
Querying Large Treebanks: Benchmarking GrETEL Indexing

Bram Vanroy∗ Bram.Vanroy@UGent.be
Vincent Vandeghinste∗∗ Vincent.Vandeghinste@kuleuven.be
Liesbeth Augustinus∗∗ Liesbeth.Augustinus@kuleuven.be

∗Language and Translation Technology Team (LT3), Ghent University, Belgium
∗∗Centre for Computational Linguistics, KU Leuven, Belgium

Abstract
The amount of data that is available for research grows rapidly, yet technology to efficiently
interpret and excavate these data lags behind. For instance, when using large treebanks for
linguistic research, the speed of a query leaves much to be desired. GrETEL Indexing, or GrInding,
tackles this issue. The idea behind GrInding is to make the search space as small as possible before
actually starting the treebank search, by pre-processing the treebank at hand. We recursively
divide the treebank into smaller parts, called subtree-banks, which are then converted into database
files. All subtree-banks are organized according to their linguistic dependency pattern, and labeled
as such. Additionally, general patterns are linked to more specific ones. By doing so, we create
millions of databases, and given a linguistic structure we know in which databases that structure
can occur, leading up to a significant efficiency boost. We present the results of a benchmark
experiment, testing the effect of the GrInding procedure on the SoNaR-500 treebank.

1. Introducing GrETEL

GrETEL (Greedy Extraction of Trees for Empirical Linguistics) is a linguistic search engine that
makes it possible to query syntactically annotated corpora or treebanks in a user-friendly way.1
Linguists often make use of corpora to obtain empirical evidence or to gather quantitative information
for their research. While treebanks are of special interest for syntactic research, some linguists
are a bit deterred to use them because of their high threshold of exploitation, due to the limited
user-friendliness of the search tools and the lack of standardization in grammatical framework,
formalism, and query languages. GrETEL aims to overcome those issues.

GrETEL is an online system, which has the advantage that it is platform-independent and does
not require any local installation of treebanks nor parsers. Other online treebanking platforms that
share these advantages include INESS-Search (Meurer 2012), TüNDRA (Martens 2013), and PaQu
(Odijk 2015). The key difference between GrETEL and those other search tools is that GrETEL
offers example-based querying. Linguists tend to use example sentences as a starting point for their
research. In GrETEL, they can use those examples as input to begin the treebank search.

GrETEL offers two modes to query a treebank: via a natural language example or via an XPath
query.2 Its architecture is illustrated in Figure 1.

The first mode to query a treebank is the example-based querying method. First, the user
provides an example construction containing the phenomenon under investigation. Second, the
input is syntactically analyzed with the Alpino parser (van Noord 2006). Third, the user indicates
which parts of the example sentence are important for the treebank search and which information of
each part has to be included (lemma, POS, token). This information is automatically converted into
an XPath expression, which can be used to query the treebank. The generated XPath expression
may be further adapted by the user. Fourth, the user selects the treebank(s) that should be queried.

1. The latest version of the tool is available via http://gretel.ccl.kuleuven.be.
2. https://www.w3.org/TR/xpath

http://gretel.ccl.kuleuven.be
https://www.w3.org/TR/xpath

Figure 1: Architecture of GrETEL

Fifth, a query overview is given. In the sixth and final step, the actual treebank search is performed
and the results, if any, are presented to the user.

The second method to query a treebank with GrETEL is by entering an XPath query straight
away. This is a more flexible query method, but it requires that the user masters this formal query
language. Because our pre-processing step creates millions of databases, as will be discussed in

section 3, we chose BaseX3 as our database system. BaseX is an XML database that scales very
well, which means that it is able to deal with large corpora or large quantities of XML files. For a
more detailed description of the GrETEL work flow, cf. the examples in Augustinus et al. (2012)
and Augustinus et al. (in press).

2. Querying large treebanks

The first and second version of GrETEL enabled users to query the CGN Treebank (van der Wouden
et al. 2002) for spoken Dutch and the LASSY Small treebank (van Noord et al. 2013) for written
Dutch. Those treebanks each contain circa one million words. The annotations of these corpora
are manually verified, which makes the treebanks a valuable resource for linguistic research. The
relatively small size of the treebanks is a downside, however; if one is looking for rare phenomena,
only a handful or no results can be found. The construction of (very) large, automatically created
treebanks offers a solution to this problem. The SoNaR treebank was created during the Lassy
project (van Noord et al. 2013), and is part of the Lassy Large treebank.4 It consists of the SoNaR
corpus (Oostdijk et al. 2013) (500 million words of Dutch text), parsed with the Alpino parser.

There are several tools and databases available to query flat (raw or POS-tagged) large corpora,
such as the OpenSonar project (Reynaert et al. 2014), some of which scale up well even if billions of
words are included in the data, see for instance the English corpora available via http://corpus.
byu.edu . In contrast, making large treebanks searchable online in reasonable time is still a nontrivial
task, at least if one allows querying for entire tree structures, rather than doing a string search or
querying basic head-dependent relations. At our first attempt towards including the SoNaR treebank
in GrETEL we bumped into scalability issues, especially with respect to query times. As a solution,
we came up with GrInding, an indexing system for treebanks.

3. The concept of GrInding

We scale up syntactic search from a medium size treebank (circa one million words) to a very
large treebank (circa 500 million words), using a method called GrETEL Indexing or GrInding
(Vandeghinste and Augustinus 2014). Here, we describe the updated version of GrInd. Conceptually
it is similar to the method described in Vandeghinste and Augustinus (2014) with some modifications
such as an added parameter (cf. Item 1), and some bug fixes.

The general idea behind this approach is to make the search space as small as possible before
starting the actual treebank search. In other words, if you know under which tree to find the pot
of gold, you do not need to cut down the whole forest. We transpose this to a scenario where the
pot of gold is the collection of XML structures matching the input query by organizing (sub)trees
according to the syntactic pattern they contain. If you know in which database the results are stored
by analyzing the input query, you do not have to look in the irrelevant databases, which saves a lot
of search time.

The XML representation of each sentence in the treebank is recursively divided into its bottom-up
subtrees, i.e. all subtrees that have lexical elements in their terminal nodes. We organize the data
into databases that contain all bottom-up subtrees for which the two top levels (i.e. the root and its
children) adhere to the same syntactic pattern. As an example, consider the parse tree in Figure 2.
In a top-down fashion, we take for each node all the bottom-up subtrees. For instance, the subtree
generation for the node ––|smain is illustrated in Figure 3. GrInding the ––|smain node results in
seven subtrees: one with three children (Figure 3a), three with two children (Figure 3b-d), and three
with one child node (Figure 3e-g). This procedure is applied recursively for every node in the parse

3. http://basex.org
4. According to https://www.let.rug.nl/vannoord/Lassy/ Lassy Large is a 700 million word corpus with auto-

matically assigned syntactic annotations. Lassy Large contains, amongst other corpora, the SONAR500 corpus,
consisting of 41 million sentences, 510 million tokens.

http://corpus.byu.edu
http://corpus.byu.edu
http://basex.org

tree. To avoid unnecessary computations we have added some parameters to the GrInd process
to filter out subtrees that have dimensions that exceed our needs, or that are simply unrealistic,
indicating a faulty parse attempt. The parameters are:

