
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Hardware supported Software
and Control Flow Integrity

Ruan de Clercq

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD)

November 2017

Supervisor:
Prof. dr. ir. I. Verbauwhede

Hardware supported Software and Control Flow
Integrity

Ruan DE CLERCQ

Examination committee:
Prof. dr. ir. Omer Van der Biest, chair
Prof. dr. ir. I. Verbauwhede, supervisor
Prof. dr. ir. F. Piessens
Prof. dr. ir. B. Preneel
Prof. dr. Aurélien Francillon
(EURECOM, France)

Prof. dr. ir. Bjorn de Sutter
(University of Ghent, Belgium)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD)

November 2017

© 2017 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Ruan de Clercq, Kasteelpark Arenberg 10, bus 2452, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Acknowledgements

First and foremost, I would like to thank my promoter Ingrid Verbauwhede for
offering me the opportunity to pursue a PhD at COSIC. I am deeply grateful for
her guidance, time, tips, and trust to allow me to freely conduct my research.

I would like to thank my assessors Prof. Bart Preneel and Prof. Frank Piessens
for their valuable contributions throughout the doctoral program. I would further
like to thank the additional members of the jury Prof. Aurélien Francillon
and Prof. Bjorn de Sutter for the time and effort that they invested in this
dissertation, and Prof. Patrick Wollants for chairing the jury.

Thanks to all my co-authors for the fruitful discussions and collaborations. I
learned a lot from you, and would like to continue writing papers with you.

I would like to thank all my colleagues in COSIC for contributing to a great
research environment, and also for the lunches, karting, table tennis, coffee
breaks, COSIC weekends, Friday beers, and climbing sessions. I have thoroughly
enjoyed my time here and I can highly recommend working at COSIC.

I am forever grateful to all my friends in Leuven for their friendship, support,
and patience that made my time in Leuven an unforgettable experience. Special
thanks to my climbing friends for the many amazing sessions in Freyr, Mozet,
Berdorf, Fontainebleau and further afield.

I want to thank my partner and family for their ongoing support, encouragement,
and for always being there when I need them. Finally, I am eternally grateful
to my mom and my partner’s parents for their continued support.

Ruan de Clercq
Leuven, November 2017

i

Abstract

Bugs are prevalent in a large amount of deployed software. These bugs often
introduce vulnerabilities that can be exploited by attackers to make programs
misbehave. Many devices rely on software that needs security, such as medical
implants, sensor networks, RFID tags, automotive controllers. Software should
do what it is asked to do, and should not misbehave; e.g., by delivering the
wrong drug dosages, by stealing information, by spying on the user, by disabling
the brakes on a car, or by attacking other computers.

The central topic of this thesis is the development of hardware-based mechanisms
that prevent software from misbehaving. We focus on enhancing the security of
microprocessors to detect runtime attacks, prevent malicious modification of
software, and develop support for isolating software from malware.

The main contributions of this thesis are two-fold. First, we analyse existing
hardware-based Control Flow Integrity (CFI) architectures. This includes a
detailed description and comparison of each architecture’s policies, security,
hardware cost, performance, and suitability for widespread deployment.

Second, we design several new hardware-based security architectures. This
includes developing the first known CFI architecture based on instruction-set
randomisation, that also enforces software integrity through modifications to a
processor. We further design the first known hardware-based software integrity
architecture that is realised as a standalone Intellectual Property (IP) core that
connects to the bus via standard interfaces. Finally, we develop an architectural
feature which provides interrupt support for a program counter-based Protected
Module Architectures (PMAs) by means of processor modifications. All the
architectures developed in this thesis are evaluated on Field Programmable
Gate Array (FPGA), which allows us to accurately determine the hardware
cost and the performance overhead of running the software on the architecture.

iii

Beknopte samenvatting

Veel geïnstalleerde software bevat fouten. Dit is problematisch omdat die fouten
de oorzaak zijn van zwakheden die misbruikt kunnen worden om applicaties
zich te doen misdragen. Software die beveiligd moet worden wordt gebruikt op
vele apparaten, zoals medische implantaten, netwerken van sensoren, RFID tags
en de regelaars in voertuigen. Deze software moet doen wat het gevraagd word
en mag zich niet misdragen door bijvoorbeeld de verkeerde dosis medicijnen toe
te dienen, informatie te stelen, de gebruiker te bespioneren, de remmen van een
auto onbruikbaar te maken of door andere computers aan te vallen.

Het centrale onderwerp van deze thesis is het ontwerp van hardware-gebaseerde
mechanismen die verzekeren dat software zich niet kan misdragen. We
concentreren ons op het verbeteren van de beveiliging van microprocessoren om
runtime aanvallen te detecteren.

De voornaamste bijdragen van deze thesis zijn tweeledig. Ten eerste analyseren
we bestaande hardware-gebaseerde architecturen die de integriteit van de
programmastroom beschermen. Dit omvat een gedetailleerde beschrijving van
hun richtlijnen, samen met een evaluatie van hun beveiliging, hardware kost,
performantie en geschiktheid voor wijdverspreide toepassing.

Ten tweede ontwikkelen we verschillende nieuwe hardware-gebaseerde architec-
turen. Dit omvat de ontwikkeling van de eerste gekende architectuur die de
integriteit van de programmastroom beschermt aan de hand van instructieset
randomisatie. Bovendien verzekert deze architectuur de integriteit van de
applicatie door middel van aanpassingen aan de processor. We hebben daarnaast
ook de eerste gekende hardware-gebaseerde architectuur ontwikkeld om de
integriteit van software te beschermen tijdens de uitvoering ervan aan de hand
van een IP core die verbindt met de bus via een gestandaardiseerde interface.
Tot slot ontwikkelen we een architecturale functie op basis van aanpassingen
aan de processor die ondersteuning voor interrupts toevoegt aan architecturen
die softwaremodules beschermen door geheugentoegangcontrole op basis van de

v

vi BEKNOPTE SAMENVATTING

programmateller. Alle architecturen die ontwikkeld worden in deze thesis zijn
geëvalueerd op FPGA, waardoor we accuraat de hardware kost en de impact
op de performantie voor het uitvoeren van software op de architectuur kunnen
bepalen.

Contents

Abstract iii

Contents vii

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

1 Introduction 1

1.1 Defending against runtime attacks 2

1.2 Thesis objectives . 3

1.3 Summary of Contributions . 4

1.4 Thesis Structure . 5

1.5 Other Publications . 6

2 Towards Secure Interrupts on Low-End Microcontrollers 9

2.1 Introduction . 9

2.2 Architecture . 10

2.2.1 Attacker model . 11

vii

viii CONTENTS

2.2.2 Domain isolation . 11

2.2.3 Context switching between domains 13

2.3 Secure Interrupts . 13

2.3.1 Standard interrupt mechanism 13

2.3.2 Domain isolation support 14

2.3.3 Interrupting non-secure task with secure ISR 15

2.3.4 Interrupting secure task with non-secure ISR 15

2.3.5 Scheduling . 16

2.4 Implementation . 17

2.4.1 MSP430 . 17

2.4.2 Software-based implementation 17

2.4.3 Hardware-based implementation 19

2.4.4 Hidden registers optimization 20

2.5 Evaluation . 21

2.5.1 Results . 21

2.5.2 Limitations . 22

2.6 Conclusion . 23

3 Control Flow Integrity 25

3.1 Introduction . 26

3.2 Attacks and countermeasures: an arms-race 27

3.3 Background . 29

3.3.1 Control Flow Integrity (CFI) 29

3.3.2 The need for hardware-based CFI 30

3.3.3 Hardware monitor . 31

3.4 Attacker model . 34

3.5 Classical CFI . 35

CONTENTS ix

3.5.1 Labels . 35

3.5.2 Shadow Call Stack (SCS) 36

3.5.3 Challenges and limitations 36

3.6 Hardware-based CFI Policies 38

3.6.1 Shadow Call Stack (SCS) 38

3.6.2 HAFIX: Shadow stack alternative 42

3.6.3 Labels . 42

3.6.4 Table . 43

3.6.5 Finite State Machine (FSM) 44

3.6.6 Heuristics . 44

3.6.7 Monitoring graph (MG) 46

3.6.8 Branch Regulation (BR) 47

3.6.9 BB-CFI: Branch Regulation on Basic Blocks 48

3.6.10 Branch Limitation (BL) 48

3.6.11 Instruction Set Randomisation (ISRAND) 50

3.6.12 Signature Modeling (SM) 50

3.6.13 Code Pointer Integrity (CPI) 52

3.7 CFI enforcement via the debug interface 53

3.7.1 Implementations . 53

3.7.2 Limitations . 54

3.8 Comparison of Architectures 55

3.8.1 Protection provided . 55

3.8.2 Requirements . 57

3.8.3 Overhead . 58

3.9 Conclusion . 59

4 SOFIA: Software and Control Flow Integrity Architecture 63

x CONTENTS

4.1 Introduction . 63

4.2 Problem Statement . 64

4.2.1 Threat Model . 64

4.2.2 System goals . 65

4.3 Architecture . 65

4.3.1 Control Flow Integrity (CFI) 67

4.3.2 Software Integrity (SI) 69

4.3.3 Control Flow Integrity with Software Integrity (CFI and
SI) . 73

4.3.4 Blocks with Multiple Predecessors 75

4.3.5 Support for blocks with single and multiple predecessors 76

4.3.6 MAC Chaining . 77

4.4 Hardware implementation . 78

4.4.1 Overview . 78

4.4.2 Block cipher . 79

4.4.3 Hardware design . 79

4.4.4 Scheduling the Block Cipher 81

4.4.5 Limitations . 83

4.5 Software Implementation . 83

4.5.1 Toolchain Design . 84

4.5.2 Toolchain Implementation 88

4.5.3 Limitations . 92

4.6 Evaluation . 93

4.6.1 Security Evaluation . 93

4.6.2 Hardware Evaluation . 95

4.6.3 Performance Evaluation 96

CONTENTS xi

4.6.4 Practical feasibility in time constrained cyber physical
systems . 98

4.7 Conclusion . 99

5 SCM: Secure Code Memory Architecture 101

5.1 Introduction . 102

5.2 Problem Statement . 103

5.2.1 Threat Model . 103

5.2.2 System Goal . 103

5.3 SCM Design . 104

5.3.1 Conceptual Overview 104

5.3.2 Architecture . 105

5.4 Prototype Implementation . 109

5.4.1 Target Platform . 109

5.4.2 Transactor . 110

5.4.3 MAC Verification . 112

5.4.4 Integrity Violations . 113

5.5 Evaluation . 113

5.5.1 Security Evaluation . 113

5.5.2 Hardware evaluation . 113

5.5.3 Performance Evaluation 113

5.6 Conclusion . 114

6 Conclusions 115

6.1 Conclusions . 115

6.2 Future work . 117

Bibliography 121

xii CONTENTS

Curriculum Vitae 133

List of publications 135

List of Figures

1.1 A System-on-Chip (SoC) showing the security features proposed
and analysed in this thesis. 4

1.2 A software flowchart for SOFIA and Secure Code Memory (SCM). 5

2.1 The steps for invoking secure Interrupt Service Routines (ISRs)
from the non-secure domain. 15

2.2 The required steps for invoking non-secure Interrupt Service
Routines (ISRs) from the secure domain. 16

2.3 Software-based flowchart for invoking a secure ISR from the
non-secure domain. 19

2.4 Software-based flowchart for invoking a non-secure ISR from the
secure domain. 19

2.5 The modified hardware-based interrupt logic. 20

3.1 The hardware monitor is integrated into the instruction pipeline
of the processor. The pipeline stages are abbreviated as follows:
Instruction Fetch (IF), Instruction Decode (ID), Execute (EXE),
and Write Back (WB). 32

3.2 A CFI hardware monitor interfaces with the processor’s debug
port. In addition, a Memory-Mapped IO (MMIO) interface is
nused by instrumented code to communicate with the hardware
monitor. 33

xiii

xiv LIST OF FIGURES

4.1 Overview of the design using Control Flow Integrity (CFI) and
Software Integrity (SI). 66

4.2 Encrypted instructions (cinstn) are decrypted at runtime using
dynamic control flow information consisting of the current
and previous program counters (PC, and prevPC). Under the
condition that control flow is untampered, PC = addr(cinsti), and
prevPC = addr(cinsti−1), or prevPC = callAddr, with callAddr the
call site. 68

4.3 A Control Flow Graph (CFG) of a small program shows two
different control flow paths from node 1 to node 5. If the valid
control flow path is taken, all instructions are decrypted correctly.
However, when the invalid control flow path is taken, instruction
5 is decrypted incorrectly. 68

4.4 The integrity of a program’s instructions is verified at runtime
by comparing the precomputed Message Authentication Code
(MAC) with the run-time calculated MAC. If verification fails,
the processor is reset to prevent tampered instructions from
executing. 70

4.5 The execution block consists of an m-word precomputed MAC
(M) and n instructions. Control flow can only enter at M, and
can only exit at instn. Inside a block the control flows through
each consecutive word. 70

4.6 The instructions in a four instruction execution block fit in the
pipeline stages before the Memory Access (MA) stage. This
allows the architecture to verify the integrity of the block before
a memory access has been performed. 72

4.7 The size of an execution block can be increased to six instructions
if store instructions are restricted from inst1 and inst2. 73

4.8 The CFI and SI architectural features are combined to detect
tampered software and control flow. At runtime, the encrypted
words in an execution block (cinsti and CMi) are first decrypted
with counter-mode, and then a CBC-MAC is used to compute a
MAC on the decrypted instructions (inst′i). 74

4.9 The plaintext multiplexer block uses two copies of the first MAC
word M1 as its two entry points, which are respectively called
M1e1 and M1e2. 75

LIST OF FIGURES xv

4.10 The encrypted multiplexer block supports two entry points and
has two unique control flow paths through the block. 76

4.11 A tree of multiplexer nodes is used to increase the number of call
sites (Ci) that can invoke a function. 76

4.12 A hardware block diagram showing the SOFIA core integrated
in the instruction pipeline stages of the LEON3. 80

4.13 A timing diagram of the block cipher operations to process a
single execution block. CTRn indicates counter-mode decryption,
ECB indicates MAC de-chaining, and CBC-MAC indicates part
of the CBC-MAC computation. The execution block exists in
slots zero to seven. Negative slot numbers indicate the previous
block in the instruction pipeline. Gray blocks indicate cipher
operations of the previous or next block. 82

4.14 Overview of how the independent parts of the SOFIA toolchain
work together. 85

4.15 Compiler Stage of the toolchain transforming C code to SPARC
assembler code. 86

4.16 The post-linkage part of the toolchain is responsible for
identifying blocks, adjusting offsets, and finally encrypting each
reachable block. 88

4.17 Example of the iterative transformation ensuring a binary control
flow graph. Proxy nodes are added until every node has at most
two predecessors. 89

4.18 Example of how the SOFIA basic block inflator transforms
a sequence of assembler instructions to satisfy all low-level
constraints. SPARC uses delayed branching, which means that
the instruction after a branch is executed before the branch
takes effect. Therefore, the ret instruction is placed on the
second-to-last element in the memory block. 91

4.19 A comparison of the cycle overhead of benchmarks running on a
SOFIA core compared to a stock LEON3 processor clocked at
92.3 MHz. 97

4.20 A comparison of the total execution time overhead of benchmarks
running on a SOFIA core compared to a stock LEON3 processor
clocked at 92.3 MHz. 98

xvi LIST OF FIGURES

5.1 Flow of code and data through system. 105

5.2 Architectural overview of the system 105

5.3 Memory mapping between the SCM memory range and untrusted
memory. 108

5.4 System overview. 110

5.5 The implemented architecture of SCM. 110

List of Tables

2.1 Access rights enforced by the memory protection unit. 12

2.2 A summary of the hardware costs for the different designs. 21

2.3 Context switching cycle times for an interrupted task. The
number of visible registers are indicated with n. 22

3.1 Overview of hardware-based CFI architectures. 56

3.2 Performance and hardware overheads of the CFI architectures.
All reported percentages are relative to the baseline performance
of the target processor, while the non-percentages are absolute
values. 60

4.1 Architectural features vs. system model criteria. 66

4.2 Hardware overhead of two block ciphers: RECTANGLE and
PRINCE. 79

4.3 The hardware overhead of SOFIA. 95

4.4 A comparison of the code size of the benchmarks compiled for
both a SOFIA core and for a stock LEON3 processor. 97

5.1 Software benchmarks for SCM 114

xvii

List of Abbreviations

ASIC Application-Specific Integrated Circuit

BL Branch Limitation

BR Branch Regulation

CAM Content-Addressable Memory

CFG Control Flow Graph

CFI Control Flow Integrity

CPI Code Pointer Integrity

CRA Code Reuse Attack

ELF Executable and Linkable Format

EXE Execute

FIFO First-In, First-Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

ID Instruction Decode

IF Instruction Fetch

IP Intellectual Property

ISA Instruction Set Architecture

ISRAND Instruction Set Randomization

ISR Interrupt Service Routine

xix

xx LIST OF ABBREVIATIONS

IVT Interrupt Vector Table

JOP Jump-Oriented Programming

LBR Last Branch Register

LUT Look-Up Table

MA Memory Access

MAC Message Authentication Code

MG Monitoring Graph

MMIO Memory-Mapped IO

OF Operand Fetch

OS Operating System

PC Program Counter

PL Programmable Logic

PMA Protected Module Architecture

PS Processing System

PT Processor Trace

ROP Return-Oriented Programming

SCM Secure Code Memory

SCS Shadow Call Stack

SI Software Integrity

SM Signature Modeling

SoC System-on-Chip

SR Status Register

TCB Trusted Computing Base

WB Write Back

XCP Exception

Chapter 1

Introduction

Computers play an important role in today’s society and will continue to play
an even greater role in the future. It is important to ensure that the software
that runs on these computers perform the correct computations. Software
should do what it is asked to do, and should not misbehave; e.g., by stealing
information, by spying on the user, by delivering the wrong drug dosages, or
by attacking other computers. Therefore, to ensure that computers behave as
expected, security mechanisms are required by all classes of microprocessors:
from small microcontrollers to large cloud-based servers.

Software programs are frequently deployed with bugs which makes them
vulnerable to attack. A root cause of this problem can be attributed to the
use of unsafe programming languages, which can introduce memory errors
into programs. A memory error is a software bug caused by invalid pointer
operations, use of uninitialised variables, and memory leaks. Memory errors
occur due to the use of low-level languages, such as C and C++, which trade type
safety and memory safety for performance. In contrast, memory safe languages
aim to prevent arbitrary pointer arithmetic and provides runtime array bounds
checks.

Memory errors are present in a surprisingly large amount of software, since
memory unsafe languages are used by many systems, such as web browsers,
embedded software, firmware, libraries, and Operating System (OS) kernels.
In addition, this problem also exists in some unexpected places: (1) memory
safe languages often rely on OS kernels and libraries written in memory unsafe
languages, and (2) memory safe languages frequently use an interpreter which
is written in a memory unsafe language.

1

2 INTRODUCTION

1.1 Defending against runtime attacks

In this thesis, we use the term system to refer to the collection of software and
hardware components that are used inside a computing platform. We assume
that the computing platform consists of a microprocessor, storage, and software
that runs on the microprocessor.

Defending against the exploitation of existing software bugs is a difficult problem.
Even though a significant effort has been made to design defences, some
attack classes remain extremely difficult to defend against. Current security
mechanisms are built into OSs, compilers, programming languages, and the
underlying (hardware) architectures. However, the introduction of each new
defence mechanism usually leads to the development of a new attack which
circumvents it. This has led to an arms-race between attackers and defenders.

Page-based protection, such as W⊕X, is a strong defence against code injection
and code tampering, and is supported by most modern processors and OSs [1].
However, W⊕X can be circumvented by Code Reuse Attacks (CRAs), which
do not require any code to be injected, but instead uses existing software for
malicious purposes. To defend against CRAs, code randomization re-arranges
the address space positions of key data and code areas of a process. This makes
it more difficult to launch a CRA, since the location of the code is unknown to
the attacker. However, this defence can be bypassed by a number of different
approaches, including brute force or an information disclosure that allows for
calculating the address of a randomised memory block. Therefore, CRAs still
remain an important threat that is difficult to protect against.

Control flow is a term used to describe the order in which instructions are
executed inside a program. The instructions in a program are executed
sequentially, unless the processor runs into an instruction that changes the
control flow, such as a branch instruction.

A Control Flow Graph (CFG), is a graph of the valid control flow inside a
program, and is commonly used as a model of the valid control flow inside a
well-behaved program. Each node in the CFG represents a basic block, which is
a group of instructions where control flows sequentially from the first instruction
to the last. Therefore, control can only flow into a basic block at the first
instruction (e.g., through a branch targeting the first instruction in a basic
block.), and control can only flow out of the basic block at the last instruction.
This implies that only the last instruction in a basic block may induce a control
flow change. In a CFG, forward edges are caused by jumps and calls, while
backward edges are caused by returns. The CFG is typically generated by
statically analysing the source code or the binary of a program.

THESIS OBJECTIVES 3

Control Flow Integrity (CFI) is a security policy that prevents attackers from
tampering with the control flow of a program. The observation is that a
large number of attacks rely on hijacking the control flow in order to succeed.
Therefore, by enforcing a strict control flow policy, CFI can prevent these control
flow hijacking attacks. CFI architectures typically assume that the software
being protected contains vulnerabilities which can be exploited by an attacker,
and that it is the responsibility of the CFI architecture to detect abnormal
control flow.

Software Integrity (SI) is a security policy that prevents the execution of
tampered software on the processor. The goal is to prevent an attacker from
executing malicious code (code injection / tampering). One approach is to verify
the authenticity of code before execution. Another approach is to make use of
access control to isolate software. This mechanism can also exist independently
of an operating system.

A Protected Module Architecture (PMA) is a security mechanism that allows
for the secure execution of sensitive code in an area that is isolated from other
processes. It operates independently of the operating system, which allows
it to provide strong isolation guarantees, even when the system is infected
with malware. In addition, some PMAs provide support for remote attestation,
which allows a third party to determine if a device is in a trusted state.

1.2 Thesis objectives

The main objective of this thesis is to analyse and design security mechanisms
that ensure that the software running on a computer processor is behaving
correctly. We focus on developing new architectural security features for
microprocessors. In other words, we aim to provide security from the
processor itself, instead of doing so through the software. We study the
modifications required to make the processor architecture support different
security requirements. The focus is on small embedded processors, since they
are easier to understand, use, and modify.

All the new security solutions proposed in this thesis are evaluated on an FPGA.
This allows us to accurately determine the hardware cost, the performance
overhead for interfacing with the hardware, the performance overhead of running
the software on the modified processor, and the hardware area overhead. In
contrast, many previous works rely on simulation-based evaluations, which
only provides a functional evaluation, together with a rough estimate of the
performance costs.

4 INTRODUCTION

SoC

Bus

Processor IP core

Debugger HW Monitor

Memory
Controller

Untrusted
Memory

Chapter 5Chapter 2

Chapter 3

Chapter 4

Chapter 3

Figure 1.1: A System-on-Chip (SoC) showing the security features proposed
and analysed in this thesis.

1.3 Summary of Contributions

Figure 1.1 illustrates the contributions of this thesis by highlighting the location
of the security mechanisms inside a typical System-on-Chip (SoC) architecture.
In summary, the contributions of this thesis are as follows:

• An architecture to provide interrupt support for Protected Module Archi-
tectures (PMAs), which requires modifying the processor (Chapter 2).

• An analysis of existing hardware-based Control Flow Integrity (CFI)
policies and architectures proposed by industry and academia, which
require modifying either the processor or a hardware monitor connected
to the processor’s debug interface (Chapter 3).

