap: Some insights
into learner evaluation with cross-validation”, ECML/PKDD Workshop on
Statistically Sound Data Mining. France, September

G. Vanwinckelen and H. Blockeel (2014c). “Look before you leap: Some insights
into learner evaluation with cross-validation (Poster)”, Intelligent Data Analysis.
Belgium, October

Abstracts and Posters

G. Vanwinckelen and H. Blockeel (2013). “A declarative query language for
statistical inference”, ECML/PKDD Workshop on Languages for Data Mining
and Machine Learning. Czech Republic, September

G. Vanwinckelen, D. Verbeeck, W. Meert, and H. Blockeel (2013). “Optimal
mobile connectivity using a practical coverage map”, LICT Scientific symposium
on adaptivity in ICT. Belgium, September

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

ARTIFICIAL INTELLIGENCE
Celestijnenlaan 200A box 2402

B-3001 Heverlee

	Abstract
	Contents
	Outline
	Context
	Machine learning
	Statistical inference
	Performance measures
	Towards declarative statistical inference

	Dissertation statement
	Contributions
	Structure of the dissertation
	Other publications

	Case study: Predictive web analytics
	Introduction
	Data and prediction task
	Short overview of the steps in model development
	Data exploration
	Transformation to log space
	Cumulative visitor count
	Website statistics
	Time dependence

	Data preprocessing
	Data cleaning
	Feature extraction

	Modeling
	Evaluation and interpretation
	Evaluation
	Interpretation

	Conclusion

	Model evaluation with cross-validation
	Introduction
	Preliminaries
	Learning task
	Error measures
	Cross-validation error estimator
	Estimator quality

	Estimating the conditional error
	Algorithmic stability
	Stochasticity of cross-validation
	Sample variance of leave-one-out cross-validation

	Estimating the unconditional error with repeated cross-validation
	Variance decomposition
	Variance estimation

	Experiments
	Does cross-validation estimate the conditional or unconditional error, or neither?
	Comparing learners with cross-validation

	Conclusions

	Bag- versus instance-level performance in multi-instance learning
	Introduction
	Multi-instance learning: Preliminaries
	Definition and terminology
	Connection between f and F
	Instance-level versus bag-level accuracy
	Mathematical analysis of the relationship between bag-level and instance-level accuracy

	Literature on (standard) multi-instance learning
	Algorithms and applications
	Learning task: Definition 12 versus Definition 13
	Performance measure: Bag-level versus instance-level

	Experimental analysis of the relationship
	Experimental setup
	Results
	Experimental analysis of the relationship between bag level and instance level accuracy over multiple datasets

	Comparison of multi-instance and single-instance learning algorithms
	Conclusions

	A meta-learning system for multi-instance classification
	Introduction
	Definition and terminology
	Our approach
	The meta-learning dataset
	Multi-instance learner performance
	Experiments
	Experimental setup
	Results: UCI datasets
	Results: Text datasets
	Results: SIVAL datasets

	Conclusions

	Bayesian network structure learning in the presence of sampling variance
	Introduction
	Bootstrapping
	Greedy hill-climbing
	Structure learning with sample variance
	Rationale
	Bayesian bootstrap
	Racing

	Model selection uncertainty quantification
	Introduction
	Bayesian model averaging
	Variance estimation

	Related work
	Conclusions and future work

	Conclusion
	Summary of contributions
	Statistical inference with cross-validation
	Multi-instance learning
	Bayesian network structure learning
	Recommendations

	Future work
	Translating computational learning theory results about cross-validation into practice
	A declarative experimentation system
	Causal Bayesian networks
	Transfer learning for Bayesian networks
	Building a knowledge base for statistical inference

	Variance of repeated cross-validation
	Variance of cross-validation
	Variance of repeated cross-validation

	List of Publications

