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Abstract: The analysis of hierarchical data that take the form of clusters with

random size has received considerable attention. The focus here is on samples

that are very large in terms of number of clusters and/or members per cluster,

on the one hand, as well as on very small samples (e.g., when studying rare dis-

eases), on the other. Whereas maximum likelihood inference is straightforward

in medium to large samples, in samples of sizes considered here it may be pro-

hibitive. We propose sample-splitting (Molenberghs et al. (2011)) as a way to

replace iterative optimization of a likelihood that does not admit an analytical

solution, with closed-form calculations. We use pseudo-likelihood (Molenberghs

et al. (2014)), consisting of computing weighted averages over solutions obtained
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for each cluster size occurring. As a result, the statistical properties of this ap-

proach need to be investigated, especially because the minimal sufficient statistics

involved are incomplete. The operational characteristics were studied using sim-

ulations. Simulations were also done to compare the proposed method to existing

techniques developed to circumvent difficulties with unequal cluster sizes, such

as multiple imputation. It follows that the proposed non-iterative methods have

a strong beneficial impact on computation time; at the same time, the method is

the most precise among its competitors considered. The findings are illustrated

using data from a developmental toxicity study, where clusters are formed of

fetuses within litters.

Key words and phrases: Likelihood inference; Pseudo-likelihood; Unequal cluster

size.

1. Introduction

Much statistical theory is derived under the paradigm of a fixed sample

size. However, there are many common practical settings in which this

paradigm does not hold. Examples include sequential trials, where the trial

may be stopped early at a number of time points during accrual, because of

the strength, or lack, of a treatment effect; incomplete data in longitudinal

studies or surveys; longitudinal data with random measurement occasions;

and censored survival data. Molenberghs et al. (2014) provide an overview

of such situations.
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Here, we focus on hierarchical (or clustered) data with unequal cluster

sizes.

Clustering is taken in its broadest sense, encompassing longitudinal

data, family-based studies, toxicology (Aerts et al. (2002)), agricultural

experiments, multi-level designs in the social and behavioral sciences, and so

on. In longitudinal trials, it is not uncommon to plan for the same number

of measurements to be taken per study subject, often at a common set of

time points. If all data were collected according to protocol, the cluster size

would be fixed. However, even in such studies, cluster sizes are often de facto

random because of incompleteness in the data. In many random cluster size

settings there may be associations between outcomes and cluster size. In

part of the literature, this is termed ‘informative cluster size’ and a suite

of methods has been proposed to accommodate this situation, many based

on inverse probability weighting (Williamson, Datta, and Satten (2003);

Benhin, Rao, and Scott (2005); Hoffman, Sen, and Weinberg (2001); Cong,

Yin, and Shen (2007); Chiang and Lee (2008); Wang, Kong, and Datta

(2011); Aerts et al. (2011)). Unequal cluster sizes can occur for any outcome

type, including continuous, binary, categorical, count, and event time.

Unequal cluster sizes may or may not be governed by a stochastic mech-

anism. For example, they can be unequal by design choice, without being
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stochastic; e.g., when a sample is selected in each town proportion to the

population size. Litter sizes in pregnant rodents will truly be stochastic.

When stochastic, the mechanism is completely random when it depends

on neither observed nor unobserved data; it is random when it depends on

observed but, given these, not on unobserved data; other mechanisms are

termed non-random. In the literature, mechanisms other than complete

random are often termed informative. Although an important issue, we do

not focus on informative cluster sizes here. Attention is confined to the

case where cluster size is unequal, but independent of both observed and

unobserved outcomes. In doing so we distinguish issues that stem purely

from the non-constant nature of the cluster size, from those that result

from the association between cluster size and outcome. We focus on the

differences between the case of a fixed cluster size that is common to all

clusters, and that of a fluctuating cluster size, whether for design reasons

or randomly. In particular, the joint modelling of outcomes and cluster size

is not considered.

As a simple, yet non-trivial, clustering paradigm, we consider the nor-

mal compound-symmetry (CS) model, which is a three-parameter multivari-

ate normal model, with a common mean µ, a common variance σ2 + d, and

a common covariance d. Molenberghs et al. (2011) studied this case in the
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context of so-called split-sample methodology: they proposed a particular

form of pseudo-likelihood where a sample is subdivided into M subsamples,

which are separately analyzed as if they were unrelated, after which the re-

sults are averaged using appropriate weights, leading to proper point and

precision estimates. Pseudo-likelihood has received considerable attention

(Varin, Reid, and Firth (2011); Molenberghs and Verbeke (2005, Ch. 9, 12,

21, 24, 25); Aerts et al. (2002, Ch. 6, 7)).

Assume that there are ck clusters of size nk, k = 1, . . . , K. For ease of

development, we allow for some of the nk to be equal, which is useful when

a subgroup of clusters that is of the same size is chosen to be sub-divided

(because there are very many or for other reasons). A natural split is made

with respect to the cluster size, i.e., as if every cluster size defines its own

stratum.

Evidently, for medium to large sample sizes, full maximum likelihood

or Bayesian inferences are statistically optimal and computationally feasi-

ble; hence, the work done here might be less relevant. However, with really

big data, where the number of independent clusters runs in the millions or

beyond, and/or in settings where the number of measurements per cluster

becomes very large (e.g., in meta-analysis), maximum likelihood eventu-

ally becomes prohibitive in terms of computation time. At the other end
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of the spectrum, in very small samples (e.g., in small-area epidemiology

applications, or when studies are conducted in so-called orphan diseases),

maximum likelihood estimates may become unstable, to the point where

it is difficult to obtain convergence. This may be due, for example, to rel-

atively flat likelihood functions. The non-iterative nature of our proposal

removes such issues. Small samples refers here to a small number of clus-

ters; the clusters themselves may consist of smaller or larger numbers of

within-cluster replication. We are not the first to consider these issues.

Van der Elst et al. (2015) considered multiple imputation to bring clus-

ters to the same size before applying maximum likelihood. If done with

care, convergence problems are drastically reduced. Williamson, Datta,

and Satten (2003) and Follmann, Proschan, and Leifer (2003) proposed so-

called multiple outputation, to repeatedly create independent samples by

randomly selecting one member per cluster. To ensure that correlation is

taken into account, combination rules reminiscent of multiple imputation

are then applied to combine inferences from the samples drawn. These

methods are based on repeated sampling and come at computational cost

for high-dimensional data (Sikorska et al. (2003)). Therefore, in this paper,

the focus is on entirely non-iterative methods, bringing together the advan-

tages of balanced data and simple averaging methodology. A consequence of
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our approach is the need for applying weights when combining results from

the K strata. We establish how results on incomplete sufficient statistics in

the context of weighted averages (Molenberghs et al. (2014); Hermans et al.

(2017)) imply that there may be no optimal set of weights. Given this, we

propose pragmatically attractive weights, in terms of efficiency, bias, and

computational ease.

The remainder of the paper is organized as follows. Two motivating

datasets are described in Section 2. In Section 3 essential background

material on incomplete sufficient statistics is presented. The compound-

symmetry model is introduced in Section 4, and a review is provided of the

relevant incompleteness results from Hermans et al. (2017), together with

implications for likelihood-based estimation. Background from the pseudo-

likelihood-based split-sample method is given in Supplementary Material

Section S.4. A general split-sample approach to the CS model is provided

in Section 5, and a number of specific but practically relevant cases are

considered. Details about the specifics for the CS case are presented in Sec-

tion 6. Section 7 is dedicated to a simulation study, examining situations for

which there are no closed forms on the one hand, and studying numerical

performance (speed and convergence) on the other. The data, described in

Section 2, are analyzed in Section 8. Ramifications and recommendations
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for practice are offered in Section 9.

2. Developmental Toxicity Study Sets

Data from the Research Triangle Institute under contract to the Na-

tional Toxicology Program of the U.S.A. (NTP data), are analyzed. These

developmental toxicity studies investigate the effects in mice of three chem-

icals: di(2-ethylhexyl)phthalate (DEHP) (Tyl et al., 1988) ethylene glycol

(EG) Price et al. (1985), and diethylene glycol dimethyl ether (DYME)

Price et al. (1987). The studies were conducted in timed-pregnant mice dur-

ing the period of major organogenesis. The dams were sacrificed, just prior

to normal delivery, and the status of uterine implantation sites recorded.