• A novel hardware-based CFI architecture, called SOFIA, which uses
cryptographic techniques to enforce CFI and SI. It is implemented as a
processor core modification (Chapter 4).

• A novel hardware-based architecture, called Secure Code Memory (SCM),
which enforces SI. SCM is a lightweight alternative to SOFIA with reduced
functionality and is implemented as an IP core (Chapter 5).

THESIS STRUCTURE 5

Software

Transform

Untrusted
MemorySCM SOFIA

Operating
System

Execute
Program

Chapter 5 Chapter 4

Figure 1.2: A software flowchart for SOFIA and SCM.

For SOFIA and SCM, we show a software flowchart in Figure 1.2. As a first
step, a software transformation step is required, after which the transformed
program is stored in untrusted memory. For SOFIA, we developed a toolchain
to take care of the transformations, while for SCM we developed a scripted
solution. All benchmarks were executed in baremetal, and as a future work,
operating system support can be developed for these architectures.

1.4 Thesis Structure

This section provides an outline of the thesis structure.

Chapter 2 - Towards Secure Interrupts on Low-End Microcontrollers
In Chapter 2 we focus on the problem of providing interrupt support to a light-
weight PMA. Three methods of securely handling interrupts are proposed, each
exploring a different trade-off between hardware cost, software complexity, and
interrupt latency.

The content of this chapter is based on [37].

Chapter 3 - Control Flow Integrity (CFI) Policies. In Chapter 3 we
introduce the concept of Control Flow Integrity (CFI), which aims to detect
abnormal program behaviour. We outline the recent history of attacks and
countermeasures. We provide a detailed analysis and comparison of the security

6 INTRODUCTION

policies used by 21 state-of-the-art hardware-based CFI architectures. The
security policies and architectures are compared in terms of the security
properties that they provide.

The content of this chapter is part of an article that is currently under review.

Chapter 4 - Instruction-Set Randomization as a CFI policy. In Chapter
4 we introduce a security architecture called SOFIA, which is the only known
architecture that enforces a CFI policy based on instruction-set randomization.
The architecture is capable of defending against a large number of attacks,
including code injection, code reuse, and fault-based attacks on the program
counter. The architecture was evaluated on an FPGA, and a custom compiler
toolchain was developed to perform the extensive software transformations
required by the architecture.

The content of this chapter is based on [35] which is an extended version of [33]

Chapter 5 - A light-weight Software Integrity policy. In Chapter 5 we
present an architecture that addresses the issue of protecting the integrity of
code and read-only data that is stored in memory. The architecture works as a
standalone IP core inside a System-on-Chip (SoC), which is a novel approach
to enforce a hardware-based security policy. The architecture is also flexible to
select the parts of the software to be protected, which eases the integration of
our solution with existing software.

The content of this chapter is based on [34].

Chapter 6 - Conclusion. Finally, Chapter 6 we summaries the main findings
of this thesis together with opportunities for future research on related topics.

1.5 Other Publications

In addition to the work published in this thesis, we worked on the following
research publications which were not included in this thesis:

• In [38] we presented techniques to efficiently implement elliptic curve
cryptography (ECC) on the ultra-low power ARM Cortex M0+. The
paper proposed an improvement to the Lopez-Dahab field multiplication
algorithm which reduces the number of memory accesses. This led
to the fastest known ECC implementation on any ARM Cortex-M
platform, together with the lowest energy requirement of any published
microcontroller implementation with similar security parameters.

OTHER PUBLICATIONS 7

[38] de Clercq, R., Uhsadel, L., Van Herrewege, A., and
Verbauwhede, I. Ultra Low-Power Implementation of ECC on the
ARM Cortex-M0+. In Proceedings of the Design Automation Conference
(2014), DAC ’14, ACM, pp. 112:1–112:6

• In [36] we presented techniques to make an efficient software implementa-
tion of a post-quantum secure public-key encryption scheme based on the
ring-LWE problem on the ARM Cortex-M4F. We proposed optimization
techniques for fast discrete Gaussian sampling and efficient polynomial
multiplication. The implementation was faster than any other published
ring-LWE implementation by a factor of 7, and faster than any known
ECC implementation by at least one order of magnitude.

[36] de Clercq, R., Roy, S. S., Vercauteren, F., and Ver-
bauwhede, I. Efficient Software Implementation of ring-LWE Encryption.
In Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (2015), DATE ’15, ACM, pp. 339–344

• The work in [54] proposed Soteria, which is an extension to Sancus, which
provides protection of the intellectual property of code and data against
powerful software attackers. The extension uses a toolchain to encrypt
software IP, while at runtime a loader module decrypts the encrypted
software into a software module. This ensures that code cannot leak to
the outside world, while providing all the mechanisms to package and
execute code.

[54] Götzfried, J., Müller, T., de Clercq, R., Maene, P.,
Freiling, F., and Verbauwhede, I. Soteria: Offline Software
Protection Within Low-cost Embedded Devices. In Proceedings of the
Annual Computer Security Applications Conference (2015), ACSAC 2015,
ACM, pp. 241–250

• The work in [91,92] proposed new masking schemes to protect ring-LWE
decryption against first-order side-channel attacks.

[91] Reparaz, O., de Clercq, R., Roy, S. S., Vercauteren, F.,
and Verbauwhede, I. Additively homomorphic ring-LWE masking. In
International Workshop on Post-Quantum Cryptography (2016), Springer,
pp. 233–244

[92] Reparaz, O., Roy, S. S., de Clercq, R., Vercauteren, F.,
and Verbauwhede, I. Masking ring-LWE. Journal of Cryptographic
Engineering 6, 2 (2016), 139–153

8 INTRODUCTION

• The work in [104] presents a coprocessor designed to offer hardware
acceleration for a software-based VPN application. The open-source
SigmaVPN application is used as the base solution, and a coprocessor is
designed for the parts of Networking and Cryptography library (NaCl)
which is used by SigmaVPN. The hardware-software codesign of this work
is implemented on a Zynq-7000 SoC, which showed a 94% reduction in
execution time for decrypting a 1024-byte Ethernet frame.

[104] Turan, F., De Clercq, R., Maene, P., Reparaz, O., and
Verbauwhede, I. Hardware Acceleration of a Software-based VPN. In
International Conference on Field Programmable Logic and Applications
(FPL) (2016), IEEE, pp. 1–9

• The work in [78] presents an analysis of the current state-of-the-art in
hardware-based trusted computing architectures that provide isolation
and attestation. It includes a definition of the common security
properties offered by trusted computing architectures, and provides a
detailed description of twelve hardware-based attestation and isolation
architectures from academia and industry. In addition, the analysed
architectures are compared with respect to their security properties and
architectural features.

[78] Maene, P., Götzfried, J., de Clercq, R., Muller, T.,
Freiling, F., and Verbauwhede, I. Hardware-Based Trusted
Computing Architectures for Isolation and Attestation. IEEE Transactions
on Computers PP(99) (2017)

Chapter 2

Towards Secure Interrupts on
Low-End Microcontrollers

De Clercq, R., Schellekens, D., Piessens, F., and Verbauwhede, I.
Secure Interrupts on Low-End Microcontrollers. In International Conference
on Application-specific Systems, Architectures and Processors (ASAP) (2014),
IEEE, pp. 147–152
Contribution: Principle author together with Dries Schellekens.
Responsible for hardware and software designs.

Content Sources

2.1 Introduction

Most modern trusted computing platforms ensure the secure execution of
security-critical software by isolating an application from the rest of the processes
running on the system. This allows for the correct execution of an application,
even when the system is infected with malware. For an overview of hardware-
based trusted computing platforms for isolation and attestation, which includes
PMAs, the reader is referred to [78].

Currently, isolation is provided by two technologies found in high-end commercial
processors, namely ARM TrustZone [10] and Intel SGX [84]. A TrustZone-
capable processor contains two virtual processors, each with different privileges
and a strictly controlled communication interface. Intel SGX processors provide

9

10 TOWARDS SECURE INTERRUPTS ON LOW-END MICROCONTROLLERS

multiple protected domains, called enclaves, in which software can operate, free
from external observation or modification of the code and data.

A number of works proposed hardware changes to enforce isolation on low-
end processors. Kumar et al. designed a system that provides a number of
protection domains within the address space [72]. Strackx et al. proposed a
simple program counter based memory access control system to isolate software
modules [98]. The SMART security architecture supports dynamic remote
attestation with a software routine stored in immutable ROM [46]. The Sancus
security architecture supports strong process isolation and hardware based
remote attestation [87].

When we started this research, the related works applicable to low-end MCUs
required their security functionality to execute uninterruptedly. For SMART
this is a strict requirement, otherwise an attacker can move malware around
during attestation to avoid detection [49]. Concurrent to our research, the
TrustLite security architecture was developed, which provides hardware-enforced
isolation of software modules with support for secure exception handling, and
communication between protected modules [71]. At a later stage, Van Bulck
et al. proposed extensions to a PMA to provide availability and real-time
support for small microprocessors, which included an interrupt mechanism with
a deterministic interrupt latency [106].

In this chapter, we provide a mechanism for handling interrupts for a program
counter-based PMA which maintains the confidentiality of the protected module
data. The proposed architecture allows ISRs to be located in either the secure
or the non-secure domain of the processor. This makes it possible to use the
processor for real-time processing, secure scheduling, and secure I/O, as tasks
running in any security domain can be interrupted. We present a generic
solution and compare the results of three implementation options.

The chapter is structured as follows. First, we present the general architecture
of our security-enhanced processor, which is based on design principles of the
related work [10,49,98]. Next, we describe a general scheme that can be used
to allow secure interrupts. Subsequently, we discuss three implementations with
different design trade-offs. Finally, we discuss our implementation results, and
present the conclusion.

2.2 Architecture

This section discusses the security architecture of the system. We first describe
the attacker’s capabilities, followed by a description of the security enhancements

ARCHITECTURE 11

for domain isolation and security domain switching.

2.2.1 Attacker model

For the attacker model we assume that the adversary is capable of obtaining full
control of the state of the software and data. This has the following implications.
First, the attacker is capable of modifying any writable code, e.g., with a buffer
overflow attack. Second, the attacker can read, and write to any memory region
that is not explicitly protected by the processor. Third, the attacker may have
compromised the underlying layer of software, e.g., the OS.

We also assume that the attacker is not capable of performing any hardware-
based attacks, including placing probes on the memory bus, performing a hard
reset of the system, and inducing hardware faults.

2.2.2 Domain isolation

The system is partitioned into two different domains, like in [10, 46]: (1) the
non-secure domain where regular activities occur, and (2) the secure domain
where all processing of sensitive data occurs. If an operating system is present
on the embedded device, it will typically reside in the non-secure domain; this
system for instance contains a network stack or a real-time scheduler. Both the
program memory and the data memory are partitioned into their respective
secure and non-secure parts. For the sake of simplicity, we only consider a
single secure domain, but our scheme can easily be extended to multiple secure
domains [72,87,98].

The processor makes a distinction between the two domains depending on the
Program Counter (PC). When the PC is in the address range of the secure
program memory, the system is considered to be inside the secure domain.
When the PC is in the address range of the normal program memory, then the
system is considered to be in the normal domain.

We assume a low-end processor without a memory management unit (MMU)
and hence no support for virtual memory. Instead a basic memory protection
unit (MPU) is inserted between the processor and the memory. This unit
enforces (1) program counter based access control [98] on both the data memory
and the program memory, and (2) guards the entry into the secure domain by
allowing only a single point of entry.

The program counter based access control feature ensures that only the normal
program memory and data memory is accessible while the system is in the

12 TOWARDS SECURE INTERRUPTS ON LOW-END MICROCONTROLLERS

Table 2.1: Access rights enforced by the memory protection unit.

Program Memory Data Memory
non-secure secure non-secure secure

Secure domain rwx rwx rw- rw-
Non-secure domain rwx r-x∗ rw- –-
∗Execute access only available on the single point of entry

normal domain. However, when the system is inside the secure domain, both
the secure program memory and secure data memory also becomes accessible
to the processor.

The single point of entry into the secure domain, from hereon referred to as
the single entry point, is a mechanism that ensures that the secure domain
can only be entered at a single address which is located in the secure program
memory. Once the program counter has entered the secure program memory at
this address, it is allowed to transition to any other address inside either the
secure, or non-secure program memory. However, once the program counter
points to an address that lies outside of the secure program memory, the secure
domain can only be entered again via the single entry point. This feature
ensures that secure code cannot be (ab)used to extract secure data from the
secure domain. In Return-Oriented Programming (ROP) an attacker selectively
executes chunks of program memory, which makes the program misbehave [95].
This could lead to unintended information leaks from the secure domain. The
hardware enforcement of the single entry point guards against ROP attacks
launched from outside a protected module.

The enforced access control is shown in Table 2.1. The secure data memory is
inaccessible when the processor is in the non-secure domain. Furthermore, the
non-secure domain only has read access to the secure program memory, except
for its first address. This memory address has execute permission, and acts as
the only entry point to the secure domain.

In order to expose multiple functions from the secure domain to the non-secure
domain, a jump table is used, as also proposed in [72, 87]. The identifier of a
specific function is stored in a register before jumping to the single entry point.
The code at the single entry point then jumps to the correct function based on
the identifier passed inside the register.

SECURE INTERRUPTS 13

2.2.3 Context switching between domains

We define a domain switch as a transition from one security domain to another.
Context switches within a domain (e.g., multithreading, user/kernel mode
switching) are not considered in this work.

Two type of context switches can be distinguished. The first type are instructions
that alter the program counter, including the call instruction, a return from a
call with the ret instruction, a return from interrupt (reti), or with the jmp
instruction. The second type are hardware events such as interrupts, processor
exceptions or a reset.

The memory protection unit enforces the isolated memory regions of the two
security domains. However, these domains still share the same set of registers.
Therefore, special care is needed such that information does not leak through
registers. Consequently, the general-purpose registers need to be cleared before
a domain switch to the non-secure domain.

A stack frame is typically used to pass parameters, store return addresses, and
for local data storage. A processor maintains a stack pointer that points to
the top of the stack. In our solution, each domain has its own stack, which is
located in its data memory address space, and a dedicated stack pointer register.
The processor switches between the two registers depending on the security
domain. We chose this option for the sake of simplifying domain switches, and
providing better performance. An alternative method, which is used in [87], is
to perform stack pointer switching in software by storing pointers to the top of
each stack in fixed data memory addresses; this solution requires only a single
hardware register.

2.3 Secure Interrupts

This section discusses the scheme for handling secure interrupts. We first
describe a typical interrupt mechanism of low-end processors and then present
a modified scheme for supporting interrupts with multiple security domains.

2.3.1 Standard interrupt mechanism

An interrupt is a signal generated by hardware or software to indicate to the
processor an event that needs immediate attention (e.g., timer, peripheral device,
etc.).

14 TOWARDS SECURE INTERRUPTS ON LOW-END MICROCONTROLLERS

Each interrupt can have its own unique Interrupt Service Routine (ISR). The
addresses of the ISRs are stored in the Interrupt Vector Table (IVT), which is
located at a specific program memory address.

When an interrupt occurs, the following steps are generally performed: (1) the
currently executing instruction is completed, (2) the PC that points to the next
instruction (which we call the resume point), is stored on the stack, (3) the
Status Register (SR) (which contains the status flag bits, e.g., zero, carry, and
overflow) is pushed on the stack, (4) the interrupt with the highest priority
is selected if multiple interrupts occurred during the last instruction, (5) the
SR is cleared and further interrupts are disabled, and (6) the address stored
in the IVT is loaded into the PC, causing a jump to the ISR. When the ISR
is finished, it resumes the interrupted task with the reti instruction. This
instruction restores the SR and PC from the stack to continue execution at the
point where it was interrupted.

Some processor architectures support nested interrupt. In this case, interrupts
can be re-enabled inside an ISR, causing any interrupt that occurs inside this
ISR to interrupt the routine, regardless of its priority.

2.3.2 Domain isolation support

We have extended the processor with the notion of isolated protection domains.
As mentioned above, it is crucial that no information leakage occurs during a
domain switch from the secure to non-secure domain. With instruction based
domain switching, the content of registers is cleared in software just before
the transition occurs. However, this strategy cannot easily be applied with an
interrupt based domain switch.

There are three main design challenges. First, a hardware interrupt can occur at
any point during execution. This implies that there are four possible scenarios:
(1) a non-secure task is interrupted by a non-secure ISR, (2) a secure task by
a secure ISR, (3) a non-secure task by a secure ISR, and (4) a secure task by
a non-secure ISR. The first two are trivial to handle, as no domain switch is
required; however, the latter two require a domain switch.

Second, it should be possible for the software to choose whether to resume the
interrupted task, or to execute another task. This allows for the scheduling of
secure/non-secure tasks, as will be explained in Section 2.3.5.

Finally, the scheme must still comply with the hardware restricted entry into
the secure domain. The ISR is unaware whether it is interrupting a secure or
non-secure task. Normally it will resume execution with the reti instruction.

SECURE INTERRUPTS 15

Non-secure task
is interrupted

Store program counter
and status register on

non-secure stack

Store general
purpose registers

on non-secure stack

Enter secure domain
at single entry point

Execute ISR

Clear general
purpose registers

Restore general
purpose registers

from non-secure stack

Resume execution
at resume point

from non-secure stack Secure

Non-secure

Figure 2.1: The steps for invoking secure Interrupt Service Routines (ISRs)
from the non-secure domain.

However, this instruction cannot be used to directly perform a domain switch
into the secure domain, as it would invalidate the single entry policy. If this
restriction was not in place, then it could lead to an attacker circumventing the
single entry policy by pushing a secure domain address onto the stack, followed
by issuing a reti.

2.3.3 Interrupting non-secure task with secure ISR

In this scenario, an ISR that resides in secure program memory, is invoked from
within the non-secure domain. Here we propose to handle this scenario with the
scheme shown in Figure 2.1. The secure domain is entered at the single entry
point. We propose to solve the problem of invoking the secure ISR from the non-
secure domain by adding an entry to the single entry jump table (Section 2.2.2)
for each secure ISR. Each entry is responsible for invoking a different ISR. The
general-purpose registers should be cleared before a domain switch from the
secure domain to the non-secure domain. However, the transition into the secure
domain does not require the general-purpose registers to be cleared, because
they do not contain any secrets.

2.3.4 Interrupting secure task with non-secure ISR

In this scenario, an ISR that resides in non-secure program memory, is invoked
from the secure domain. Here we propose to handle this scenario with the

16 TOWARDS SECURE INTERRUPTS ON LOW-END MICROCONTROLLERS

Secure task
is interrupted

Store resume point
and status register
on secure stack

Store general
purpose registers
on the secure stack

Clear general
purpose registers

Execute ISR

Enter secure domain
at single entry point

Restore general
purpose registers
from secure stack

Resume execution
at resume point
from secure stack Secure

Non-secure

Figure 2.2: The required steps for invoking non-secure Interrupt Service Routines
(ISRs) from the secure domain.

scheme shown in Figure 2.2. A domain switch from the secure domain to the
non-secure domain is required. Therefore, the general-purpose registers need to
be cleared before switching to the non-secure domain. We propose to solve the
problem of resuming the interrupted secure task from the non-secure domain,
by adding an entry into the single entry jump table (Section 2.2.2) to resume
execution at the resume point.

2.3.5 Scheduling

Processors often have real-time operating requirements where scheduling of
tasks are essential. When using a preemptive scheduler, interrupts are generated
with a hardware timer, to transfer control back to the scheduler. The scheduler
then selects the next task to execute, or resume, based on a ranking system.
The mechanism that allows for interrupting a secure task with a non-secure
ISR also enables preemptive scheduling.

A secure scheduler, as described in [83], enables the on-schedule execution of
critical tasks that are running on a partially compromised system. This type of
scheduler prevents components under the attacker’s control from changing the
execution times of other applications. The scheduler is kept isolated from the
rest of the software by placing it inside the secure domain. When an application
is preempted or an exception occurs, control is transferred to the scheduler
which resumes execution of the pending applications. Therefore, the mechanism
that allows for interrupting a non-secure task with a secure ISR also enables
secure scheduling.

IMPLEMENTATION 17

2.4 Implementation

This section presents the implementations that were made in order to
demonstrate the feasibility of our proposed scheme. First, we describe the
architecture of the processor that we extended with security features. Afterwards,
we present three prototype implementations with different design goals, and
different design trade-offs in terms of cycles, area, and code size.

2.4.1 MSP430

Our implementation is based on the low-cost, low-power TI MSP430
microcontroller. It features a 16-bit von Neumann processor, and a single
16-bit address space for program and data memory. It has no external memory
bus, and the amount of on-chip memory is limited to 16 kB RAM and 256 kB
flash memory. It has eleven general-purpose registers (R4-R15), with R0-R3
serving as a program counter, stack pointer, status register, and constant
generator.

Most interrupts on the MSP430 architecture are maskable, and can therefore
only cause an interrupt when they are enabled, and if the general interrupt
enable bit is set inside the status register.

A multiplexer is used to select between the normal stack pointer and the secure
stack pointer, depending primarily on the value of the program counter.

One of the design problems we faced, was that ISRs have a return control flow
that depends on the domain that the ISR was invoked from. We decided that
each ISR should use the same return mechanism, regardless of the domain it is
invoked from. We solve this by invoking all ISRs that require a domain switch
in a special manner, which we call an emulated interrupt. Instructions are used
to emulate what the hardware does when an interrupt occurs, by pushing the
SR and the address of a return trampoline onto the stack, followed by a jump to
the ISR. The invoked ISR executes, and returns with a reti. Since the address
of the return trampoline is still on the stack, the reti will invoke the return
trampoline.

2.4.2 Software-based implementation

The goal of the software-based implementation is to use the minimum amount
of hardware features. We opted to make use of a different IVT for each security
domain. Since the ISRs have control flows that depend on the current security

18 TOWARDS SECURE INTERRUPTS ON LOW-END MICROCONTROLLERS

domain, the idea is that each IVT will serve as the starting point for each of
these control flows.

An IVT is normally populated with the addresses of ISRs, each associated with
a different interrupt. As we now have an IVT for each security domain, we
populate it with (1) the addresses of ISRs that exist in the same security domain
as the IVT, and (2) the addresses of software routines that will initiate the
control flow to invoke ISRs located in the other security domain.

The second IVT, which we refer to as the secure IVT, is stored at a fixed
address in secure program memory. A hardware feature selects between IVTs,
depending on the current security domain.

Upon entering the secure domain at the single point of entry, the value stored
in R15 is used to determine which function in the jump table to execute.

Interrupting a non-secure task with a secure ISR

The steps for interrupting a non-secure task with a secure ISR is shown in
Figure 2.3. When an interrupt occurs, the resume point is stored on the
non-secure stack. Afterwards, the general-purpose registers are stored on the
non-secure stack, and a call is made to the entry in the single entry jump
table that corresponds to the current ISR. Next, the secure ISR is invoked
with an emulated interrupt. The reti instruction inside the ISR returns from
the emulated interrupt, after which the general-purpose registers are cleared,
followed by returning (ret) from the call, which causes a transition back to the
normal domain. Next, the registers are restored from the non-secure stack, and
the resume point is used to jump to the point where execution was interrupted.

Interrupting a secure task with a non-secure ISR

The steps for interrupting a secure task with a non-secure ISR is shown in
Figure 2.4. When an interrupt occurs, the resume point is stored on the secure
stack. Afterwards, the general-purpose registers are stored on the secure stack,
the registers are cleared, and the non-secure ISR is invoked by means of an
emulated interrupt. The reti instruction inside the ISR returns from the
emulated interrupt, after which a zero is stored in R15, and a jump is made to
the single entry point. The value of zero in R15 corresponds to a jump table
entry that is responsible for restoring all registers from the secure stack, and
using the resume point to jump to the point where execution was interrupted.

