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Abstract. We refine the classical Lindeberg-Feller central limit
theorem by obtaining asymptotic bounds on the Kolmogorov dis-
tance, the Wasserstein distance, and the parametrized Prokhorov
distances in terms of a Lindeberg index. We thus obtain more gen-
eral approximate central limit theorems, which roughly state that
the row-wise sums of a triangular array are approximately asymp-
totically normal if the array approximately satisfies Lindeberg’s
condition. Stein’s method plays a key role in the development of
this theory. We use the theoretical results to study the asymptotic
behavior of the sample average estimator in the presence of data
contamination.

1. Introduction

Throughout, we assume that all random variables are defined on a
fixed probability space (Ω,F,P).

Let ξ be a standard normal random variable, that is, a normally
distributed random variable with E[ξ] = 0 and E[ξ2] = 1, and {ξn,k} a
standard triangular array (STA) of random variables, that is, a trian-
gular array

ξ1,1
ξ2,1 ξ2,2
ξ3,1 ξ3,2 ξ3,3

...

of random variables with ξn,1, . . . , ξn,n independent for all n, E[ξn,k] = 0
for all n, k, and

∑n
k=1 E[ξ2n,k] = 1 for all n.

Recall that the sequence (
∑n

k=1 ξn,k)n is said to converge weakly to
ξ iff

lim
n→∞

P

[
n∑
k=1

ξn,k ≤ x0

]
= P[ξ ≤ x0]
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for all x0 at which the map x 7→ P[ξ ≤ x] is continuous, or, equivalently,
iff

lim
n→∞

E

[
h

(
n∑
k=1

ξn,k

)]
= E[h(ξ)]

for all h : R→ R bounded and continuous.
We say that {ξn,k} satisfies Feller’s condition iff

lim
n→∞

n
max
k=1

E
[
ξ2n,k
]

= 0, (1)

and Lindeberg’s condition iff

lim
n→∞

n∑
k=1

E
[
ξ2n,k; |ξn,k| > ε

]
= 0

for all ε > 0. It is easily seen that Lindeberg’s condition implies Feller’s,
but that the converse does not hold.

The above language allows us to formulate the following result, which
belongs to the heart of classical probability theory.

Theorem 1.1 (Lindeberg-Feller Central Limit Theorem). Let ξ and
{ξn,k} be as above. If {ξn,k} satisfies Lindeberg’s condition, then the
sequence (

∑n
k=1 ξn,k)n converges weakly to ξ. The converse holds if

{ξn,k} satisfies Feller’s condition.

The number

Lin ({ξn,k}) = sup
ε>0

lim sup
n→∞

n∑
k=1

E
[
ξ2n,k; |ξn,k| > ε

]
(2)

was introduced in [BLV13] as the Lindeberg index. Notice that it
produces for each STA a number between 0 and 1, and that it is 0 if
and only if Lindeberg’s condition is satisfied. So it could be thought
of as a number which measures how far a given STA deviates from
satisfying Lindeberg’s condition.

Furthermore, let d(η, η′) be a metric on random variables with the
property that limn→∞ d(η, ηn) = 0 is equivalent with weak convergence
of (ηn)n to η, and define the quantity

λd

(
n∑
k=1

ξn,k → ξ

)
= lim sup

n→∞
d

(
ξ,

n∑
k=1

ξn,k

)
. (3)

Clearly, (3) assigns a positive number to each STA which is 0 if and
only if the row-wise sums of the STA are asymptotically normal. Thus
this number measures how far a given STA deviates from having an
asymptotically normal sequence of row-wise sums.
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Now, using the numbers (2) and (3), the first part of Theorem 1.1
boils down to the implication

Lin({ξn,k}) = 0⇒ λd

(
n∑
k=1

ξn,k → ξ

)
= 0.

Observe that Theorem 1.1 fails to provide any information for the large
class of STA’s which fail to satisfy Lindeberg’s condition, regardless
of whether Lin({ξn,k}) is large or small. Thus the following natural
question arises.

Question 1.2. Suppose that we are given an STA {ξn,k} which is close
to satisfying Lindeberg’s condition in the sense that Lin({ξn,k}) is non-
zero but small. Is it still possible to conclude that the row-wise sums
of {ξn,k} are close to being asymptotically normal in the sense that
λd (
∑n

k=1 ξn,k → ξ) is small?

Let us briefly describe how in the case where d is the Kolmogorov
metric

K (η, η′) = sup
x∈R
|P[η ≤ x]− P [η′ ≤ x]| ,

a positive answer to Question 1.2 can be derived from the existing
literature.

The following refinement of the sufficiency of Lindeberg’s condition
in Theorem 1.1 was obtained in terms of the Kolmogorov distance in
[O66] and [F68].

Theorem 1.3. Let ξ be as above. Then there exists a universal con-
stant C > 0 such that

K

(
ξ,

n∑
k=1

ξn,k

)
≤ C

(
n∑
k=1

E
[
ξ2n,k; |ξn,k| > 1

]
+

n∑
k=1

E
[
|ξn,k|3 ; |ξn,k| ≤ 1

])
for all STA’s {ξn,k} and all n.

It was shown in [F68] that the constant C in Theorem 1.3 can be
taken equal to 6. A proof of Theorem 1.3 based on Stein’s method was
given in [BH84], and in [CS01], combining Stein’s method with Chen’s
concentration inequality approach, it was established that C can be
taken equal to 4.1, the best value known so far up to our knowledge.

We will infer a corollary from Theorem 1.3 which is related to Ques-
tion 1.2. To this end, we remark that it was pointed out in [L75] that
the truncation at 1 in Theorem 1.3 is optimal in the sense that

n∑
k=1

E
[
ξ2n,k; |ξn,k| > 1

]
+

n∑
k=1

E
[
|ξn,k|3 ; |ξn,k| ≤ 1

]
is dominated by

n∑
k=1

E
[
ξ2n,k; ξn,k ∈ A

]
+

n∑
k=1

E
[
|ξn,k|3 ; ξn,k ∈ R \ A

]
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for each Borel set A ⊂ R. Therefore, we easily derive from Theorem
1.3 that

K

(
ξ,

n∑
k=1

ξn,k

)
≤ C

(
n∑
k=1

E
[
ξ2n,k; |ξn,k| > ε

]
+ ε

)
for all ε > 0, which, calculating the superior limit of both sides and
letting ε ↓ 0, yields

lim sup
n→∞

K

(
ξ,

n∑
k=1

ξn,k

)
≤ C sup

ε>0
lim sup
n→∞

n∑
k=1

E
[
ξ2n,k; |ξn,k| > ε

]
.