(1) a. $maxWidth=20 is the maximum amount of daughters a root node can govern. It is
currently set to 20 as we believe it is unlikely that GrETEL users will look for subtrees
with a root node that has more than 20 children.

b. $maxChildrenSubtree=7 sets a ceiling for the length of the breadth-first pattern. Whereas
$maxWidth limits the size of the (sub)tree, $maxChildrenSubtree puts a restraint on
the size of the generated patterns for that tree. In practice this means that a tree
with 20 daughters is included in the searchable data, but you can only query it with
a breadth-first pattern of seven nodes at most. This parameter has only recently been
added. Previous versions of GrInd as discussed in Vandeghinste and Augustinus (2014)
did not have this constraint. By adding the parameter we decrease the processing needed
(as the possible combinations of the subtree’s children are greatly reduced) without hav-
ing a large effect on the querying options: as long as a user does not exceed a query
that implies a breadth-first pattern with more than seven children, the subtree can be
found. Note that this does not mean that the input XPath can only contain seven nodes
in total. It means that the XPath code can only contain seven nodes at the second level.

c. $maxDescendants=1000 is limiting the number of descendants (nodes) in a tree, not
GrInding the tree if it has more than n descendants. This variable is a safety net;
$maxWidth and $maxChildrenSubtree already put restrictions on the outcome of GrInd-
ing but $maxDescendants makes sure that extreme outliers (most probably parsing er-
rors) are excluded as well.

top
top

––
smain

obj1
np

mod
pp

obj1
n

grootmoeder
grootmoeder

hd
vz
van
van

hd
n

koek
koekjes

det
lid
de
de

hd
ww
eten
eet

su
np

hd
n

man
man

mod
adj
groot
grote

det
lid
de
de

Figure 2: Parse tree of the sentence De grote man eet de koekjes van grootmoeder ‘The tall man eats
grandmother’s biscuits’

(a)
––

smain

obj1
np

mod
pp

obj1
n

grootmoeder
grootmoeder

hd
vz
van
van

hd
n

koek
koekjes

det
lid
de
de

hd
ww
eten
eet

su
np

hd
n

man
man

mod
adj
groot
grote

det
lid
de
de

(b)
––

smain

hd
ww
eten
eet

su
np

hd
n

man
man

mod
adj
groot
grote

det
lid
de
de

(c)
––

smain

obj1
np

mod
pp

obj1
n

grootmoeder
grootmoeder

hd
vz
van
van

hd
n

koek
koekjes

det
lid
de
de

su
np

hd
n

man
man

mod
adj
groot
grote

det
lid
de
de

(d)
––

smain

obj1
np

mod
pp

obj1
n

grootmoeder
grootmoeder

hd
vz
van
van

hd
n

koek
koekjes

det
lid
de
de

hd
ww
eten
eet

(e)
––

smain

su
np

hd
n

man
man

mod
adj
groot
grote

det
lid
de
de

(f)
––

smain

hd
ww
eten
eet

(g)
––

smain

obj1
np

mod
pp

obj1
n

grootmoeder
grootmoeder

hd
vz
van
van

hd
n

koek
koekjes

det
lid
de
de

Figure 3: Subtree generation for the node subtree generation for the node ––|smain of the parse
tree in Figure 2

For every extracted subtree, we convert the children of the root into a string-based breadth-first
pattern, after Vandeghinste and Martens (2010). The pattern of each subtree is determined by its
two topmost levels, i.e. the top and its child nodes. For each of the child nodes the dependency
relation and the syntactic category (for non-terminals) or the POS tag (for terminal nodes) are joined
by a %-sign, e.g. su%np, hd%ww for the subtree in Figure 3b. The strings of all child nodes are then
sorted alphabetically and concatenated with an underscore separator (e.g. hd%ww_su%np). Finally,
the topmost node’s category is prepended to the whole string (e.g. smainhd%ww_su%np). Next, all
subtrees are organized according to their syntactic breadth-first pattern per corpus component. All
subtrees matching the same pattern are placed into the same file, adding the sentence identifiers
indicating where these subtrees come from. Each file is then put into a separate database.

Each subtree has some syntactic (breadth-first) pattern A, B, . . . Z. By grouping all subtrees with
an identical pattern, we can create databases A, B, . . . Z that only contain subtrees with the patterns
A, B, . . . Z respectively. If a user then searches for an input example that agrees with pattern B,
the database software can immediately start looking in database B without having to look in A, or
in any other database. This way, the search space is immediately cut down to a manageable size.

As SoNaR is a huge treebank it is not surprising that it contains a massive amount of different
syntactic patterns. In total, more than 17 million databases are created.

We implemented a mechanism to avoid an even bigger explosion of the data, i.e. the concept
of includes. We explain this idea by giving an example. The subtree in 2a is a tree representation
of an input query where a user looks for a noun phrase consisting of a determiner that has to be
the Dutch word de ‘the’ and any noun. This tree can be generalized as the breadth-first pattern
in 2b and can be found in the treebank by means of the XPath code in 2c. In other words, the
breadth-first pattern is not identical to the XPath structure, but merely a generalization of it. Noun
phrases with a determiner, any noun, and any modifying prepositional phrase such as the subtree
in (3a) (corresponding to the pattern in (3b)) should also be found by the XPath structure in (2c),
because the former also contains a noun phrase with de ‘the’ and any noun, and adds a prepositional
phrase. In other words, subtree (3a) extends subtree (2a). More specific patterns are included
in more general patterns, so the noun phrases containing a determiner, a noun, and prepositional
phrase should be included in the database of NPs with only a determiner and a noun. In order to
avoid duplication of the data this is done by placing a reference to the database of the larger pattern
(the include) in the database of the smaller pattern, rather than copying all the patterns.

(2) a.
np

hd
n

det
lid
de
de

b. npdet%lid_hd%n

c. //node [@cat="np" and node [@rel="det " and @pt=" l i d " and
@word="de" and @lemma="de "] and node [@rel="hd" and @pt="n "]]

(3) a.
np

mod
pp

hd
vz

hd
n

det
lid
de
de

b. npdet%lid_hd%n_mod%pp

The code example in Figure 4 shows part of the database file for npdet%lid_hd%n in the treebank
component WR-P-E-E.

<tr e e id="WR−P−E−E−0000000018.p . 2 . s .1">
<node begin="13" cat="np" end="15" id="24" po s i t i o n="0" r e l="su">

<node begin="13" end="14" frame="determiner (de) " id="25" i n f l ="de"
l c a t="detp" lemma="de" lwtype="bep" naamval="stan " npagr="r e s t "
pos="det " postag="LID(bep , stan , r e s t) " pt=" l i d " r e l="det "
root="de" sense="de" word="de"/>

<node begin="14" end="15" frame="noun (de , count , p l) " gen="de"
g e t a l="mv" graad="ba s i s " id="26" l c a t="np"
lemma="vertaa lcomputer " ntype="soo r t " num="pl " pos="noun"
postag="N(soort ,mv, ba s i s) " pt="n" r e l="hd"
root="vertaal_computer " sense="vertaal_computer "
word="vertaa lcomputers"/>

</node>
</tree>
<inc lude f i l e ="npdet%lid_hd%n_mod%pp"/>

Figure 4: XML containing subtrees from the WR-P-P-E npdet%lid_hd%n database

If a user looks for an input example which is transformed from the subtree (2a) into the XPath
code in (2c), GrETEL converts this structure into the breadth-first pattern (2b). BaseX opens the
database corresponding to this pattern and looks for all subtrees that agree with the XPath code.