IMPLEMENTATION 19

Interrupt non-secure task
push PC
push SR

Store registers
push R15-R4
R15 = ISR number
call single entry

Emulated interrupt
push addr(trampoline)
push SR
jmp ISR

ISR...
reti

trampoline:
Clear registers

clr R4-R15
ret

Restore registers
pop R4-R15
reti

Resume non-secure task Secure

Non-secure

Figure 2.3: Software-based flowchart for invoking a secure ISR from the non-
secure domain.

Interrupt Secure task
push PC
push SR

Store and clear registers
push R15-R4
clr R15-R4

Emulated interrupt
push addr(trampoline)
push SR
jmp ISR

ISR...
reti

trampoline:
Call jump table

R15 = 0
jmp single entry

Restore registers
pop R4-R15
reti

Resume secure task Secure

Non-secure

Figure 2.4: Software-based flowchart for invoking a non-secure ISR from the
secure domain.

2.4.3 Hardware-based implementation

The goal for the hardware-based implementation is to minimize interrupt latency
by adding more functionality to hardware. As a further goal we try to minimize
the amount of additional hardware. The architecture of this implementation
is very similar to the software-based implementation (Section 2.4.2), with the
exception of the following: (1) a single IVT is used, and (2) the clearing, storing,
and restoring of general-purpose registers is now done in hardware.

20 TOWARDS SECURE INTERRUPTS ON LOW-END MICROCONTROLLERS

Complete instruction Select highest
priority interrupt

Context
switch

required?

push PC
push SR

push R15-R4

push PC
push SR
jmp ISR

From
secure

domain?
clr R4-R15

push addr(trampoline)
on NS stack

push SR
on NS stack

jmp ISR

R15 = addr(ISR)

jmp single
entry address

no
yes

yes
no

Figure 2.5: The modified hardware-based interrupt logic.

A single IVT is used to store the addresses of the ISRs that can be located in
either domain. The extended interrupt logic, shown in Figure 2.5, takes care of
any additional processing that needs to be done if a domain switch is required
to invoke an ISR.

Figure 2.1 and Figure 2.2 show that both schemes require: (1) saving the
general-purpose registers to the stack, and (2) restoring the general-purpose
registers from the stack after domain switching back to the interrupted task’s
domain. We propose to solve (1) by further extending the interrupt logic to
save the general-purpose registers on the stack before performing the domain
switch to the other domain. We further propose to solve (2) by introducing a
new instruction that restores all registers from the current stack.

2.4.4 Hidden registers optimization

We also propose a performance optimization to improve interrupt latency. For
this optimization, the number of visible registers inside the ISR is restricted to n.
This improves interrupt latency because less registers need to be cleared, saved

EVALUATION 21

Table 2.2: A summary of the hardware costs for the different designs.

Design LUTs Registers
Unmodified 2231 1185

Software-based 2241 1187
Hardware-based 2417 1219

HW-based Hidden registers 2420 1220

and restored from the stack, but without the hardware cost of using shadow
registers. To ensure that the remaining 11− n general-purpose registers do not
leak any information, all read and write operations on the remaining registers
will be blocked. The compiler/programmer needs to ensure that only the visible
n registers are used in the ISR, as the remaining registers are unusable.

This optimization can be done on either the hardware-based architecture
(Section 2.4.3), or the software-based architecture (Section 2.4.2), and will
require the following features to be activated when inside a domain switched
ISR: (1) the saving and restoring of the general-purpose registers on the stack
is limited to only n registers, and (2) the register file is modified to disable read
and write access on the remaining registers.

2.5 Evaluation

This section presents our results, together with a discussion on the limitations
of this work.

2.5.1 Results

We extended the openMSP430 [2] softcore to create our prototype implementa-
tions. This softcore is fully compatible with the TI MSP430 microcont¸roller,
and executes code generated by any MSP430 toolchain in a near cycle-accurate
way. The openMSP430 softcore was configured to use the following settings:
a 10 MHz clock, 4 kB of data memory, 8 kB of program memory, a hardware
multiplier, and a single timer. We used the Digilent Atlys, Spartan-6 LX45
based FPGA development board to test our prototype.

Table 2.2 shows the number of 6-input Look-Up Tables (LUTs), and registers
for the unmodified openMSP430, and the three different designs. The synthesis
optimization goal was set to “area”.

22 TOWARDS SECURE INTERRUPTS ON LOW-END MICROCONTROLLERS

Table 2.3: Context switching cycle times for an interrupted task. The number
of visible registers are indicated with n.

Context switch SW HW
Interrupt S to NS 71 9+n
Return NS to S 43 14+n
Interrupt NS to S 54 13+n
Return S to NS 52 10+n

Interrupt ∗ 6 6
Return ∗ 5 5

∗ No domain switch occurs here.

Table 2.3 compares the number of cycles required to perform an interrupt-based
context switch. An interrupt that does not require a domain switch needs 6
cycles to pass control to the ISR, whereas 5 cycles are required to resume an
interrupted task with the reti instruction. Pushing a register onto the stack
requires 3 cycles, whereas popping a value from the stack requires 2 cycles. For
the cycle times it is assumed that jump table logic requires only 4 cycles.

The results show that the software oriented technique has the slowest context
switching time, and further requires the least amount of hardware modifications.
Our hardware-based design has a moderately good context switching time with
a slightly bigger hardware cost. The hidden register method can provide the
fastest context switching time, at the cost of a small amount of additional
hardware, and a reduced number of available registers in the ISR.

2.5.2 Limitations

It is important to note that this work only addresses the issue of maintaining
the confidentiality of the protected data. However, there are additional security
aspects which need to be considered when providing preemption support for
PMAs. One aspect is interrupt authentication, where the architecture ensures
that secure world interrupts are only invoked by a legitimate interrupt. The
problem is that when interrupts can be spoofed by an attacker, it can be used
make the system misbehave by tricking it into believing that an interrupt
has been fired. An additional security aspect that needs to be considered is
availability. Here, it would be important to ensure that a malicious interrupt
service routine cannot hijack the control flow by executing code which never
returns. In general, availability is an extremely difficult property to guarantee
on most systems. Another limitation of this work is that it only supports two

CONCLUSION 23

domains. To support multiple secure domains will likely introduce additional
challenges, such as storing the stack pointer register for each domain.

2.6 Conclusion

In this chapter, we proposed an architecture to provide preemption support
for program counter-based PMAs. We proposed three implementations, each
with different design trade-offs, and made the prototypes by extending the
openMSP430 softcore. In all three cases, both hardware, as well as software
techniques are required to make the prototypes.

Our results show that preemption support for PMAs on low-end microcontrollers
are feasible, since the hardware cost is minimal, while the cycle overhead for
domain switches is acceptable.

Chapter 3

Control Flow Integrity

The previous chapter was related to Protected Module Architectures (PMAs),
which provide runtime protection through isolation and attestation. This
chapter presents a detailed analysis of the current state-of-the-art in hardware-
based Control Flow Integrity (CFI) architectures. This addresses one of the
thesis goals, namely to analyse existing hardware-based security mechanisms
for microprocessors.

The content of this chapter is currently under review at the ACM
Computing Surveys journal.
de Clercq, R., and Verbauwhede, I. A Survey of Hardware-based Control
Flow Integrity. In ArXiv CoRR (2017), abs/1706.07257
Contribution: Main author.

Content Sources

There are three important differences between Protected Module Architectures
(PMAs) and CFI. First, their respective use cases differ. PMAs place small
amounts of code inside a protected module to protect it from attacks originating
from outside the protected module. The assumption here is that the protected
software is free from vulnerabilities. In contrast, CFI is used to protect larger
quantities of software, which is assumed to contain vulnerabilities, by monitoring
the behaviour of the executing software.

Second, the security properties provided by each differ. PMAs enforce access
control to protect its state, prevent leakage and further provides mechanisms to
attest its state. However, Code Reuse Attack (CRA) protection is limited to
calls from outside a module which have to respect the single entry point, while

25

26 CONTROL FLOW INTEGRITY

no CRA protection is provided for the code stored inside the protected module.
It is imperative that code inside a protected module is free from vulnerabilities,
otherwise a CRA can be launched from inside the protected module. In contrast,
CFI does not offer any access control protection, but aims to provide strong
protection against CRAs for all protected code.

Third, the assumed attacker capabilities differ. Most PMAs assume a powerful
attacker that is in control of all memory as well as the OS. However, CFI
assumes a range of different attackers capabilities, which includes being in
control of the data memory, being in control of the code memory, and being
capable of inducing fault attacks on the control flow.

3.1 Introduction

Control Flow Integrity (CFI) is a term used for computer security techniques
which prevent CRAs by monitoring a program’s flow of execution (control flow).
CFI techniques do not aim to prevent the sources of attacks, but instead rely on
monitoring a program at runtime to catch deviations from the normal behaviour.
CFI can detect a wide range of attacks, since many attacks rely on control flow
hijacking in order make a program misbehave.

CFI has received a lot of attention by the research community, but has not yet
been widely adopted by industry. This could be due to the practical challenges
and limitations of enforcing CFI, such as requiring complex binary analysis
or transformations, introducing unwanted overhead, or offering incomplete
protection. In this chapter, we present an analysis of the security policies
enforced by 21 state-of-the-art hardware-based CFI architectures. The primary
focus is on CFI policies enforced in hardware by the underlying architecture, and
therefore software-based solutions are only briefly discussed. For an overview of
software-based CFI, the reader is referred to [20]. We identified a total of 13
security policies, and discuss each policy in terms of its security, limitations,
hardware cost, and practicality for widespread deployment.

The remainder of this chapter is structured as follows. First, we motivate the
need for CFI by introducing the recent history of attacks and countermeasures.
After that, we provide some background on the enforcement of CFI, the need for
hardware-based CFI, together with a description of two methods for interfacing
the CFI hardware monitor with the processor. Next, we introduce the three
different kinds of attackers assumed by most CFI architectures. Subsequently,
we present the classical approach for enforcing CFI together with its challenges
and limitations. Afterward, we present the CFI policies used by the 21 hardware-
based CFI architectures evaluated in this chapter, followed by a discussion on

ATTACKS AND COUNTERMEASURES: AN ARMS-RACE 27

CFI enforcement via the processor’s debug interface. Finally, we provide a
detailed comparison of the architectures and their hardware costs/overhead,
followed by a conclusion.

3.2 Attacks and countermeasures: an arms-race

This section provides a brief history of attacks and countermeasures.

We define a memory error as a software bug which is caused by invalid pointer
operations, use of uninitialised variables, and memory leaks [102]. Of particular
importance is memory corruption, which typically occurs when a program
unintentionally overwrites the contents of a memory location. Memory errors
are produced by memory unsafe languages, such as C and C++, which trade type
safety and memory safety for performance. These errors are prevalent in a large
amount of deployed software: (1) memory unsafe languages are frequently used
to write OS kernels and libraries which are also used by memory safe languages,
while (2) some memory safe languages, such as Java, rely on an interpreter
which is written in a memory unsafe language. Attackers exploit these memory
errors to intentionally overwrite a memory location. Defending against the
exploitation of existing software bugs has led to an arms-race between attackers
and defenders, where each new defence leads to an attack that circumvents it.

An important example of exploiting a memory error is the buffer overflow, where
more data is written to a buffer than the allocated size, leading to the overwrite
of adjacent memory locations. Attacks frequently make use of a buffer overflow
by providing input data that is larger than the size of the buffer. This causes
other items to be overwritten, such as local variables, pointer addresses, return
addresses, and other data structures.

Many code injection attacks rely on a stack-based buffer overflow to inject
shellcode onto the stack and overwrite the return address. By overwriting
the return address, the attacker can change the control flow to any location
during a function return. The attacker uses this to divert control flow to the
injected shellcode, thereby allowing him to execute arbitrary code with the same
privileges as that of the program. To defend against return address tampering,
stack canaries involve placing a canary value between the return address and the
local function variables [16,29]. The canary value is verified by a code fragment
before returning from the function. However, canaries can be circumvented
and further require the insertion and execution of additional instructions at the
end of each function call [8]. Another attack vector, known as format string
vulnerabilities, allows overwriting arbitrary addresses. This vector can be used
to overwrite return addresses without changing the canary value [86].

28 CONTROL FLOW INTEGRITY

An effective defence against code injection attacks is non-executable (NX)
memory, a.k.a W⊕X (Write XOR eXecute), a.k.a Data Execution Prevention [1].
An NX bit is assigned to each page to mark it as either readable and executable,
or non-executable but writable. Most high-end modern processors have
architectural support for W⊕X, while most low-end processors do not. This
protection mechanism was circumvented by the invention of code reuse attacks
(CRAs), which do not require any code to be injected, but instead uses the
existing software for malicious purposes. An example of this is the return-to-libc
attack, where the attacker updates the return address to force the currently
executing function to return into an attacker-chosen routine. In addition,
the attacker places function arguments on the stack, thereby providing him
with the ability to supply attacker chosen arguments to a function. While
the attacker could return anywhere, libc is convenient since it is included
in most C programs. A popular libc attack target is to spawn a shell by
returning into system("/bin/sh"), or to disable W ⊕ X by returning into
mprotect()/VirtualProtect().

Return-Oriented Programming (ROP) [95] is a powerful CRA which is Turing-
complete 1. ROP makes use of code gadgets present inside the existing program.
Each gadget consists of a code fragment that ends with a return instruction. The
attacker overwrites the stack with a carefully constructed sequence of gadget
arguments and gadget addresses. The goal is to invoke a chain of gadgets, with
each return instruction leading to the invocation of the next gadget. After
the initial function return, the first gadget is executed, leading to the eventual
execution of a return, which causes the next gadget to be executed.

Another type of attack, called Jump-Oriented Programming (JOP) [17], is also
Turing-complete. The building blocks are also called gadgets, but here each
gadget ends with an indirect branch instead of a ret instruction. A dispatch
table is used to hold gadget addresses and data, while a processor register acts as
a virtual program counter which points into the dispatch table. A special gadget,
called a dispatcher gadget, is used to execute the gadgets inside the dispatch
table in sequence. After invoking each functional gadget, the dispatcher gadget
is invoked, which advances the virtual program counter and then launches the
next functional gadget.

Code randomisation protects against CRAs by placing the base addresses of
various segments (.text, .data, .bss, etc) at randomised memory addresses,
which makes it difficult for attackers to predict target addresses. This policy is
currently used in one form or another in most modern OSs. The security of this
technique relies on the low probability of an attacker guessing the randomly

1A computation model is called Turing-complete when it has the same computational
power as a Turing machine [105].

BACKGROUND 29

placed areas. Therefore, a larger search space means more effective security.
The Linux PaX project introduced code randomisation with a patch for the
linux kernel in July 2001. Code randomization suffers from two main problems.
First, the effectiveness of this policy relies on the number of bits available for
randomization. Therefore, this policy is particularly vulnerable to brute force
attacks on 32-bit architectures, since only a small number of bits are available
for randomisation [96]. Second, it is vulnerable to memory disclosure attacks,
since only the base addresses of each segment is randomised. If an attacker
gains knowledge of a single address, he could compute the segment base address,
which causes the system to again become vulnerable to CRAs. One method to
disclose a memory address is by exploiting a format string vulnerability.

To address the above problems, fine-grained code randomization randomly
re-orders the memory blocks of a program when it is launched, thereby ensuring
that every execution instance is unique [57, 108]. This makes it significantly
harder to use brute force to launch a CRA, since the entropy is increased.

Non-control data attacks rely on corrupting data memory which is not directly
used by control flow transfer instructions [25]. In the past, it was assumed that
non-control data attacks were limited to data leakage (e.g., HeartBleed [43])
or data corruption. However, recently this attack vector was used to launch
two different Turing-complete attacks which can circumvent CFI policies (see
Section 3.5.1 and Section 3.5.3).

3.3 Background

3.3.1 Control Flow Integrity (CFI)

For a definition of control flow, Control Flow Integrity (CFI), Control Flow
Graph (CFG), basic blocks, forward edges, and backward edges, the reader is
referred to Section 1.1.

At runtime, the dynamic control flow changes are restricted to the static
CFG. Many CFI architectures only validate control flow changes caused by
indirect branches, such as calculated jumps, calculated calls, and returns. The
assumption is that the software is immutable, which means that static branch
targets do not need to be checked. This implies that this policy cannot be used
for self-modifying code, or for code generated just-in time. Software-based CFI
policies typically verify each indirect branch target before the execution of an
indirect branch instruction.

30 CONTROL FLOW INTEGRITY

We define fine-grained CFI as a policy which only allows control flow along valid
edges of a CFG. In recent years, many works proposed architectures which relax
the strict enforcement of the CFG, in order to gain performance improvements.
We define coarse-grained CFI as a policy which does not enforce a strict CFG.
These policies rely on enforcing simple rules, such as ensuring that return targets
are preceded by a call instruction, and that indirect branches can only target
the first address in a function. They offer less security than fine-grained CFI
policies, since they allow control to flow along paths that do not exist inside
the CFG, as demonstrated by recent attacks [32,53].

3.3.2 The need for hardware-based CFI

Many software-based CFI solutions rely on instrumentation, where code is
inserted into a program to perform CFI checks on indirect branches. This
can be done as part of a compiler optimisation step, static binary rewriting,
or through dynamic loading. When the compiler is unaware of the security
aspects concerning the CFI checks, it might cause the optimisation step to
spill registers holding sensitive CFI data to the stack. Static metadata is
often protected with read-only pages. However, many software-based CFI
architectures rely on runtime data structures which are stored in memory which
is sometimes writable. Recent attacks exploited this problem by tampering
with runtime data structures to circumvent the security of the system [28,48].
However, runtime data structures can be protected through instruction-level
isolation techniques, such as memory segmentation or Software-based Fault
Isolation. Memory segmentation provides effective isolation on x86-32, but is
not really useful on x86-64 since segment limits are not enforced. Software-based
Fault Isolation executes additional guards to ensure that each store instruction
can only write into a specific memory region. It is worth pointing out that
instruction-level isolation techniques rely on the integrity of code. Hardware-
based access control mechanisms can provide strong isolation for runtime data
structures and metadata. In addition, it has little overhead, and does not rely
on code integrity to protect sensitive information.

The Trusted Computing Base (TCB) is the set of hardware and software
components that are critical to the security of the system. The careful design
and implementation of these components are paramount to the overall security
of the system. The components of the TCB are designed so that other parts of
the system cannot make the device misbehave when they are exploited. Ideally,
a TCB should be as small as possible in order to guarantee its correctness [78].

Software-based CFI uses instrumented code to monitor the behaviour of other
software. To prevent tampering, the software is protected by page-based access

BACKGROUND 31

control (such as W⊕X). However, this only temporarily makes the software
immutable, and care needs to be taken to ensure that an attacker cannot disable
page-based protection with a syscall to mprotect()/VirtualProtect(). In
contrast, the underlying hardware architecture is immutable, and is therefore
more trusted. To enforce a strong security policy, it is well known that the
TCB should consist of as little as possible software, while placing as much as
possible security-critical functionality in hardware.

Hardware-based mechanisms can protect against strong attackers, such as
attackers that control both code and data memory, as well as attackers with
physical access that can perform fault attacks. In addition, it allows for verifying
not only indirect branches, but also for direct branches, unintended branches,
and for control flow between instructions inside a basic block, which may be
altered during a fault attack. Furthermore, the TCB size is usually smaller,
since security-critical functionality is mostly implemented in hardware, with
little or no trusted software. Moreover, hardware-based mechanisms provide
better performance, since fewer processor cycles need to be spent on performing
security checks.

An important design decision for security-critical systems is to select which
components need to be placed inside the TCB. Many hardware-based CFI
architectures need software components to communicate runtime information
with the CFI hardware or configure the CFI hardware. Care needs to be taken
to ensure: the correctness of the TCB components, that the hardware/software
interface cannot be exploited, that sensitive data which is stored in main
memory is protected, and that the hardware-based security policies cannot be
circumvented.

3.3.3 Hardware monitor

Hardware-based CFI architectures use trusted hardware to monitor the
behaviour of the software, which we call the hardware monitor. Providing the
hardware monitor with access to the necessary runtime information and signals,
such as control flow information, runtime data structures, and metadata is an
important issue when designing the CFI architecture. To access runtime control
flow information, the following two approaches can be used: (1) integrating
the hardware monitor into a processor by modifying the instruction pipeline
stages, and (2) interfacing the hardware monitor with the processor’s hardware
debugger. To access runtime data structures or metadata stored in main memory,
the hardware monitor can be connected as a master to the processor’s bus,
thereby providing access to the processor’s memory space.

32 CONTROL FLOW INTEGRITY

Processor’s pipeline stage

Many architectures integrate their hardware monitor into one or more of the
processor’s instruction pipeline stages, as shown in Figure 3.1. This allows all
the processor’s internal signals to be exploited for enforcing the CFI policy. For
example, many CFI policies require runtime branch information such as the
branch source address, target address, and branch type. To enforce CFI, the
required signals can be forwarded from inside the appropriate pipeline stage to
the hardware monitor, which uses this information to verify the validity of each
branch.

Another approach is to add special instructions to the Instruction Set
Architecture (ISA) to enforce a CFI policy. This also requires modification of
pipeline stage(s), such as the Instruction Decode stage. In order to use the
special instructions, a software toolchain is often used to insert these special
instruction into the compiled software.

In Figure 3.1 the hardware monitor is integrated with the Instruction Decode
stage. However, the monitor can be integrated into multiple different pipeline
stages. The decision on where to integrate the monitor depends on the
availability of information at a given stage.

See Section 3.6 for a presentation on the state-of-the-art in CFI architectures
that are integrated into the pipeline stages of the processor.

The biggest disadvantage of integrating a monitor into the pipeline stages is
that it does not follow the typical SoC design flow, as it requires modification
of existing IP, such as the processor.

b
Processor

IF ID EXE WB

Hardware Monitor

Bus

Figure 3.1: The hardware monitor is integrated into the instruction pipeline of
the processor. The pipeline stages are abbreviated as follows: Instruction Fetch
(IF), Instruction Decode (ID), Execute (EXE), and Write Back (WB).

BACKGROUND 33

Debug interface

Some recent works exploit the processor hardware debug interface to monitor
a program’s behaviour without modifying the processor or other pre-existing
IP, as shown in Figure 3.2. This is a major advantage, as it complies with the
design rules of SoCs. Modifying IP is expensive, as it requires modification by
the IP vendor (expensive), or requires the IP vendor to release its hardware
source files to the client (even more expensive). Monitors that are realised by
hardware-based standalone IP are practical, because they do not require the
modification of the target processor, but simply communicate with the target
processor via existing interfaces, such as the processor’s hardware debug port
or the bus.

A major challenge with enforcing CFI through the debug interface, is to obtain
access to all the required runtime information. Since the hardware debugger is
designed for debugging purposes, it usually does not provide all the necessary
information to enforce a given protection mechanism. A common approach to
solve this is to provide supplementary metadata inside main memory, or to
communicate the missing information by instrumenting the binary to write the
required information to MMIO.

Some SoCs have an external debug interface, which facilitates the use of an
external hardware monitor. In this case the monitor can be realised by an
off-chip microprocessor or other dedicated hardware (FPGA or ASIC), which
are connected to the external debug interface.

See Section 3.7 for a presentation on the state-of-the-art in CFI architectures
that monitor the processor via the hardware debug interface.

b

SoC

Bus

Hardware MonitorProcessor Debugger

Figure 3.2: A CFI hardware monitor interfaces with the processor’s debug port.
In addition, a Memory-Mapped IO (MMIO) interface is nused by instrumented
code to communicate with the hardware monitor.

34 CONTROL FLOW INTEGRITY

3.4 Attacker model

The goal of the CFI architecture is to prevent attackers from launching a CRA.
In contrast, the goal of the attacker is to use a CRA to perform arbitrary
code execution, confined code execution, arbitrary computation, or information
leakage.