Using the numbers defined in (2) and (3), we now derive the following
result as a corollary of Theorem 1.3.

Theorem 1.4. Let ξ be as above. Then there exists a universal con-
stant C > 0 such that

λK

(
n∑
k=1

ξn,k → ξ

)
≤ CLin ({ξn,k})

for all STA’s {ξn,k}.
Remark 1.5. In [BLV13], combining Stein’s method with an asymp-
totic smoothing technique, it was established that the constant C in
Theorem 1.4 can be taken equal to 1 if {ξn,k} satisfies Feller’s condi-
tion.

Notice that Theorem 1.4 gives a positive answer to Question 1.2
in the case where d = K. It strictly generalizes the sufficiency of
Lindeberg’s condition in Theorem 1.1, and, contrary to Theorem 1.1,
it continues to provide useful information for STA’s which have a low
Lindeberg index, but which fail to satisfy Lindeberg’s condition. More
precisely, it allows us to conclude that (

∑n
k=1 ξn,k)n is approximately

convergent to ξ if {ξn,k} approximately satisfies Lindeberg’s condition.
Therefore, it seems plausible to refer to Theorem 1.4 as an approximate
central limit theorem.

The problem of generalizing Theorem 1.3 to the multivariate setting
is hard, and remains open. Notice however that recently, combining a
multivariate version of Stein’s method as outlined in e.g. [M09] and
[NPR10] with the establishment of an explicit integral representation of
a solution to the Stein PDE with a character function as test function,
a partial extension of Theorem 1.4 for the Fourier transforms of random
vectors has been obtained in [BLV16].

In this paper, we will focus on the following two questions concerning
Theorem 1.4.

1) Can we widen the scope of applicability of Theorem 1.4 by extend-
ing it to other probability metrics d?
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2) Are there canonical situations in mathematical statistics in which
it is natural to invoke (an extension of) Theorem 1.4?

In Section 2, we will address the first question. More precisely, we
will show that it is possible to extend the techniques used in [BLV13] to
a large class of test functions, leading to a general inequality. This in-
equality will in turn entail approximate central limit theorems, similar
to Theorem 1.4, for the Wasserstein distance, and even for the class of
parametrized Prokhorov distances. A natural example will show that it
is impossible to obtain a result of the same flavor for the total variation
distance.

In Section 3, we will provide an answer to the second question. More
precisely, we will investigate the asymptotic behavior of the sample av-
erage estimator, based on independent data which are contaminated
according to what is called the inflated variance model. We will es-
tablish the weak consistency of this estimator under a fairly general
condition. Moreover, it is shown that in many cases, the asymptotic
normality of this estimator can only be studied by relying on an ap-
proximate central limit theorem such as Theorem 1.4. The theoretical
results obtained in this section will be illustrated by an example and a
simulation study.

Some open questions are formulated in Section 4.

2. Approximate central limit theory

2.1. Some probability metrics. Let us start by giving a short de-
scription of the probability metrics that will play an important role in
the remainder of this paper.

Let P(R) be the collection of Borel probability measures on R. Fur-
thermore, let P1(R) be the set of all P ∈ P(R) with finite absolute first
moment, i.e. for which

∫∞
−∞ |x| dP (x) <∞.

The Wasserstein distance on P1(R), see e.g. [V03], is defined by the
formula

W (P,Q) = inf
π

∫
R×R

d(x, y)dπ(x, y),

where the infimum is taken over all Borel probability measures π on
R × R with first marginal P and second marginal Q. Kantorovich
duality theory implies that the metric W can also be written as

W (P,Q) = sup
h∈K(R)

∣∣∣∣∫
R
hdP −

∫
R
hdQ

∣∣∣∣ , (4)

where K(R) stands for the set of all contractions h : R → R, where h
is called a contraction iff |h(x)− h(y)| ≤ |x− y| for all x, y ∈ R. Also,
we have

W (P,Q) =

∫ ∞
−∞
|FP (x)− FQ(x)| dx =

∫ 1

0

∣∣F−1P (t)− F−1Q (t)
∣∣ dt,
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with FP (respectively FQ) the cumulative distribution function associ-
ated with P (respectively Q), and F−1P (respectively F−1Q ) its general-
ized inverse.

The topology underlying the Wasserstein distance is slightly stronger
than the weak topology. More precisely, for P and (Pn)n in P1(R), it
holds that

lim
n→∞

W (P, Pn) = 0

is equivalent with weak convergence of (Pn)n to P in addition to con-

vergence of
(∫∞
−∞ |x| dPn(x)

)
n

to
∫∞
−∞ |x| dP (x). Also, the Wasserstein

distance is separable and complete, see [B08].
Furthermore, for λ ∈ R+

0 , the (parametrized) Prokhorov distance
ρλ(P,Q) between probability measures P and Q in P(R) is defined to
be the infimum of all positive numbers α ∈ R+

0 for which the inequality

P [A] ≤ Q
[
A(λα)

]
+ α,

with

A(λα) =

{
x ∈ R | inf

a∈A
|x− a| ≤ λα

}
,

holds for every Borel set A ⊂ R. One easily establishes that

ρλ1(P,Q) ≤ ρλ2(P,Q)

whenever λ2 ≤ λ1. In [B99] it is shown that, for each λ ∈ R+
0 , ρλ is

a separable and complete metric which metrizes weak convergence of
probability measures.

Finally, the total variation distance dTV (P,Q) between probability
measures P and Q in P(R) is defined by the number

dTV (P,Q) = sup
A
|P [A]−Q[A]| ,

the supremum of course taken over all Borel sets A ⊂ R. One easily
verifies that dTV is a complete metric, that, for each λ ∈ R+

0 ,

ρλ(P,Q) ≤ dTV (P,Q),

and that the limit relation

lim
λ↓0

ρλ(P,Q) = dTV (P,Q) (5)

holds true. Note however that dTV is not separable and that its under-
lying topology is strictly stronger than the weak topology.