After finding all possible subtrees that match the pattern in (2a) specifically, an <include> tag
is found which indicates that another database exists with an extended pattern, which also matches
the query in (2c). BaseX is then instructed to keep digging in the database(s) of the corresponding
include(s). First it looks for matching subtrees, and then it checks whether there are any additional
includes in that database. This process is repeated recursively until no more includes are found.
Subtrees that are found in the database matching pattern (3b) also match the pattern in (2b), but
subtrees residing in database (2b) do not agree with the (extended) pattern in (3b): an NP consisting
of a determiner and a noun is contained in an NP with a determiner, a noun, and a PP as children,
but not vice versa.

When the complete treebank has been GrInded, the created files still need to be regularised. The
new files are not valid XML yet because we have always appended new subtrees or includes, but
there is no root element. For each GrInd file, a new root treebank is created, which consists of two
daughter nodes: trees and includes. The generated subtrees and includes are then put in their
respective parent node. As a result, the GrInd files are turned into valid XML.

As a consequence of how a GrInded corpus is built, it is not possible to add newly GrInded
trees to an already GrInded corpus or update existing trees. Because the GrInd files contain all
subtrees of a specific pattern, it is not straightforward to update a single subtree in that file from
a file manipulation perspective. Also, if a tree changes and a breadth-first pattern does not exist
anymore in one of its subtrees, it is not easy to find the file that contains the now obsolete subtree
and remove subtree from it. Furthermore, trying to update the GrInd files would also mean that
they need to be regularised again, or de-regularised and regularised again. Even if updating the
GrInd files themselves would work, it still would not be a trivial task to update the created BaseX
databases. If the complete treebank should not be imported completely from the start to save time,

it should be known which files have been adapted as well which files can be deleted. Only then
a successful update to BaseX is possible. All of this to say, that updating an existing, GrInded
treebank is not trouble free.

The GrInding process can be summed up as follows: first each individual XML tree (correspond-
ing with a sentence) is recursively divided into bottom-up subtrees. To each subtree we then add
a reference (id attribute) to the sentence it belongs to so the entire sentence can be retrieved (cf.
Figure 4). These subtrees are then converted into a breadth-first pattern. Next, each subtree is
assigned to an XML file which contains all subtrees that adhere to the same breath-first pattern.
Finally, if one pattern is actually an extended version of another, a reference to the database of the
larger, more specific pattern is included in the smaller one.

4. Benchmarking GrInd

In theory the GrInding process is an effective way to reduce the search space. However, having
millions of databases also requires the database system to make a tremendous amount of sequential
connections which might have a negative influence on the query time. In order to measure the
impact of the GrInding process (positive or negative), a benchmark was set up. As described in
section 4.1, 97 queries were selected to compare the querying speed of the baseline version and the
GrInded version of the SoNaR treebank. By selecting a variety of XPath structures it is possible to
investigate on which type of queries the GrInding process has the largest or the smallest impact.

In section 3 the GrInding process was explained. It results in millions of databases corresponding
to the syntactic breath-first patterns of the bottom-up subtrees. The baseline version of SoNaR has
not been GrInded but it does not exist of a single database either. Each component is split up into
files, so-called treebank parts, of about 10,000 sentences each.5 This implies that the baseline version
also has to make multiple database connections. To give an idea of the scale: the largest component of
SoNaR (WR-P-P-G) contains 14,974,007 sentences, which comes down to 1506 databases (treebank
parts) in the baseline version whereas the GrInded version is divided over 4,032,557 databases
(breadth-first patterns). We could have merged all treebank parts for each component into one large
XML file per component to present the baseline. However, we chose to use the data as provided to
us to show the difference in performance in a real-world application. Table 1 provides an overview of
the number of baseline databases, GrInded databases, sentences and tokens per treebank component.
We will come back to the description of the SoNaR-corpus in subsection 4.3.

In this section we will discuss how we created a test set of XPath codes (4.1), followed by a
number of points of interest that needed to be considered when writing the benchmark script (4.2).
Next we will go over the set-up of the benchmark test (4.3).

4.1 Creating a test set

In order to build a test set for the benchmarking experiment, we use the logs of GrETEL as a starting
point. GrETEL’s input is (anonymously) logged since November 2014. The analysis of the XPath
queries from the logs shows that about 95% of the queries include patterns that are no more than
six levels deep, nor contain more than 14 nodes in total. We have used this range as a representative
restriction on the test set, so only patterns within this range are included; we want to see how well
GrInd performs on our systems with the most frequent queries. However, this does not imply that
GrInd only works on this restricted set of XPath queries. In section 4.2 we discuss the restrictions
for the XPath that can be efficiently queried in a GrInded corpus. Below, we give an example of an
XPath pattern of depth six (4a), and an example with 14 nodes (5a).

The latter query contains an internal structure that is not present in the former: number(@begin)
< number(X). This piece of code ensures that the value of the begin attribute of the current node is

5. This is how the treebank is delivered to us by the TST-centrale, and is probably the size of the batches that were
sent to the high performance cluster for parallel parsing these large volumes.

component contents baseline dbs grind dbs sentences tokens

WR-P-E-A Discussion lists 441 2,831,430 4,396,361 56,973,211

WR-P-E-C E-magazines 56 637,565 551,343 8,625,948

WR-P-E-E Newsletters 1 2 096 115 1917

WR-P-E-F Press releases 2 638,363 18,373 332,766

WR-P-E-G Subtitles 409 651,365 3,925,834 28,209,131

WR-P-E-H Teletext pages 5 75,938 40,715 448,865

WR-P-E-I Websites 23 233,225 205,037 3,111,568

WR-P-E-J Wikipedia 136 1,002,855 1,355,061 22,976,434

WR-P-E-K Blogs 1 54,225 8616 139,765

WR-P-E-L Tweets 333 – 2,636,866 23,197,200

WR-P-P-B Books 209 1,434,868 1,710,131 26,184,247

WR-P-P-C Brochures 10 172,004 74,921 1,213,301

WR-P-P-D Newsletters 1 19,817 2185 33,529

WR-P-P-E Guides & manuals 3 41,166 19,077 236,070

WR-P-P-F Legal texts 67 391,066 650,509 10,689,681

WR-P-P-G Newspapers 1506 4,032,557 14,974,007 211,659,990

WR-P-P-H Periodicals & magazines 551 2,733,406 5,476,086 93,023,716

WR-P-P-I Policy documents 44 698,337 387,534 8,711,354

WR-P-P-J Proceedings 2 73,244 16,938 314,025

WR-P-P-K Reports 11 354,737 93,565 2,218,223

WR-U-E-A Chats 188 – 2,387,147 11,873,184

WR-U-E-D SMS 13 – 101,116 723,876

WR-U-E-E Written assignments 3 80,059 23,498 357,947

WS-U-E-A Auto cues 217 894,465 2,163,661 28,086,331

WS-U-T-B Texts for the visually impaired 5 163,762 44,866 674,966

TOTAL 4237 17,216,550 41,263,562 540,017,245

Table 1: Overview of the amount of databases in the SoNaR-500 treebank

smaller than the begin value of node X. In other words, the pattern has a fixed order where the current
node needs to be in front of the node specified by X. The option to search for a fixed-order construction
is available in the example-based search mode of GrETEL. Queries without this order constraint,
such as (4a), do not take into account the order of the nodes. For both XPath constructions, the
breadth-first pattern is given as an additional example of the process.