In general, the architectures described in this chapter use one of three different
attacker models. However, each of the three attacker models share the following
assumptions.

• The memory contents and layout are readable by the attacker. The usual
assumption is that code randomization can be circumvented, and that the
location of all program segments are known.

• The hardware is trusted.

• Memory errors can be present inside the program. However, the usual
assumption is that no other attack vectors or security holes exist that
could directly allow an attacker to perform a privilege escalation.

• The attacker can arbitrarily write to memory by exploiting a memory
error. The exact locations of writable memory depend on the used attacker
model.

• Side-channel attacks are not possible.

The first attacker model assumes that the attacker is in control of data memory
(which includes the stack and the heap), but not code memory. The usual
assumption is that W⊕X protection is enforced, which means that code injection
and code tampering attacks cannot be performed. This further means that
the OS is implicitly trusted, since OS support is required to set the page bits
to enforce W⊕X. In order to launch an attack, the attacker has to exploit a
memory error to overwrite data memory, such as code pointers or other data
structures.

The second attacker model assumes that the attacker is in control of data memory
as well as code memory. An attacker can therefore perform code injection and
code tampering, since W ⊕ X is not enforced. However, architectures using
this attacker model usually enforce a Software Integrity (SI) mechanism to
prevent the execution of tampered/injected code. In this model, an attack can
be performed by exploiting a memory error to overwrite any memory location.

The third attacker model also assumes an attacker in control of all memory. In
addition, the attacker can perform non-invasive fault attacks that target the

CLASSICAL CFI 35

program flow, such as glitching the clock. However, other types of fault attacks
that do not target the program flow, such as glitching the bus of the processor,
are not considered part of the attacker model. Therefore, in this scenario the
attacker has two avenues for launching an attack: exploiting a memory error
to overwrite any memory location, or performing a fault attack on the control
flow.

3.5 Classical CFI

This section discusses Abadi et al.’s classical approach for enforcing CFI [6]. Even
though this policy was originally enforced in software, many of its challenges
and limitations are also applicable to hardware-based CFI. For an in-depth
discussion on hardware-based CFI policies, see Section 3.6.

3.5.1 Labels

The label-based approach relies on inserting unique label identifiers at the
beginning of each basic block. Before each indirect branch, the destination
basic block’s label identifier is compared to a label identifier which is stored
inside the program. In other words, the correctness of the destination basic
block’s label identifier is verified before every indirect branch. Since unique
label identifiers are used, control flow tampering causes the check to fail, since
the destination label identifier will not match the label identifier stored inside
the program. The control flow checks are performed using code checks which
are inserted at the end of each basic block containing an indirect branch.

Limitations

A static CFI policy (such as the label-based approach of [6]), can only check
that control flows along the CFG. It is stateless, since the the stack’s runtime
state is not considered when determining which control flow paths are valid.
This means that it cannot be used to ensure that a function returns to its most
recent call site. In other words, when enforcing a static CFG, each function
can return along any valid backward edge inside the CFG. This is a problem
for any function which is called from more than one location. During normal
execution, the function might be called from one location, but after an attacker
overwrites the return address, the function can return along another CFG edge
to a different valid call site (of the attacker’s choosing).

36 CONTROL FLOW INTEGRITY

Carlini et al. demonstrated the severity of the stateless problem, by performing
a non-trivial attack in the presence of a strict static CFI policy [21]. A Control-
Flow Bending attack relies on bending control flow along valid CFG paths by
overwriting return addresses. This allows an attacker to rapidly traverse the
CFG in order to execute any attacker-chosen code.

3.5.2 Shadow Call Stack (SCS)

To address the stateless problem of static CFI and enforce a strict backward-
edge policy, a Shadow Call Stack (SCS) can be used [88]. The goal of an SCS is
to detect tampering with return addresses stored on the stack during a function
call. To achieve this, an additional stack is used to store an extra copy of the
return address for each function call. Therefore, every call requires that two
copies of the return address are stored, one inside the stack frame, and the other
inside the SCS. Before returning (ret) from a function call, the integrity of the
return address is verified by comparing the return address stored on the two
stacks. If there is a mismatch, an exception is raised. In essence, this means
that the SCS ensures that every call to a function returns to its call site.

A major advantage of enforcing an SCS is that it provides an excellent defence
against attacks on backward edges, which include ROP and return-into-libc
attacks. In addition, it doesn’t rely on a CFG, which is problematic to obtain
in certain types of programs. These factors make hardware-based SCS suitable
for widespread adoption.

An SCS exists independent of static CFI, and provides a complimentary set
of security properties. When a stateful backward-edge policy, such as SCS, is
used together with a forward-edge static CFI policy (such as the label-based
approach), we call it dynamic CFI.

3.5.3 Challenges and limitations

Generating a precise CFG

Many CFI architectures rely on a CFG which was calculated through static
analysis. However, generating a precise CFG through static analysis is unsolved
for some program types. It is especially difficult to compute a precise CFG for
certain programming constructs that rely on indirect branches, such as function
pointers which are passed as between functions and C++ virtual methods. To
overcome this, static analysis tools rely on over-approximation, which leads
to an imprecise CFG that contains more edges than necessary [21, 70]. This

CLASSICAL CFI 37

degrades the security of the CFI scheme relying on the CFG, since the security
of CFI depends on an accurate CFG.

Static analysis tools can either work from source code or on binaries. It is
generally accepted the accuracy of a CFG can be improved when relying on
static source code analysis than on static binary analysis. For a classification of
the precision of computing a CFG using different static analysis techniques, the
reader is referred to [20].

It is worth mentioning that this problem can be avoided altogether by writing
programs that are easy to analyse. However, this imposes many restrictions,
such as disallowing the use of function pointers, and disallowing the use of
C++ objects.

In general, security architectures which rely on a precise CFG cannot enforce a
strict policy, since a precise CFG cannot be generated certain types of programs.
However, if a program contains no indirect forward branches, then this is not
a problem, since static analysis can be used to generate an accurate CFG for
direct branches and function returns.

Unintended branches

Unintended branches can occur in architectures which use a variable length
instruction encoding. To exploit it, the attacker deviates control flow to
the middle of an instruction. Many coarse-grained policies cannot check for
unintended branches. This is a serious concern, since the majority of gadgets in
a program consists of unintended branches, e.g., 80% of all libc gadgets are due
to unintended branches [66].

Limitations

This section discusses some advanced attacks that can circumvent the security
of dynamic CFI. In general, most CFI architectures are extremely vulnerable to
non-control data attacks. For example, let’s consider a program which contains
a for-loop. If an attacker tampers with the loop counter, CFI will not detect
any abnormalities, since it can only detect control flow along invalid edges.
Therefore, CFI can ensure only that executed edges are valid, but cannot ensure
that the sequence of executed edges are correct. It is important to stress that
this is a fundamental limitation of CFI.

A printf-oriented programming attack provides Turing-complete computation,
even when enforcing a strict CFI policy together with a SCS [21]. Here,

38 CONTROL FLOW INTEGRITY

the attacker exploits the standard library’s printf function by controlling the
format string, arguments, and destination buffer. The printf function allows for
performing arbitrary reads and writes, and conditional execution. In addition,
the attack is Turing-complete when a loop in the CFG can be exploited.

Counterfeit Object Oriented Programming demonstrated that C++ virtual
functions can be chained together to create Turing-complete programs even
when precise dynamic CFI is enforced [94]. The attack injects counterfeit
C++ objects into the program address space followed by a manipulation of
virtual table pointers. It is believed that this attack was possible because most
CFI defences do not consider C++ semantics.

Data-oriented programming can achieve Turing-complete computation by
utilising non-control data attacks in the presence of a precise and dynamic
CFI policy [62]. Similar to ROP, these attacks utilise data-oriented gadgets,
which consists of short instruction sequences that enable specific operations. In
addition, a dispatcher gadget is used to chain together a set of gadgets to force
a program to carry out a computation of an adversary’s choice. The authors
demonstrated the attack by disabling page-based protection in the presence of
a software-based dynamic CFI policy.

3.6 Hardware-based CFI Policies

This section presents the CFI policies used by the hardware-based CFI
architectures evaluated in this chapter. We discuss the benefits, challenges, and
hardware cost for enforcing each policy in hardware.

3.6.1 Shadow Call Stack (SCS)

An SCS, as introduced in Section 3.5.2, is used by many hardware-based CFI
solutions [12,27,30,50,60,63,66,67,74,75,76,81,101] to enforce a backward-edge
policy, together with a range of different forward-edge policies. A hardware-
based SCS typically requires the following components: a hardware buffer
to store the most recently used entries, logic to manage the entries in the
buffer, logic to interface with the main memory, and logic to handle exceptions
(setjmp/longjmp).

HARDWARE-BASED CFI POLICIES 39

Hardware buffers

When enforcing an SCS with a hardware monitor which has fast access to the
on-chip main memory of a small embedded processor, it is possible to store the
entire call stack without paying a performance penalty [50]. However, doing
this for processors using off-chip main memory will incur a significant overhead
since each main memory access can take a large number cycles. Therefore, to
reduce the number of main memory accesses, a hardware buffer can be used to
store the most recently used entries of the shadow stack. This can lead to a
significant speedup, since accessing the hardware buffer can be done in a single
cycle.

The next challenge is to select the buffer size. Since on-chip memory is expensive,
the hardware buffer can only accommodate a limited number of entries. One
approach is to design the buffer size around the maximum call depth of a
program. However, Ozdoganoglu et al. found a program in their benchmark
suite has a maximum call depth of 238 [88]. In addition, it is expected
that the maximum number of shadow stack entries will further increase with
multithreading. Therefore, in order to keep the hardware cost low by having
only a small buffer, and further allow for deeply nested calls, the older entries
in the shadow stack can be stored in main memory. One approach is to use an
interrupt service routine to write the contents of the SCS to main memory when
an overflow occurs [88]. Another approach is to use a hardware-based shadow
stack manager to copy the oldest 50% of buffer elements to main memory upon
detecing a buffer overflow [77]. Most hardware architectures seem to use a buffer
that accommodates a call depth of 16 or 32 entries.

Protecting runtime data

A shadow stack stored in main memory allows for an almost unrestricted call
depth. However, since we assume an attacker which controls data memory, a
mechanism is needed to prevent tampering of runtime SCS data stored in main
memory. IBMAC, which is implemented on a small microprocessor, uses an
SCS memory region that can only be updated by call and ret instructions [50].
Intel CET uses special SCS pages such that regular store instructions cannot
modify the contents of the shadow stack [63]. Lee et al. uses a hardware
component that prevents the processor from accessing the SCS memory region
by snooping traffic between the processor and the memory controller [74]. HCFI
stores its entire call stack in a hardware buffer, which cannot be accessed by
the processor [27]. However, this restrictive approach can only accommodate a
limited call depth. Some hardware-based approaches rely on memory allocated
in kernel space to ensure that the SCS is separated from the process’s memory

40 CONTROL FLOW INTEGRITY

space [30,65,66,101]. Here, the OS kernel maps a region of physical memory and
reserves it as part of MMIO. The pages can be marked as write-protected while
still being updatable from the SCS hardware. Kernel memory is not accessible
from user space, thereby only allowing the hardware monitor and the kernel to
access the memory.

Support for setjmp/longjmp

Complex binaries sometimes have exceptions to the normal behaviour of call,
ret, and jmp. One such case is longjmp(), which performs stack unwinding to
restore the stack to the state it had during the previous setjmp() invocation.
Therefore, after a longjmp(), when the subsequent return is made, the expected
return address will not be on the top of the SCS, because it hasn’t been unwinded
yet. Smashguard proposed to remove elements from the top of the stack until
the top SCS element matches the return address [88].

HCFI proposed to record the current SCS index when setjmp() is invoked,
and unwinding the SCS to the recorded index for the subsequent longjmp()
invocation [27]. To support multiple setjmp/longjmp pairs, a unique 8-bit
identifier is assigned to each pair, and a 256-element hardware buffer is used to
record the SCS indices for each unique identifier.

Das et al. noted that longjmp() sometimes uses an indirect jmp instruction
instead of a ret [30]. This causes an exception for the next executed ret, since
the expected ret did not execute, and the top SCS element was not evicted.
In addition, the compiler sometimes uses a pop and jmp pair instead of a ret
instruction. To address these exceptional cases, Das et al. proposed extended
SCS rules [30]. Whenever an indirect jmp targets an address inside the SCS, the
corresponding address is removed from the SCS. To improve the security of this
approach, BBB-CFI limits ret and indirect jmp targets to the top 8 elements of
the SCS [60]. This causes the matching element as well as the elements above
it to be removed from the SCS. Special care needs to be taken when using this
approach in combination with a fine-grained CFI policy, since an attacker could
exploit this feature with a ret to any of the top 8 elements on the call stack.

Das et al. further noted that during software exceptions, the stack unwinding
process is started, which frequently leads to a ret being used instead of a jmp
to branch to an exception handler [30,60]. This causes a problem when using an
SCS, since the target return address will not be on the SCS. To solve this, they
proposed to allow ret to target any of the exception landing pad addresses. In
x86 Executable and Linkable Format (ELF) binaries the exception information
are stored in the read-only eh_frame and gcc_except_table sections.

HARDWARE-BASED CFI POLICIES 41

Recursive functions

Recursive functions can be problematic, since invoking a function many times
will require a large storage overhead for the SCS. HCFI supports recursive
functions by assigning a one-bit recursion flag to each SCS element [27]. Before
pushing a new return address onto the SCS, the address is first compared to the
top element of the SCS. If the value is different, it is pushed. If the value is the
same, then the top element’s recursion flag is set. For each ret, the recursion
flag remains set while the top element and the return addresses are the same.
However, if there is a mismatch, the top element of the SCS is popped. This
approach has the cost of storing one additional bit for every SCS element, which
includes the hardware buffer and the storage in main memory. In [27], this was
done using a 128*1-bit buffer, which restricts the call depth to 128.

Multiprogramming

Using a SCSs in a multithreading environment is problematic, since concurrency
allows the ret of one thread to occur after the call of another thread, leading
to SCS inconsistencies. Das et al. proposed to relax the CFI policy by allowing
returns to target any address stored in the SCS [30]. This may reduce the
security, since an attacker could re-order the sequence of returns. In hardware
the top SCS elements can be stored in a Content-Addressable Memory (CAM)
to accelerate searches. However, searching the SCS elements stored in main
memory will incur a large performance penalty, since accessing main memory is
usually slow. In the worst case the entire call stack will need to be searched.

To support multitasking, Das et al. proposed to store a process identifier in
each SCS entry [30]. Each ret will only use the return address associated with
its specific process identifier. This approach has the cost of storing the process
identifier inside every element of the call stack, which is stored in the on-chip
hardware buffer and the off-chip main memory. (A process identifier requires
≥ 16 bits on Linux.) In addition, the call stack will need to be searched for
a specific process identifier during each return. Searches can be accelerated
with a small CAM containing one element for each process identifier. If the
process identifier is not found on the CAM, a huge performance overhead will
be incurred, since the buffer and main memory will need to be searched.

Intel CET makes use of a Shadow Stack Pointer, which is a new architectural
register that points to the top of the shadow stack. To address the problem of
multiprogramming, it makes use of special instructions to switch the context of
shadow stacks in both kernel-mode and user-mode. A detailed description of
the shadow stack switching mechanism can be found in [63].

42 CONTROL FLOW INTEGRITY

3.6.2 HAFIX: Shadow stack alternative

HAFIX proposed a stateful, fine-grained backward-edge policy which does not
rely on an SCS [31]. To keep track of valid returns, a unique label is assigned
to each function and a one-bit table entry is used for each label. During a
function call the calling function’s label is activated, while a return leads to
the deactivation of the target function’s label. During a return, if the target
function’s label is inactive, an exception is raised. To enforce this policy, HAFIX
uses special instructions inserted in the binary to activate/deactivate the labels.
The ISA was modified to only allow function returns to a special landing pad
instruction which performs the check. Recursive function calls are supported by
counting the number of times the function has been called. HAFIX improves
upon an SCS by having a somewhat reduced memory storage overhead when
compared to a SCS. Furthermore, since only one one bit of storage is required
for each function in the program, the entire label state memory can be stored
inside a hardware buffer.

HAFIX is integrated into the processor’s pipeline stages. The major hardware
components of the design consists of the CFI control logic and the label state
memory, which consists of a hardware buffer with a one-bit entry for each
function, as well as a counter used for suporting recursion.

3.6.3 Labels

HCFI [27] and Sullivan et al. [101] implemented Abadi’s [5] label-based approach
(see Section 3.5.1) in hardware through special instructions added to the ISA.
Specifically, SetLabel is executed before each indirect forward branch to assign
a new label identifier to the label register, while the CheckLabel instruction
is executed as the first instruction after an indirect forward branch, and is
responsible for verifying the label identifier stored in the label register 2. Indirect
branch targets are restricted to addresses containing the CheckLabel instruction.

It is important to highlight a security problem of the label-based policy. When
multiple different indirect forward branches target the same basic block, the
same label identifier will be used, since CheckLabel compares the label register
identifier to a constant value. This means that all indirect forward branches
targeting the same basic block need to assign the same label identifier before
branching. To make this problem worse, an indirect branch can target many
different basic blocks, which all need to use the same label identifier, since it

2For simplicity we used the instruction names SetLabel and CheckLabel, but HCFI named
their instructions SetPCLabel and CheckLabel, while Sullivan et al. named their instructions
cfiprj/cfiprc and cfichk.

HARDWARE-BASED CFI POLICIES 43

is assigned before the branch. This causes imprecision in the enforced CFG,
since the same label identifier is used for multiple basic blocks, thereby allowing
many more edges than in the original CFG. This problem can be prevented by
using a trampoline for each basic block targeted by multiple call sites [101]. The
code is transformed so that each indirect branch targets a unique trampoline.
Each trampoline executes CheckLabel, and then performs a direct jump to
the original target. This ensures that the precision of the enforced CFG is not
reduced by large equivalence classes.

The designs of [27] and [101] are both integrated into the processor’s pipeline
stages. The major hardware components used in their designs are an SCS
module, a label register, and logic for each special instruction.

3.6.4 Table

The table-based approach uses a table of allowed branches (source addr, dest
addr), with a single entry for each direct branch, and possibly multiple entries
for each indirect branch. At runtime, each branch is verified by checking for
the existence of an entry inside the branch table.

This approach enforces fine-grained, static CFI, and requires a CFG to generate
the branch table. The branch table could have a large storage requirement, and
searching the table could incur a high performance penalty.

CONVERSE enforced the table-based approach with a watchdog processor [56].
It populates the branch table using both direct and indirect branches, by
means of static and dynamic analysis. The architecture uses a watchdog
processor to check the validity of each branch at runtime, as explained in detail
in Section 3.7.1. The branch table is protected from attacks on the target
processor, since it is stored in the memory space of the watchdog processor.

Arora et al. [12] proposed an architecture to enforce CFI and SI at runtime.
Intra-procedural control flow is protected using the table-based approach, while
inter-procedural control flow is protected using the Finite State Machine (FSM)
approach (see Section 3.6.5). A hash is used to verify the integrity of the
instructions in each basic block at runtime, and the processor is stalled to allow
for completing the hash calculation before moving on to the next block. A
program is loaded by first verifying the program and integrity of the metadata.
Next, the hardware monitor’s FSMs and tables are populated using the metadata,
followed by executing the program. The architecture can eliminate a wide range
of software and physical attacks, including physical attacks on control flow and
tampering with the contents of basic blocks.

44 CONTROL FLOW INTEGRITY

The design of Arora et al. was integrated into the pipeline stages of the processor.
The main hardware components are FSMs, lookup tables, buffers, a hash engine,
and control logic. New FSMs and lookup tables are generated for each program,
which means that each program has a different hardware area requirement.
Inter-procedural checking can be implemented with a maximum area overhead
of 1.2%, while the area increases to 5.17% when also adding intra-procedural
checking, when compared to the die size of an ARM920T processor. When also
using a hash engine, the area overhead increases to 9.1%.

3.6.5 Finite State Machine (FSM)

A FSMs can be used to enforce a valid sequence of events. While a program is
executing, a state machine tracks the events, with each event representing a
node in the FSM. As long as the events inside an executing program follow the
correct sequence, the state transitions will be valid. However, if an invalid state
transition occurs, an attack is assumed, and appropriate action is taken.

Arora et al. used an FSM to detect invalid control flow between functions [12].
Each node in the FSM represents a function, and each edge represents control
flow between functions. A function call graph is extracted from a program,
with each function call or return corresponding to a state transition. For more
information on this architecture, see Section 3.6.4.

Rahmatian et al. used an FSM to detect invalid system call sequences [90]. The
observation is that malicious code must invoke system calls to perform some of
the necessary operations to launch an attack. If the sequence of system calls
deviates from the FSM, an attack is assumed. A model of the legal sequences
of syscalls is derived from a CFG, and the policy is enforced with an FPGA.
To detect a syscall, the architecture made modifications to the instruction
pipeline to detect a trap instruction (SPARCv8). The authors reported that the
architecture has no performance overhead, and that illegal system call sequences
can be detected within three processor cycles. The system relies on software
to update the FSM stored on the FPGA at runtime. The major hardware
component of the design is the syscall sequence FSM, which includes two 36Kb
block RAM modules. A custom FSM is generated by static analysis, leading to
different hardware requirements for different programs.

3.6.6 Heuristics

Heuristic-based approaches detect CRAs by deriving a CRA signature from the
branching behaviour of a program under attack. A popular CRA signature is

HARDWARE-BASED CFI POLICIES 45

the number of executed instructions between branches. The assumption is that
typical ROP and JOP gadgets usually consist of a small number of instructions
(around five instructions). Larger gadgets usually have side effects, such as
updates to memory and registers, and are therefore avoided by attackers. A
typical attack executes a number of short instruction sequences that each end
with a branch, whereas a normal program executes larger instruction sequences
between branches. Chen et al. [24] reported that ROP attacks require at least
three gadgets, while Kayaalp et al. [67] reported that JOP attacks require at
least six gadgets. This approach requires no CFG.

A major challenge is the proper selection of heuristic parameters (e.g., number
of instructions between branches and chain length) that minimises the number
of false positives. The number of false positives typically increases as the gadget
length is incremented or when the chain length is reduced. In addition, the
number of false positives can differ between different programs, while using the
same parameter set.

Recent attacks demonstrated that heuristics which only assume short gadgets
can be circumvented [22, 32, 52]. Detection can be avoided by placing an
intermediate gadget (a gadget which doesn’t do anything but is longer than
the threshold of the heuristic) in the gadget chain. This is non-trivial, since
the side effect(s) of the long gadget needs to either be tolerated, or subsequent
gadgets should be used to undo the side effect.

To defend against intermediate gadgets, SCRAP proposed a multi-threshold
detector, which tolerates longer gadgets in the gadget chain [67]. This is done
by not advancing the gadget count when detecting an intermediate gadget.
They demonstrated that they can protect the entire SPEC 2006 benchmark
suite without any false positives. In addition, SCRAP limits false positives by
allowing the chain length and instruction count to be configured at runtime.
SCRAP is integrated into the commit pipeline stage of the processor. The
major hardware components of this architecture is an SCS module and the
multi-threshold heuristic logic which consists of several state machine counters.
A simulation using PTLsim/x86 showed a performance overhead results of
around 2%.