The outcome of interest here is fetal weight. Summary data from the DEHP

trial are presented in Table 1. The design for EG and DYME is similar. It

is clear from the table that average litter size is depleted with increasing

dose, as is the average weight.

3. Incomplete Sufficient Statistics

A statistic k(Y ) of a random variable Y , with Y belonging to a family

Pθ, is complete if, for every measurable function g(·), independent of θ,

E[g{k(Y )}] = 0 for all θ, implies that Pθ[g{k(Y )} = 0] = 1 for all θ

(Casella and Berger (2001)). The Lehman-Scheffé theorem (Casella and

Berger (2001)) states that, if a statistic is unbiased, complete, and sufficient
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Table 1: Developmental Toxicity Study (DEHP). Summary data by dose group.

# dams with # live average

dose implants viable implants fetuses litter size weight

0 mg/kg/day 30 30 330 13.2 0.9483

44 mg/kg/day 26 26 288 11.1 0.9592

91 mg/kg/day 26 26 277 10.7 0.8977

191 mg/kg/day 24 17 137 8.1 0.8509

292 mg/kg/day 25 9 50 5.6 0.6906

for a parameter θ, then it leads to the best mean-unbiased estimator for

θ, while Basu’s theorem (Basu (1955)) has it that statistic that is both

boundedly complete and sufficient is independent of any ancillary statistic.

As has been shown in the sequential trial context, a lack of completeness

does not preclude the existence of estimators with very good properties

(Molenberghs et al. (2014)).

Liu and Hall (1999) established the incompleteness of the sufficient

statistic for a clinical trial with a stopping rule, for the case of normally

distributed endpoints. Liu et al. (2006) generalized this result to the entire

exponential family. Molenberghs et al. (2014) and Milanzi et al. (2016)

broadened it further to a stochastic rather than a deterministic stopping

rule, hence encompassing the case of a completely random sample size.

Indeed, it would seem at first sight that this latter case is standard, because
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the sample size is unrelated to the data, whether observed or not. Yet, even

in this case, completeness no longer holds. What is more, incompleteness

holds when the cluster size is non-constant for whatever reason.

4. The Compound-symmetry Model

Let Y be a vector of length n, with Y ∼ N(µ1n, σ
2In+dJn). In general,

both Y and n are random variables.

Suppose that there is a sample of N independent clusters, among which

K different cluster sizes nk (k = 1, . . . , K) are distinguished. Let the multi-

plicity of cluster size nk be equal to ck. Evidently, N =
∑K

k=1 ck. Denote the

outcome vector for the ith (i = 1, . . . , ck) replicate among the clusters of size

nk by Y
(k)
i . We first show incompleteness of the sufficient statistic, then

turn to likelihood estimation. For both, we start from the log-likelihood

function.

4.1 Incompleteness
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The data-dependent terms in the log-likelihood can be written as:

K∑

k=1

ck∑

i=1

−
1

2

(
Y

(k)
i − µ1nk

)
′ (

σ2Ink
+ dJnk

)
−1
(
Y

(k)
i − µ1nk

)

=
K∑

k=1

ck∑

i=1

−
1

2

(
Y

(k)
i − µ1nk

)
′

(
Ink

−
d

σ2 + nkd
Jnk

)(
Y

(k)
i − µ1nk

)

=

K∑

k=1

ck∑

i=1

µ

σ2 + nkd

(
nk∑

j=1

Y
(k)
ij

)
−

1

2σ2

(
K∑

k=1

ck∑

i=1

nk∑

j=1

Y
(k)2
ij

)

+

K∑

k=1

ck∑

i=1

d

2σ2(σ2 + nkd)

(
nk∑

j=1

Y
(k)
ij

)2

. (4.1)

The three terms in (4.1) are qualitatively different. Indeed, the middle one

corresponds to a single sufficient statistic, the sum of all squares across

clusters, while the first and last split into as many sufficient statistics as

there are unique cluster sizes.

Hermans et al. (2017) proved a characterization of incompleteness, es-

sentially stating that when the dimension of the sufficient statistic is larger

than the dimension of the parameter vector, the sufficient statistic is no

longer complete. More details can be found in Supplementary Materials

Section S1. This sharp division also occurs when studying certain proper-

ties of the maximum likelihood estimator.

4.2 Likelihood-based Estimation of the CS Model

Similar in spirit to (4.1), but now using all terms, the log-likelihood can
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be written as

`(µ, σ2, d) =
K∑

k=1

`k(µ, σ2, d), (4.2)

with the cluster size specific log-likelihood term

`k(µ, σ2, d) = −
1

2

ck∑

i=1

{
ln
[
σ2nk + nkσ

2(nk−1)d
]

+ (Y
(k)
i − µ1nk

)′
1

σ2

(
Ink

−
d

σ2 + nkd
Jnk

)
(Y

(k)
i − µ1nk

)

}
. (4.3)

Using derivations similar to those in Molenberghs et al. (2011), the clus-

ter size specific log-likelihood can be maximized analytically assuming that

there is a separate parameter per cluster size. By replacing `k(µ, σ2, d) by

`k(µk, σ
2
k, dk), we can consider the kernel of the log-likelihood, in general

for K cluster sizes, and allowing for the parameter vector to change with

cluster size:

`
(
{µk}k ,

{
σ2

k

}
k
, {dk}k

)
∝ −

1

2

K∑

k=1

ck∑

i=1

{ln |Σnk
|

+
(
y

(k)
i − µnk

)
′

Σ−1
nk

(
y

(k)
i − µnk

)}
, (4.4)

where µk = µk1nk
Σnk

= σ2
kInk

+dkJnk
. The score functions are presented in

Supplementary Materials Section S.2. Solving these score functions (S2.1)-
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(S2.3) leads to:

µ̂k =
1

cknk

ck∑

i=1

nk∑

j=1

Y
(k)

ij , (4.5)

σ̂2
k =

1

cknk(nk − 1)

(
nk

ck∑

i=1

Z
(k)′

i Z
(k)
i −

ck∑

i=1

Z
(k)′

i Jnk
Z

(k)
i

)
, (4.6)

d̂k =
1

cknk(nk − 1)

(
ck∑

i=1

Z
(k)′

i Jnk
Z

(k)
i −

ck∑

i=1

Z
(k)′

i Z
(k)
i

)
, (4.7)

where Z
(k)
i =

(
Y

(k)
i − µk1nk

)
.

When the cluster size is constant, the compound-symmetry model has

closed form ML estimators, given by (4.5)–(4.7). Closed-form estimators for

the variance-covariance matrix of the estimator exist as well (Molenberghs

et al. (2011)). For the mean, the variance is:

var(µ̂k) =
σ2

k + nkdk

cknk

. (4.8)

The expressions for the variance-covariance structure of (σ̂2
k, d̂k) is:

var




σ̂2
k

d̂k


 =

2σ4
k

cknk(nk − 1)




nk −1

−1
σ4

k
+2(nk−1)dkσ2

k
+nk(nk−1)d2

k

σ4

k


 . (4.9)

The mean parameter is independent of the variance components.

These results can be used when a separate parameter vector is estimated

for each of the cluster sizes and, as a special case, when there is only one

cluster size. Four features of use in what follows are: (a) there are closed
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forms; (b) the sufficient statistic is complete; (c) the estimator is unique

minimum variance unbiased; (d) the mean parameter estimator and the

variance parameter estimator are independent.

These results are lost when K ≥ 2. We briefly sketch the lack of closed-

form solutions in this case in Supplementary Materials Section S2.2.