(4) a. //node [@cat="smain" and node [@rel="mod" and @cat="pp" and
node [@rel="hd" and @pt="vz "] and node [@rel="obj1 " and
@cat="np" and node [@rel="det " and @pt=" l i d "] and
node [@rel="hd" and @pt="n "]]] and node [@rel="hd" and
@pt="ww"] and node [@rel="su" and @pt="vnw"] and
node [@rel="obj2 " and @cat="np" and node [@rel="det " and
@pt=" l i d "] and node [@rel="hd" and @pt="n "]] and
node [@rel="obj1 " and @cat="np" and node [@rel="det " and
@pt=" l i d "] and node [@rel="hd" and @pt="n "]]]

b. smainhd%ww_mod%pp_obj1%np_obj2%np_su%vnw

(5) a. //node [@cat="pp" and node [@rel="hd" and @pt="vz" and
number (@begin) < number (. . / node [@rel="obj1 " and
@cat="np "]/ node [@rel="mod" and @cat="pp "]/ node [@rel="hd"
and @pt="vz "]/ @begin)] and node [@rel="obj1 " and @cat="np"
and node [@rel="mod" and @cat="pp" and node [@rel="hd" and
@pt="vz" and number (@begin) < number (. . / node [@rel="obj1 "
and @cat="np "]/ node [@rel="mod" and
@cat="pp "]/ node [@rel="hd" and @pt="vz "]/ @begin)] and
node [@rel="obj1 " and @cat="np" and node [@rel="mod" and
@cat="pp" and node [@rel="hd" and @pt="vz "]]]]]]

b. pphd%vz_obj1%np

To search in the GrInded version of the corpus all XPath test cases have to be transformed into
breadth-first patterns as well. As explained in section 3, that pattern defines in which database the
BaseX server should look in order to find matching tree structures. The conversion from XPath
to breadth-first was done using a Perl script.6 We manually verified the generated patterns. As a
result, all original XPath structures are now accompanied by their breadth-first counterpart.

The resulting test set consists of 97 XPath expressions and their corresponding breadth-first
patterns, which will be limited to 87 as discussed in section 4.2 below.

4.2 A priori considerations on the benchmark

The benchmark of each SoNaR component was done on the same machine (section 4.3), and the
benchmark scripts for each variant of the corpus (GrInd and baseline) are as similar as possible in
order to make a fair comparison between the two approaches.

To formalize a caching effect, if any, a benchmark was conducted on a single component (WR-P-E-C),
and each query was run multiple times subsequently. A caching effect is not especially relevant be-
cause it is the very first look-up that is important in a real-world scenario, but nonetheless a caching
effect is interesting to take a look at. Caching will be discussed together with the other results of
WR-P-E-C in section 5.2.

After running some initial tests on a small scale, it became clear that 10 out of the 97 cases
are not worth further investigation. It concerns extreme cases where the breadth-first pattern is
as underspecified as possible. In section 3 we already explained how the breadth-first pattern of a
subtree is formed: the parent node’s category, followed by each child node’s rel attribute, a %-sign,
and its cat or pt attribute. The patterns of the child nodes are ordered alphabetically and separated
by an underscore (_). The GrETEL interface provides an option to ignore the top category of the
query tree. This is useful if users want to look for general patterns, e.g. when they want to search
for a pattern that may occur in subordinate clauses as well as in main clauses. In a simple noun
phrase, this would look like the XPath code in (6a). This XPath expression is then used to generate
a breadth-first pattern. When no @cat-value is specified for the topmost node, the string ALL is used
at the start of the breadth-first pattern instead. For the XPath code in 6a the pattern would look
like (6b).

(6) a. //node [@cat and node [@rel="det " and @pt=" l i d "] and
node [@rel="hd" and @pt="n "]]

6. In the GrETEL interface, this is done behind the scenes by a PHP function.

b. ALLdet%lid_hd%n

A breadth-first pattern without a specific top category is a very general construction. If such a
pattern is sent to the server, ALL is replaced by all 26 possible syntactic categories. This obviously
results in more queries than when a category had been specified. This is not a problem as such as
the pattern of the child nodes (det%lid_hd%n) is specific enough, and the search space is still greatly
reduced compared to the baseline. Things get out of hand when the children are underspecified as
well. An example of such a case is when a user only gives one word as an input. An example XPath
for such a construction is given in (7).

(7) //node [@pt="vnw" and @status="vo l " and @genus="masc" and
@vwtype="pers " and @getal="ev" and @persoon="3" and
@naamval="nomin" and @pdtype="pron "]

As the query in (7) does not contain a cat nor a rel attribute, no breadth-first pattern is
generated. The GrInd script does not take into account constructions in which only a lexical element
(containing a pt attribute) is defined. We consider queries such as (7) edge cases, as GrETEL is
intended to search for dependencies, and not for single words or strings of words that have no defined
relationship between them. It expects a rel attribute indicating the relationship between two or
more nodes. Because no syntactic pattern can be generated in these cases, the string ALL is used
instead as a breadth-first pattern. The same principle as with the pattern in (6b) is applied here:
ALL is replaced by every possible category. In practice this means that the entire corpus is queried,
as each category and all its sub-patterns are queried, thus nullifying the goal of GrInd. Because
of this, the ten XPath queries that have the most general ALL as their breadth-first pattern were
left out. In such cases the GrInded corpus takes longer to query than the baseline because of the
overhead that results from opening and closing so many databases.7

In the online interface of GrETEL we remedy the possibility of an unspecified pattern by making
sure the suitable version of the corpus is queried, regular or GrInded. In practice this means that
we take the XPath that is based on the user’s input, and try to transform it into a breadth-first
pattern, as discussed above. Sometimes a pattern cannot be generated, e.g. when the XPath does
not contain at least two levels, or when the top node is unspecified (cf. supra ALL) and no pattern
can be generated from its children (because they don’t have specified dependency relationships
(rel attributes) for instance). When this is the case and the pattern would be simply ALL, our
system recognizes that the input query is too underspecified to work well with GrInd so we query
the regular version of the corpus.

This begs the question which XPath structures can be used to query the GrInded treebanks. As
said before, the back-end system will try to create a breadth-first pattern from a given XPath. If
it cannot do that, the regular version of the treebank is used. The only requirement for a given
XPath query to be transformed into a valid pattern is, in its most basic form, that the topmost node
has a specified syntactic category (cat attribute e.g. np) and at least one child with a dependency
relation (rel attribute, e.g. hd). With this information, a breadth-first pattern can be generated
(e.g. nphd%) and the search space has already been greatly reduced. Apart from that, any valid
XPath 3.0 expression can be used in the query.8 What this means is that no restrictions have to
be made to XPath expressions used to mine the GrInded treebanks except that the first level has
to have a cat attribute (without negation and disjunction) and the second level a rel attribute
(without negation and disjunction). The rest of the XPath structure can contain any valid XPath
properties such as negation, conjunction, disjunction, quantification, and XPath’s built-in functions.
In the future, however, we would also like to extend the script that generates the breadth-first

7. It would of course be possible to devise a form of indexing that focuses on lexical queries, such as a lookup system
that allows to retrieve sentence numbers by lemma.