The number of consecutive indirect branches can also be used as a CRA signature.
The observation is that a well-behaved program executes a mix of direct branches
as well as indirect branches, since a normal program usually contains many
more direct branches than indirect branches. Therefore, to detect an attack,
the heuristic counts the number of consecutive indirect branches. If more than
γ indirect branches are consecutively executed, then the program is assumed
to be under attack. While this rule can detect most CRAs, adversaries can
circumvent it by using a gadget gluing attack [26]. Here, the attacker places a

46 CONTROL FLOW INTEGRITY

special gadget containing a direct branch inside the gadget chain to thwart the
heuristic. To address this issue, Lee et al. proposed to use a second threshold
parameter δ, which represents the maximum number of direct branches that
are allowed between indirect branches [77]. Therefore, an alarm is only raised if
the branch trace contains more than γ indirect branches and at most δ direct
branches.

Lee et al. proposed a two-stage heuristic policy, where a mixed hardware/-
software approach is used for detecting CRAs in a resource-constrained
environment [77]. In the first stage, a lightweight hardware monitor employs a
multi-threshold heuristic based on the number of consecutive indirect branches.
When the first stage detects anomalous behaviour, an interrupt is raised, and the
second stage software performs an in-depth analysis on the occurred branching
behaviour, in order to ensure that the detected operation is not a false alarm.
The idea of the two-step approach is to increase the system performance by
using an efficient and lightweight monitor on all branches, while performing an
in-depth analysis only when exceptional program behaviour occurs. During the
first stage, the hardware monitor stores a trace of all indirect/direct branches
inside the branch history buffer. The second stage then uses the branch history
buffer to enforce a number of rules, such as: (1) returns should always point
to call-preceding instructions, (2) indirect calls target only function entries,
and (3) the number of instructions between indirect branches are usually large.
A hardware-based performance evaluation showed a performance overhead of
<1.5% for γ>4 and δ<3. The major hardware costs are: a 32-entry branch
history buffer First-In, First-Out (FIFO) (which stores the source address,
target address, and branch type for each entry), an FSM, and three counters.
This design was implemented using the debug interface, and is described in
Section 3.7.1.

3.6.7 Monitoring graph (MG)

Mao et al. proposed to derive an information stream from the executing program
to detect attacks, which they call a Monitoring Graph (MG) [81]. The stream
is derived from a combination of any of the following: the address pattern,
the opcode pattern, the load/store pattern, the control flow pattern, or a
hash of the opcode and instruction address. The expected program behaviour,
called a monitoring graph, is generated through analysis and simulation, and
is then stored in memory. At runtime, the derived stream is compared to the
monitoring graph. If there is a mismatch, an attack is assumed and the processor
is interrupted. The architecture can detect a stack smashing attack in one to
ten cycles, depending on which information is used to derive the stream. The
authors reported a monitoring graph size of 100 kB compared to an application

HARDWARE-BASED CFI POLICIES 47

binary size of 5 MB. SI can be guaranteed when the derived stream is based on
the opcode pattern. The design consists of a watchdog processor connected to
the target processor via an unspecified interface.

3.6.8 Branch Regulation (BR)

Branch Regulation (BR) protects forward edges by enforcing a simple invariant
rule for branch targets, by disallowing arbitrary branches between functions [66].
The enforced invariant rule states that, during normal program execution, a
call always targets a function entry point, while an indirect jmp targets either a
function entry or an address within the current function. The enforcement of this
rule severely limits JOP attacks since most functions lack a dispatcher gadget
(see Section 3.2), which is critical to launch a JOP attack. The advantages
of BR is that it requires no CFG, and it’s simple, efficient, lightweight, and
severely reduces the set of available gadgets.

BR claims to detect all branches, including unintended branches [66]. However,
it seems to provide only limited protection against unintended branches, since
indirect branches into the current function are never checked. Kayaalp et al.
reported that BR reduced the number of exploitable gadgets to 1% of available
gadgets in the original binary [66]. This authors also argue that unless the
attacker can find gadgets that execute system calls, the damage from any attack
is limited to the compromised process. However, the C standard library contains
many system calls, and it seems like nothing prevents the attacker from invoking
a function which uses a syscall.

A challenge of using BR is to communicate the function boundaries to the
hardware monitor. Kayaalp et al. proposed to communicate each function’s
bounds with an annotation placed at the first address of each function
header [66]. Each call instruction can only target annotated addresses, while
jmp instructions can target either annotated addresses or addresses inside the
current function. After branching to the annotated address, the instruction
pipeline processes the annotation and places the new function bounds inside a
Function Bounds Stack. Lee et al. proposed to transform each function to start
with annotated code which communicates the function bounds by writing to
MMIO (see Section 3.7) [74,76].

Kayaalp et al. integrated BR into the execution pipeline stage of a processor [66].
The major hardware components are an SCS, memory for storing the Function
Bounds Stack, and logic for interpreting the annotations and detecting
invalid branches. The performance evaluation was done in simulation using
PTLsim/x86, and they found that an Function Bounds Stack of 8 entries (total
size 96 bytes) leads to a performance loss of about 1%.

48 CONTROL FLOW INTEGRITY

3.6.9 BB-CFI: Branch Regulation on Basic Blocks

BB-CFI [30] limits branch targets to basic block boundaries, instead of function
boundaries (as in BR [66]). Specifically, branches are only allowed to target the
first instruction inside a basic block. In addition, a call is only allowed to target
the first basic block of a function. The authors argue that restricting jmp targets
to the current function boundary (as was done in BR) is too restrictive, as it
cannot support longjmp(). A CFG is used to generate metadata containing
the start address of each basic block as well as the start of each function.
BB-CFI protects against unintended branches, since control can only flow to
the first instruction in each basic block. Unlike BR, BB-CFI does not rely on
non-executable memory. However, the metadata needs to be stored in protected
memory. For the evaluation, the authors stored the metadata in hardware on
content addressable memory, but it can also be protected by storing it in kernel
space, which would incur additional overhead. The authors found that, on
average, >99% of gadgets were eliminated from various different benchmarks.
The RIPE benchmark [110], which performs exploits based on code injection,
return-into-libc and ROP (a large number of different CRA attacks), was used
to evaluate BB-CFI. The authors found that all attacks were blocked (both when
W⊕ X is enabled and disabled). It remains to be seen whether a specifically
crafted attack can circumvent this security policy.

BB-CFI is integrated into the processor’s commit pipeline stage. The major
hardware components of the design are an SCS module, the Basic Block Table
(which contains the profiling metadata), a control unit, and a Target Address
Buffer, which is a buffer containing control flow instructions that still need to
be validated. The Basic Block Table is implemented as CAM, which can search
for a target address in the entire Basic Block Table in a single cycle, and has
a maximum memory requirement of 209 kB for one of the measured SPEC
benchmarks. A Target Address Buffer of 1 kB has an estimated a performance
overhead of <1%.

3.6.10 Branch Limitation (BL)

Recent works [60, 63] proposed to limit branch targets to basic block entries,
which we call Branch Limitation (BL). This restriction ensures that control
can only flow from the exit (last instruction) of one basic block to the first
instruction of a basic block. When a branch targets the middle of a basic block
it violates the basic block definition, implying that the system is under attack.
The BL architectures discussed here only checks forward indirect branches, but
can be combined with an SCS to check backward edges.

HARDWARE-BASED CFI POLICIES 49

Both BL and BB-CFI enforce the semantics of basic blocks that are targeted by
indirect branches. However, they use different mechanisms for defining the basic
block entry points. In BB-CFI, the basic block entries are stored in metadata
which was generated from a CFG, while in BL the entries are indicated by
instructions in the binary. The advantage of this approach is that it requires no
CFG.

A major challenge of BL is to communicate the first address of a basic block
with the hardware monitor. BBB-CFI argues that confirming a basic block’s
exit is equivalent to confirming an entry point of the following basic block [60].
Since a branch can only be placed on the last instruction of a basic block,
the following instruction is usually the entry point of another basic block.
Therefore, they proposed to restrict indirect branch targets to addresses which
are preceded by any branch instruction, including direct/indirect calls, jumps
and returns. This ensures that indirect branches can only target the first
instruction of a basic block. To support basic blocks which are not preceded
by branches, such as fall-through edges of switch-like statements, a second
rule is introduced. Here, the the fall-through addresses are stored in metadata
(inside main memory). At runtime, if the first rule fails, then the second rule is
evaluated. The enforcement of both rules requires performing additional reads:
rule one requires fetching the instruction preceding the branch target, while
rule two requires reading metadata from memory. The authors reported a 90%
reduction in JOP gadgets, and a total gadget reduction of 98.68% when also
enforcing an SCS with extended rules. A RIPE evaluation showed that the only
successful attacks were return-into-libc attacks which hijack an indirect call to
invoke an exported library function. These attacks avoid detection because the
call targets a function entry, which seems like a normal control flow to the CFI
architecture. The authors reported an average performance overhead of 0.1%.

BBB-CFI is integrated into the processor’s pipeline stages [60]. The major
hardware components are a 32 element SCS, a buffer containing the most
recently verified basic block boundaries, and control logic to compare and fetch
metadata from main memory. The fall-through metadata are stored in main
memory, with a storage overhead of around 13% when compared to the original
program size.

Intel Control-flow Enforcement Technology (CET) solves the challenge of
communicating the basic block entry points with the hardware monitor with
indirect branch tracking [63]. Here a new instruction, called ENDBRANCH, is placed
at the entry of each basic block that can be invoked through an indirect forward
branch. When an indirect forward branch occurs, the following instruction
is expected to be an ENDBRANCH, otherwise an attack is assumed. Since this
approach is so similar to BBB-CFI, which also enforces the semantics of basic
blocks, it is expected to lead to the same gadget reduction count as BBB-CFI.

50 CONTROL FLOW INTEGRITY

Intel CET is integrated into the pipeline stages of the processor. The major
hardware components are an SCS module and a small indirect branch tracking
FSM.

3.6.11 Instruction Set Randomisation (ISRAND)

SOFIA performs Instruction Set Randomization (ISRAND), where each
instruction’s bytes are encrypted using control flow information from a CFG, to
enforce a fine-grained CFI policy [35]. At runtime, each instruction’s bytes are
decrypted using a combination of the current and previous program counters.
Therefore, any invalid control flow between two instructions will lead to a
decryption error. To detect decryption errors and also provide SI, a Message
Authentication Code (MAC) is calculated over the instruction bytes in each
basic block. A unique key is used for each device, which can only be accessed by
the cryptographic hardware, and is only known by the software provider. It is
therefore impossible for an attacker to inject code or tamper with the software
since he doesn’t know the key. SOFIA checks all branches, including unintended
branches and fault attacks on the control flow. SOFIA enforces a static CFI
policy (no SCS). However, it would be difficult to craft a ROP attack, since
all software is stored encrypted, making it near impossible to identify gadgets.
SOFIA has an average performance overhead of 106%.

An interesting feature of SOFIA is that it does not only check the validity of
control flow between basic blocks, but also verifies the control flow between every
two instructions. This is important in scenarios where one needs protection
against fault attacks on the control flow, or where one cannot rely on the OS to
protect the integrity of instructions.

SOFIA is integrated into a processor’s pipeline stages [35]. The major hardware
components are a MAC component (which consists of a two cycle block cipher),
as well as control logic. The MAC component has a critical path which is longer
than that of the processor, leading to a clock speed reduction of 23.3%.

3.6.12 Signature Modeling (SM)

Signature Modeling (SM) is a technique used in fault-tolerant computing to
detect control flow violations. A checksum is periodically calculated on the
executed instructions for comparison with stored reference values. In its simplest
form, the comparison is done at the end of each basic block. The reference
values are computed offline and stored inside the binary.

HARDWARE-BASED CFI POLICIES 51

In Continuous Signature Monitoring, a signature of each executing instruction
is verified at runtime [111]. The signature is updated (e.g., with a XOR)
and verified before the execution of each instruction, which facilitates the
enforcement of SI. The signature depends on both the current instruction, as
well as previously executed instructions, and it also captures errors in control
flow, since a tampered control flow change will eventually lead to different
instructions being executed. To ensure that the signature size does not become
too large, only a small amount of signature bits are stored and checked for each
instruction. Since the error propagates within the signature register, almost all
control flow errors can be detected within 3 checks for a signature check size of
only 4 bits. The advantage of this approach is that it can detect control flow
changes at a fine granularity, such as when a fault attack is used to skip a single
instruction inside a basic block. The disadvantage is that a signature value for
every instruction is necessary.

Generalized Path Signature Analysis relies on signature updates in the code to
ensure that a signature value at a given location is always the same, no matter
which (valid) path was taken through the CFG [80]. First, the CFG is divided
into a number of path sets, with each path set starting and ending at the same
node. The goal is then to have a single signature value for each path set no
matter which control flow path was taken. To achieve this, justifying signatures
are inserted on some of the paths of each path set. When control flow arrives at
the end of each path set, the signature is compared to the reference value. This
lowers the storage requirement for reference values, as integrity checks occur
less frequently. However, this method increases the latency between fault and
detection.

Werner et al. use Generalized Path Signature Analysis together with Continuous
Signature Monitoring to protect software running on an embedded processor
against fault-based control flow attacks [109]. For Continuous Signature
Monitoring, the processor’s fetch unit is modified to also fetch the reference
signature. Only when the reference signature matches the current signature
will the instruction be forwarded to the decode stage. A post-processing tool is
used to obtain a CFG, and calculate the derived signatures. In addition, binary
instrumentation is used to send commands to the hardware to update/check
the signature (by writing to a memory mapped register). All branches (direct
and indirect) are checked, since any control flow change causes an update to
the runtime signature. They reported a performance overhead of 9%.

Werner et al. integrated their hardware monitor into a commercial ARM Cortex-
M3 processor. The signature monitor is implemented as a memory mapped
device [109]. The major hardware components are a CRC-based signature
monitor and logic to fetch reference values from main memory and compare
them against the derived signatures.

52 CONTROL FLOW INTEGRITY

3.6.13 Code Pointer Integrity (CPI)

Code Pointer Integrity (CPI) policies aim to prevent control flow hijacking by
protecting the integrity of code pointers at runtime.

A recent whitepaper discusses hardware-based CPI support on the new
ARMv8.3-a ISA [4]. Here, short MAC tags, called Pointer Authentication
Codes (PACs), are used to verify the integrity of pointers at runtime. The
MAC is calculated over the pointer target together with a context, which is
usually the pointer address, e.g., PAC = MACk(target,context). Whenever
a code pointer is used, its integrity is first verified, and whenever a pointer
target is updated, a new PAC is calculated and stored. This prevents pointer
tampering, since an attacker will also have to forge the PAC. Relocating a PAC
and pointer pair to a new address is infeasible, since the MAC computation
includes the pointer address. Key management is done by privileged software
(EL1, EL2, EL3), and it is expected that the higher privilege levels control the
keys for the lower privilege levels, which includes assigning a unique key per
each process or per each boot.

PAC exploits the fact that the available virtual address space in 64-bit
architectures is less than 64-bits, e.g., ARM64 Linux uses a 40-bit address
space by default, leaving 26 bits to be used for storing PAC values. The PAC
size can vary between 3 to 31 bits, depending on the system’s virtual address
space configuration, and the PAC is placed in the unused upper bits of the
pointer before being written to memory.

The core functionality of PAC is provided by two instructions types: PAC*
computes and stores a PAC, while AUT* verifies a PAC and restores the pointer
value. An integrity failure during AUT* leads to a pointer update to an illegal
address, which causes an exception when the invalid pointer is dereferenced.
The idea is that the compiler inserts these instructions inside the binary in
order to update and check the integrity of the critical pointers at runtime.
PAC is integrated into the pipeline stages of the processor, since it uses
dedicated instructions. The major hardware components are a low latency
MAC implementation which uses the QARMA block cipher, together with
control logic to calculate and verify PACs.

It is important to note that PAC cannot guarantee the freshness of an
authenticated pointer. This makes PAC susceptible to substitution attacks,
where one authenticated pointer is replaced with another which was previously
stored on the same address.

Software-based CPI enforces pointer integrity by storing sensitive pointers in an
isolated memory region, and further uses runtime checks to verify the correctness

CFI ENFORCEMENT VIA THE DEBUG INTERFACE 53

of each code pointer on each control transfer [73,82, 102]. Software-based CPI
which rely on information hiding have been demonstrated to be broken [48].
However, other instruction-level isolation mechanisms, such as software fault
isolation [73], provide much stronger protection for storing pointers, and have
not been demonstrated to be broken. PAC is unlikely to be susceptible to these
attacks, since each stored pointer is protected by a cryptographic MAC [4].

3.7 CFI enforcement via the debug interface

A common approach to enforce CFI through the debug port is to configure
the debugger to provide a trace for each control flow transfer. However, the
traces often do not provide all the required branching information to enforce a
CFI policy. A simple solution is to modify the debugger to include the missing
information inside the debug trace [56, 60, 74]. However, this is not ideal, since
the main reason for using the debug interface is to avoid having to modify
existing IP (see Section 3.3.3). Another approach is to provide supplementary
metadata inside main memory [75], or to communicate the missing information
with the hardware by writing to memory-mapped addresses [76,77].

3.7.1 Implementations

Lee et al. observed that the debug traces generated by an ARM CoreSight
debugger contain only the branch target address for indirect branches, while
for direct branches only the direction (taken/not taken) is available [75]. In
order to enforce an SCS, the branch type and source address are also necessary.
To this end, offline analysis on the binary is used to generate supplementary
metadata. The metadata contains the branch type, source address, and target
address for each branch instruction (at the end of each basic block). By
observing the debug traces, the hardware monitor can determine which basic
block is currently executing, thereby allowing accurate enforcement of the SCS
policy. The metadata increased the binary size by 145.5%, while incurring a
performance penalty of 2.4%, which is mostly due to bus contention since the
main memory is shared between the monitor and the processor. The major
hardware components are a 16 entry branch trace FIFO, a debug trace analyser,
logic to read metadata from main memory, and an SCS module. The hardware
monitor is implemented in reconfigurable fabric, which runs at a lower clock
frequency than the ASIC processor. They reported an operating frequency of
90 MHz for the ROP monitor, and 200 MHz for the host processor.

54 CONTROL FLOW INTEGRITY

Lee et al. proposed to supplement ARM CoreSight’s trace information
by exploiting the fact that the target address is only available for indirect
branches [76, 77]. To do this, a trampoline is inserted for each call in the
binary, together with replacing each call instruction with an indirect jump to
the unique trampoline address associated with that call. Since each trampoline
has a unique address, the branch type and source address can be derived by
checking the target address of the direct jump. This approach has a code size
increase of 16.6%. The major hardware components are a 32-entry branch
trace FIFO, a debug trace decoder logic, a 32-entry MMIO FIFO, a branch
trace analyser, a FIFO trace combiner, a CRA detector controller, and an SCS
module. The branch trace FIFO acts as a buffer for receiving debug traces,
while the MMIO FIFO acts as a buffer for receiving the function bounds via
MMIO. On the Zynq platform, the CRA monitor runs at 60 MHz, while the
ARM processor runs at 150 MHz. They reported a performance overhead of
3%, which is mostly due to memory contention.

Lee et al. enforced BR and an SCS through the Core Debug Interface [74].
The debug interface is modified to provide more information for the hardware
monitor, and MMIO is used to receive function boundary information from the
instrumented binary. They reported an average performance overhead of less
than 2%. The major hardware components are a debug trace filter, an indirect
branch bounds checker, an internal bus, main control logic, the memory region
protector, a secure call stack, and a debug trace FIFO.

CONVERSE enforced a table-based policy through a commercial off-the-shelf
watchdog processor that is connected to the target processor’s Nexus 5001 debug
port [56]. Each debug trace contains the source and target addresses. When
the watchdog processor detects of invalid control flow, the debug BREAK feature
is used to halt execution of the target processor. The authors reported that
their implementation does not have any overhead.

BBB-CFI enforced an SCS and BL by utilising Intel’s Last Branch Register
(LBR) and Processor Trace (PT) features [60]. The LBR buffers the 16 most
recent traces, with each trace consisting of the source and target address, while
the PT is used to write out a trace to physical memory or to a dedicated port
on a SoC. BBB-CFI modified the LBR to include a 2-bit branch type field.

3.7.2 Limitations

A common problem with enforcing a CFI policy via the hardware debugger is
that the hardware monitor could drop traces given a sufficiently high branch
rate [56,77]. This happens when the hardware monitor requires more time to
process a trace than the rate at which branches occur on the target processor.

COMPARISON OF ARCHITECTURES 55

Whenever a trace is dropped without being analysed, it introduces a security
weakness, since an attacker could exploit this by launching an attack during
a time period when branches are frequently occurring. This problem can be
mitigated by using a FIFO to store all incoming debug traces before they are
processed. However, given a sufficient number of branches over a short time
period, the hardware monitor will eventually fall behind, leading to dropped
traces. This is especially problematic if the hardware monitor operates at a
much lower clock rate than the processor.

Another problem is that the hardware debugger can be used by an attacker
to circumvent the security of the system. If the attacker can access the debug
interface, he could use it to tamper with code and data memory, or even disable
the hardware monitor by tampering with the tracing mechanism. Therefore,
care needs to be taken to ensure that an attacker cannot obtain access to the
debug interface. This could be done by ensuring that no external debug interface
is present, and prohibiting software running on the processor from accessing
the debugger.

3.8 Comparison of Architectures

Table 3.1 shows a comparison of all hardware-based CFI architectures analysed
in this chapter. Most architectures enforce dynamic CFI which relies on an SCS
for stateful backward edge protection, while using a range of different static
forward-edge policies.

3.8.1 Protection provided

Most works assume attackers in control of data memory, while a smaller number
of architectures assume an attacker that can control code memory or perform
fault attacks on control flow. Whenever an attacker model wasn’t specified,
we made an estimate of the assumed attacker, which is indicated by "∗". The
following text discusses the protection provided in terms of the assumed attacker
model.

A policy which prevents arbitrary branches imposes limits on the allowed branch
targets of forward branch instructions. We use the "Indirect Branch Protection"
and "Direct Branch Protection" columns to indicate whether an architecture
can prevent arbitrary branches to respectively for indirect or direct instructions.
Many architectures can prevent arbitrary indirect branches, while only some can
prevent arbitrary direct branches. Indirect branch protection is important to

56 CONTROL FLOW INTEGRITY

Table 3.1: Overview of hardware-based CFI architectures.

Architecture Policies Protection Provided Requirements
St
at
ef
ul

po
lic
y

St
at
ic
po
lic
y

A
tt
ac
ke
r
C
ap
ab
ili
tie
s1

In
di
re
ct

B
ra
nc
h

3

D
ire
ct

B
ra
nc
h

3

D
at
a
st
ru
ct
ur
es

2

Ex
pl
oi
ta
bl
e
G
ad
ge
ts

4
(%

)

So
ftw

ar
e
In
te
gr
ity

Fi
ne
-g
ra
in
ed

C
FG

SW
in

TC
B

IS
A
ch
an
ge
s

D
eb
ug

Po
rt

W
⊕
X

A
ca
de
m
ic

SmashGuard [88] SCS # D G# # # – # # # # #
IBMAC [50] SCS # D G# # – # # # # # #
Lee et al. [75] SCS # D G# # # – # # # # #
HAFIX [31] # D G# # � – # # # #

HCFI [27] SCS Label D # 0∗ # #
Sullivan et al. [101] SCS Label D # 0∗ # #

Arora et al. [12] SCS Table +
FSM

CDF∗ G# 0∗ # # #

CONVERSE [56] # Table – 0∗ # # #

Rahmatian et al. [90] # FSM CD G# # # 100∗ # # # #

SCRAP [67] SCS Heuristic D∗ G# # # – # # # # # #

Lee et al. [77] # Heuristic D G# G# # – # # # #

Mao et al. [81] SCS MG CDF∗ # 0∗ # # # #

Werner et al. [109] SM SM CDF∗ # 0∗ # #

BR [65,66] SCS BR D G# 1 # # # #
Lee et al. [76, 77] SCS BR D G# # 1∗ # # # #
Lee et al. [74] SCS BR D∗ G# 1∗ # # #

BB-CFI [30] SCS BB-CFI CD G# 1 # # # # #

BBB-CFI [60] SCS BL D # # 1.3 # # # # –
Intel CET [63] SCS BL D∗ # 1.3∗ # # # # #

SOFIA [35] # ISRAND CDF 0∗ # # #

ARMv8.3-a [4] CPI CPI D # 0∗ # # # #

 = Yes; G# = Partial; # = No; � = Not Applicable; – =Unspecified; ∗= Estimated
1D = Data modifications; C = Code modifications; F = Fault control flow

2Metadata, SCS, or runtime data structures access protection.
3Prevent forward branches to arbitrary target addresses; 4Exploitable Gadgets in the binary

protect against JOP and ROP attacks, since these attacks make use of gadgets
consisting of indirect branches. Direct branch protection provides an additional
protection layer, and is important in the following two scenarios. First, when the
attacker controls code memory direct branch targets could be modified, since
code is mutable. Second, when fault attacks on the control flow occur, direct
branch targets could be tampered with. BR provides only partial indirect branch

COMPARISON OF ARCHITECTURES 57

protection, since indirect branches to any address within the current function
are allowed. This leaves BR somewhat vulnerable to unintended branches, since
it allows CRAs which do not cross function boundaries.