For a general and systematic treatment of the theory of probability
metrics, we refer the reader to the excellent expositions [Z83] and [R91].
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2.2. A general inequality. Let ξ be as in Section 1 and h : R → R
a continuous map for which E |h(ξ)| < ∞. Then the Stein transform
of h is the map fh : R→ R defined by the formula

fh(x) = ex
2/2

∫ x

−∞
(h(t)− E[h(ξ)]) e−t

2/2dt. (6)

The crux of Stein’s method is that, for any random variable η, we have

E [h(ξ)− h(η)] = E[ηfh(η)− f ′h(η)],

and that, in many cases, it is easier to find upper bounds for the deriva-
tives of fh than for the derivatives of h, see e.g. [BC05] and [CGS11].

We will now establish a general inequality in terms of the Stein trans-
form, which will allow us to extend Theorem 1.4 to many of the above
described probability metrics. For the proof, it basically suffices to
notice that the techniques developed in [BLV13] can be extended to a
very general collection of test functions. For the sake of completeness,
we present the proof in Appendix A.

Theorem 2.1. Let ξ and {ξn,k} be as in Section 1, and let h : R→ R
be any continuously differentiable map with a bounded derivative. Then
the Stein transform fh, defined by (6), is twice continuously differen-
tiable, has bounded first and second derivatives, and the inequality∣∣∣∣∣E

[
h(ξ)− h

(
n∑
k=1

ξn,k

)]∣∣∣∣∣ (7)

≤ 1

2
‖f ′′h‖∞ε+

(
sup

x1,x2∈R
|f ′h(x1)− f ′h(x2)|

) n∑
k=1

E
[
ξ2n,k; |ξn,k| ≥ ε

]
+

(
sup

x1,x2∈R
|f ′′h (x1)− f ′′h (x2)|

)
n

max
k=1

E [|ξn,k|]

holds for all n and all ε > 0.

2.3. Approximate central limit theorems. We will apply Theorem
2.1 to obtain results similar to Theorem 1.4 for the Wasserstein distance
(Theorem 2.4) and the parametrized Prokhorov distances (Theorem
2.8). Where needed, we tacitly transport these probability metrics to
random variables via their image measures.

The following lemma guarantees that we can capture the Wasserstein
distance with continuously differentiable contractions.

Lemma 2.2. The Wasserstein distance on P1(R) is given by

W (P,Q) = sup
h∈Kc(R)

∣∣∣∣∫ hdP −
∫
hdQ

∣∣∣∣ , (8)

where Kc(R) stands for the set of all continuously differentiable con-
tractions h : R→ R.
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Proof. Let h : R → R be a contraction and fix ε > 0. We will show
that there exists a smooth contraction which is closer than ε to h for
the ‖ · ‖∞-norm. Once this is established, the lemma will follow from
formula (4).

Let

ψε : R→ R
be positive and smooth, with support contained in the interval [−ε, ε],
and such that ∫

R
ψε(y)dy = 1.

Put

hε(x) = (h ? ψε)(x) =

∫
R
h(x− y)ψε(y)dy =

∫
R
ψε(x− y)h(y)dy.

Then hε is smooth. Furthermore, for x1, x2 ∈ R,

|hε(x1)− hε(x2)|

=

∣∣∣∣∫
R
h(x1 − y)ψε(y)dy −

∫
R
h(x2 − y)ψε(y)dy

∣∣∣∣
≤

∫
R
|h(x1 − y)− h(x2 − y)|ψε(y)dy,

which is, h being a contraction, bounded by
∫
R ψε(y)dy = 1, and we

infer that hε is also a contraction. Finally, for x ∈ R,

|h(x)− hε(x)|

=

∣∣∣∣∫
R

(h(x)− h(x− y))ψε(y)dy

∣∣∣∣
=

∣∣∣∣∫ ε

−ε
(h(x)− h(x− y))ψε(y)dy

∣∣∣∣ , (9)

(10)

the last equality following from the fact that the support of ψε is con-
tained in [−ε, ε]. Now, h being a contraction, it follows that the ex-
pression in (9) is bounded by ε, whence

‖h− hε‖∞ < ε.

This concludes the proof. �

The following lemma belongs to the folklore of Stein’s method, see
e.g. [BC05], p.10-11.

Lemma 2.3. Let h and fh be as in Theorem 2.1. Then

‖f ′h‖∞ ≤ 4‖h′‖∞ (11)

and

‖f ′h‖∞ ≤ 2‖E[h(ξ)]− h‖∞ (12)
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and
‖f ′′h‖∞ ≤ 2‖h′‖∞. (13)

Theorem 2.4. Let ξ be as in Section 1. Then there exists a universal
constant CW > 0 such that

λW

(
n∑
k=1

ξn,k → ξ

)
≤ CWLin ({ξn,k})

for all STA’s {ξn,k} which satisfy Feller’s condition (1). Moreover, CW
can be taken equal to 8.

Proof. Let h : R → R be a continuously differentiable contraction.
Then

sup
x1,x2∈R

|f ′h(x1)− f ′h(x2)| ≤ 2‖f ′h‖∞ ≤ 8‖h′‖∞ ≤ 8, (14)

by (11), and

sup
x1,x2∈R

|f ′′h (x1)− f ′′h (x2)| ≤ 2‖f ′′h‖∞ ≤ 4‖h′‖∞ ≤ 4, (15)

by (13). Furthermore, combining (7) with (13), (14), and (15), yields∣∣∣∣∣E
[
h(ξ)− h

(
n∑
k=1

ξn,k

)]∣∣∣∣∣ (16)

≤ ε+ 8
n∑
k=1

E
[
ξ2n,k; |ξn,k| ≥ ε

]
+ 4

n
max
k=1

E [|ξn,k|]

for all STA’s {ξn,k}, all n, and all ε > 0. Finally, assuming that {ξn,k}
satisfies Feller’s condition, taking the supremum over all h ∈ Kc(R),
calculating the superior limits, and letting ε ↓ 0, we see that that (8)
and (16) lead to the desired result. �

Lemma 2.7 reveals that we can capture all parametrized Prokhorov
distances by one collection of smooth test functions. Its proof will be
based on two additional lemma’s.

Lemma 2.5. We have, for P and (Pn)n in P(R),

sup
λ>0

lim sup
n→∞

ρλ(P, Pn) = sup
α>0

lim sup
n→∞

sup
A

(
P [A]− Pn

[
A(α)

])
, (17)

the second supremum of the right-hand side taken over all Borel sets
A ⊂ R.