8. As of BaseX 8.0, XPath 3.1 is also supported. We ran our benchmarks on the older version 7.9.

patterns from a given XPath structure to handle negation and disjunction for the topmost category
or second-level relations (cf. Section 6).

Finally it should be noted that the database system BaseX offers an indexing system on its
own as well9, as most database systems do. Some indexes are created automatically and cannot
be dropped; they are called structural indexes (name, path, and document indexes). These indexes
are always created and present. Value indexes, on the other hand, can be created or dropped by
the database manager. Available value indexes are the automatically created indexes text and
attribute, and a token index (since version 8.4) and a fulltext index. text is not relevant for
our GrInded treebanks, nor for treebanks without text nodes in general, because it would generate
an index for the text nodes in a document. A text node is a node in XML that has text inside of it
(e.g. Example 8a). However, in our data (as output by the Alpino parser) there are no text nodes
inside the dependency trees. The text of terminal nodes are given as word attributes of text-less
element nodes (e.g. Example 8b). The XML generated by Alpino does provide a sentence text
node in the original treebank, placed after the dependency tree itself, which contains the sentence
as a flat string. If it would be required to query this node (for a string-based query) then a text
index for this node would be useful in the regular corpus. However, we are focusing on querying
the treebank and its dependency structures, and not the corpus as a text-only document, so this
index is not relevant for us. Note that the sentence tag is not used in the GrInd process and not
available in the GrInded treebank itself. Therefore, we can drop this index to save some disk space
when importing into BaseX. A fulltext index is not useful for us in the same way as a text is
not. The difference between the two is that full-text index keeps track of all the tokens of the XML
file’s text nodes which is useful to check to see if an element (or its children) contains a string value.
Again, this is not useful for our data.

(8) a. <node pt="n">man</node>
b. <node pt="n" word="man"/>

In version 8.4 of BaseX a token index has been introduced. Even though we have only used
version 7.9 of BaseX, it could be interesting for future reference to look at this index option. In some
varieties of XML, of which HTML is probably the most well-known, it is allowed to place multiple,
space-separated items as attribute values. These individual values are called tokens. An obvious
example is how multiple classes can be added to a single HTML element (Example 9a). A sensible
example of tokens in a linguistic environment is given in Example 9b, which could represent an XML
dictionary entry for the word sheep that can be singular as well as plural. However, for the Alpino
treebanks we use, it is never the case that there are multiple tokens for an attribute. In other words,
a token index is not useful either.

(9) a. <div class="row flex animals"/>
b. <node count="sg pl" word="sheep"/>

The attribute index, however, is of paramount importance. In Alpino XML all node features
are represented as XML attributes (similar to Example 8b but much more extended). This is not
different in the result of GrInd. An attribute index on top of our own GrETEL Indexing system
ensures we can still use the benefits of BaseX’s indexing system on the reduced search space that
results from our own GrETEL Indexing. So it is not a case of choosing between one or the other;
BaseX’s indexing, specifically its attribute index, works on top of our own indexing mechanism.

4.3 Benchmark set-up

The treebank consists of XML files, so we opted to use the native XML database BaseX, as mentioned
many times before. We used BaseX version 7.9. The SoNaR treebank consists of 25 components

9. http://docs.basex.org/wiki/Indexes

http://docs.basex.org/wiki/Indexes

containing different written text genres such as magazines, websites, Wikipedia articles, newspapers,
auto cues, and so on. We aimed to test the influence of the GrInd procedure on the entire treebank,
but three components (WR-P-E-L, WR-U-E-A, WR-U-E-D) are not included in the benchmark
because they lack lemma tags and the Dutch CGN-D-COI POS tags (pt). They are written in
italics in table 1. In case of the 22 other components, we loaded the baseline and the GrInded
version of each component into BaseX, and then ran each of the 87 queries on the two versions. We
recorded the time it took to finish a query (i.e. until all results are found and all required databases
have been queried), and we also kept track of the amount of results that were actually found, just to
make sure that the versions provide the same results. As already briefly mentioned in subsection 4.2,
all queries were run five times for component WR-P-E-C to investigate caching.

All queries for every component (GrInded or not) were run on the same server (Intel Xeon
E5-1650 v2 @ 3.50GHz (6 cores), 64 GB of main memory) to ensure the same hardware fundamentals.
We used BaseX version 7.9 on the Linux-based operating system CentOS 6.

In a second, independent hardware set-up, we kept track of the creation time of the GrInded
components. We also wanted to record the time it took to import the created XML files into BaseX
to compare the baseline to the experiment. However, this attempt could not be completed due to
time limitations caused by degrading performance when creating millions of files in a single directory.
BaseX requires all databases created by a server instance to be set in one directory. Because we
create millions of databases for even a single component, performance decreases and the time it takes
to complete the import process takes a long time. This is not an issue specific to GrInd or BaseX
but to how most file systems work, in particular NTFS on Windows even though a similar issue may
arise on other systems. It may be clear that on a large scale, file creation in a single directory does
not happen in linear time.10 A solution would be to split up the data among different BaseX server
instances but up to now we have not tested this. When creating the GrInded XML files, however,
we do split them up into directories. One directory per possible syntactic category (cat attribute).
Each XML file, corresponding to a breadth-first pattern, is then put into the directory that is the
same as the category of its topmost head, e.g. npdet%lidhd%n.xml is placed inside np/. From this
directory structure it follows that the performance decrease as described above is less noticeable
when GrInding because all files are distributed over a number of subdirectories.

The hardware of the second system that measured the time it takes to create the GrInded
components consists of a Windows 10 64 bit machine, with an Intel i7-7700K processor @ 4.50GHz
(4 cores), 32 GB of main memory, and a 960 GB SSD.

5. Results

To give a general idea of the impact of GrInd, we first describe a summary of the results of all com-
ponents. Then we focus on three specific components: WR-P-E-C (551,119 sentences), WR-P-E-H
(40,715 sentences), and lastly WR-P-P-H (5,475,556 sentences). For component WR-P-E-C we also
investigate a possible caching effect, so we will discuss that component before the other two. Finally,
we will discuss the time it takes to create the GrInded components in section 5.5.

5.1 General

Tables 2 and 3 present the results of the benchmark experiment, concerning speed and size respec-
tively which are in turn visualised in Figures 5 and 6. In this section, we will first discuss the speed
gain and then the size increase.