Many solutions store sensitive runtime data structures or metadata in data
memory. However, less than half the architectures protect both their runtime
(SCS) data and metadata which is stored in main memory. Since all attackers
can control data memory, it is important to protect sensitive data stored in
main memory in order to prevent attackers from circumventing the security
policy by tampering with the stored data.

Coarse-grained policies cannot prevent all indirect branches from disobeying
the CFG. Hence, their program binaries contain a number of gadgets which are
usable by an attacker. To quantify the number of usable gadgets, a metric called
gadget reduction or Average Indirect target Reduction is sometimes reported,
which we summarised in the "Exploitable Gadgets" column. The metric reports
the ratio between the number of reachable gadgets when CFI is enforced,
compared to the reachable gadgets when CFI is not enforced (i.e all gadgets).
Gadgets are identified under the assumption that each gadget ends with an
indirect branch and has no side effects, which can be automated with a gadget
finder tool, such as ROPGadget [93]. It is important to remember that a
successful CRA requires only a handful of gadgets. Therefore, even with a large
gadget reduction, attacks can still succeed, albeit with more effort from the
attacker. In some cases the values reported in the "Exploitable gadgets" column
are estimated from the reported values of other architectures with the same
policies. E.g., the values for [63] were based on [60] which both enforced BL,
while [74,76] are based on [66], since they enforce the same policies. Heuristic-
based approaches, such as SCRAP [67], cannot prevent branches, since they
only detect abnormal branch behaviour, and therefore almost all gadgets are
exploitable. Fine-grained policies prevent arbitrary branches, and therefore the
exploitable gadgets are estimated to be close to zero.

Most works assume attackers in control of data memory, while not controlling
code memory, since it is protected with page-based protection, such as W⊕X.
In addition, these works only protect indirect forward branches. However,
architectures that assume attackers that also control code memory, typically
prevent code tampering/injection through an SI mechanism, which verifies code
integrity at runtime by means of a cryptographic hash/MAC.

3.8.2 Requirements

This section compares the architectural requirements to the protection provided.

58 CONTROL FLOW INTEGRITY

We found that roughly a third of the architectures offer fine-grained protection
which relies on a precise CFG, as indicated by the "CFG Required" column.
Fine-grained policies supposedly provide stronger security guarantees, while
the security of the policy depends on the accuracy of the CFG. However, their
dependence on a precise CFG is an important limitation, since it is difficult
to obtain a precise CFG from complex binaries (see Section 3.5.3). We found
that most architectures which do not rely on a precise CFG are coarse-grained,
and therefore have a non-zero amount of exploitable gadgets. The exception
seems to be ARMv8.3-a which is the only architecture which provides fine-
grained protection while not relying on a CFG. However, currently we cannot
thoroughly evaluate the architecture, since official reference material has not
been released yet.

More than half of the architectures rely on software placed inside the binary to
implement its security policy, as indicated by the "SW in TCB " column. This
is a reasonable requirement, provided that code integrity is guaranteed, e.g.,
through W⊕X or by enforcing SI. All architectures respected this requirement.

We found that most architectures are integrated into the instruction pipeline
stages of the processor, as indicated by the "ISA changes" column. In contrast,
some architectures exploit the debug interface to allow enforcing their policies,
as indicated by the "Debug Port" column. The main advantage of using the
debug port is that it allows for enforcing a policy without making changes to
the processor or other existing IP. However, we found that some architectures
enforced via the debug port also modified the ISA to enforce their policies.

We found only two non-academic architectures, namely Intel CET [63] and
ARMv8.3-a [4], as indicated by the "Academic" column. At the time of writing,
Qualcomm has only released a whitepaper describing the PAC architecture,
while Intel has released a detailed "Technology Preview" document. Intel’s
solution, which performs a type of Branch Limitation (BL), is coarse-grained,
but practical for widespread deployment, since it only requires the insertion of
special landing pad instructions. ARM’s solution, which relies on CPI , promises
to offer fine-grained protection, and seems to be practical since it does not
require complex binary transformations. Both solutions do not rely on CFGs,
which make these architectures practical for widespread deployment.

3.8.3 Overhead

Table 3.2 compares the performance and area overhead of the CFI architectures
which were implemented on a FPGA or Application-Specific Integrated Circuit
(ASIC). The architectures which have no published performance or hardware

CONCLUSION 59

overheads at the time of writing were not listed in the table, namely Mao et
al. [81], Intel CET [63], and ARMv8.3-a [4].

Szekeres et al. [102] found that security mechanisms with a performance overhead
of more than 10% do not gain widespread adoption in production environments.
In addition, many people believe that the average performance overhead should
be less than 5% in order to obtain adoption from industry. The "Performance
Overhead" column shows that most architectures fall below the 5% barrier.

The majority of the architectures were evaluated for both performance and
area in hardware. However, some architectures [65,66,88] were only evaluated
in simulation, while some others [12, 30,60, 67] performed a simulation-based
performance evaluation, and further made a separate hardware implementation
to evaluate the hardware area overhead.

Many architectures performed an evaluation on FPGA, but failed to specify the
target FPGA technology, which makes it impossible to compare their hardware
overhead with other designs. Some designs report their area (LUTs, registers,
block RAM, gates) as an increase in area compared to the original unmodified
processor. This also makes it difficult to compare the overhead with other
designs, since the area used by different processors differ greatly. In addition,
large variations in area can be observed for the same processor under different
configurations. Many architectures are integrated into the pipeline stages of the
processor, and it is important to know if the design has an impact on the critical
path of the processor. Therefore, it is best to report the maximum attainable
clock speed of the modified processor compared to the stock processor.

3.9 Conclusion

In this chapter, we presented an analysis of the security policies used by 21
hardware-based CFI architectures. This included a detailed comparison of
the used policies with respect to their security, limitations, hardware cost,
performance, and practicality.

The primary goal of CFI architectures is to protect against control flow hijacking
attacks. As such, a fundamental limitation of CFI is that it cannot protect
against non-control data attacks, which do not lead to the execution of invalid
edges, but instead tamper with the order of the executed paths. We further
found that most architectures provide backward edge protection with a Shadow
Call Stack (SCS), and a large body of work discusses the intricacies of enforcing
an SCS. However, for forward edge protection a range of different policies are
used, which has different security and practical limitations.

60 CONTROL FLOW INTEGRITY

Table 3.2: Performance and hardware overheads of the CFI architectures. All
reported percentages are relative to the baseline performance of the target
processor, while the non-percentages are absolute values.

Architecture Perf. Evaluation FPGA ASIC

St
at
ic
po
lic
y

Ta
rg
et

IS
A

Pe
rf
.
O
ve
rh
ea
d
(%

)

Si
m
ul
at
io
n

†
Te
ch
no
lo
gy

LU
Ts

Fl
ip

Fl
op
s

36
K
B
R
A
M

A
re
a
(%

)
C
lo
ck

(M
H
z)

G
at
es

(k
G
E)

Te
ch
no
lo
gy

(n
m
)

A
re
a
(%

)
C
lo
ck

(G
H
z)

SmashGuard [88] # Alpha 2.8% – – – – – – – – – –
IBMAC [50] # ATMega103 – # Cyclone-2 215 0 0 9% – – – – –
Lee et al. [75] # Cortex-A9 2.4% # Zynq 7362 – 5 – 90 86.7 45 – –
HAFIX [31] # LEON3 2% # – 0.3% 3% 8% ∗ – 0% – – – –
HAFIX [31] # Siskiyou

Peak
2% # – <1% 2.5% 2 – – – – – –

HCFI [27] Label LEON3 1% # – 2.6% 2.5% – – 0% – – – 0%
Sullivan et al. [101] Label LEON3 1.8% # – – – – – – – 32/28 1.78% 3
Arora et al. [12] Table + FSM ARM920T – Virtex-2P 1839 – – – 57 – 130 9.07% –
CONVERSE [56] Table – 0% # – – – – – – – – – –
Rahmatian et al. [90] FSM LEON3 0% # Virtex-6 340 – 2 1.9% 0% – – – –
SCRAP [67] Heuristic x86 2% Spartan-3 – – – – 284 – – – –
Lee et al. [77] Heuristic Cortex-A9 1.5% # Zynq 1795 – 2 – 60 – – – –
Werner et al. [109] SM Cortex-M3 9% # – – – – – – – 130 6.4% –
BR [65,66] BR x86 2% – – – – – – – – – –
Lee et al. [76, 77] BR Cortex-A9 4.5% # Zynq 3172 – 3 – 60 – – – –
Lee et al. [74] BR LEON3 2% # Virtex-5 22.7% – 15% – – 244.2 45 13.79% 1
BB-CFI [30] BB-CFI x86 <1% Virtex-5 86 – 4 – 313 – 65 0.02% –
BBB-CFI [60] BL x86 0.1% Virtex-6 3720 3404 – – 231 – – – –
Intel CET [63] BL x86 – # – – – – – – – – – –
SOFIA [35] ISRAND LEON3 106%# Virtex-6 958 467 0 – 23.2% – – – –

† Performance evaluation done in simulation, and not on the hardware of the target ISA
– =Unspecified; ∗ = distributed RAM

The general conclusion is that substantial progress has been made in the area
of CFI. In particular, SCS provides excellent protection against ROP, and does
not suffer from any practical limitations which prevent widespread adoption.
However, static forward-edge CFI policies appear to face the following practical
limitations:

• The security of fine-grained CFI relies on the precision of a CFG, which
cannot be accurately generated for programs that contain indirect forward
branches. ARMv8.3-A seems to be the only architecture that can provide
fine-grained protection without the need for a CFG. However, it has not
yet been publicly released, which means that the security community still
has to evaluate its limitations.

• Coarse-grained CFI relies on a relaxation in the strictness of its policy by
enforcing simple rules that do not require a CFG. However, this comes

CONCLUSION 61

at a reduction in the security provided, since it cannot detect all illegal
branches.

• Heuristics provide coarse-grained and practical protection. However, it
can be circumvented by an attack which is crafted to thwart the heuristic.
It further suffers from false positives, and proper heuristic parameter
selection remains unsolved.

These limitations could explain why industry has not yet publicly released a
CFI-capable processor, and we believe that the problem of enforcing practical
and fine-grained CFI still remains unsolved.

In the following chapter we present our novel CFI architecture, called SOFIA
(first introduced in Section 3.6.11), which enforces CFI by means of Instruction
Set Randomization (ISRAND). Then, in Chapter 5, we will present a detailed
description and evaluation of a novel Software Integrity (SI) architecture which
does not require modification of any existing IP.

Chapter 4

SOFIA: Software and Control
Flow Integrity Architecture

de Clercq, R., De Keulenaer, R., Coppens, B., Yang, B., Maene, P.,
de Bosschere, K., Preneel, B., de Sutter, B., and Verbauwhede, I.
SOFIA: Software and Control Flow Integrity Architecture. In Proceedings of
the Conference on Design, Automation & Test in Europe (2016), DATE ’16,
IEEE, pp. 1172–1177
Contribution: Responsible for hardware designs. Some concepts are the
result of brainstorming sessions with co-authors.

de Clercq, R., Götzfried, J., David, U., Maene, P., and
Verbauwhede, I. SOFIA: Software and Control Flow Integrity Architecture.
In Computers & Security (2017), vol. 68, pp. 16–35
Contribution: Responsible for hardware designs and benchmarks.

Content Sources

4.1 Introduction

Cyber physical systems enable the physical world to integrate with control
systems, such as embedded devices or the Internet of things. Cyber physical
systems rely on software algorithms running on embedded devices which
use sensors to measure physical processes and actuators to control physical
components, such as a valve or the brakes on a car. The software is responsible

63

64 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

for monitoring and controlling these physical components to ensure that they
are operating correctly. Examples of cyber physical systems include industrial
control systems, process control, autonomous vehicle control systems, and
medical implants. The correct functioning of cyber physical systems is crucial, as
its failure can lead to injury, damage to equipment, or environmental catastrophe.
Therefore, to ensure their correct operation, we need to ensure that the software
that runs on the computational components are not compromised.

In this chapter, we present a novel CFI architecture, called SOFIA, which
is designed for security-critical scenarios, such as cyber physical systems. It
protects software against runtime attacks, such as CRAs, code injection, software
tampering, and fault attacks on control flow, while assuming a powerful attacker.
It is deeply integrated in a processor’s pipeline stages, and relies on cryptographic
methods to protect the running software. In particular, SOFIA enforces CFI,
Software Integrity (SI), and code secrecy.

The remainder of this chapter is structured as follows. First, the problem
statement is provided including the threat model and system goals. Next,
the proposed architecture is described. Afterwards, we describe the hardware
implementation, followed by toolchain implementation. After that, we provide
an evaluation of the security and performance of our solution, and finally discuss
future research directions and conclusion.

4.2 Problem Statement

In this section we discuss the system model, composed of a threat model and a
set of system requirements.

4.2.1 Threat Model

SOFIA considers an adversary that has the same capabilities as attacker number
three in Section 3.4. Here is a brief summary of the assumed capabilities:

• Full control of program and data memory.

• Full control of external I/O pins of the processor.

• Capable of tampering with program flow by means of software-based
runtime attacks, as well as through fault attacks on the control flow.

• Side-channel attacks are not possible.

ARCHITECTURE 65

4.2.2 System goals

In this work, a hardware-based security architecture performs run-time
verification of the integrity and execution of software. To this end, the
requirements of the system are as follows.

Software integrity: The attacker should not be able to execute tampered
software on a SOFIA core. We consider the software to consist of instructions
and read-only data.

Control flow integrity: The attacker should not be able to change the control
flow of running software along an invalid path without this being detected. This
includes software-based attacks based on code-reuse such as Jump-Oriented
Programming (JOP) [17], Return-Oriented Programming (ROP) [95] and return-
to-libc [103], and further includes hardware-based control flow attacks [107],
such as instruction skips induced by glitching the clock.

Tampered code protection: No tampered code should be allowed to execute
on the processor. We consider tampered code to include illegally modified
instructions or any code resulting from an invalid control flow.

Code confidentiality: The attacker cannot read stored software in clear or
execute stored software on other devices. This prevents the attacker from finding
potential vulnerabilities and further prevents the extraction of confidential IP
from the software.

Reverse engineering protection: The software that is stored on each device
cannot be analysed or be copied and executed on other devices.

4.3 Architecture

In this chapter, we propose a number of architectural extensions to a
microprocessor in order to enhance its security. The extensions consist of
two major mechanisms. First, a Control Flow Integrity (CFI) mechanism
guards against code injection and code reuse attacks. This mechanism uses a
type of Instruction Set Randomization [68] where each instruction is encrypted
with control flow dependent information. At runtime, the instructions are
decrypted using the same control flow dependent information. Only when the
correct control flow paths are taken the instructions will decrypt correctly.

Second, a Software Integrity (SI) mechanism ensures that tampered software
never executes on the processor. Here, a Message Authentication Code (MAC)
is used to verify the integrity of groups of instructions at run-time. If an integrity

66 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

Program
Memory Cache CFI Instruction

Decode

SI Processor

cinsti inst′i

Reset

Figure 4.1: Overview of the design using Control Flow Integrity (CFI) and
Software Integrity (SI).

Table 4.1: Architectural features vs. system model criteria.

System goal CFI SI CFI and SI
Software Integrity No Yes Yes
Control Flow Integrity Yes No Yes
Tampered code protection No Yes Yes
Code confidentiality Yes No Yes
Tampered control flow prevention No No Yes

violation is detected, the processor is reset in order to prevent any tampered
instructions from executing.

An overview of the architecture is shown in Figure 4.1. Encrypted instructions
(cinsti) are fetched from program memory, placed in instruction cache and
decrypted by the CFI feature. The decrypted instructions (inst′i) are sent to
the Instruction Decode stage of the processor. At the same time, the SI feature
performs run-time integrity verification of the decrypted instructions. Upon
detection of an integrity violation, execution is halted by resetting the processor,
thereby preventing both tampered control flow and tampered instructions from
executing. The processor should be able to reboot reliably fast, allowing the
software to quickly reach a safe and expected state. Each processor is embedded
with a set of unique keys that can only by accessed by the block cipher. The
keys are known only by the device manufacturer and the software provider.

In the remainder of this section, the CFI and SI mechanisms will first be
presented as standalone features. Afterwards, there will be a discussion on how
to use the two mechanisms within a single system. As shown in Table 4.1, each
standalone feature meets only part of the criteria of the system model. However,
when the standalone features are combined into a single system (CFI and SI),
they complement each other, thereby satisfying all the criteria in the system
model.

ARCHITECTURE 67

ALGORITHM 1: Control flow dependent information is used to encrypt and decrypt
the instructions of a program.
Input: Plaintext mi, j-bit key k1, number of plaintext blocks u, nonce ω
Result: Encryption produces r-bit ciphertext blocks c0 , · · · , cu. Decryption

recovers plaintext m.
Encryption: ;
for i← 1 to u do

Ii = {ω ‖ prevPCi ‖ PCi} ;
Oi ← Ek1 (Ii);
ti ← the r least-significant bits of Oi ;
ci ← mi ⊕ ti ;

Decryption: ;
for i← 1 to u do

mi ← ci ⊕ Ek1 (Ii), where Ii, Oi, and ti are computed as above.

4.3.1 Control Flow Integrity (CFI)

The main idea of the CFI mechanism is to perform instruction-set randomization
by decrypting instruction opcodes based on control flow dependent information.
This enforces CFI by ensuring that instructions are only decrypted correctly
at runtime when valid control flow paths are followed. A binary that consists
of encrypted instructions is created by performing a transformation operation
at compile time. The instructions are encrypted based on the control flow
paths present in a precise Control Flow Graph (CFG) of the whole program.
Each encrypted instruction is decrypted at run-time using a combination of the
current program counter and the address of the previously executed instruction.

Each instruction in the binary is encrypted using a block cipher in counter-
mode, as shown in Algorithm 1. The counter value (Ii) contains the dynamic
control flow between two instructions. This is expressed as the address of the
currently executing instruction together with the address of the previously
executed instruction. Encryption is performed with cinsti = Ek1(Ii)⊕ insti, while
decryption is performed with inst′i = Ek1(Ii)⊕ cinsti , with Ii the counter value
and k1 the encryption key. The counter is Ii = {ω ‖ prevPCi ‖ PCi}, with PC
the current program counter or address of insti, prevPC the previously executed
program counter, and ω a nonce. The nonce ω needs to be unique across each
version of every encrypted program, and is stored in a fixed address in the
binary. This decryption process is illustrated in Figure 4.2.

Instructions are decrypted correctly as long as the control flow of a running
program follows the paths of the original CFG. However, during a control flow
hijacking attack, an attacker forces control to flow along a path which does

68 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

Ek1

ω ‖ callAddr ‖ $(cinst1)

inst′1

cinst1

I1

CTR1

Ek1

ω ‖ $(cinst1) ‖ $(cinst2)

inst′2

cinst2

I2

CTR2

· · · · · ·
Ek1

ω ‖ $(cinstn−1) ‖ $(cinstn)

inst′n

cinstn

I3

CTRn

$() = addr()

Figure 4.2: Encrypted instructions (cinstn) are decrypted at runtime using
dynamic control flow information consisting of the current and previous program
counters (PC, and prevPC). Under the condition that control flow is untampered,
PC = addr(cinsti), and prevPC = addr(cinsti−1), or prevPC = callAddr, with
callAddr the call site.

1: mov r0,r1
2: jmp 5
· · ·

5: mov r1,r2

1

2

5

I2 = {ω ‖ 1 ‖ 2}

I5 = {ω ‖ 2 ‖ 5}

It
5 = {ω, 1, 5}

Valid control flow
Invalid control flow

Figure 4.3: A CFG of a small program shows two different control flow paths
from node 1 to node 5. If the valid control flow path is taken, all instructions
are decrypted correctly. However, when the invalid control flow path is taken,
instruction 5 is decrypted incorrectly.

not exist in the original CFG (see Section 3.2). This will cause at least one
instruction to be decrypted incorrectly, as the counter Ii contains an invalid
prevPC.

An example program listing with corresponding CFG is shown in Figure 4.3.

ARCHITECTURE 69

Each CFG node represents a single encrypted instruction, while the edges
indicate control flow between instructions. The solid edges represent valid
control flow, with the encryption counter Ii indicated next to each edge. The
CFG shows that control flows from node 1 to 2; therefore, instruction 2 is
decrypted with counter value I2 = {ω ‖ 1 ‖ 2}. A branch causes control to
flow from node 2 to 5; therefore, instruction 5 is decrypted with counter value
I5 = {ω ‖ 2 ‖ 5}. When an attacker causes invalid control flow to occur from,
e.g., node 1 to node 5, instruction 5 is decrypted with counter It

5 = {ω ‖ 1 ‖ 5},
leading to a decryption error.

Function calls are supported in a similar way as direct branches. The function’s
entry point is encrypted with the call site, while the return point in the call site
is encrypted with the address of the return instruction in the callee. Callees
with multiple call sites or the targets of function pointers with multiple call
sites correspond to nodes with multiple predecessors in the CFG, and cannot be
handled with the scheme discussed so far. Section 4.3.4 discusses the necessary
extensions.

The CFI mechanism presented in this section provides protection from attacks
based on code injection and code reuse. However, a decryption error caused
by tampered control flow might lead to a decrypted instruction (inst′i) with a
valid opcode. The instruction will execute on the processor, albeit leading to a
different result than that of the original program. This is a serious problem,
as the incorrectly decrypted instruction could lead to a malicious result. This
problem can be solved by using the CFI mechanism in combination with the SI
mechanism described in the following section.

4.3.2 Software Integrity (SI)

This section presents a mechanism which ensures, with very high probability,
that only untampered instructions can execute on the processor. A Message
Authentication Code (MAC) is precomputed on groups of instructions, and
stored in instruction memory, as shown in Figure 4.4. At run-time, a MAC
verification is performed on each group of instructions before they reach the
end of the processor’s pipeline. The run-time MAC is compared with the
precomputed MAC to verify the integrity of all instructions in each group.
If their verification fails, the processor is reset in order to prevent tampered
instructions from executing.

70 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

Fetched

Stored

MAC

inst1

inst2

. . .

instn

6= MAC
Run-time MAC

Reset

inst2inst1 · · · instn

Figure 4.4: The integrity of a program’s instructions is verified at runtime
by comparing the precomputed MAC with the run-time calculated MAC. If
verification fails, the processor is reset to prevent tampered instructions from
executing.

M1

· · ·

Mm

inst1

inst2

· · ·

instn

Entry

Exit

Figure 4.5: The execution block consists of an m-word precomputed MAC (M)
and n instructions. Control flow can only enter at M, and can only exit at instn.
Inside a block the control flows through each consecutive word.