The lack of a closed form is well known, but we highlight a few relevant

features here. More detail is given in Supplementary Materials Section S3,

where we show

µ̂ =

∑K

k=1
nkck

σ2+nkd
µ̂k

∑K

k=1
nkck

σ2+nkd

. (4.10)

Examining (4.10) suggests weighted averages:

µ̃ =
K∑

k=1

akµ̂k, σ̃2 =
K∑

k=1

bkσ̂2
k, d̃ =

K∑

k=1

gkd̂k. (4.11)

This idea is similar to that in Molenberghs et al. (2011), who split a sample

in sub-samples, analyzed each separately, and then combined the result in

an overall estimator. They considered splits in both dependent and inde-

pendent sub-samples. Dependent samples occur when very long sequences

of repeated measures are collected, which are then sub-divided for conve-

nience. This approach is not of use here. Independent samples arise when

there are many independent replicates, i.e., a large number of clusters. They

studied the CS case, but only for a single cluster size. The total number of
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clusters was then split into M parts comprising an equal number of clusters.

We modify these ideas to the case of unequal cluster sizes, with a variable

number of clusters per split.

5. Split-sample Methods for Clusters of Variable Size

The derivations are based on general pseudo-likelihood principles, re-

viewed in Supplementary Materials Section S4. We first make generic the

setting at the beginning of Section . Let there be a sample of N independent

clusters. Partition the sample into K sub-samples, with ck independent and

identically distributed clusters in sub-sample k; N =
∑K

k=1 ck. Y
(k)
i remains

the outcome vector for replicate i in sub-sample k.

Subjects in different sub-samples are allowed to have the same distribu-

tion, but subjects in the same sub-sample must have the same distribution.

This covers the running example of CS clusters, partitioned according to

cluster size. However, it is possible to further sub-divide such a sub-sample

in various sub-samples, all with the same cluster size. This is sensible, for

example, in very large databases. An extreme example follows when sub-

samples consist of a single independent replicate, useful, for example, in

a meta-analysis with large individual studies. This limiting situation can

also be considered with CS data, because all clusters (except those of size

1) contribute to all three parameters.
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Consider pseudo-likelihood in this general case (see also Eq. (S4.4)).

Assume that θ∗ is a vector of length p, and that each θk is a separate copy

of θ∗. Then it can be shown that the generic combination rules are

θ̃
∗

=

K∑

k=1

Akθ̂k, (5.1)

var(θ̃
∗

) =
K∑

k=1

AkVkA
′

k, (5.2)

with Vk = I0(θk)
−1. We use the symbol θ̃

∗

to emphasize that this is not

necessarily the maximum likelihood estimator even though, in our formal-

ism, θ̂k is the maximum likelihood estimator when restricting attention to

sub-sample k. Equation (5.2) is appropriate only when the weights Ak are

free of the parameters to be estimated. We return to this at the end of the

section.

Weighting Schemes Not every choice of the Ak leads to an unbiased

estimator. To enforce unbiasedness, consider the requirement

θ = E
(
θ̂
∗
)

=
K∑

k=1

AkE
(
θ̂k

)
=

(
K∑

k=1

Ak

)
θ,

whence Ip =
∑K

k=1 Ak. This requirement is satisfied for (S4.5). This sug-

gests two obvious choices:

Constant weights. Set Ak = (1/K)Ip.

Proportional weights. Set Ak = (ck/N)Ip.
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Constant weights are the clear choice when all subjects are i.i.d. and parti-

tioning is in sub-samples of equal size. Proportional weights are called for

in the i.i.d. case, with sub-samples of varying size.

Consider optimal weights through the objective function

Q =
K∑

k=1

AkVkA
′

k − Λ

(
K∑

k=1

Ak − Ip

)
,

where Λ is a matrix of Lagrange multipliers. Taking the first derivative of

Q w.r.t. Ak leads to Ak = ΛV −1
k /2. Because the Ak sum to the identity,

Λ = 2
(∑K

m=1 V −1
m

)
−1

and we have the following.

Optimal weights. These take the form:

Aopt
k =

(
K∑

m=1

V −1
m

)−1

V −1
k . (5.3)

With this choice, (5.1)–(5.2) become:

θ̃
∗

= θ̂
∗

=

(
K∑

k=1

V −1
k

)−1 K∑

k=1

V −1
k θ̂k, (5.4)

var(θ̃
∗

) = V =

(
K∑

k=1

V −1
k

)−1

. (5.5)

The optimal weights lead to the maximum likelihood estimator. To apply

the optimal weights in practice is typically not straightforward. A closed

form expression for the Vk does not always exist, and even if it did, as in the

CS case, it may depend on the unknown parameters. The optimal weights
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can suggest sensible choices and we describe a couple of these. They will

be illustrated in the next section for the CS case.

Scalar weights. While optimal weights may be unwieldy, one could

consider scalar weights by requiring the Ak to be diagonal. This implies

that each component of θ∗, θ∗r , say, is a linear combination

θ̃∗r =
K∑

k=1

ak,rθ̂k,r,

where then, formally, Ak = diag(ak,1, . . . , ak,p). The optimization route,

followed for unrestricted Ak, can then be followed component-wise as well.

Because the class of Ak over which to optimize is restricted, the resulting

optimum does not necessarily correspond to the maximum likelihood solu-

tion. The rationale for choosing this route is computational convenience,

and its advantages vary from problem to problem.

Iterated optimal weights. An iterative scheme can be followed:

1. Estimate θ̂k.

2. Compute an initial estimator for θ∗, θ∗(0), say, using a simple weight-

ing method, e.g., using constant or proportional weights.

3. Using the current parameter estimate, θ∗(t) say, calculate V
(t+1)
k .
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4. Determine:

θ∗(t+1) =

(
K∑

k=1

[
V

(t+1)
k

]
−1
)−1 K∑

k=1

[
V

(t+1)
k

]
−1

θ̂k.

5. Repeat steps 2–3 until convergence.

This scheme can always be followed and it has the advantage that the data

need only be analyzed once, to yield θ̂k. From this point on, calculations

involve algebraic expressions for the parameters only.

Approximate optimal weighting. Related to the previous method,

a non-iterative approximation consists of replacing Vk by Vk(θ̃k) in (5.4).

Here, θ̃k could be, for example, the sub-sample specific estimator θ̂k, or

the θ̃∗ obtained using a simple scheme, such as constant or proportional

weighting. This method avoids all further iteration, once the θk have been

determined.

Approximate optimal weighting is a method that could be considered

when the use of (5.2) might lead to underestimation of the variability, be-

cause the Ak now depend on the parameters estimated from stratum k. To

properly account for this extra source of uncertainty. Consider that

∂

∂θk

(Akθk) = Ak +

(
∂Ak

∂θk1

θk

∣∣∣∣ · · ·
∣∣∣∣
∂Ak

∂θkp

θk

)
, (5.6)

where θkj , j = 1, . . . , p ranges over the components of θk. Writing Wk =
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V −1
k for ease of notation,

∂Ak

∂θkj

= W−1 ∂Wk

∂θkj

(Ip − W−1Wk), (5.7)

with Ip the p-dimensional identity matrix. Plugging (5.7) into (5.6), the

proper delta-method approximation to the variance is

var(θ̃
∗

) '
K∑

k=1

(Ak + Bk)Vk(Ak + Bk)
′, (5.8)

with

Bk = (1′

p ⊗ Ip)(Ip ⊗ W−1)diag

(
∂Wk

∂θk1
, . . . ,

∂Ak

∂θkp

)[
Ip ⊗ (Ip − W−1Wk)θ

]
,

and ⊗ signifying Kronecker product.

6. Partitioned-sample Analysis for the Compound-symmetry Model

For the normal compound-symmetry model, a variety of options exists.

We sketch them here, and then consider some in greater detail.

Consider the i.i.d. case, where all clusters are of the same size. Full

maximum likelihood then leads to a closed-form solution. Molenberghs

et al. (2011) studied splitting the sample in dependent sub-samples for

this case, and showed that splitting leads to efficiency loss for the variance

components, but not for the mean. They split the sequences of repeated

measures in portions of equal size. Unequally sized splits could also be

considered, although the rationale for this may not be compelling. They
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did not consider splits in independent sub-samples. We do so here, in

Section 6.2, both for sub-samples of equal as well as for unequal size.

With variable cluster size, we know from Section 4.2 that full maximum

likelihood does not lead to a closed-form solution. We will study in more

detail the natural splitting into sub-samples of constant cluster size.

A special case, for both the i.i.d. and unequal cluster-size settings, is

the cluster-by-cluster analysis. We will apply our methodology, outlined in

Section 5, to this case, and contrast it with an ad hoc moment-based set of

estimators.