Proof. Suppose that the right-hand side of (17) is dominated by θ > 0.
Then, for any λ > 0, there exists n such that for all k ≥ n and all Borel
sets A ⊂ R, P [A] ≤ Pk[A

(λθ)] + θ, that is, ρλ(P, Pk) ≤ θ. We conclude
that also the left-hand side of (17) is dominated by θ.

Conversely, suppose that the right-hand side of (17) is larger than
θ > 0. Then there exists α > 0 such that for each n there exist k ≥ n
and A ⊂ R Borel such that, putting λ = αθ−1, P [A] ≥ Pk[A

(λθ)] + θ,
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that is, ρλ(P, Pk) > θ. We infer that also the left-hand side of (17) is
larger than θ. �

The following lemma was established in full generality in [BLV11]
(Section 2, Lemma 2.2) to study the so-called weak approach structure
on the set of probability measures on a separable metric space, see
also [L15]. It is a crucial step to become an approximate central limit
theorem for the parametrized Prokhorov distances. The fact that we
can take sufficiently smooth maps is easily seen in the proof given there.

Lemma 2.6. For each α > 0 and each ε > 0 there exists a finite
collection H0 of continuously differentiable maps h : R → [0, 1] with
bounded first derivative, such that for all Q ∈ P(R)

sup
A

(
P [A]−Q[A(α)]

)
≤ max

h∈H0

∣∣∣∣∫
R
hdP −

∫
R
hdQ

∣∣∣∣+ ε, (18)

the first supremum taken over all Borel sets A ⊂ R.
Conversely, for each continuous map h : R → [0, 1] and each ε > 0

there exists α > 0 such that for all Q ∈ P(R)∣∣∣∣∫
R
hdP −

∫
R
hdQ

∣∣∣∣ ≤ sup
A

(
P [A]−Q[A(α)]

)
+ ε,

the supremum again taken over all Borel sets A ⊂ R.

Lemma 2.7. Let H be the collection of continuously differentiable
maps h : R→ [0, 1] with a bounded derivative. Then, for P and (Pn)n
in P(R),

sup
λ>0

lim sup
n→∞

ρλ(P, Pn) = sup
h∈H

lim sup
n→∞

∣∣∣∣∫
R
hdP −

∫
R
hdPn

∣∣∣∣ . (19)

Proof. By Lemma 2.5, it suffices to show that the right-hand side of
(19) equals the right-hand side of (17).

Fix α and ε > 0, and choose, according to the first assertion in
Lemma 2.6, a finite collection H0 of continuously differentiable maps
h : R→ [0, 1] with bounded derivative, such that (18) holds. But then

lim sup
n→∞

sup
A

(
P [A]− Pn

[
A(α)

])
≤ lim sup

n→∞
max
h∈H0

∣∣∣∣∫
R
hdP −

∫
R
hdPn

∣∣∣∣+ ε

= max
h∈H0

lim sup
n→∞

∣∣∣∣∫
R
hdP −

∫
R
hdPn

∣∣∣∣+ ε,

the last equality following from the finiteness of H0. This shows that
the right-hand side of (19) dominates the right-hand side of (17).

The converse inequality follows analogously from the second asser-
tion in Lemma 2.6. �
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Theorem 2.8. Let ξ be as in Section 1. Then there exists a universal
constant CP > 0 such that

λρλ

(
n∑
k=1

ξn,k → ξ

)
≤ CPLin ({ξn,k})

for all λ > 0 and all STA’s {ξn,k} which satisfy Feller’s condition (1).
Moreover, CP can be taken equal to 4.

Proof. Let h : R → [0, 1] be a continuously differentiable map with a
bounded derivative. Then

sup
x1,x2∈R

|f ′h(x1)− f ′h(x2)| ≤ 2‖f ′h‖∞ ≤ 4‖E[h(ξ)]− h‖∞ ≤ 4, (20)

by (12), and

sup
x1,x2∈R

|f ′′h (x1)− f ′′h (x2)| ≤ 2‖f ′′h‖∞ ≤ 4‖h′‖∞, (21)

by (13). Furthermore, combining (7) with (13), (20), and (21), yields∣∣∣∣∣E
[
h(ξ)− h

(
n∑
k=1

ξn,k

)]∣∣∣∣∣ (22)

≤ ‖h′‖∞ε+ 4
n∑
k=1

E
[
ξ2n,k; |ξn,k| ≥ ε

]
+ 4‖h′‖∞

n
max
k=1

E [|ξn,k|]

for all STA’s {ξn,k}, all n, and all ε > 0. Finally, assuming that {ξn,k}
satisfies Feller’s condition, calculating the superior limits, and letting
ε ↓ 0, we see that that (19) and (22) lead to the desired result. �

Notice the remarkable fact that the constant CP in Theorem 2.8 does
not depend on the parameter λ. This, in light of relation (5), suggests
that an approximate central limit theorem in the spirit of Theorem 1.4
for the total variation distance dTV might be derived from Theorem
2.8. However, the following example shows that this is not the case.

Example 2.9. Let ξ and {ξn,k} be as in Section 1, and assume that
{ξn,k} consists of discrete random variables and satisfies Lindeberg’s
condition. Then

Lin({ξn,k}) = 0

and, each
∑n

k=1 ξn,k also being discrete,

dTV

(
ξ,

n∑
k=1

ξn,k

)
= 1.

We conclude that there does not exist a constant C > 0 such that

λdTV

(
n∑
k=1

ξn,k → ξ

)
≤ CLin({ξn,k})

for all STA’s {ξn,k} satisfying Feller’s condition.
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We summarize the information obtained in Theorem 1.4 and Remark
1.5, Theorem 2.4, and Theorem 2.8, in the following result. We put

λP

(
n∑
k=1

ξn,k → ξ

)
= sup

λ∈R+
0

λρλ

(
n∑
k=1

ξn,k → ξ

)
.

Theorem 2.10. Let ξ be as in Section 1. Then, for each δ ∈ {K,W,P},
there exists a universal constant Cδ > 0 such that

λδ

(
n∑
k=1

ξn,k → ξ

)
≤ CδLin ({ξn,k})

for all STA’s {ξn,k} satisfying Feller’s condition (1). Moreover, CK
can be taken equal to 1, CW equal to 8, and CP equal to 4.