The results in Table 2 and in Figure 5 clearly show the positive effect of the GrInding process. The
speed gain goes up to 1180% for the largest component WR-P-P-G that consists of 14,974,007 sen-
tences. In absolute numbers, this means that for our benchmark the median query in the experiment

10. Cf. https://stackoverflow.com/a/291292/1150683 for more information on degrading performance when work-
ing with millions of files in a single directory.

https://stackoverflow.com/a/291292/1150683

finishes 1841 seconds (i.e. more than half an hour) faster than the median query of the baseline.
The graph indicates that the size of a component plays a large role in the speed gain that can be
achieved. This is no surprise: the larger a treebank is, the more gain can be made by reducing the
search space efficiently.

component sentences base speed (sec) GrInd speed (sec) speed gain (sec) speed gain (%)

WRPEE 115 0.02 0.09 0 -78%
WRPPD 2185 0.15 0.32 0 -53%
WRPEK 8616 0.47 0.78 0 -40%
WRPPJ 16,938 1.09 0.78 0 40%
WRPEF 18,373 1.21 1.24 0 -2%
WRPPE 19,077 0.88 0.77 0 14%
WRUEE 23,498 1.26 1.13 0 12%
WRPEH 40,715 1.60 0.38 0 319%
WSUTB 44,866 2.47 1.85 1 34%
WRPPC 74,921 4.36 2.52 2 73%
WRPPK 93,565 7.83 4.45 3 76%
WRPEI 205,037 11.09 4.46 7 149%
WRPPI 387,534 32.05 14.48 18 121%
WRPEC 551,343 30.41 8.87 22 243%
WRPPF 650,509 37.89 12.68 25 199%
WRPEJ 1,355,061 80.34 36.12 44 122%
WRPPB 1,710,131 94.83 45.5 49 108%
WSUEA 2,163,661 103.49 63.77 40 62%
WRPEG 3,925,834 114.01 42.47 72 168%
WRPEA 4,396,361 555.86 156.61 399 255%
WRPPH 5,476,086 407.17 46.78 360 770%
WRPPG 14,974,007 1997.52 156.04 1841 1180%

Table 2: Overview of speed gain for all components (sorted by number of sentences)

On small treebanks components (< 19,000 sentences) the GrInded version performs worse than
the baseline, as expected. Since those treebanks are already small, and the baseline query speed
is in general already rather fast, the overhead of opening multiple databases cripples the overall
performance. However, it is important to take a look at the absolute numbers as well. For the
components where GrInding performs worse than the baseline version (WR-P-E-E, WR-P-P-D,
WR-P-E-K, WR-P-E-F), the absolute difference between the baseline and the experiment is never
more than 0.31 seconds, a negligible difference. In the largest negative relative difference between the
two treebank variants, where the baseline is 78% faster than the experiment, the absolute difference
is only 0.07 seconds (0.02 vs. 0.09 seconds). In other words, if the GrInded variant of a treebank
performs worse than the baseline the difference is always less than a second, which is insignificant
from a usability perspective. In contrast, if the query time adds up to a significant duration (from
one second up to half an hour), the GrInded version increasingly outperforms the baseline version.
These cases are the ones that matter: there is no difference in user-friendliness when a user has to
wait 0.15 seconds compared to 0.32 seconds, but if a task completes in 1998 seconds (33 minutes

and 18 seconds) instead of 156 seconds (2 minutes and 36 seconds) this makes a huge difference in
a real-world scenario.

Figure 5: Graph indicating the query time of the GrInded components. Y-axis in log seconds. Values
given above the data bars indicate the absolute difference in query time between the two
treebank variants (in seconds). X-axis sorted by component size (number of sentences,
small to large).

Since GrInd creates one XML file per subtree pattern, we expected the GrInded treebank size
to be much larger than the baseline. Figure 6 and the values in Table 3 show that the size of the
treebank grows immensely indeed. However, the relative size increase decreases if the size of the
components increases, which is clear in the last column of said table. For instance, for the smallest
component WR-P-E-E (115 sentences) the baseline is around 1 MB in size but the GrInded version
is almost 19 MB, indicating a size increase of 1704%. WR-P-E-H (40,715 sentences) normally is
224 MB in size, but when GrInded it is 1357 MB; an increase of 505%. The largest component,
WR-P-P-G, containing 14,974,007 sentences, ticks in at 102,603 MB (1̃02 GB) for the baseline, and
461,954 MB (4̃62 GB) for the GrInded variant, which comes down to a relative increase of 350%. We
can explain this relative decrease in size as follows. Even though there is more data to GrInd, there
is only a finite amount of breadth-patterns that can be generated. This means that the chance for a
subtree to match a pattern from another subtree increases, and that no new files need to be created.
As a consequence, the amount of files that only contain “includes” stagnates, as these files tend to
get populated with subtrees as well. The chance that an include has to be created for a pattern
that only occurs once in the corpus decreases. Put differently, due to a finite set of possibilities of
patterns given the parameters in 1, the size increase stagnates as the baseline size of the treebanks
increases.

component sentences base size (MB) GrInd size (MB) size increase (MB) size increase (%)

WRPEE 115 1.04 18.76 18 1704%

WRPPD 2185 16.55 205.96 189 1144%

WRPEK 8616 67.38 664.98 598 887%

WRPPJ 16,938 153.56 1333.78 1180 769%

WRPEF 18,373 163.45 1299.24 1136 695%

WRPPE 19,077 117.82 840.34 723 613%

WRUEE 23,498 171.18 1311.24 1140 666%

WRPEH 40,715 224.28 1357.15 1133 505%

WSUTB 44,866 332.61 2637.79 2305 693%

WRPPC 74,921 593.59 4167.51 3574 602%

WRPPK 93,565 1059.30 8435.46 7376 696%

WRPEI 205,037 1514.64 8857.22 7343 485%

WRPPI 387,534 4299.64 30,460.45 26,161 608%

WRPEC 551,343 4133.80 22,517.73 18,384 445%

WRPPF 650,509 5148.50 32,772.14 27,624 537%

WRPEJ 1,355,061 11,021.06 55,431.75 44,411 403%

WRPPB 1,710,131 12,892.71 70,861.24 57,969 450%

WSUEA 2,163,661 13,729.76 62,516.04 48,786 355%

WRPEG 3,925,834 14,287.14 46,975.34 32,688 229%

WRPEA 4,396,361 27,749.84 137,737.32 109,987 396%

WRPPH 5,476,086 44,860.68 225,906.22 181,046 404%

WRPPG 14,974,007 102,603.05 461,954.15 359,351 350%

Table 3: Overview of the size increase for all components (sorted by number of sentences)

Figure 6: Graph comparing the size of the GrInded and baseline components. Y-axis in log
megabytes. Values given above the data bars indicate the absolute difference in size
between the two treebank variants (in MB). X-axis sorted by component size (number of
sentences, small to large).

In sum, it is clear that the GrInd process indeed leads to faster query times. In turn, the disk usage
increases quite a lot as well. The benchmark experiment shows that the relative increase in speed is
bigger, and the relative increase in disk space is smaller if the size of a component increases. In the
next sections we will briefly discuss three components in more detail, i.e. WR-P-E-C, WR-P-E-H,
and WR-P-P-H.

5.2 Results for WR-P-E-C

Table 4 presents the results of the benchmark experiment for the treebank component WR-P-E-C.
The results are divided into three columns: one column for all hits, and two columns representing a
subset, i.e. those where no results were found, and those where more than zero results were found.
Furthermore, the query time for each of the five iterations is shown for the baseline as well as the
GrInd version. This is done to show the possible caching effect: if the median result of the first run
across all queries is noticeably higher than the medians for the following iterations, a caching effect
is present.

All hits >0 hits 0 hits

Baseline

Run 1 30.4 29.8 30.7
Run 2 29.8 29.5 30.1
Run 3 29.8 29.3 30.2
Run 4 30.0 29.5 30.2
Run 5 29.8 29.6 30.0

GrInd

Run 1 8.9 16.5 4.7
Run 2 3.0 6.0 1.3
Run 3 3.0 5.9 1.3
Run 4 3.8 6.9 1.3
Run 5 3.6 6.6 1.2

Table 4: Benchmark results on WR-P-E-C (in seconds). The 87 test queries were run five times to
determine a caching effect.