Design

An execution block, shown in Figure 4.5, consists of m MAC words (Mi) and n
instructions (insti). Control can only flow into an execution block at M1, and
can only exit at instn. Inside the execution block, control flow passes through
each MAC word and then through each instruction.

The processor’s Instruction Fetch (IF) pipeline stage is used to read instructions

ARCHITECTURE 71

and precomputed MAC words from memory. The MAC words are replaced with
a nop before being sent to the decode stage. It is necessary that all words in an
execution block are fetched every time it is executed, as all the instructions in
a block are needed to compute the run-time MAC, and the precomputed MAC
is required for verification.

In our design we use the Cipher Block Chaining-Message Authentication Code
(CBC-MAC) algorithm [64] with a 64-bit MAC length. In the remainder of the
text we will refer to the two 32-bit chunks of the MAC as M1 and M2. It is
well known that the CBC-MAC algorithm is only secure for messages of a fixed
length [59]. Care needs to be taken, as SOFIA computes a MAC on different
message lengths due to the two block types that each consists of a different
number of instructions (see Section 4.3.5). We propose to address this issue
by using a different key for each type of block, thereby using one key for each
message length. We further use a different key for the MAC and for encryption.
Consequently, each device has a total of three different keys: k1 is used for
encryption, k2 is used for CBC-MAC of execution blocks, and k3 is used for
CBC-MAC of multiplexer blocks.

Preventing tampered blocks from executing

One of the design criteria is to prevent the execution of instructions that are
tampered with or occur after an illegal control flow. Here we discuss the
techniques used to achieve this.

SOFIA is designed to work as an extension to any microprocessor. However,
for the discussion in this chapter, we will base the design on the instruction
pipeline of the SPARCv8-based [97] LEON3 [51] processor as an example. It
uses a single-issue pipeline with seven stages:

1. Instruction Fetch (IF) requests instructions from cache or main memory.
2. Instruction Decode (ID) translates opcodes into instructions and

generates call or branch target addresses.
3. Operand Fetch (OF) reads the operands from registers.
4. Execute (EXE) performs arithmetic logical unit, logical, and shift

operations. For memory operations, the address is generated.
5. Memory Access (MA) performs read or write operations to/from

memory.
6. Exception (XCP) resolves traps and interrupts.
7. Write Back (WB) stores the result of the arithmetic logical unit, logical,

shift, or memory access operations to the register file.

A cyber physical systems’s physical components commonly interface with

72 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

inst4 inst3 inst2 inst1
M2
nop

M1
nop

· · ·

IF ID OF EXE MA XCP WB

Figure 4.6: The instructions in a four instruction execution block fit in
the pipeline stages before the Memory Access (MA) stage. This allows the
architecture to verify the integrity of the block before a memory access has been
performed.

a microcontroller through a physical connection, such as General Purpose
Input/Output pins. The microcontroller’s software controls the actuators by
writing to the interface’s memory mapped addresses with store instructions.
Special care needs to be taken with store instructions, as they could used to
send tampered commands to an actuator, which could have a catastrophic effect,
e.g., disable the brakes on a car, or by emptying a patient’s insulin tank.

SOFIA detects tampered instructions by verifying an execution block’s integrity
while the instructions are partially executed inside the processor’s instruction
pipeline. In this work we propose to verify the integrity of a block before
any store instructions inside a given block has reached the Memory Access
(MA) pipeline stage. Instructions other than stores cannot control actuators
from cyber physical systems, and are therefore allowed to progress through
all the procesor’s pipeline stages. A simple approach, illustrated in Figure 4.6,
is to make the execution blocks small enough to fit into the pipeline stages
before the MA stage. This allows the run-time MAC to be computed before
the instructions reach the MA stage. If verification fails, the instructions are
prevented from moving further in the pipeline by resetting the processor, thereby
discarding all instructions in the block before reaching the MA stage.

In the LEON3, memory access operations are performed in the fifth instruction
pipeline stage. Therefore, a four-instruction execution block can fit in the
pipeline stages before the MA stage. When a single-cycle MAC hardware
component is used, tampering can be detected before the first instruction
reaches the MA stage. To improve the performance of the system, the number
of instructions in an execution block can be increased to six instructions if store
instructions are not allowed to be located on inst1 or inst2, as illustrated in
Figure 4.7. A store violation is generated when a store instruction is detected
on inst1 or inst2. Store violations are handled in the same manner as MAC
violations.

ARCHITECTURE 73

inst6 inst5 inst4 inst3 inst2 inst1
M2
nop

M1
nop

Store instruction
not allowed here

IF ID OF EXE MA XCP WB

Figure 4.7: The size of an execution block can be increased to six instructions
if store instructions are restricted from inst1 and inst2.

4.3.3 Control Flow Integrity with Software Integrity (CFI and
SI)

By using both the CFI and SI mechanisms in a single processor, it is possible to
detect tampered execution blocks as well as invalid control flow. By designing the
system to rapidly detect tampering we are able to also prevent the execution of
instructions resulting from tampered control flow. The CFI mechanism decrypts
instructions based on the run-time control flow, but can not detect decryption
errors. The SI mechanism performs integrity verification in order to detect
tampered instructions, but cannot detect invalid control flow when used alone.
Therefore, to detect tampered control flow and instructions, the SI mechanism
verifies the integrity of a block only after the CFI mechanism has decrypted the
encrypted instructions. Figure 4.8 shows the process of decrypting the words in
an execution block using counter-mode, and then calculating the CBC-MAC on
all the decrypted instructions (inst′i). The figure assumes untampered control
flow, i.e., each counter value Ii contains the valid values for PCi and prevPCi,
such that PCi = addr(cinsti), and prevPCi = addr(cinsti−1) or prevPCi = callAddr,
with callAddr the address of the call site.

At run-time the CFI mechanism first decrypts the instructions using dynamic
control flow information. Next, the SI mechanism calculates the run-time MAC
on the decrypted instructions. If an invalid control flow path was taken, a
decryption error occurs. When the SI mechanism calculates the run-time MAC
with the incorrectly decrypted instruction and incorrect MAC is produced
and the integrity verification fails. The processor is then reset to prevent the
execution of instructions resulting from the tampered control flow.

The plaintext binary is transformed with the MAC-then-Encrypt construction
[85]. For each execution block, a MAC M is first calculated on the plaintext
instructions. Next, M is interleaved with the instructions to form execution
blocks. Finally, the plaintext execution blocks are encrypted with Algorithm 1,
and then stored in main memory.

74 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

E
k

1

ω
‖

callAddr‖
$(cM

1)

M
′1

cM
1

I1

C
T

R
1

E
k

1

ω
‖

$(cM
1)‖

$(cM
2)

M
′2

cM
2

I2

C
T

R
2

E
k

1

ω
‖

$(cM
2)‖

$(cinst1)

inst ′1

cinst1

I3

C
T

R
3

E
k

1

ω
‖

$(cinst1)‖
$(cinst2)

inst ′2

cinst2

I4

C
T

R
4

······

E
k

1

ω
‖

$(cinst5)‖
$(cinst6)

inst ′6

cinst6

I8

C
T

R
8

E
k

2

C
BC

-M
A

C
0

0

E
k

2

C
BC

-M
A

C
1

E
k

2

C
BC

-M
A

C
2

M

$()=
addr()

Figure
4.8:

T
he

C
FI

and
SI

architecturalfeatures
are

com
bined

to
detect

tam
pered

software
and

controlflow
.
A
t

runtim
e,the

encrypted
words

in
an

execution
block

(cinsti and
C

M
i)

are
first

decrypted
w
ith

counter-m
ode,and

then
a

C
BC

-M
A
C

is
used

to
com

pute
a
M
A
C

on
the

decrypted
instructions

(inst ′i).

ARCHITECTURE 75

M1e1

M1e2

M2

inst1

inst2

· · ·

instn

Entry1

Entry2

Figure 4.9: The plaintext multiplexer block uses two copies of the first MAC
word M1 as its two entry points, which are respectively called M1e1 and M1e2.

4.3.4 Blocks with Multiple Predecessors

The CFI mechanism presented in Section 4.3.1 only supports nodes with a single
predecessor, since execution blocks only have one entry point. This section
introduces the multiplexer block which allows for two predecessors. This block
uses both the CFI (Section 4.3.1) and SI (Section 4.3.2) mechanisms.

Just like for the execution block, a two-word MAC M is first calculated on the
block’s plaintext instructions insti. To support two predecessors, we propose
to create two entry points by inserting two copies of the first MAC word M1
at the beginning of the block, as shown in Figure 4.9. Each copy of M1 is
used as an entry point into the block, which we call M1e1 and M1e2. Each of
the two entry points are therefore encrypted using their respective call sites
(callAddr1 and callAddr2), as illustrated by Figure 4.10. The two entry points
are encrypted as follows: cM1e1 = Ek1(I1)⊕M1, I1 = {ω ‖ callAddr1 ‖addr(cM1e1)},
and cM1e2 = Ek1(I2) ⊕M1, I2 = {ω ‖ callAddr2 ‖ addr(cM1e2)}. In addition, two
distinct control flow paths exist in the block. The first control flow path enters
the multiplexer block at cM1e1 , skips cM1e2 , and flows to cM2 , followed by all the
encrypted instructions cinsti in the block. The second control flow path enters
the block at cM1e2 , flows to cM2 , followed by all the encrypted instructions cinsti

in the block. To decrypt cM2 , the counter value I3 = {ω ‖ addr(cM1e2) ‖ PC} is
used by the hardware, regardless of which control flow path is used.

If a node in the CFG requires more than two predecessors a tree of multiplexer
blocks can be used. In Figure 4.11 a multiplexer tree allows a node to be called
by four different call sites. The tree structure is used to handle entry points
from call sites, function pointers, and branch targets. Therefore, the multiplexer

76 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

cM1e1

cM1e2

cM2

cinst1

cinst2

· · ·

cinstn

callAddr1

* callAddr2*

Control Flow path 1
Control Flow path 2
∗prevPC = addr(cM1e2)ExitExit

Figure 4.10: The encrypted multiplexer block supports two entry points and
has two unique control flow paths through the block.

Lib

T1

C1 C2

T2

C3 C4

Figure 4.11: A tree of multiplexer nodes is used to increase the number of call
sites (Ci) that can invoke a function.

tree structure needs to have an entry point for each call site that can reach a
function through a branch or a function call.

4.3.5 Support for blocks with single and multiple predecessors

Most non-trivial programs consist of blocks with one entry point as well as
blocks with multiple entry points. In the above text we outlined two different
types of blocks, namely the execution block with a single entry point, and the
multiplexer block which has two entry points. In order to create a meaningful
program using these two blocks, we need to develop mechanisms to make them
work together within the same system.

The software needs a mechanism to indicate to the hardware which type of block
is about to execute. We propose to solve this by using the call site to inform the
hardware of the block type. For an execution block, we select the block’s first

ARCHITECTURE 77

word cM1 as the call site. Therefore all calls, branches, or fall-throughs to cM1

will indicate to the hardware that an execution block should be executed. For a
multiplexer block we propose to use the second and third words, respectively
cM1e2 and cM2 , as the two call sites. Therefore, a branch or a call to cM1e2 or cM2

will indicate to the hardware that a multiplexer block should be executed. A
branch/call to cM1e2 will cause the first control flow path to be followed, and
similarly, a branch/call to cM2 will cause the second control flow path to be
followed.

The size of both block types is chosen to be eight 32-bit words. Therefore, the
execution block consists of 2 MAC words and 6 instructions, while a multiplexer
block consists of 3 MAC words and 5 instructions.

4.3.6 MAC Chaining

This section discusses the security of decrypting parts of a MAC with different
counter-mode operations, and proposes some changes to improve its security.
The discussion here is limited to execution blocks, but the proposed modifications
are also applicable to multiplexer blocks.

When using the architecture presented so far, the first encrypted MAC word
(cM1) is decrypted with a counter value (I1) that depends on the call site
(callAddr), while the second MAC word is decrypted with a counter value
(I2) that does not depend on the call site. Ideally all MAC words should be
decrypted using a counter value that depends on callAddr. However, since the
current architecture only decrypts the first MAC word using a counter value
that depends on callAddr, the security of the system is reduced to 32 bits.

To solve this problem, we propose to use additional cryptographic operations
to chain all the MAC words together, thereby ensuring that the decryption
of the entire MAC relies on callAddr. We propose two different solutions. For
size(M) = b, where b is the block size of the cipher, a single block cipher
operation can be used to perform the chaining, and an ECB-mode encryption
can be used. However, for size(M) > b, multiple cryptographic operations
are necessary, for which we recommend using CBC-mode encryption to chain
the MAC words together. For both cases encrypting the binary works as
follows. First, M is encrypted with either ECB or CBC mode, providing us
with cM1 , and cM2 . Next, cM1 and cM2 are encrypted with counter-mode, i.e.
ccM1

= E(I1)⊕cM1 , with I1 = {ω‖callAddr‖addr(ccM1
)}, and ccM2

= E(I2)⊕cM2 ,
with I2 = {ω ‖ addr(ccM1

) ‖ addr(ccM2
)}. At runtime, the reverse operations are

performed. First, counter-mode decryption will be used: c′M1
= ccM1

⊕ I1, and
c′M2

= ccM2
⊕ I2. Next, the partially decrypted MAC words (c′M1

and c′M1
) will

be de-chained using either ECB-mode or CBC-mode decryption. This approach

78 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

ensures that M′2 can only be decrypted correctly if M′1 was also decrypted
correctly. In order for M1 = M′1, the correct call site (callAddr) is needed. This
solves our problem, as the decryption of the entire MAC now relies on callAddr.

Chaining with ECB-mode: The plaintext MAC words are encrypted using ECB
mode, i.e., {cM1 ‖ cM2} = E(M1 ‖M2). The partially decrypted MAC words are
dechained as follows: {M′1 ‖M′2} = D(c′M1

‖ c′M2
).

Chaining with CBC-mode: The plaintext MAC words are encrypted using CBC
mode, i.e., cM1 = E(M1 ⊕ IV), and cM2 = E(M2 ⊕ cM1), where the IV is an
initialization value. The partially decrypted MAC words are dechained as
follows: M′1 = D(c′M1

)⊕ IV , and M′2 = Dk1(c′M2
)⊕M′1.

4.4 Hardware implementation

This section describes the SOFIA hardware implementation. First, we provide
an overview of the modifications made to the LEON3 processor. Next, we
discuss the choice of block cipher, followed by a description of the hardware
design. Finally, we discuss the schedule employed by the block cipher.

4.4.1 Overview

SOFIA has been implemented on Gaisler’s LEON3 v1.3.7-b4144 soft micropro-
cessor. The processor was configured with the minimum number of peripherals,
branch prediction support, double data rate (DDR) memory support, a small
amount of cache, and a single vector trap table. The hardware design was
evaluated on a Xilinx Virtex-6 XC6VLX240T FPGA.

The majority of the modifications to the processor were done in the seven-
stage integer pipeline (iu3.vhd). The CFI component was integrated with the
LEON3’s cache controller (ico) and the ID pipeline stage. In addition, the
logic to calculate the next program counter was modified in order to allow for
the non-standard control flow through multiplexer blocks. A reset line was
wired from iu3.vhd to the top level design (leon3mp.vhd) in order to halt
execution of instructions when either an integrity violation is detected or a store
instruction is detected on inst1, . . . , inst3. No additional instruction pipeline
stages were added to the processor.

HARDWARE IMPLEMENTATION 79

Table 4.2: Hardware overhead of two block ciphers: RECTANGLE and PRINCE.

Design Cycles Slices LUTs Flip Flops Clock (ns)
RECTANGLE 1 699 2,013 0 22.77
PRINCE 1 348 1,148 0 15.08
RECTANGLE 2 839 2,016 64 11.4
PRINCE 2 376 1,154 64 8

4.4.2 Block cipher

In order to prevent tampered instructions from executing, the MAC computation
needs to complete in only a few cycles. A simple approach is to use a single cycle
block cipher, thereby allowing the decryption of each instruction in only one
cycle. This further allows for rapid MAC verification when using CBC-MAC,
as each decrypted instruction (inst′i) can be processed in a single cycle.

For our initial design we selected the RECTANGLE-80 [114] block cipher, which
has a 64-bit block size, and an 80-bit key. The RECTANGLE-80 block cipher
was unrolled to compute in one cycle [79]. Our initial experiments showed that
placing a single-cycle implementation of RECTANGLE-80 in the instruction
pipeline stages of the processor increased the design’s critical path to a maximum
clock frequency of around 28 MHz. Block ciphers are typically complex, leading
to long critical paths when all of its operations are performed in a single cycle.
Therefore, in order to improve the critical path of the SOFIA core, we decided
to use a dual cycle cipher. In addition, we made a second implementation which
uses a dual cycle version of PRINCE [18], which has a 64-bit block size and a
128-bit key. Table 4.2 compares the hardware overhead of each block cipher
configured for running in either one or two cycles.

4.4.3 Hardware design

A block diagram of the hardware is shown in Figure 4.12. The two stages of
the dual cycle block cipher are indicated by "Cipher part one" and "Cipher
part two", with the pipeline register indicated with r_pipeline. As discussed
in Section 4.3, the block cipher is used in three different modes of operation.
First, to perform the counter-mode decryption the cipher uses the input {ω ‖
NPC ‖ FPC}, where NPC indicates the address that will be fetched in the
next IF slot, and FPC is the address in the current IF slot. The first execution
block serves as the starting point of the program, and can be entered from
anywhere. To this end, I1 = {ω ‖ FPC ‖ 0} is used to decrypt the first

80 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

LEON3

FPC ‖ 0 NPC ‖ FPC

Add nonce

CTR
De-chain CBC-MAC

Cipher part one

r_pipeline

Cipher part two

r_cipher_out r_runtime_mac

nop

Decrypted instructionico.data

r_decrypted_inst

r_precomputed_mac

CFI and SI

Figure 4.12: A hardware block diagram showing the SOFIA core integrated in
the instruction pipeline stages of the LEON3.

HARDWARE IMPLEMENTATION 81

MAC pair in the first execution block. For each counter-mode decryption, the
output of the cipher is stored in the r_cipher_out register. In the following
cycle, encrypted instructions arriving from the cache controller (ico.data) are
decrypted, stored in the r_decrypted_inst register, and sent to the processor’s
decode stage. In the same cycle, encrypted MACs are decrypted, stored in the
r_precomputed_mac register, and a nop is sent to the decode stage.

Second, for the MAC dechaining operation, the counter-mode decrypted MAC
(C′M), which was stored in r_precomputed_mac in the previous slot, is provided
as an input to the cipher. The result of this operation (M′) is finally stored
inside the r_precomputed_mac register.

Third, for the CBC-MAC operation, the first cipher input consists of the
decrypted instruction stored inside r_decrypted_inst, and the result is
stored inside r_runtime_mac. For the second and last CBC-MAC operation,
r_decrypted_inst is XORed with r_runtime_mac and are provided as an input
to the cipher. When the final MAC result has been computed it is immediately
compared with r_precomputed_mac.

The reset logic is generated from two different sources. First, the output of
the cipher is compared to the value stored in r_precomputed_mac during the
first cycle when the lowest six bits of FPC are equal to eight, which corresponds
to the first cycle in which the MAC computation is finished. Second the first
three decrypted instructions (inst1, . . . , inst3) are decoded to detect STORE
instructions. When the reset line is asserted the processor immediately resets,
causing the annulation of all partially executed instructions, as well as the
cancellation of all pending memory accesses.

While experimenting with the design, we found a large delay present in the
FPC and NPC signals generated by the LEON3 together with our own logic
which drives the input signals to the first block cipher stage. To allow the
design to run at a high clock frequency, r_pipeline was not placed in the
middle of the block cipher, but was rather placed after only a couple of rounds
of computation. This leads to the critical path of the design being from
r_pipeline to r_precomputed_mac. We further improved the timing of the
design by partitioning the block cipher to a specific region of the FPGA.

4.4.4 Scheduling the Block Cipher

In our implementation, we use a single block cipher instance to perform the
following three different operations. First, counter-mode decryption is performed
on the encrypted instructions (cinsti) and encrypted MAC (CCM). Second, an
ECB decryption operation is performed on C′M to de-chain the MAC, and finally

82 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

ID Slot Number -2 -1 0 1 2 3 4 5 6 7 8 9

MA Slot Number -5 -4 -3 -2 -1 0 1 2 3 4 5 6

MAC Verify
CTR0

CBC-MAC2
CTR1
CTR2
ECB

CBC-MAC0
CTR3

CBC-MAC1

Figure 4.13: A timing diagram of the block cipher operations to process a single
execution block. CTRn indicates counter-mode decryption, ECB indicates MAC
de-chaining, and CBC-MAC indicates part of the CBC-MAC computation. The
execution block exists in slots zero to seven. Negative slot numbers indicate
the previous block in the instruction pipeline. Gray blocks indicate cipher
operations of the previous or next block.

obtain M′. Third, CBC-MAC is used to calculate the runtime MAC on the
decrypted instructions inst′i . Since our design’s block cipher has 64-bit blocks,
a single operation can process two 32-bit words. This means that a total of
four counter-mode operations are required to decrypt all the words in a block,
one operation is required for MAC de-chaining, and three CBC operations are
required to calculate the MAC.

A timing diagram of the block cipher operations to process a single execution
block is shown in Figure 4.13. Two different instruction pipeline stages of
the LEON3 are indicated in the figure, namely the Instruction Decode (ID)
slot number, and the Memory Access (MA) slot number. In this example, the
execution block starts at slot number zero, and ends at slot number seven. The
figure shows that MAC verification occurs at MA slot number five. Since a dual
cycle block cipher is used, all crypto operations span two slots. In addition, the
block cipher is pipelined and a new input can be fed to the cipher in every slot.

The four counter-mode operations are indicated with CTR0, . . . , CTR3. The
result of each counter-mode operation is used to decrypt an instruction in the
ID stage. When scheduling the counter-mode operations, it is important to
ensure that all instructions can be decrypted before reaching the ID stage, e.g.,
the computation of E(I0) needs to finish before slot zero reaches the ID stage.

The MAC de-chaining operation is indicated by ECB, and finishes in ID slot 2.

SOFTWARE IMPLEMENTATION 83

The CBC-MAC operations, indicated by CBC-MAC0, . . . ,CBC-MAC2, are used
to calculate the MAC over the decrypted instructions. The final MAC operation
(CBC-MAC2) starts in ID slot 7, and finishes in slot 8, at which point the MAC
verification is performed. To meet the requirement that tampered instructions
doesn’t execute, STORE instructions are disallowed in inst1, . . . , inst3.

4.4.5 Limitations

This section discusses the current limitations of our SOFIA implementation.

SOFIA currently does not support interrupts. We don’t believe that this is a
fundamental limitation, and could be supported with additional hardware logic.
One of the challenges we foresee is to ensure that memory blocks are decrypted
correctly, both when servicing an interrupt as well as when returning from an
interrupt. It’s worth mentioning that the problem of providing interrupt-support
for SOFIA is entirely different to the problem addressed in Chapter 2, in which
the goal was to maintain the confidentiality of a protected module’s data while
enabling interrupt support.

One approach to provide interrupt support is to save the internal SOFIA registers
on a protected stack before entering an Interrupt Service Routine (ISR), and
then restoring the internal SOFIA registers when returning from an ISR. In
addition, the hardware should allow the first block of each ISR to be entered
from any predecessor. The simplest approach is to delay executing an ISR until
after processing the last instruction in the currently executing block. This has
the advantage that only a few internal SOFIA registers have to be saved/restored
on the protected stack. However, the disadvantage is that the time required to
service an interrupt will be increased.