6.1 Variable Cluster Size

6.1.1 Optimal Weights

As we see in Section 6.1.3, scalar and optimal (hence, vectorized) weights

do not make a difference for the mean parameter, because of the indepen-

dence between the mean and the covariance parameters.

We can therefore consider the mean parameter separately from the co-

variance parameters. Let vk be the variance of the mean in stratum k, and

Vk the corresponding variance-covariance matrix for the variance compo-

nents. Applying optimal weight (5.3) to the mean produces

µ̃ =

(
K∑

k=1

cknk

σ̂2
k + nkd̂k

)−1 K∑

k=1

cknkµ̂k

σ̂2
k + nkd̂k

. (6.1)

The corresponding estimators for the variance components, specific to a
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cluster size, are given by (4.6) and (4.7). Using them, and expression (4.9)

for the variance, it follows that the optimal weighted estimator satisfies



σ̃2

d̃


 =

(
K∑

k=1

V −1
k

)−1 K∑

k=1




Qk

2cσ2

k

−
dk(2cσ2

k
+nk

cdk)

2cσ4

k
(cσ2

k
+nk

cdk)2
Rk

Rk

2(σ2

k
+nkdk)2


 , (6.2)

with Qk and Rk as in (S.9) and (S.10), respectively.

6.1.2 Iterated and Approximate Optimal Weights

Evidently, the principles of iterated and approximate optimal weights

can be applied here.

Replacing the variance components in (6.1) by their expectation leads

to:

µ̃ =

(
K∑

k=1

cknk

σ2 + nkd

)−1 K∑

k=1

cknkµ̂k

σ2 + nkd
. (6.3)

If we do the same for the mean, on both sides of the equality, we obtain

µ =

(
K∑

k=1

cknk

σ2 + nkd

)−1 K∑

k=1

cknkµ

σ2 + nkd
. (6.4)

Although (6.1) cannot directly be used, because of circularity, (6.3) and

(6.4) are available to us.

Replacing the variance components on the right hand side of (6.2) by

their expectations leads to



σ̃2

d̃


 =

(
K∑

k=1

V −1
k

)−1 K∑

k=1




Qk

2σ2 −
d(2σ2+nkd)

2σ4(σ2+nkd)2
Rk

Rk

2(σ2+nkd)2


 . (6.5)



CLUSTERS WITH UNEQUAL SIZE 23

Using their explicit expressions, and using the fact that the expectation

must be (σ2, d)′, (6.2) leads to the following identity:




σ2

d


 = V

K∑

k=1

cknk

2(σ2 + nkd)




σ2+(nk−1)d
σ2

1


 . (6.6)

Expressions (6.1) and (6.2) can be used for approximate weighting, by

plugging in, as is done, on the right hand side, the cluster-size specific mean

and variance components.

Expressions (6.3) and (6.5) can be used for iterated weighting. The

estimator for the mean depends on the variance components, but not vice

versa. This dependence is insightful: there is independence between mean

and variance components for every cluster-size specific stratum separately.

As a consequence, µ̃ on the one hand, and σ̃2 and d̃ on the other, can be

determined separately, provided the latter are done first.

Expressions (6.4) and (6.6) move beyond the previous schemes and

exist by virtue of their explicit expressions. In (6.6) an initial consistent

estimator for the variance components can be used on the right hand side.

Once the left hand side has been determined, the result can be plugged

in again on the right, until convergence. Once done, the final variance

component estimates can be used in (6.4) and the process repeated for µ,

until convergence.
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6.1.3 Scalar Weights

In this case, Ak equals diag(ak, bk, gk), with the scalars as in (4.11).

Obviously, the conditions for unbiased estimators are
∑K

k=1 ak =
∑K

k=1 bk =

∑K

k=1 gk = 1.

The stratum-specific estimators are given by (4.5)–(4.7) and their variance-

covariance structure by (4.8)–(4.9). The objective function to find the op-

timum is

Q =

K∑

k=1

a2
kvar(µ̂k) − λ

(
K∑

k=1

ak

)
.

Logic, similar to the vector case, and using the explicit expressions for the

variances, leads to:

ak =

cknk

σ2+nkd∑K

m=1
cmnm

σ2+nmd

=

cknk

(1−ρ)+nkρ∑K

m=1
cmnm

(1−ρ)+nmρ

, (6.7)

bk =
ck(nk − 1)∑K

m=1 cm(nm − 1)
, (6.8)

gk =

cknk

σ4

n
k
−1

+2σ2d+nkd2

∑K
m=1

cmnm

σ4

nm−1
+2σ2d+nmd2

=

cknk(nk−1)
(1−ρ)2+[2ρ(1−ρ)+nkρ2](nk−1)∑K

m=1
cmnm(nm−1)

(1−ρ)2+[2ρ(1−ρ)+nmρ2](nm−1)

,(6.9)

where ρ = d/(σ2 + d). Here, the coefficients depend on the parameters in

different ways. While bk is independent of the parameters, ak has denomi-

nators linear in σ2 and d (equivalently, in ρ), and gk has quadratic functions

instead.

These weights, like the optimal ones, depend on the parameters. Evi-
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dently, they can be made part of an iterative scheme, as with the vector-

valued weights. The added advantages are that matrix computations sim-

plify to scalar computations; for models with relatively few parameters, like

the one here, this is a small advantage. More importantly, approximations

can be considered for each parameter separately.

Direct calculations show that the variance for the weighted estimator

of the mean, using weights (6.7), is equal to that of maximum likelihood.

For this parameter, the weighted split-sample estimator is the maximum

likelihood estimator, in spite of the use of the scalar weight. This is to

be expected, because Vk is block-diagonal and because of independence

of the mean estimator from the variance components estimators within a

given cluster size. This implies that the optimally weighted estimator and

the scalar estimator coincide for the mean. They differ for the variance

components.

6.1.4 Approximate Optimal Scalar Weights

To illustrate the logic of this method, consider (6.7)–(6.9) for the case

where cluster sizes, for a good majority of the clusters, are sufficiently large.

Taking limits for nk → +∞ produces

aapp
k = gapp

k = ck/N. (6.10)

When this approximation is sensible, the very simple proportional weights
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follow. These approximations are exact, for ak and gk, when ρ = 1. They

deteriorate when ρ becomes smaller. For example, in case ρ = 0,

ak(ρ = 0) =
cknk∑K

m=1 cmnm

,

gk(ρ = 0) =
cknk(cknk − 1)∑K

m=1 cmnm(cmnm − 1)
≈

c2
kn

2
k∑K

m=1 c2
mn2

m

.

A reasonable approximation for bk is

bapp
k =

cknk∑K

m=1 cmnm

, (6.11)

which sets it equal to ak(ρ = 0). The information for σ2 is thus determined

more in terms of the number of measurements than in the number of clus-

ters. Dropping the nk from this formula is sensible only when cluster sizes

are not too different from one another.

Figure 1 depicts optimal scalar weights (6.7)–(6.9), alongside the appar-

ently simplistic proportional weights, for two of the five NTP datasets cho-

sen to represent two relatively different empirical cluster size distributions.

In both cases, there is a considerable range of cluster sizes, approximately

1 to 20. At the same time, the frequencies of the cluster sizes vary consid-

erably. The values for ak and gk are almost identical to the proportional

weights. While a small discrepancy for bk is noticeable, and understandable

in view of (6.11), the proportional weights seem to offer a sensible choice.

This issue will be examined further in the data-analytic Section 8.
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Figure 1: NTP Data. Scalar weights: proportional and optimal scalar versions

for EG and TGDM datasets. The optimal scalar weights are computed for ρ =

d/(σ2 + d) = 0.5.

6.2 The Special Case of Common Cluster Size, Splits of (Un)equal

Size

When nk ≡ n is constant, (6.7)–(6.9) reduce to:

ak = bk = gk = ck/N, (6.12)

Hence, while ak = bk reduce to proportional weights, for gk there is an im-
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pact of the partitioning structure. When, further, ck is constant, we obtain

ak = bk = gk = c/N = 1/K, and equal weights follow. The similarities and

the subtle differences with the results from Section 6.1.4 are worth pointing

out. Expressions (6.10) and (6.12) are identical except for the parameter

σ2.