3. Statistical inference with contaminated data

3.1. Motivation and framework. We will now consider at a statisti-
cal situation in which it is beneficial to rely on the approximate central
limit theory developed in the previous section.

Let F be a cumulative distribution function on the real line with∫ ∞
−∞

xdF (x) = 0

and ∫ ∞
−∞

x2dF (x) = 1.

Fix µ ∈ R and let X1, X2, . . ., Xk, . . . be independent observations
of F (· − µ) which are contaminated according to the inflated variance
model (see [TSM85], p.108), that is

Xk ∼ (1− pk)F (· − µ) + pkF

(
· − µ
σk

)
,

where pk ∈ [0, 1] and σk ∈ [1,∞[. Notice that this is a natural model to
express the fact that for each observation Xk there is a large probability
1−pk of observing the correct target distribution F (·−µ), and a small
probability pk of observing a contaminant with distribution F ( ·−µ

σk
).

Observe that
E[Xk] = µ

and
Var[Xk] = (1− pk) + pkσ

2
k.

Now define the sample mean in the usual way as

Xn =
1

n

n∑
k=1

Xk.

Notice that
E[Xn] = µ
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and

Var[Xn] =
(sn
n

)2
where

s2n =
n∑
k=1

[(1− pk) + pkσ
2
k].

Also,
s2n ≥ n (23)

because σ2
k ≥ 1 for all k. Here we will investigate up to what extent

the estimator Xn is weakly consistent for µ in the sense that

Xn
P→ µ, (24)

i.e.
lim
n→∞

P
[∣∣µ−Xn

∣∣ ≥ ε
]

= 0

for all ε > 0, and asymptotically normal in the sense that
n

sn

(
Xn − µ

) w→ ξ, (25)

with ξ as in Section 1, i.e.
(
n
sn

(
Xn − µ

))
n

converges weakly to ξ.

Notice that in the uncontaminated case where σk = 1 for all k, the
Weak Law of Large Numbers implies the truth of (24) and the Central
Limit Theorem entails the validity of (25). It will turn out that in the
contaminated case, the asymptotic normality is often only tractable by
an approximate central limit theorem such as Theorem 2.10.

3.2. Consistency and asymptotic normality. We keep the termi-
nology and the notation from above.

The following relatively straightforward result shows that the con-
taminated sample mean is weakly consistent under a fairly mild condi-
tion.

Theorem 3.1. Suppose that

lim
n→∞

1

n2

n∑
k=1

pkσ
2
k = 0. (26)

Then

Xn
P→ µ.

Proof. Assume without loss of generality that µ = 0. For ε > 0, Cheby-
shev’s inequality gives

P
[∣∣Xn

∣∣ ≥ ε
]
≤ 1

ε2
Var[Xn]

=
1

ε2

[
1

n2

n∑
k=1

(1− pk) +
1

n2

n∑
k=1

pkσ
2
k

]
,
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which easily implies that

lim sup
n→∞

P
[∣∣Xn

∣∣ ≥ ε
]
≤ 1

ε2
lim sup
n→∞

1

n2

n∑
k=1

pkσ
2
k.

This finishes the proof. �

We now turn to the asymptotic normality of Xn. It turns out that

the STA
{

1
sn

(Xk − µ)
}

, which is of crucial importance, satisfies Lin-

deberg’s condition if the sequence of contaminating variances (σk)k is
controllable in a sense made precise in the following theorem.

Theorem 3.2. Suppose that

lim
n→∞

1

s2n

n
max
k=1

σ2
k → 0. (27)

Then the STA
{

1
sn

(Xk − µ)
}

satisfies Lindeberg’s condition, i.e.

Lin

({
1

sn
(Xk − µ)

})
= 0.

Proof. Assume without loss of generality that µ = 0 and let X be a
random variable with cumulative distribution function F . Then, for
ε > 0,

n∑
k=1

E

[(
1

sn
Xk

)2

;

∣∣∣∣ 1

sn
Xk

∣∣∣∣ ≥ ε

]

=
1

s2n

n∑
k=1

(1− pk)E
[
X2; |X| ≥ εsn

]
+

1

s2n

n∑
k=1

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]
,

which is

≤ 1

s2n

n∑
k=1

(1− pk)E
[
X2; |X| ≥ εsn

]
+

1

s2n

n∑
k=1

pkσ
2
kE

[
X2; |X| ≥ ε

√
s2n

maxnk=1 σ
2
k

]

≤ E[X2; |X| ≥ εsn] + E

[
X2; |X| ≥ ε

√
s2n

maxnk=1 σ
2
k

]
.

The latter quantity converges to 0 as n tends to ∞ by (23) and (27).
This finishes the proof. �

Remark 3.3. Observe that (27) implies (26).

The classical central limit theory now leads to the following result.
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Theorem 3.4. Let ξ be as in Section 1 and suppose that

lim
n→∞

1

s2n

n
max
k=1

σ2
k → 0.

Then
n

sn

(
Xn − µ

) w→ ξ.

Proof. Notice that the n-th rowwise sum of the STA
{

1
sn

(Xk − µ)
}

coincides with n
sn

(
Xn − µ

)
. Now apply Theorem 3.2 and Theorem

1.1. �

If the sequence (σk)k cannot be controlled by condition (27), then
it is more appropriate to make use of the approximate central limit
theory of Section 2. As Feller’s condition plays an important role in
this theory, we start with the following characterization.

Theorem 3.5. The STA
{

1
sn

(Xk − µ)
}

satisfies Feller’s condition if

and only if

lim
n→∞

1

s2n

n
max
k=1

pkσ
2
k = 0. (28)

Proof. Assume without loss of generality that µ = 0. Now

n
max
k=1

E
[

1

s2n
X2
k

]
=

1

s2n

n
max
k=1

(1− pk) +
1

s2n

n
max
k=1

pkσ
2
k

whence, by (23),

lim sup
n→∞

n
max
k=1

E
[

1

s2n
X2
k

]
= lim sup

n→∞

1

s2n

n
max
k=1

pkσ
2
k.

This finishes the proof. �

Remark 3.6. Observe that (27) implies (28), which in turn implies
(26).

Theorems 3.8 and 3.9 will reveal that even in the absence of condi-
tion (27), the Lindeberg index of the STA

{
1
sn

(Xk − µ)
}

can still be

bounded from above. Moreover, it can be explicitly computed under a
fairly easy set of conditions.