The results in Table 4 give a clear indication of a a caching effect in the GrInded version, and
a lot less prominent one in the baseline. If an XPath structure is looked up for the first time it
takes much longer to complete than for the next iterations, implicating that the results are cached
one way or another. This behavior is only superficially visible in the baseline, at least on a much
smaller scale than in the GrInded version. The reason for this is not clear. We asked the BaseX
team whether they had any idea how this was possible, but without a full test case they could not
answer the question either. Maybe in the future, a collaboration with them will lead to an answer.

Another major difference between the baseline and the GrInd results is that the GrInded version
performs incredibly fast when zero hits are found. Even though this may seem trivial, it is not.
Instead of needing to search through the entire corpus to make sure no hits are found, BaseX can
quickly go through the small defined search space. When zero hits are found this often means that
quite a specific (and/or long) pattern is queried, which either simply does not exist as a database,
or only has a few included databases. This is not always the case though. Some queries had to go
through more than 4000 databases and returned zero hits nonetheless. Still, considering the median
speed, finalizing a query which returns zero hits is much quicker in the GrInded version compared
to the baseline. In a real-world application this means that instead of waiting for half a minute to

be presented with zero results, a user only needs to wait for 5 seconds to realise that no hits were
found and that the input query might need modification.

Table 4 presents another interesting fact. The amount of hits that are found does not influence
the search time in any way that is different for the GrInded or the baseline version, but the number
of databases that are queried to find all results, be they many or few, does play a big role in how
fast the GrInded corpus can actually be queried. In the baseline version, this number is fixed:
there are 56 treebank parts in the baseline version of component WR-P-E-C, which all need to be
searched through for every query. For the GrInded version of the corpus, the amount of databases
differs for each query. The data suggests that around 500 includes a turning point takes place:
the baseline version keeps its steady pace of querying in circa 30 seconds, but when the amount
of includes gets higher than 500 in the GrInded version, more time is needed to find all results in
the GrInded component than in the baseline. This is due to the overhead of opening and closing
database connections. The sequential processes of opening a database connection and sending a new
query causes an overhead that becomes noticeable as soon as the includes are high in number. This
factor was expected, but now it is measured that the turning point is at around 500 for a corpus
this size.

5.3 Results for WR-P-E-H

We expected the GrInding process to have more effect on larger corpora. Nevertheless it is interesting
to see how it performs on smaller ones as well. WR-P-E-H contains 40,715 sentences, which is
fourteen times smaller than WR-P-E-C. Its contents are teletext pages. The benchmark results are
given in Table 5.

All hits >0 hits 0 hits
Baseline 1.6 1.6 1.6
GrInd 0.4 0.7 0.2

Table 5: Benchmark results on WR-P-E-H (in seconds)

The effect of GrInding on a smaller component should not be underestimated. With a mean
speed of 0.4 seconds the GrInded version is still faster than the baseline component. Again, in
cases where zero hits are found, the GrInded component is very fast. When looking at the actual
search times, it becomes clear that for WR-P-E-H the turning point of advantage lies at around
120 includes. If BaseX has to go through more includes, searching is not as fast as the baseline. In
practice, however, GrInding a small component might not be worth the time and processing power.
1.6 seconds to wait for results from the baseline version is not a long time, and considering user-
friendliness, this is not unacceptable. The results for WR-P-E-H amplify the earlier conclusion that
GrInd is mainly suitable for large treebanks.

5.4 Results for WR-P-P-H

WR-P-P-H is the second largest component of SoNaR, containing 5,475,556 sentences from periodi-
cals and magazines. Because of its size, it is expected that the impact of the GrInding procedure is
very noticeable. The benchmark results for this component are presented in Table 6.

As expected, GrInding is very effective on large corpora. While the baseline performs more or
less equally in all cases, the GrInded version shows a large difference when returning 0 hits or not.
Considering all queries (no matter the amount of hits) the execution time for the GrInded version
is 46.8 seconds, which highly contrasts with the baseline that needs 407.2 seconds to complete. The

All hits >0 hits 0 hits
Baseline 407.2 413.2 404.6
GrInd 46.8 51.9 12.7

Table 6: Benchmark results on WR-P-P-H (in seconds)

experiment shows that the GrInded component should be faster up to 9000 includes. Otherwise, the
baseline will finish the search process more quickly.

5.5 Creation time

As mentioned before, we executed a second benchmark at a later time to measure the time it takes
to create the GrInded treebanks. Unfortunately, we were not able to GrInd the largest component
WR-P-P-G this second time due to unexpected hardware failure. However, the timings for the other
components are presented in Table 7 and visualised in Figure 7.

component sentences total (s) total (d hh:mm:ss)

WRPEE 115 23 0:00:23
WRPPD 2185 428 0:07:08
WRPEK 8616 2187 0:36:27
WRPPJ 16,938 4600 1:16:40
WRPEF 18,373 4733 1:18:53
WRPPE 19,077 3661 1:01:01
WRUEE 23,498 5469 1:31:09
WRPEH 40,715 6001 1:40:01
WSUTB 44,866 10,312 2:51:52
WRPPC 74,921 13,642 3:47:22
WRPPK 93,565 24,442 6:47:22
WRPEI 205,037 23,076 6:24:36
WRPPI 387,534 58,584 16:16:24
WRPEC 551,343 82,924 23:02:24
WRPPF 650,509 99,446 1 day 03:37:26
WRPEJ 1,355,061 117,778 1 day 08:42:58
WRPPB 1,710,131 323,148 3 days 17:45:48
WSUEA 2,163,661 121,168 1 day 09:39:28
WRPEG 3,925,834 103,766 1 day 04:49:26
WRPEA 4,396,361 359,748 4 days 03:55:48
WRPPH 5,476,086 588,153 6 days 19:22:33

Table 7: Overview of the time needed to created the GrInded treebanks (sorted by number of sen-
tences)

Figure 7: Graph indicating the creation time of the GrInded components. Y-axis in log seconds,
absolute values (in seconds) given above the data bars. X-axis sorted by component size
(number of sentences, small to large).

It may be clear the process takes a long time. This is not surprising; every sentence (tree) has to
be processed recursively to find all possible subtrees derived from it. It is a combinatorial explosion.
It follows that the number of sentences is not the sole factor determining the duration of the GrInd
process. More important is the size of the dependency trees derived from the sentences. The broader
or deeper a tree, the longer it takes to GrInd it.

6. Conclusion and future work

We presented GrETEL Indexing, or GrInding, an indexing mechanism that reduces the search
space before an actual treebank search is performed. To show the improvement in query time, we
discussed the results of a benchmark experiment, testing the effect of the GrInding procedure on the
SoNaR-500 treebank.

We show that the process of GrInding indeed has an effect on the search speed, as the theoretical
assumptions in Vandeghinste and Augustinus (2014) foresaw. The effect is enormous when no hits
are found, and very noticeable in all other cases. It is important, though, that GrInding only has
a positive influence up to a specific amount of includes (dependent on the size of the corpus). The
benchmark results show that if the search engine has to go through more than 120 (for WR-P-E-H),
500 (for WR-P-E-C), or 9000 (WR-P-P-H) includes, the overhead caused by opening all these
database connections turns the tables, making the GrInded component slower to query than the
baseline. This means that GrInding works very well if one is looking for well-defined and specific
XPath structures. If a GrInded treebank is queried with a clear XPath structure which leads to a
particular breadth-first pattern, the effect of GrInd clearly emerges, but if one tries to look up very
general constructions, the positive effect of GrInd diminishes. Luckily our back-end system is able
to detect when a well-defined pattern could not be generated, in which case the regular version of
the treebank is queried. Smaller treebanks (< 19,000 sentences) that can be queried quickly without
GrInding would generally not benefit from the process. Relatively speaking, GrInding performs

worse in these cases, even though the absolute difference in query times is hardly noticeable by a
user (less than a second in our benchmark). A negative side-effect of the process is that if a treebank
is GrInded, it increases a lot in size so additional disk space is needed. The process itself takes a
long time to run because it is a recursive combinatorial process running through every dependency
tree, representing a sentence.