6.3 Cluster-by-cluster Analysis

The expressions presented earlier in this section, using optimal weights

and variations on this theme, can be applied when the partitioning is as ex-

treme as possible: a single cluster per stratum. This sets ck ≡ 1. Evidently,

the nk will then no longer be unique, but that is immaterial; while we make

use of the fact that the cluster size is constant within a stratum, it does not

need to be different between strata. We examine this case in more detail in

Supplementary Materials Section S5.1. In particular, we derive under what

asymptotics such an estimator is consistent.

7. Simulation Study

A first, limited, simulation study was carried out to examine the be-

havior of the partitioning method. Details are given in Supplementary

Materials Section S6. Three settings were considered: (1) ck · nk is kept

constant with the factors taking different values; (2) ck is kept constant; (3)

nk is kept constant. For all of these, k goes from 1 to 4, so that there are
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four sub-samples. Apart from full likelihood, a series of weights was con-

sidered: equal, proportional to ck, size proportional to ck · nk, approximate

optimal, and iterated optimal.

From the results it is clear that equal weights are not a good choice.

For µ and d, proportional weights are excellent, while for σ2 so are the size

proportional weights. Iterated optimal weights perform considerably better

than approximate optimal weights, in the sense that the latter, like equal

weights, arguably should not be considered for practice. When comparing

iterated and approximate optimal weights, the former are more computa-

tionally intensive.

However, iterated optimal weights give results very close to proportional

weights (for µ and d) and to size proportional weights (for σ2). Importantly,

all of these results are very close to the ones obtained from maximum like-

lihood.

As a consequence, we have a simple, non-iterative set of weights at our

disposal, free of unknown parameters, with excellent performance.

A second simulation study compares the proposed methods to two al-

ternatives: full maximum likelihood and multiple imputation. Details are

reported in Supplementary Materials Section S7. The most striking con-

clusion is that closed-form solutions are much faster than their alternatives
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while, at the same time, yielding most precise results. The time gain of

our fastest method relative to standard maximum likelihood using PROC

MIXED ranges from 5 times to 30,000 times faster.

8. Analysis of Case Study

The data, introduced in Section 2, were analyzed in three ways. In Sec-

tion 8.1 maximum likelihood estimators are presented, with split sampling,

where splitting is by cluster size and using various weighting schemes. In

Section 8.2, a dose effect is added to these. Finally, the cluster-by-cluster

methodology of Section 6.3 is illustrated in Section 8.3.

8.1 Splitting by Cluster Size, No Dose Effect

Tables 2–4 present (restricted) maximum likelihood estimates (standard

errors), together with those from various weighted estimators. The standard

CS model is fitted to the fetal weight outcome, ignoring the dose effect.

Because there is an effect of dose on litter size, the mean is associated with

cluster size. It is therefore interesting to assess the impact of this on the

split-sample estimators, when compared to the MLEs.

The ML and REML are very similar, with equal point estimates for µ,

nearly equal estimates for σ2, and similar estimates for d. The equality for

the mean estimator is known for the CS case. The difference in the estimates

of σ2 arises because the denominator used in its calculation is, for ML, the
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Table 2: NTP Data (DEHP). Cluster-by-cluster analysis. Maximum likelihood

and weighted split-sample estimates (standard errors): (a) ML: maximum likeli-
hood; (b) REML: restricted maximum likelihood; (c) Prop.: proportional weights;

(d) Equal: equal weights; (e) Approx. sc.: like proportional weights, except that
for bk (6.11) is used; (f) Scalar: scalar weights, with the sub-sample specific

weights plugged in for the parameters figuring in the weights; (g) Opt.: opti-
mal weights, with the sub-sample specific weights plugged in for the parameters
figuring in the weights. Proper: proper variances for optimal weights

Optimal

Par. ML REML Prop. Equal Approx. sc. Scalar Simpl. Proper

Weighted [(S5.2)(S5.3)(S5.4)]

µ 0.90718 0.90716 0.90602 0.89558 0.90602 0.92080 0.92080

σ2 0.01877 0.01877 0.02122 0.02244 0.01895 0.01871 0.01246

d 0.01181 0.01195 0.00951 0.01016 0.00951 0.00085 0.00087

s.e.(µ̂) 0.01149 0.01155 0.01076 0.01360 0.01076 0.00766 0.00766 0.00766

s.e.(σ̂2) 0.00084 0.00084 0.00128 0.00199 0.00094 0.00092 0.00061 0.00138

s.e.(d̂) 0.00196 0.00199 0.00210 0.00293 0.00210 0.00048 0.00045 0.00340

Two-stage [(S5.2)(S5.7)(S5.8)]

µ 0.90718 0.90716 0.90602 0.89558 0.90602 0.92119 0.92119

σ2 0.01877 0.01877 0.01868 0.01931 0.01696 0.01679 0.01155

d 0.01181 0.01195 0.01204 0.01329 0.01204 0.00362 0.00376

s.e.(µ̂) 0.01149 0.01155 0.01169 0.01496 0.01169 0.00901 0.00901 0.00901

s.e.(σ̂2) 0.00084 0.00084 0.00092 0.00127 0.00074 0.00072 0.00057 0.02404

s.e.(d̂) 0.00196 0.00199 0.03045 0.02915 0.03045 0.02537 0.00087 0.27337

Unbiased two-stage [(S5.2)(S5.11)(S5.12)]

µ 0.90718 0.90716 0.90602 0.89558 0.90602 0.92195 0.92195

σ2 0.01877 0.01877 0.02122 0.02244 0.01895 0.01871 0.01244

d 0.01181 0.01195 0.01390 0.01609 0.01390 0.00448 0.00467

s.e.(µ̂) 0.01149 0.01155 0.01257 0.01679 0.01257 0.00958 0.00958 0.00958

s.e.(σ̂2) 0.00084 0.00084 0.00128 0.00199 0.00094 0.00092 0.00061 0.00172

s.e.(d̂) 0.00196 0.00199 0.00291 0.00447 0.00291 0.00101 0.00102 0.00634
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Table 3: NTP Data (EG). Cluster-by-cluster analysis. Maximum likelihood and

weighted split-sample estimates (standard errors): (a) ML: maximum likelihood;
(b) REML: restricted maximum likelihood; (c) Prop.: proportional weights; (d)

Equal: equal weights; (e) Approx. sc.: like proportional weights, except that for
bk (6.11) is used; (f) Scalar: scalar weights, with the sub-sample specific weights

plugged in for the parameters figuring in the weights; (g) Opt.: optimal weights,
with the sub-sample specific weights plugged in for the parameters figuring in the
weights. Proper: proper variances for optimal weights

Optimal

Par. ML REML Prop. Equal Approx. sc. Scalar Simpl. Proper

Weighted [(S5.2)(S5.3)(S5.4)]

µ 0.82952 0.82952 0.83342 0.84653 0.83342 0.84133 0.84133

σ2 0.00886 0.00886 0.00885 0.00899 0.00879 0.00878 0.00608

d 0.01704 0.01724 0.01606 0.01536 0.01606 0.01381 0.01408

s.e.(µ̂) 0.01402 0.01410 0.01393 0.01485 0.01393 0.01346 0.01346 0.01346

s.e.(σ̂2) 0.00041 0.00041 0.00046 0.00051 0.00044 0.00044 0.00031 0.00328

s.e.(d̂) 0.00265 0.00269 0.00264 0.00272 0.00264 0.00230 0.00230 0.00476

Two-stage [(S5.2)(S5.7)(S5.8)]

µ 0.82952 0.82952 0.83342 0.84653 0.83342 0.84100 0.84100

σ2 0.00886 0.00886 0.00803 0.00814 0.00802 0.00802 0.00559

d 0.01704 0.01724 0.01688 0.01621 0.01688 0.01476 0.01499

s.e.(µ̂) 0.01402 0.01410 0.01423 0.01522 0.01423 0.01379 0.01379 0.01379

s.e.(σ̂2) 0.00041 0.00041 0.00037 0.00041 0.00037 0.00037 0.00029 0.03410

s.e.(d̂) 0.00265 0.00269 0.02814 0.02555 0.02814 0.02632 0.00243 0.05214

Unbiased two-stage [(S5.2)(S5.11)(S5.12)]