We first need the following lemma.

Lemma 3.7. Suppose that the sequence
(
1
n

∑n
k=1 pkσ

2
k

)
n

is bounded
and let X be a random variable with cumulative distribution function
F . Then

Lin

({
1

sn
(Xk − µ)

})
= sup

γ>0
sup
ε>0

lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]
,
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where d·e is the ceiling function.

Proof. Assume w.l.o.g. that µ = 0 and choose K ∈ R+
0 such that for

all n
1

n

n∑
k=1

pkσ
2
k ≤ K. (29)

Next, fix γ > 0 small. Then, for n large, by (23) and (29),

1

s2n

dγne−1∑
k=1

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]

≤ γ
1

γn

dγne−1∑
k=1

pkσ
2
k

≤ γ
1

dγne − 1

dγne−1∑
k=1

pkσ
2
k

≤ Kγ,

whence

lim sup
n→∞

1

s2n

n∑
k=1

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]

≤ lim sup
n→∞

1

s2n

dγne−1∑
k=1

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]

+ lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]

≤ Kγ + lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]
.

Thus we have shown that

lim sup
n→∞

1

s2n

n∑
k=1

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]
(30)

= sup
γ>0

lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]
.

Now, arguing analogously as in the proof of Theorem 3.2 and using
(30), we get

Lin

({
1

sn
Xk

})
= sup

ε>0
lim sup
n→∞

1

s2n

n∑
k=1

E
[
X2; |X| ≥ εsn

σk

]
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= sup
ε>0

sup
γ>0

lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]

= sup
γ>0

sup
ε>0

lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]
,

completing the proof. �

Theorem 3.8. The inequality

Lin

({
1

sn
(Xk − µ)

})
≤ lim sup

n→∞

1

s2n

n∑
k=1

pkσ
2
k (31)

always holds. If, in addition,

(1) (σ2
n)n is monotonically increasing,

(2) lim inf
n→∞

1

n
σ2
n > 0,

(3)

(
1

n

n∑
k=1

pkσ
2
k

)
n

is bounded,

then the inequality in (31) becomes an equality.

Proof. Inequality (31) is easily established by the fact that E [X2] = 1.
Now suppose that the three additional conditions in Theorem 3.8 are
fulfilled. The fact that

lim inf
n→∞

1

n
σ2
n > 0

allows us to choose δ > 0 and n0 such that for all n ≥ n0

σ2
n ≥ δn. (32)

Furthermore, the boundedness of
(
1
n

∑n
k=1 pkσ

2
k

)
n

allows us to pick K ∈
R+

0 such that for all n

1

n

n∑
k=1

pkσ
2
k ≤ K. (33)

Now fix γ > 0 small. Then, for n so large that

dγne ≥ n0 (34)

and for k such that
dγne ≤ k ≤ n, (35)

we have, by (34), (35), (33), and (32),(
sn
σk

)2

=

∑n
k=1(1− pk) +

∑n
k=1 pkσ

2
k

σ2
k

≤
∑n

k=1(1− pk) +
∑n

k=1 pkσ
2
k

δk

≤
∑n

k=1(1− pk) +
∑n

k=1 pkσ
2
k

δdγne



18 BEN BERCKMOES AND GEERT MOLENBERGHS

≤ 1

δγ

(
1

n

n∑
k=1

(1− pk) +
1

n

n∑
k=1

pkσ
2
k

)

≤ 1 +K

δγ
,

whence

E
[
X2; |X| ≥ εsn

σk

]
≥ E

[
X2; |X| ≥ ε

√
1 +K

δγ

]
,

with X a random variable with cumulative distribution function F . In
particular,

sup
ε>0

lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]
(36)

≥ sup
ε>0

lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
kE

[
X2; |X| ≥ ε

√
1 +K

δγ

]

= sup
ε>0

E

[
X2; |X| ≥ ε

√
1 +K

δγ

]
lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
k

= lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
k,

where the last equality follows from the fact that E [X2] = 1. Combin-
ing Lemma 3.7 and the inequality shown by (36) gives

Lin

({
1

sn
(Xk − µ)

})
= sup

γ>0
sup
ε>0

lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
kE
[
X2; |X| ≥ εsn

σk

]

≥ sup
γ>0

lim sup
n→∞

1

s2n

n∑
k=dγne

pkσ
2
k

= lim sup
n→∞

1

s2n

n∑
k=1

pkσ
2
k,

the last equality following by mimicking the proof of Lemma 3.7. This
finishes the proof. �

Theorem 3.9. Suppose that

(1)

(
1

n

n∑
k=1

pkσ
2
k

)
n

is convergent to L ∈ R+,
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(2)

(
1

n

n∑
k=1

pk

)
n

is convergent to 0.

Then the inequality

Lin

({
1

sn
(Xk − µ)

})
≤ L

1 + L
(37)

holds. If, in addition,

(3) (σ2
n)n is monotonically increasing,

(4) lim inf
n→∞

1

n
σ2
n > 0,

then the inequality in (37) becomes an equality.

Proof. Theorem 3.8 gives

Lin

({
1

sn
(Xk − µ)

})
≤ lim sup

n→∞

1

s2n

n∑
k=1

pkσ
2
k

= lim sup
n→∞

∑n
k=1 pkσ

2
k∑n

k=1(1− pk) +
∑n

k=1 pkσ
2
k

= lim sup
n→∞

1
n

∑n
k=1 pkσ

2
k

1− 1
n

∑n
k=1 pk + 1

n

∑n
k=1 pkσ

2
k

=
L

1 + L
,

the last equality following from conditions (1) and (2) in Theorem 3.9.
This establishes (37). If conditions (3) and (4) in Theorem 3.9 are also
satisfied, then Theorem 3.8 shows that the first inequality in the above
calculation becomes an equality and we are done. �

Now Theorem 2.10 gives the following result.

Theorem 3.10. Let ξ be as in Section 1 and suppose that

(1)

(
1

n

n∑
k=1

pkσ
2
k

)
n

is convergent to L ∈ R+,

(2)

(
1

n

n∑
k=1

pk

)
n

is convergent to 0,

(3)
(

n
max
k=1

pkσ
2
k

)
n

is convergent to 0.