In general, we can conclude that large treebanks greatly benefit from GrInding. The larger
the treebank, the bigger the relative improvement in query time. When working with very large
treebanks, GrInding can save dozens of minutes per input query, allowing researchers to be more
productive in their corpus analysis.

At the moment of writing we have nearly finished work on GrInd as a Perl module. The module
allows users to parse their own XML into a structure built out of breadth-first patterns they define
themselves; the user can choose how the pattern is built, i.e. which XML attributes of the first and
second level of each subtree are used to create the pattern. Many other options such as separators
for the pattern, using default values in a pattern, and encoding are available. The parameters as
described in Item 1 in Section 3 can be chosen by the user as well. The module is open-source.11
Testing the module and giving feedback is possible on the project’s GitHub page12 and highly
encouraged.

Additionally, as expressed in 4.2, we also would like to improve the breadth-first generation
system to include XPath that has negation or disjunction in its topmost category or second-level
dependency relation. To be able to exclude patterns from the generated pattern and subsequently
possibly generating multiple patterns at once, it is required to know which possible cat and rel
values are available. For instance, if a user wants to look for an XPath structure whose topmost node
is not a noun phrase, we have to know which other possible cat values apart from np are available
in the treebank to make sure we generate breadth-first patterns with existing syntactic categories.
Alternatively, it might be possible to generate the breadth-first pattern as if the negation was not
present, and then do some string comparison with the available databases (patterns) to exclude the
given category on a substring level. Further research is necessary to create the most efficient solution
to this problem.

In future work we will use aforementioned module to GrInd the parallel treebanks to use in
Poly-GrETEL (Augustinus et al. 2016).13 Currently this tool includes Dutch and English syntax
trees from Europarl (Koehn 2005), and it will be extended with German soon.

7. Acknowledgements

This research is done in the context of an internship of the Masters of Artificial Intelligence program
at KU Leuven and the SCATE project, funded by the Flemish Agency for Innovation through Science
and Technology (IWT SBO, Project Nr. 130041)

References

Augustinus, Liesbeth, Vincent Vandeghinste, and Frank Van Eynde (2012), Example-Based Tree-
bank Querying, Proceedings of the 8th International Conference on Language Resources and
Evaluation (LREC 2012), Istanbul, pp. 3161–3167.

Augustinus, Liesbeth, Vincent Vandeghinste, and Tom Vanallemeersch (2016), Poly-GrETEL: Cross-
Lingual Example-based Querying of Syntactic Constructions, Proceedings of the 10th Interna-

11. https://github.com/CCL-KULeuven/grinding. Note that the module is not completely finished yet. Documenta-
tion still has to be written, and an encoding option is not yet present. For now, only UTF-8 encoded XML files
are supported.

12. https://github.com/CCL-KULeuven/grinding/issues
13. http://gretel.ccl.kuleuven.be/poly-gretel

https://github.com/CCL-KULeuven/grinding
https://github.com/CCL-KULeuven/grinding/issues
http://gretel.ccl.kuleuven.be/poly-gretel

tional Conference on Language Resources and Evaluation (LREC 2016), Portorož, pp. 3549–
3554.

Augustinus, Liesbeth, Vincent Vandeghinste, Ineke Schuurman, and Frank Van Eynde (in press),
GrETEL: A tool for example-based treebank mining, in Odijk, Jan and Arjan van Hessen,
editors, CLARIN in the Low Countries, Ubiquity Press, London.

Koehn, Philipp (2005), Europarl: A Parallel Corpus for Statistical Machine Translation, Proceedings
of MT Summit X, Phuket, pp. 79–86.

Martens, Scott (2013), TüNDRA: A Web Application for Treebank Search and Visualisation, Pro-
ceedings of the 12th International Workshop on Treebanks and Linguistic Theories (TLT12),
Sofia, pp. 133–144.

Meurer, Paul (2012), INESS-Search: A search system for LFG (and other) treebanks, Proceedings
of the LFG‘12 Conference. LFG Online Proceedings, Stanford, pp. 404–421.

Odijk, Jan (2015), Linguistic Research with PaQu, Computational Linguistics in the Netherlands
Journal 5, pp. 3–14.

Oostdijk, Nelleke, Martin Reynaert, Véronique Hoste, and Ineke Schuurman (2013), The Construc-
tion of a 500-Million-Word Reference Corpus of Contemporary Written Dutch, in Spyns, Peter
and Jan Odijk, editors, Essential Speech and Language Technology for Dutch. Results by the
STEVIN programme, Springer, pp. 219–247.

Reynaert, Martin, Matje van de Camp, and Menno van Zaanen (2014), Opensonar: user-driven
development of the sonar corpus interfaces, Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics: System Demonstrations, Dublin City Univer-
sity and Association for Computational Linguistics, pp. 124–128. http://aclanthology.coli.uni-
saarland.de/pdf/C/C14/C14-2027.pdf.

van der Wouden, Ton, Heleen Hoekstra, Michael Moortgat, Bram Renmans, and Ineke Schuur-
man (2002), Syntactic Analysis in the Spoken Dutch Corpus (CGN), Proceedings of the 3rd
International Conference on Language Resources and Evaluation (LREC 2002), Las Palmas,
pp. 768–773.

van Noord, Gertjan (2006), At Last Parsing Is Now Operational, Proceedings of TALN, pp. 20–42.

van Noord, Gertjan, Gosse Bouma, Frank Van Eynde, Daniël de Kok, Jelmer van der Linde, Ineke
Schuurman, Erik Tjong Kim Sang, and Vincent Vandeghinste (2013), Large Scale Syntactic
Annotation of Written Dutch: Lassy, in Spyns, Peter and Jan Odijk, editors, Essential Speech
and Language Technology for Dutch. Results by the STEVIN programme, Springer, pp. 147–164.

Vandeghinste, Vincent and Liesbeth Augustinus (2014), Making Large Treebanks Searchable. The
SONAR case, Proceedings of the LREC 2014 2nd workshop on Challenges in the management
of large corpora (CMLC-2), Reykjavik, pp. 15–20.

Vandeghinste, Vincent and Scott Martens (2010), Bottom-up transfer in Example-based Machine
Translation, in Ivon, François and Viggo Hansen, editors, Proceedings of the 14th International
Conference of the European Association for Machine Translation (EAMT-2010), Saint-Raphael.

	 Introducing GrETEL
	Querying large treebanks
	The concept of GrInding
	Benchmarking GrInd
	Creating a test set
	A priori considerations on the benchmark
	Benchmark set-up

	Results
	General
	Results for WR-P-E-C
	Results for WR-P-E-H
	Results for WR-P-P-H
	Creation time

	Conclusion and future work
	Acknowledgements