µ 0.82952 0.82952 0.83342 0.84653 0.83342 0.83911 0.83911

σ2 0.00886 0.00886 0.00885 0.00899 0.00879 0.00878 0.00608

d 0.01704 0.01724 0.01857 0.01833 0.01857 0.01657 0.01684

s.e.(µ̂) 0.01402 0.01410 0.01493 0.01665 0.01493 0.01452 0.01452 0.01452

s.e.(σ̂2) 0.00041 0.00041 0.00046 0.00051 0.00044 0.00044 0.00031 0.00363

s.e.(d̂) 0.00265 0.00269 0.00302 0.00333 0.00302 0.00271 0.00271 0.00533
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Table 4: NTP Data (DYME). Cluster-by-cluster analysis. Maximum likelihood

and weighted split-sample estimates (standard errors): (a) ML: maximum likeli-
hood; (b) REML: restricted maximum likelihood; (c) Prop.: proportional weights;

(d) Equal: equal weights; (e) Approx. sc.: like proportional weights, except that
for bk (6.11) is used; (f) Scalar: scalar weights, with the sub-sample specific

weights plugged in for the parameters figuring in the weights; (g) Opt.: opti-
mal weights, with the sub-sample specific weights plugged in for the parameters
figuring in the weights. Proper: proper variances for optimal weights

Optimal

Par. ML REML Prop. Equal Approx. sc. Scalar Simpl. Proper

Weighted [(S5.2)(S5.3)(S5.4)]

µ 0.84142 0.84141 0.84108 0.84861 0.84108 0.90166 0.90166

σ2 0.01031 0.01031 0.01072 0.01071 0.01034 0.01031 0.00700

d 0.03657 0.03695 0.03102 0.03445 0.03102 0.00745 0.00755

s.e.(µ̂) 0.01926 0.01936 0.01780 0.02502 0.01780 0.01257 0.01257 0.01257

s.e.(σ̂2) 0.00044 0.00044 0.00052 0.00079 0.00047 0.00046 0.00033 0.00308

s.e.(d̂) 0.00529 0.00537 0.00570 0.01043 0.00570 0.00159 0.00159 0.00329

Two-stage [(S5.2)(S5.7)(S5.8)]

µ 0.84142 0.84141 0.84108 0.84861 0.84108 0.90009 0.90009

σ2 0.01031 0.01031 0.00975 0.00964 0.00945 0.00942 0.00650

d 0.03657 0.03695 0.03199 0.03552 0.03199 0.00836 0.00845

s.e.(µ̂) 0.01926 0.01936 0.01804 0.02535 0.01804 0.01297 0.01297 0.01297

s.e.(σ̂2) 0.00044 0.00044 0.00042 0.00059 0.00039 0.00039 0.00030 0.02568

s.e.(d̂) 0.00529 0.00537 0.03433 0.03113 0.03433 0.02215 0.00173 0.04036

Unbiased two-stage [(S5.2)(S5.11)(S5.12)]

µ 0.84142 0.84141 0.84108 0.84861 0.84108 0.89672 0.89672

σ2 0.01031 0.01031 0.01072 0.01071 0.01034 0.01031 0.00700

d 0.03657 0.03695 0.03690 0.04514 0.03690 0.01027 0.01037

s.e.(µ̂) 0.01926 0.01936 0.01937 0.02989 0.01937 0.01390 0.01390 0.01390

s.e.(σ̂2) 0.00044 0.00044 0.00052 0.00079 0.00047 0.00046 0.00033 0.00353

s.e.(d̂) 0.00529 0.00537 0.00718 0.01542 0.00718 0.00205 0.00205 0.00382
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total number of fetuses and, for REML, the same figure less one. For d, the

difference is in terms of the cluster sizes (division by ni or ni − 1), which is

more noticeable. All weighted estimators, except with equal weights, lead

to very similar point estimates; this is in line with the simulation results.

Even for equal weights, the difference is not worrisome. Proportional, equal,

and approximate scalar weights are parameter-free and depend at most on

the cluster size and/or the number of clusters per size. This explains why

these estimators yield standard errors similar to the likelihood-based ones.

Not surprisingly, because of their deviation from optimality, equal weights

lead to increased uncertainty.

For the scalar and optimal estimators two issues need to be borne in

mind. First, in principle they require knowledge of the true parameters.

In the absence of them, plug-in estimates were used. Because of the in-

dependence between mean and variance parameters, both methods pro-

duce the same results for µ. Also, the estimates for µ are similar to the

likelihood-based ones. For σ2, this scalar-weight method works better than

the optimal, matrix-based one. Because of their matrix nature, optimal

weights are less stable when approximated. The standard errors are un-

derestimated because uncertainty, stemming from plugging in the weights

is ignored when using the ‘simplified’ precision estimates. When rectified
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(‘proper’ weights), there is no difference for the mean parameter, because

the weights are parameter-free, but there is a strong difference for the vari-

ance components. Once the proper standard errors are calculated, it is

clear that there is information loss because of using plug-in estimates in the

weights, rather than the true ones.

8.2 Splitting by Cluster Size, With Dose Effect

While these results illustrate the explicit derivations with a constant

mean, the data analysis in Section 8.1 does not do full justice to the actual

design of the experiment, because the question of scientific interest is the

dose-response relationship. Let xi be the dose administered to cluster i,

taking one out of 4 to 5 values. The dose levels for the DEHP study are

given in Table 1. The model then is Y i ∼ N ({β0 + β1xi}1n, σ
2In + dJn).

Because the mean and covariance parameters are functionally and statisti-

cally independent within a sub-sample of constant cluster size, the consid-

erations presented for the constant-mean case will remain valid. The results

of fitting this extended model to the DEHP, EG, and DYME compounds,

under ML (and REML) on the one hand, and using split-sample method-

ology (with proportional, equal, and approximate scalar weights) on the

other, are presented in Table 5. The results are comforting, showing that

proportional and approximate scalar weights are a sensible choice. This is
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consistent with theoretical considerations, the simulations results, and the

analysis in Section 8.1.

8.3 Cluster-by-cluster Methods

We illustrate the cluster-by-cluster methods here. Results are presented

in Tables 2–4, for DEHP, EG, and DYME, respectively. For brevity, atten-

tion here is confined to the case of no dose effect.

We consider three alternatives. In all three, (S5.2) is used for the mean.

For the variance components, the pairs (S5.3)-(S5.4), (S5.7)-(S5.8), and

(S5.11)-(S5.12) are used, respectively. Because these expressions are de-

rived for a given cluster size, we need to supplement them with a weighting

method. For comparison, the same choices are made as reported in Ta-

bles 2–4.

Even though the same estimator per cluster size is used for the mean in

all three cases, the overall result is different for scalar and optimal weights

because these depend on the estimated variance components. A relatively

clear message is that proportional and approximate scalar weights show very

good performance. This is pleasing, because these weights are parameter-

free and hence easy to apply. As to which of the three versions is better

is less clear, this differs somewhat from compound to compound and from

parameter to parameter. All three show acceptable behavior. It is interest-
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Table 5: NTP Data (with dose effect). Splitting by cluster size. Maximum like-

lihood and weighted split-sample estimates (standard errors): (a) ML: maximum
likelihood; (b) REML: restricted maximum likelihood; (c) Prop.: proportional

weights; (d) Equal: equal weights; (e) Approx. sc.: like proportional weights,
except that for bk (6.11) is used.

Par. ML REML Prop. Equal Approx. sc.