Then, for each δ ∈ {K,W,P},

λδ

(
n

sn

(
Xn − µ

)
→ ξ

)
≤ Cδ

L

1 + L
, (38)

with CK = 1, CW = 8, and CP = 4.
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Proof. Theorem 3.5 is applicable to conclude that the STA
{

1
sn

(Xk − µ)
}

satisfies Feller’s condition. Furthermore, Theorem 3.9 reveals that the
Lindeberg index of this STA is bounded from above by L

1+L
. Finally,

the n-th row-wise sum of this STA coinciding with n
sn

(
Xn − µ

)
, it

suffices to apply Theorem 2.10. �

We wish to make the following final reflection. If (σn)n increases
monotonically and lim infn→∞

1
n
σn > 0, then classical central limit the-

ory (Theorem 1.1) applied to the set of conditions imposed in Theorem
3.10 leads to the conclusion that the estimator Xn fails to be asymp-

totically normal in the sense that the sequence
(
n
sn

(
Xn − µ

))
n

does

not converge weakly to ξ. However, inequality (38), derived from the
more general approximate central limit theory (Theorem 2.10), shows
that Xn is still close to being asymptotically normal when L is small.

We empirically demonstrate these ideas in the next section through
an example and a simulation study.

3.3. Example and simulation study. We keep the terminology and
the notation from above.

In the following theorem we apply the results obtained in the previ-
ous section to a specific choice for pk and σ2

k. Recall that we say that
Xn is weakly consistent (WC) for µ if (24) holds and asymptotically
normal (AN) if (25) holds.

Theorem 3.11. Let

pk = pk−a with p ∈ [0, 1] and a ∈ [0,∞[

and
σ2
k = s2kb with s ∈ [1,∞[ and b ∈ [0,∞[ .

Then the following assertions are true.

(1) If b < 1, then Xn is WC for µ and AN.
(2) If b ≥ 1 and a > b, then Xn is WC for µ and AN.
(3) If b ≥ 1 and a = b, then Xn is WC for µ, but fails to be AN.

However, for each δ ∈ {K,W,P},

λδ

(
n

sn

(
Xn − µ

)
→ ξ

)
≤ Cδ

ps2

1 + ps2
, (39)

with CK = 1, CW = 8, and CP = 4.

Proof. Firstly, suppose that b < 1. Now, by (23),

1

s2n

n
max
k=1

σ2
k =

nb

s2n
≤ nb−1

which clearly converges to 0 as n tends to ∞. Thus condition (27)
is satisfied, which allows us to conclude from Theorem 3.4 that Xn

is AN. Also, Remark 3.3 shows that condition (26) holds, whence we
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infer from Theorem 3.1 that Xn is WC for µ. This establishes the first
assertion.

Next, consider the case where b ≥ 1 and a > b. Then the sequence

pkσ
2
k = ps2kb−a

converges to 0 as k tends to ∞, whence

lim
n→∞

1

n

n∑
k=1

pkσ
2
k = 0.

Now it easily follows from Theorem 3.1 that Xn is WC for µ and from
Theorem 3.10 that

λδ

(
n

sn

(
Xn − µ

)
→ ξ

)
= 0

for any δ ∈ {K,W,P}. Put otherwise, Xn is AN and the second
assertion is proved.

Finally, let b ≥ 1 and a = b. Then

1

n

n∑
k=1

pkσ
2
k = ps2.

Now the proof of the third assertion goes along the same lines as the
proof of the second one. �

Theorem 3.11 shows for a specific example in which cases the sample
mean is an accurate estimator with desirable asymptotic properties.
Especially the third case is interesting, because although asymptotic
normality is lacking in the classical sense, it gives a concrete numerical
upper bound for how far the sample mean can maximally deviate from
being asymptotically normal. This allows us to conclude that when this
upper bound is small, it is still safe to assume asymptotic normality.
This might be interesting from a practical point of view.

In order to illustrate Theorem 3.11, we have conducted a simula-
tion study with the following setup. For specific instances of p, s, a, b

we have created an empirical cdf E for
Xn−E[Xn]√

Var[Xn]
with sample size

n = 1000, where we have assumed that F = Φ, the cdf of a stan-
dard normal distribution. In each case the empirical cdf was based
on 5000 simulations. We have tested for asymptotic normality by cre-
ating a QQ-plot the graph of which contains bullets with coordinates
(Φ−1(t),E−1(t)), where t runs over a specific grid from 0 to 1. If a bullet
(Φ−1(t),E−1(t)) is close to the line y = x, then Φ−1(t) ≈ E−1(t), whence
E(Φ−1(t)) ≈ t = Φ(Φ−1(t)). Thus on each QQ-plot we have also added
the graph of the line y = x. To each figure we have added the value of
the Lindeberg index governing the asymptotic normality of the sample
mean. Recall that the Lindeberg index takes values between 0 and 1.

The following conclusions can be drawn from this study.
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Figure 1 (p = 0.5, s = 3, a = 0.2, b = 0.5, Lin = 0)
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Figure 2 (p = 0.5, s = 3, a = 3, b = 1, Lin = 0)
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Figure 3 (p = 0.01, s = 1.5, a = 1, b = 1, Lin = 0.02)
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Figure 4 (p = 0.1, s = 1.5, a = 1, b = 1, Lin = 0.18)
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Figure 5 (p = 0.2, s = 2, a = 1, b = 1, Lin = 0.44)
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Figure 6 (p = 0.5, s = 4, a = 1, b = 1, Lin = 0.89)
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If b < 1, then the first assertion in Theorem 3.11 states that - even if
p and s are large and a is below b - the sample mean is asymptotically
normal because the Lindeberg index is 0. This is confirmed by Figure
1.

If b ≥ 1 and a > b, then the second assertion in Theorem 3.11 states
that - even if p and s are large - the sample mean is asymptotically
normal because the Lindeberg index is 0. This is confirmed by Figure
2.

If b ≥ 1 and a = b, then the third assertion in Theorem 3.11 provides
an upper bound for a canonical measure of the asymptotic normality

of the sample mean because the Lindeberg index is ps2

1+ps2
. The larger

the Lindeberg index, the more deviation from asymptotic normality is
expected. This is confirmed by Figures 3 – 6.

4. Open questions

We formulate some open questions which could be a source for future
research.
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Question 1. It would be nice to look for sharper constants in The-
orem 2.10.

Question 2. The possibility of (partially) extending Theorem 2.10
to a multivariate setting, or even to a Hilbert- or Banach-valued con-
text, is an interesting topic for further investigation.