DEHP

Interc. β0 0.96986 0.96987 0.95982 0.95269 0.95982

Dose eff. β1 -0.00077 -0.00077 -0.00042 -0.00029 -0.00042

σ2 0.01876 0.01876 0.02122 0.02244 0.01895

d 0.00772 0.00792 0.00538 0.00508 0.00538

s.e.(β̂0) 0.01343 0.01357 0.01343 0.01609 0.01343

s.e.(β̂1) 0.00012 0.00012 0.00014 0.00018 0.00014

s.e.(σ̂2) 0.00084 0.00084 0.00128 0.00199 0.00094

s.e.(d̂) 0.00136 0.00141 0.00137 0.00204 0.00137

EG

Interc. β0 0.94228 0.94229 0.94654 0.95320 0.94654

Dose eff. β1 -0.00009 -0.00009 -0.00010 -0.00010 -0.00010

σ2 0.00879 0.00879 0.00847 0.00847 0.00833

d 0.00745 0.00765 0.00625 0.00593 0.00625

s.e.(β̂0) 0.01453 0.01470 0.01389 0.01406 0.01389

s.e.(β̂1) 0.00001 0.00001 0.00001 0.00001 0.00001

s.e.(σ̂2) 0.00041 0.00041 0.00044 0.00049 0.00042

s.e.(d̂) 0.00126 0.00130 0.00108 0.00107 0.00108

DYME

Interc. β0 1.01875 1.01876 1.02364 1.03680 1.02364

Dose eff. β1 -0.00102 -0.00102 -0.00099 -0.00100 -0.00099

σ2 0.01032 0.01032 0.01072 0.01071 0.01034

d 0.00795 0.00813 0.00581 0.00631 0.00581

s.e.(β̂0) 0.01356 0.01370 0.01335 0.02000 0.01335

s.e.(β̂1) 0.00006 0.00006 0.00006 0.00007 0.00006

s.e.(σ̂2) 0.00044 0.00044 0.00052 0.00079 0.00047

s.e.(d̂) 0.00126 0.00130 0.00110 0.00205 0.00110
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ing to see that in some cases the cluster-by-cluster analysis is closer to ML

than the analyses based on splitting per cluster size. Computationally, this

approach allows for additional parallel processing, with all clusters analyzed

in parallel and the results then combined.

9. Ramifications and Concluding Remarks

We considered the simple but insightful case of clustered data with a

normal compound-symmetry structure and clusters of varying size. Here,

there is no closed-form maximum likelihood estimator and maximization

must proceed iteratively. Moreover, there is no uniform optimal unbiased

estimator and the MLE is only locally optimal.

When considering the collection of estimators obtained from analyzing

the data for each cluster size separately, the MLE for the entire dataset

is a vector linear combination of them, with the weights depending on the

parameters. Based on theoretical results and simulations, as well as on data

analysis, we found that equal weights and so-called approximately optimal

weights do not perform well. Iterated optimal and proportional weights

show excellent performance, and they are simple and parameter-free. One

refinement is that for the mean parameter and for the covariance term d

weights should be chosen proportional to the number of clusters of a par-

ticular size, ck, while for the measurement error variance σ2 proportionality
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is to the product of the number of clusters of a given size and the cluster

size, ck · nk.

While most of our development is based on the simple, three-parameter

compound-symmetry model, in the data analysis we considered a slightly

expanded setting, in which the mean takes the form of a regression function.

This suggests the use of our results in more elaborate settings, as long as

some form of exchangeability prevails. One such setting is the meta-analytic

evaluation of surrogate endpoints (Burzykowski, Molenberghs, and Buyse

(2005)), where two correlated endpoints rather than a single one are con-

sidered for each cluster (trial in this case). Admittedly, there may come a

point where distinguishing between parameters where it is difficult to de-

termine whether proportional weights or size proportional weights are to

be preferred. Based on our simulation results, it may then be sensible to

consider proportional weights for all parameters. In the case where clusters

take the form of trials, the number of trials may be relatively small, and

likely trial sizes are (almost) unique. Our split-sample method then implies

that each trial is first analyzed separately, with overall estimates taking the

form of linear combinations of trial-specific ones. To provide a formal basis

for this, we considered the important special case of a cluster-by-cluster

analysis. Such a method is consistent when the number of replicates per
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cluster (e.g., the number of patients per trial) increases more rapidly than

the number of trials. Such an assumption is not realistic in the develop-

mental toxicology setting considered in this paper, but may be sensible in

a meta-analysis of clinical trials.

When clusters are very large, it may be attractive to further sub-divide

them in sub-clusters. Such a splitting method was also considered by Molen-

berghs et al. (2011). Its use in our context would require further investiga-

tion.

In the NTP data, the observed cluster size is related to the dose ap-

plied. This suggests that it is useful to consider, at the same time, the

impact of dose on the outcomes (e.g., fetal weight) as well as on cluster

size. This brings us back to the informative cluster sizes mentioned in the

Introduction. While work has been done in this area, it is of interest to

combine the ideas developed in this paper with a model for cluster size.

Supplementary Materials

More detailed information can be found in thee accompanying Supple-

mentary Materials. Section S1 explains the incompleteness in the compound-

symmetry model based on the characterization of Hermans at al. (2017).

The resulting lack of closed-form solutions for MLE are outlined in Sec-

tion S2 and further calculations in Section S3. Background on the pseudo-
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likelihood-based split-sample method is given in Section S4. More on the

derivation of weights for the compound-symmetry case are given in Sec-

tion S5. Section S6 and S7 give more details about, respectively, a first and

second simulation study. Section S8 describes the use of R for the analysis

of the case study.
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València, Spain, 35–40.

Armitage, P. (1975) Sequential Medical Trials. Oxford: Blackwell.

Arnold, B.C. and Strauss, D. (1991) Pseudolikelihood estimation: some examples. Sankhya B

53, 233–243.

Barndorff-Nielsen, O. and Cox, D.R. (1984). The effect of sampling rules on likelihood statistics.

International Statistical Review, 52, 309–326.

Basu, D. (1955). On statistics independent of a complete sufficient statistic. Sankhya, 15, 377–

380.

Benhin, E., Rao, J.N.K., and Scott, A.J. (2005). Mean estimating equation approach to

analysing cluster-correlated data with nonignorable cluster sizes. Biometrika, 92, 435–450.

Boelaert, F., Biront, P., Soumare, B., Dispas, M., Vanopdenbosch, E., Vermeersch, J., Raskin,

A., Dufey, J., Berkvens, D., and Kerkhofs, P. (2000). Prevalence of bovine herpesvirus-1

in the Belgian cattle population. Preventive Veterinary Medicine, 18, 121–133.

Breslow, N.E. and Day, N.E. (1989). Statistical methods in cancer research. Volume 1 : The

analysis of case-control studies, International Agency for Research on Cancer, Scientific

Publications 32.

Burzykowski, T., Molenberghs, G., and Buyse, M. (2005). The Evaluation of Surrogate End-

points. New York: Springer.

Casella, G. and Berger, R.L. (2001). Statistical Inference. Pacific Grove: Duxbury Press.



REFERENCES43

Chiang, C-T., and Lee, K-Y. (2008). Efficient estimation methods for informative cluster size

data. Statistica Sinica, 18, 121–133.

Cong, X-J., Yin, G., and Shen, Y. (2007). Marginal analysis of correlated failure time data with

informative cluster sizes. Biometrics, 63, 663–672.

Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics. London: Chapman & Hall.

De Backer, M., De Keyser, P., De Vroey, C., and Lesaffre, E. (1996). A 12-week treatment for

dermatophyte toe onychomycosis: terbinafine 250mg/day vs. itraconazole 200mg/day–a

double-blind comparative trial. British Journal of Dermatology 134, 16–17.

Duchateau, L., Opsomer, G., Dewulf, J., and Janssen, P. (2005). The non-linear effect (deter-

mined by the penalised partial-likelihood approach) of milk-protein concentration on time

to first insemination in Belgian dairy cows. Preventive Veterinary Medicine, 68, 81–90.

Emerson, S.S. and Fleming, T.R. (1990). Parameter estimation following group sequential hy-

pothesis testing. Biometrika, 77, 875–892.

Fieuws, S. and Verbeke, G. (2006). Pairwise fitting of mixed models for the joint modelling of

multivariate longitudinal profiles. Biometrics, 62, 424–431.

Fieuws, S., Verbeke, G., Boen, F., and Delecluse, C. (2006). High-dimensional multivariate

mixed models for binary questionnaire data. Applied Statistics, 55, 1–12.

Follmann, D., Proschan, M., Leifer, E. (2003). Multiple outputation: Inference for complex

Clustered data by averaging analysis form independent data. Biometrics, 59, 420–429.