Question 3. Theorem 3.11 does not handle the case where b ≥ 1
and a < b. Assume without loss of generality that µ = 0. Then,
arguing analogously as in the proof of Theorem 3.2, we easily see that

Lin

({
1

sn
Xk

})
= sup

ε>0
lim sup
n→∞

1

s2n

n∑
k=1

E
[
X2; |X| ≥ εsn

σk

]
,

X being a random variable with cumulative distribution function F
and

σ2
k = s2kb

and

s2n = n− p
n∑
k=1

k−a + ps2
n∑
k=1

kb−a.

It would be of interest to examine the existence of a more explicit for-
mula for the Lindeberg index in this case. Also, the weak consistency
should be investigated.

Question 4. Strictly speaking, inequality (38) only shows that the
Lindeberg index is an upper bound for a natural index measuring the
asymptotic normality of the sample mean. This allows us to draw
the conclusion that the sample mean is close to being asymptotically
normal when the Lindeberg index is small, but we cannot say anything
about what happens when the Lindeberg index is large. However, our
simulation study empirically reveals that when the Lindeberg index
gets larger, the sample mean tends to deviate more from asymptotic
normality. It would be of interest to establish a useful lower bound for

λδ

(
n
sn

(
Xn − µ

)
→ ξ

)
in terms of the Lindeberg index, which serves as

a theoretical underpinning of this observation. General lower bounds of
this type have been obtained in [BLV13] for the Kolmogorov distance,
but they are so unsharp that they do not have the power to predict
what we have seen in our simulation study.

Appendix A: Proof of Theorem 2.1

We follow [BLV13], Section 2. We keep a continuously differentiable
h : R → [0, 1], with bounded derivative, fixed, and let fh be its Stein
transform defined by (6). Also, we put

σ2
n,k = E[ξ2n,k].
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The following lemma is easily verified. It can be found in e.g. [BC05]
(p.10-11).

Lemma 1. fh is twice continuously differentiable, has bounded first
and second derivatives, and

E [h(ξ)]− h(x) = xfh(x)− f ′h(x). (40)

The following lemma can be found in [BLV13] (Lemma 2.4). We give
the proof for completeness.

Lemma 2. Put

δn,k = fh

(∑
i 6=k

ξn,i + ξn,k

)
− fh

(∑
i 6=k

ξn,i

)
− ξn,kf ′h

(∑
i 6=k

ξn,i

)
and

εn,k = f ′h

(∑
i 6=k

ξn,i + ξn,k

)
− f ′h

(∑
i 6=k

ξn,i

)
− ξn,kf ′′h

(∑
i 6=k

ξn,i

)
.

Then

E

[(
n∑
k=1

ξn,k

)
fh

(
n∑
k=1

ξn,k

)
− f ′h

(
n∑
k=1

ξn,k

)]

=
n∑
k=1

E [ξn,kδn,k]−
n∑
k=1

σ2
n,kE [εn,k] . (41)

Proof. Recalling that ξn,k and
∑

i 6=k ξn,i are independent, E [ξn,k] = 0,

and
∑n

k=1 σ
2
n,k = 1, we get

n∑
k=1

E [ξn,kδn,k]−
n∑
k=1

σ2
n,kE [εn,k]

=
n∑
k=1

E

[
ξn,kfh

(
n∑
k=1

ξn,k

)]
− E

[
ξn,kfh

(∑
i 6=k

ξn,i

)]

−
n∑
k=1

E

[
ξ2n,kf

′
h

(∑
i 6=k

ξn,i

)]
−

n∑
k=1

σ2
n,kE

[
f ′h

(
n∑
k=1

ξn,k

)]

+
n∑
k=1

E
[
ξ2n,k
]
E

[
f ′h

(∑
i 6=k

ξn,i

)]
+

n∑
k=1

σ2
n,kE

[
ξn,kf

′′
h

(∑
i 6=k

ξn,i

)]
.

The last expression further reduces to

E

[(
n∑
k=1

ξn,k

)
fh

(
n∑
k=1

ξn,k

)]
− E [ξn,k]E

[
fh

(∑
i 6=k

ξn,i

)]

−
n∑
k=1

E

[
ξ2n,kf

′
h

(∑
i 6=k

ξn,i

)]
− E

[
f ′h

(
n∑
k=1

ξn,k

)]
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+
n∑
k=1

E

[
ξ2n,kf

′
h

(∑
i 6=k

ξn,i

)]
+

n∑
k=1

σ2
n,kE [ξn,k]E

[
f ′′h

(∑
i 6=k

ξn,i

)]
,

which is easily seen to equal

E

[(
n∑
k=1

ξn,k

)
fh

(
n∑
k=1

ξn,k

)
− f ′h

(
n∑
k=1

ξn,k

)]
.

This finishes the proof. �

The following lemma is an application of Taylor’s theorem.

Lemma 3. For any a, x ∈ R,

|fh(a+ x)− fh(a)− f ′h(a)x|

≤ min

{(
sup

x1,x2∈R
|f ′h(x1)− f ′(x2)|

)
|x| , 1

2
‖f ′′h‖∞ x

2

}
. (42)

We are now in a position to present a proof of Theorem 2.1.

Proof of Theorem 2.1. For n and ε > 0, we have, by (40), (41), and
(42), ∣∣∣∣∣E

[
h (ξ)− h

(
n∑
k=1

ξn,k

)]∣∣∣∣∣
=

∣∣∣∣∣E
[(

n∑
k=1

ξn,k

)
fh

(
n∑
k=1

ξn,k

)
− f ′h

(
n∑
k=1

ξn,k

)]∣∣∣∣∣
≤

n∑
k=1

E [|ξn,kδn,k|] +
n∑
k=1

σ2
n,kE [|εn,k|]

≤ 1

2
‖f ′′h‖∞

n∑
k=1

E
[
|ξn,k|3 ; |ξn,k| < ε

]
+

(
sup

x1,x2∈R
|f ′h(x1)− f ′h(x2)|

) n∑
k=1

E
[
|ξn,k|2 ; |ξn,k| ≥ ε

]
+

(
sup

x1,x2∈R
|f ′′h (x1)− f ′′h (x2)|

) n∑
k=1

σ2
n,kE [|ξn,k|] ,

which proves the desired result since
∑n

k=1 σ
2
n,k = 1.
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