REFERENCES44

Grambsch, P. (1983). Sequential sampling based on the observed Fisher information to guarantee

the accuracy of the maximum likelihood estimator. Annals of Statistics, 11, 68–77.

Hermans, L., Molenberghs, M., Aerts, M., Kenward, M.G and Verbeke, G. (2014). A tutorial

on the practical use and implication of complete sufficient statistics. Submitted.

Hoffman, E.B., Sen, P.K., and Weinberg, C.R. (2001). Within-cluster resampling. Biometrika,

88, 1121–1134.

Horvitz, D.G. and Thompson, D.J. (1952). A generalization of sampling without replacement

from a finite universe. Journal of the American Statistical Association, 47, 663–685.

Hughes, M.D. and Pocock, S.J. (1988). Stopping rules and estimation problems in clinical trials.

Statistics in Medicine, 7, 1231–1242.

Kenward, M.G. and Molenberghs, G. (1998) Likelihood based frequentist inference when data

are missing at random. Statistical Science, 13, 236–247.

Laird, N.M. and Ware, J.H. (1982) Random effects models for longitudinal data. Biometrics,

38, 963–974.

Liu, A. and Hall, W.J. (1999). Unbiased estimation following a group sequential test. Biometrika,

86, 71–78.

Liu, A., Hall, W.J., Yu, K.F., and Wu, C. (2006). Estimation following a group sequential test

for distributions in the one-parameter exponential family. Statistica Sinica, 16, 165–81.

Little, R.J.A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the



REFERENCES45

American Statistical Association 88, 125–134.

Little, R.J.A. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika

81, 471–483.

Little, R.J.A., and Rubin, D.B. (2002). Statistical Analysis with Missing Data. New York: John

Wiley & Sons.

Lorenz, D.K., Datta, S. and Harkema, S.J. (2011). Marginal association measures for clustered

data. Statistics in Medicine, 30, 3181–3191.

Milanzi, E., Molenberghs, G., Alonso, A., Kenward, M.G., Tsiatis, A., Davidian, M., and

Verbeke, G. (2015). Estimation after a group sequential trial. Statistics in Biosciences,

7(2), 187–205.

Milanzi, E., Molenberghs, G., Alonso, A., Kenward, M.G., Verbeke, G., Tsiatis, A.A., and Da-

vidian, M. (2016). Properties of estimators in exponential family settings with observation-

based stopping rules. Journal of Biometrics & Biostatistics, 7, 272.

Molenberghs, G., Kenward, M.G., Aerts, M., Verbeke, G., Tsiatis, A.A., Davidian, M., Rizopou-

los, D. (2014). On random sample size, ignorability, ancillarity, completeness, separability,

and degeneracy: sequential trials, random sample sizes, and missing data. Statistical Meth-

ods in Medical Research, 23, 11–41.

Molenberghs, G., Verbeke, G. and Iddi S. (2011). Pseudo-likelihood methodology for partitioned

large and complex samples. Statistics and probability letters, 81, 892–901.



REFERENCES46

Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. New York:

Springer.

Neiswanger, W., Wang, C., and Xing, E. (2013). Asymptotically exact, embarrassingly parallel

MCMC. arXiv preprint arXiv:1311.4780

Patel, J.K. and Read, C.B. (1996). Handbook of the Normal Distribution. New York: Marcel

Dekker.

Price, C.J., Kimmel, C.A., George, J.D., and Marr, M.C. (1987). The developmental toxicity of

diethylene glycol dimethyl ether in mice. Fundamental and Applied Toxicology 8, 115–126.

Price, C.J., Kimmel, C.A., Tyl, R.W., and Marr, M.C. (1985). The developmental toxicity of

ethylene glycol in rats and mice. Toxicology and Applied Pharmacology 81, 113–127.

Roberts, D.T. (1992). Prevalence of dermatophyte onychomycosis in the United Kingdom: Re-

sults of an omnibus survey. British Journal of Dermatology 126 Suppl. 39, 23–27.

Rosner, G.L. and Tsiatis, A.A. (1988). Exact confidence intervals following a group sequential

trial: A comparison of methods. Biometrika, 75, 723–729.

Rotnitzky, A. (2009). Inverse probability weighted methods. In: Longitudinal Data Anal-

ysis (G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs eds.), 453–476.

CRC/Chapman & Hall, Boca Raton.

Rubin, D.B. (1974). Estimating causal effects of treatments in randomized and non-randomized

studies. Journal of Educational Psychology, 66, 688–701.



REFERENCES47

Rubin, D.B. (1976). Inference and missing data. Biometrika 63, 581–592.

Scott, S.L., Blocker, A.W., Bonassi, F.V., Chipman, H.A., George, E.I., and McCulloch, C.E.

(2013). Bayes and big data: The consensus Monte Carlo algorithm. In: Proceedings of he

EFaBBayes 250 Conference, 16.

Siegmund, D. (1978). Estimation following sequential tests. Biometrika, 64, 191–199.

Sikorska, K., Lesaffre, E., Groenen, P.F.J., and Eilers, P.H.C. (2013). GWAS on your notebook:

fast semi-parallel linear and logistic regression for genome-wide association studies. BMC

bioinformatics, 14, 166.

Tsiatis, A.A., Rosner, G.L., and Mehta, C.R. (1984). Exact confidence intervals following a

group sequential test. Biometrics, 40, 797–803.

Todd, S., Whitehead, J., and Facey, K.M. (1996). Point and interval estimation following a

sequential clinical trial. Biometrika, 83, 453–461.

Tyl, R.W., Price, C.J., Marr, M.C., and Kimmel, C.A. (1988). Developmental toxicity evaluation

of dietary di(2-ethylhexyl)phthalate in Fischer 344 rats and CD-1 mice. Fundamental and

Applied Toxicology 10, 395–412.

Varin, C., Reid, N., and Firth, D. (2011). An overview of composite likelihood methods. Statis-

tica Sinica, 21, 5–42.

Van der Elst, W., Hermans, L., Verbeke, G., Kenward, M., Nassiri, V. and Molenberghs, G.

(2015). Unbalanced cluster sizes and rates of convergence in mixed-effects models for clus-



REFERENCES48

tered data. Journal of Statistical Computation and Simulation, 86(11), 1–17.

Vansteelandt, S., Carpenter, J.R., and Kenward, M.G. (2010) Analysis of incomplete data using

inverse probability weighting and doubly robust estimators Methodology, 6, 37–48.

Verbeke, G., and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New

York: Springer.

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statis-

tics, 16, 117186.

Wang, M., Kong, M., and Datta, S. (2011). Inference for marginal linear models for correlated

longitudinal data with potentially informative cluster sizes. Statistical Methods in Medical

Research, 20, 347–367.

Whitehead, J. (1999). A unified theory for sequential clinical trials. Statistics in Medicine, 18,

2271–2286.

Williamson, J.M., Datta, S., and Satten, G.A. (2003). Marginal analyses of clustered data when

cluster size is informative. Biometrics, 59, 36–42.

Lisa Hermans, I-BioStat, Universiteit Hasselt, B-3590 Diepenbeek, Belgium

E-mail: lisa.hermans@uhasselt.be

Vahid Nassiri, I-BioStat, KU Leuven, B-3000 Leuven, Belgium

E-mail: vahid.nassiri@kuleuven.be

Geert Molenberghs, I-BioStat, Universiteit Hasselt, B-3590 Diepenbeek, Belgium; I-BioStat,



REFERENCES49

KU Leuven, B-3000 Leuven, Belgium

E-mail: geert.molenberghs@uhasselt.be

Michael G. Kenward, Selkirk, United Kingdom

E-mail: mg.kenward@outlook.com

Wim Van der Elst, Janssen Pharmaceutica, B-2340 Beerse, Belgium

E-mail: wim.vanderelst@gmail.com

Marc Aerts, I-BioStat, Universiteit Hasselt, B-3590 Diepenbeek, Belgium

E-mail: marc.aerst@uhasselt.be

Geert Verbeke, I-BioStat, KU Leuven, B-3000 Leuven, Belgium; I-BioStat, Universiteit Hasselt,

B-3590 Diepenbeek, Belgium

E-mail: geert.verbeke@kuleuven.be