4.5 Software Implementation

The SOFIA hardware extension imposes several constraints on software which
should run on the modified processor. In particular, there are constraints
regarding the control flow between blocks as well as the type and position of
instructions within blocks. To be able to compile and run standard C code, we
have designed a software toolchain consisting of several parts, pre-linkage as
well as post-linkage. Because the complete control flow graph must be known
to produce SOFIA-compatible machine code, all source files need to be passed
to the toolchain for compilation. Our toolchain is able to compile C down to an

84 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

ELF binary satisfying all constraints with just the limitations given by SOFIA
itself.

4.5.1 Toolchain Design

Our toolchain consists of several independent tools. We added optimization
passes and changed the SPARC backend within the LLVM compiler infras-
tructure. An unmodified version of clang is used to compile source code to
LLVM intermediate code. The intermediate representations for all source files
are then linked together into a single file using llvm-link which is then passed
to opt. The optimizer applies two custom optimization passes to the program
to ensure a binary control flow graph within each function, i.e., at most two
predecessors are allowed per node, and a binary call graph between functions,
i.e., each function is only allowed to have two direct predecessors, before passing
the result to llc. For llc we changed the SPARC backend in such a way that
it emits SPARC assembler instructions respecting the constraints of SOFIA
blocks instead of plain assembler instructions.

Within the second stage, the binutils provided by the Bare C Compiler from
Aeroflex Gaisler are used to assemble and link the code emitted by llc.
Furthermore, unnecessary sections such as comment or debug sections are
stripped from the resulting binary using objcopy.

For the final stage, the binary is processed by custom standalone tools written
in C++. These tools encrypt the SOFIA blocks within the binary and assist
the programmer by verifying that the final binaries comply with the SOFIA
constraints. An overview of how the independent parts of the toolchain work
together is shown in Figure 4.14. Each step will be described further in the
following sections.

Compiler Stage

The LLVM Compiler Infrastructure is used to transform C to assembly code
as shown in Figure 4.15. The tools used to achieve this are clang, llvm-link,
opt, and llc. Clang is the compiler frontend provided by the LLVM project. It
takes C source code as input and emits LLVM intermediate code. No changes
were necessary for the purpose of this project.

The intermediate code generated by clang is then linked using llvm-link. This
step is needed, because building a binary call graph between functions requires
global knowledge of the program. To ensure that each function is only called
by two other functions, each function needs access to its callers.

SOFTWARE IMPLEMENTATION 85

Figure 4.14: Overview of how the independent parts of the SOFIA toolchain
work together.

Two optimization passes were written to ensure a binary control flow graph,
i.e., each node in the graph is only allowed to have at most two predecessors.
Each pass implemented the same algorithm (see Section 4.5.2) but operates at
different scopes, namely intra- and inter-function. At this point, a single LLVM
intermediate code file is produced. The last step of the compiler stage uses llc
to compile the intermediate code to assembly code.

As SOFIA is currently not able to handle traps; since register window overflows
and underflows would cause traps, the SPARC register window was disabled.
To this end, we implemented the flat calling convention as the first backend
patch for LLVM, which has the same effect as the -mflat option passed to
older GCC versions. This leads to an increase of approximately 10% in both

86 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

Figure 4.15: Compiler Stage of the toolchain transforming C code to SPARC
assembler code.

code size and execution time [3].

The second patch for the SPARC backend was written to satisfy the requirements
imposed by SOFIA. It consists of two LLVM machine function passes. One
transforms the program into block form and marks the beginning of each block.
The other ensures that multiplexer blocks can only be reached by explicit
branching instructions, but never by falling through.

Assembler and Linker Stage

Aeroflex Gaisler’s Bare C Cross Compiler is used to assemble the output of
the compiler stage and link the resulting object files to a single ELF binary.
The assembly file is passed to as, producing an object file. This object file
is then stripped of its comment, note.GNU-stack and eh_frame sections using
objcopy. The resulting object file is linked with the run-time environment
using ld.

The run-time environment is implemented partly in C and assembler. The low-
level assembler parts are responsible for clearing the BSS segment, providing
access to the debug console, and passing control to the main routine. We
wrote a small tool which transforms assembler code to SOFIA block form
such that the startup code does not need to be transformed manually. This
is necessary, because LLVM provides no frontend for SPARC assembler and
thus, our optimization passes cannot be used for low-level assembler routines.

SOFTWARE IMPLEMENTATION 87

The tool is written in C++ and provides similar functionality compared to the
optimization passes for LLVM. In particular, a binary control flow graph, block
form, and header markers are applied to human readable assembly code. The
final result, which is still readable assembly code, is then assembled and linked
together with the actual program code.

After this stage, the binary is in block form with marked headers and has
a binary control flow graph. All non-cryptographic constraints are satisfied,
except the exact offsets for jumps to multiplexer blocks. The adjustment of
these offsets, MAC calculation, and encryption of the actual blocks is done after
linking, because then all locations are resolved and the offsets necessary for
encryption can be obtained.

Post-linkage Stage

The post-linkage stage has been implemented as a number of standalone C++
applications as shown in Figure 4.16. Those applications are responsible for
encrypting the binary, applying the jump offsets to multiplexer blocks, and
providing verification routines.

The linked ELF binary from the assembler stage is first passed to find_blocks
which finds all possible control flow paths and identifies reachable blocks. The
list of reachable blocks is later needed by the encryption tool, as the cipher is
parametrized with the current and previous program counter. The control flow
graph is generated statically by examining the jump targets at the end of each
block.

Secondly, with mark_blocks, jumps to multiplexer blocks are adjusted to jump
to the correct instruction, i.e., an offset is added. Furthermore, blocks are
marked as execution or multiplexer block and all necessary information for
encryption is prepared and added to the header of each block.

Finally, the encryption tool encrypt encrypts all blocks, with either
RECTANGLE-80 or PRINCE, and replaces the block headers with MACs.
It outputs the final encrypted ELF binary, but also supports the output of a
plain version which contains all instructions in clear and places nops instead of
the MAC words within the header. The plain version runs on an unmodified
LEON3 processor to simplify debugging.

In addition to the plain version, verification tools are provided that statically
check the constraints imposed by SOFIA. The non-cryptographic constraints
are verified declaratively in several python scripts, while the correctness of the
encrypted data and MAC words are verified by a simple simulator implemented
in C++.

88 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

Figure 4.16: The post-linkage part of the toolchain is responsible for identifying
blocks, adjusting offsets, and finally encrypting each reachable block.

4.5.2 Toolchain Implementation

The different stages of our toolchain produce separate result files in such a way
that the following stage uses the output file of the previous stage as input. To
simplify the overall compilation process, CMake is used to connect the tools
and resolve dependencies. In this section we will describe some implementation
aspects of our software toolchain in more detail. The constraints for SOFIA are
satisfied at different levels. The binary control flow graph, binary call graph,
and a single return per function are satisfied with the help of optimization
passes, while the fixed block length, single branch instruction per block, position
of branching instructions, the position of store instructions are satisfied by
backend patches. All remaining constraints, such as encryption and MACs are
then satisfied during the post-linkage stage.

Optimization Passes

Optimization passes in LLVM are shared objects that are dynamically loaded and
executed by opt. They exclusively work on LLVM intermediate representation
and can perform any transformations that does not depend on a particular
target machine. Using optimization passes has the advantage that the compiler

SOFTWARE IMPLEMENTATION 89

Figure 4.17: Example of the iterative transformation ensuring a binary control
flow graph. Proxy nodes are added until every node has at most two predecessors.

does not need to be patched and that they can easily be loaded on demand by
the optimizer. Furthermore, optimization passes are the best place to implement
control flow-related transformations, as LLVM provides an interface to access
the different nodes within the control flow graph, and it is possible to rearrange
or replace nodes at this level. We used two optimization passes to implement
the transformation ensuring a binary control flow graph, i.e., at most two
predecessors are allowed per node, within functions and between functions,
respectively. This transformation is implemented using an iterative algorithm
which operates locally on a node inside a tree and creates proxies to bundle
predecessors, until there are at most two predecessors left.

An example run of our algorithm is shown in Figure 4.17. The current node
is shown in blue and it has four predecessors before the transformation (I).
In the first iteration (II) the first two predecessors, i.e. 1 and 2, are removed
and a proxy node (orange) is created. The current node now still has three
predecessors, thus in the second iteration (III) the newly created proxy node
and the third original predecessor 3 are chosen and another final proxy node is
created for those nodes.

Currently, the choice of the nodes to be bundled in the proxy is arbitrary, as
long as they are distinct. However, this choice determines the shape of the
resulting tree and provides future optimization opportunities regarding the
overall run-time performance.

Backend Changes

The LLVM intermediate representation offers a convenient way of describing
transformations on basic blocks and functions. However, it is agnostic to the
target processor’s instruction set and can therefore not be used to satisfy low-level
constraints such as the exact position or type of a single assembler instruction.

90 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

To gain control of architecture-specific instructions, some constraints were
implemented in the SPARC backend of LLVM. The backend has access to
the SPARC instruction set and offers a lower level view. LLVM intermediate
functions are transformed to machine functions and intermediate basic blocks
are converted to machine basic blocks. However, the drawback of implementing
backend changes is that they cannot be implemented as separate passes, but
instead the compiler itself needs to be patched.

Two machine function passes were written to satisfy the low-level instruction
constrains of SOFIA. First, the multiplexer fall-through pass ensures that no
multiplexer block is reached without an explicit jump. Next, the basic block
inflator lays out the code in SOFIA block form.

The transformation carried out by the basic block inflator is strictly local to basic
blocks. It takes a sequence of SPARC instructions and inserts nops between
them until the sequence fits the desired form. The algorithm used to reach this
form consists of two phases. In the first phase, all instructions are scanned and
an abstract record of blocks is built. This record, named SofiaBlockSequence,
consists of a sequence of structures called SofiaBlocks. Each SofiaBlock holds a
part of the input instruction sequence, the block type (execution or multiplexer),
and the padding required between the instructions.

The algorithm walks through the sequence of instructions and tries to insert
them into the current SofiaBlock. The insert operation takes into account the
padding required to move the instruction forward and if it has to be at or
beyond a specific position inside a block. All instructions that alter control flow,
like calls, rets and branches, must be moved to position 7. The instructions
that write to memory are moved beyond position 4. If the instruction cannot be
placed in the current block, the block is inserted into the SofiaBlockSequence
and a new block is created. This may happen either because the block is
completely filled or because the required position is already occupied. In any
case, each block which is inserted into the SofiaBlockSequence is padded to a
fixed size of eight instructions.

This first phase is complete when all instructions are placed in the
SofiaBlockSequence. At this point all headers and the neccessary padding
before and after instructions are known. The second phase walks over all
instructions again and inserts padding and header markers into the actual
instruction sequence. The header markers are unimp instructions and are
always the first instruction of a block. Execution blocks are marked with unimp
0x50F1A, while multiplexer blocks are marked with unimp 0x50F1B. Padding is
realized by inserting nop instructions. An example of how the basic block inflator
works is shown in Figure 4.18. It is assumed that the first store instruction is
reachable from two blocks, i.e., the first SOFIA block is a multiplexer block.

SOFTWARE IMPLEMENTATION 91

Figure 4.18: Example of how the SOFIA basic block inflator transforms a
sequence of assembler instructions to satisfy all low-level constraints. SPARC
uses delayed branching, which means that the instruction after a branch is
executed before the branch takes effect. Therefore, the ret instruction is placed
on the second-to-last element in the memory block.

Cryptographic Operations

The last stage of the toolchain is implemented as several standalone tools written
in C++. The tools take the compiled and linked binary emitted by Gaisler’s

92 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

Bare C Compiler as input. This binary is then encrypted as required by the
current implementation of the SOFIA processor. The user can choose between
the ciphers RECTANGLE-80 and PRINCE to generate the MAC and encrypt
the block. In addition to satisfying the cryptographic constraints, jumps to
multiplexer blocks are adjusted and the markers introduced by our backend
machine passes are replaced by the correct MAC words. This step has been
postponed until after linking, because the offset calculation requires absolute
jump targets.

4.5.3 Limitations

This section discusses the limitations of the current implementation of the
SOFIA toolchain.

SOFIA relies on a precise CFG to perform the necessary software transformations.
Polymorphism and calculated jumps are currently not supported because they
make it difficult to build a precise CFG. The problem of building a CFG from
calculated jumps is often approached by over-approximation [70], which leads
to losing some security guarantees since an attacker might take paths which
do not exist within the real program. Thus, if we would have tool support
for creating a precise CFG which allows the jump targets of each calculated
jump to be known, it would be possible to support both calculated jumps and
polymorphism.

SPARC register windows are currently not supported because they trigger a
window overflow or underflow trap when the current window pointer coincides
with an invalid window. Therefore, in order to be able to support register
windows, the SOFIA hardware needs to be updated to support interrupts (see
Section 4.4.5).

In our evaluation we only considered baremetal applications. However, this
is not a fundamental limitation. To provide microkernel support would be
challenging, since this kernel type consists of several separate processes, with
each running in its own address space. SOFIA requires its software to be inside
a single address space, since a single transformation needs to be performed
for each process’s software. This is especially problematic for shared libraries,
which have a unique address space inside each used process. This can be solved
(in part) by using a monolithic kernel, which uses a single large process with
one address space. User-mode applications can be supported by disabling
shared libraries. To enable task scheduling, interrupt support can be added
(see Section 4.4.5).

Our toolchain currently does not support software-based floating point

EVALUATION 93

operations. This can be fixed by implementing optimization passes which replace
floating point operations by calls to library functions and ensure compatibility
to existing optimization passes.

The current toolchain does not support any compiler optimizations (only -O0 is
supported). A major problem is that some optimization passes on the LLVM
intermediate representation leads to the binary control flow imposed by the
SOFIA-specific LLVM passes to become undone.

4.6 Evaluation

In this section we evaluate the security of the architecture, followed by an
evaluation of hardware and performance overheads of our implementation.

4.6.1 Security Evaluation

Software Integrity (SI)

The SI property is considered equivalent to forging a MAC. An attack is
successful if an adversary alters an instruction and MAC pair so that the
integrity verification succeeds.

The bit length of a MAC is directly related to the number of trials that need
to be performed before a forged message and MAC pair is accepted. For an
n-bit MAC, an adversary has to perform an average of 2n−1 random online
MAC verifications before this strategy will succeed [59]. Consider that a 64-bit
MAC is used, and that an attacker requires at least 8 cycles to verify a forging
attempt of a single execution block on the target platform. Then, a successful
forgery will require at least 33,001 years to succeed on a 70.6 MHz SOFIA core.

Control Flow Integrity (CFI)

The CFI property is also considered equivalent to forging a MAC. An attack is
successful if an adversary deviates control flow from the valid CFG so that the
integrity verification succeeds.

An attack on the control flow requires two steps. First, the adversary has to
divert control flow (e.g., through ROP), from one memory block to another.
Second, the adversary has to forge the MAC on the decrypted instructions of
the second memory block. Executing the first block will require 8 cycles, while

94 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

the MAC verification of the tampered block will require an additional 8 cycles,
leading to a minimum of 16 cycles per attempt. Therefore, an online brute
force attack on a 64-bit MAC will require at least 66,002 years on a 70.6 MHz
SOFIA core.

Tampered code protection

The tampered code protection provided by SOFIA relies on both the CFI and
SI properties. At run-time, any code tampering will be detected when executing
an execution/multiplexer block. Not only will the tampering be detected, but
the detection will happen before write operations occur. This allows the system
to ensure that a tampered block, or a block resuling from tampered control flow,
will not have a chance to execute a bad instruction that can lead to a tampered
write operation. It is especially important to protect write operations in the
context of cyber physical systems where physical components interface with the
processor via a port or memory mapped interface.

Code confidentiality

The CFI mechanism decrypts instructions at run-time using a key that is unique
to each device. This key is only known by the device manufacturer and by the
software provider. Since the software is encrypted for a single device, it can
therefore only be decrypted by that device. This prevents an attacker from
copying the encrypted software and running it on another device. It is also
not possible for an attacker to extract plaintext instructions from a device, as
the software is stored encrypted in the cache. By ensuring that code remains
confidential, it prevents the reverse engineering of the software to find potential
exploits or to obtain a vendor’s software IP.

Fault attack protection

In SOFIA, instructions and MAC tags are stored encrypted in cache and main
memory, and are only decrypted before they are requested by the IF pipeline
stage. This allows SOFIA to detect tampered instructions/MAC tags due to
fault attacks on the main memory, the instruction cache, or due to control flow
glitches, as explained below.

A well-known fault-based attack on control flow is to glitch the external clock
line [15]. This typically involves temporarily reducing the clock period, thereby
causing the processor to skip instruction(s). In our implementation the block

EVALUATION 95

Table 4.3: The hardware overhead of SOFIA.

Design Slices LUTs Flip Flops Clock (ns)
LEON3 6,052 14,222 11,135 92.3 MHz
SOFIA w/ RECTANGLE 7,208 15,909 11,714 60 MHz
SOFIA w/ PRINCE 6,728 15,180 11,602 70.6 MHz

cipher is in the critical path of the processor. Therefore, when the clock period
is reduced, the block cipher will be the first component to fail, as its path is the
longest in the entire design, meaning that it requires the most amount of time
in each clock cycle to perform a computation. In our implementation of SOFIA
the block cipher is utilized in all pipeline slots. This means that when the clock
period is reduced by a sufficiently large amount (i.e. by glitching the clock), the
block cipher will not have had enough time to finish the computation. When
the clock is glitched for as little as one clock cycle, the cipher’s operation will be
incorrect, leading to a MAC failure. The reason for this is that the MAC can
only be calculated if all the cipher operations of a block are computed correctly.

Another well-known fault-attack mechanism is to glitch the power line of a
processor [13]. If the external power supply voltage deviates by more than 10%
it could cause problems with the functionality of the IC. This could lead to
wrong computation result of the processor. SOFIA cannot make any guarantees
about the correct execution of the instructions inside the instruction pipeline.
However, since the block cipher is in the critical path of the processor, it is
highly likely to be the first computation to fail due to a power glitch. If a block
cipher operation fails to compute, a MAC failure occurs, and the processor is
reset.

4.6.2 Hardware Evaluation

Table 4.3 shows the hardware overhead of the two different SOFIA implemen-
tations, with each respectively using RECTANGLE or PRINCE, compared to
a LEON3 core. We found that the LUTs increased by 12.9%, while the clock
speed reduced by 23.2% when compared to an unmodified LEON3 core. The
clock speed reduction is due to the block cipher being in the critical path of the
design.

96 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

4.6.3 Performance Evaluation

To evaluate the performance of our SOFIA implementations we selected the
following software benchmarks applicable to small embedded processors:

• MiBench [58]:

– ADPCM: This Adaptive Differential Pulse Code Manipulation (AD-
PCM) implementation converts an audio file of 16-bit PCM samples
into 4-bit samples, thereby yielding a 4× compression rate.

– qsort_small: The quicksort algorithm is used to sort an array of
strings into ascending order.

– patricia: Practical Algorithm to Retrieve Information Coded as
Alphanumeric (Patricia) is an algorithm used for routing table
lookups. The input data consists of a list of IP traffic from a web
server.

– bitcount: Performs bit manipulation by counting the bits in an
array of integers using five different methods.

– crc32: A Cyclic Redundancy Check (CRC) is an operation that is
commonly used to detect transmission errors.

• EEMBC CoreMark [47]. This benchmark performs list processing (find
and sort), matrix manipulation, state machine, and CRC computation.

• AES: This benchmark performs ECB-mode encryptions using AES-128.

All benchmarks were executed baremetal on three different cores: a LEON3 core
clocked at 92.3 MHz, a RECTANGLE-80-based SOFIA core clocked at 60 MHz,
and a PRINCE-based SOFIA core clocked at 70.6 MHz. The LEON3 code was
compiled with LLVM, while SOFIA code was compile with the SOFIA toolchain,
with both using the compiler flags: -O0 -target sparc -m32 -S -emit-llvm
-mcpu=v8. Figure 4.19 shows the cycle overhead of executing the benchmarks on
the two SOFIA cores compared to the LEON3 processor. For the RECTANGLE-
80 implementation we measured an average cycle overhead of 149%, with
AES having the smallest overhead of 36%, and CoreMark having the largest
overhead of 438%. For the PRINCE-based SOFIA implementation we measured
an average cycle overhead of 141%, with AES having the smallest overhead
of 44%, and CoreMark having the largest overhead of 373%. Figure 4.20
shows the execution time overhead of executing the benchmarks on the two
SOFIA cores compared to executing the benchmarks on the stock LEON3
processor. For the RECTANGLE-80 based SOFIA implementation we measured
an average total execution time overhead of 106%, with crc32 having the

EVALUATION 97

AD
PC

M

AE
S

bi
tc
ou
nt

co
re
m
ar
k

CR
C3

2
pa
tri
cia

qs
or
t_
sm

all

0

200

400

C
yc
le

ov
er
he
ad

(%
)

SOFIA w/ RECTANGLE-80
SOFIA w/ PRINCE

Figure 4.19: A comparison of the cycle overhead of benchmarks running on a
SOFIA core compared to a stock LEON3 processor clocked at 92.3 MHz.

Table 4.4: A comparison of the code size of the benchmarks compiled for both
a SOFIA core and for a stock LEON3 processor.

Benchmark LEON3 code SOFIA code Overhead
(bytes) (bytes) (%)

ADPCM 4,080 12,480 205
AES 7,184 38,624 437
Bitcount 12,272 25,834 110
CoreMark 22,576 68,640 204
CRC32 8,736 23,488 169
Patricia 8,496 23,136 172
qsort_small 10,896 23,420 123

smallest overhead of 0.53%, and CoreMark having the largest overhead of 726%.
For the PRINCE based SOFIA implementation we measured an average total
execution time overhead of 137%, with crc32 having the smallest overhead of
30%, and CoreMark having the largest overhead of 516%. A comparison of the
code size is shown in Table 4.4, and we found that the code size increases by
an average of 203%.

98 SOFIA: SOFTWARE AND CONTROL FLOW INTEGRITY ARCHITECTURE

AD
PC

M

AE
S

bi
tc
ou
nt

co
re
m
ar
k

CR
C3

2
pa
tri
cia

qs
or
t_
sm

all

0

200

400

600

To
ta
le

xe
cu

tio
n
tim

e
ov
er
he

ad
(%

) SOFIA w/ RECTANGLE-80
SOFIA w/ PRINCE

Figure 4.20: A comparison of the total execution time overhead of benchmarks
running on a SOFIA core compared to a stock LEON3 processor clocked at
92.3 MHz.

4.6.4 Practical feasibility in time constrained cyber physical
systems

SOFIA’s performance evaluation, reported in Section 4.6.3, show significant
overhead in terms of memory, clock delay, and execution time. Cyber physical
systems typically make use of real-time programs to guarantee a timely response
to critical events. Longer execution times increase the difficulty of meeting
deadlines. This raises concerns about the practicality of using SOFIA in a time-
constrained cyber physical system application. First, the clock delay overhead
increases execution time for any program running on a SOFIA core. However,
we feel that a clock speed reduction of only 23.2% does not significantly limit
the practical feasibility of using SOFIA in a time constrained cyber physical
system application.

Second, the memory overhead further increases execution time, since more reads
are required from main memory. To mitigate this the processor’s cache size can
be increased.

Third, the increase in executed instructions, such as nops and jumps, increase
the overall execution time. However, the effect of nops are minimal because
they execute in one cycle, i.e., they do not cause pipeline stalls due to data

CONCLUSION 99

dependencies or branch mispredictions. Consequently, the increase in executed
instructions is dominated by multiplexer blocks. Large multiplexer trees are
especially prevalent at the entry points for frequently used functions. These
large trees contain long paths requiring several jumps to reach the intended
callee. It is therefore desirable to keep the number of multiplexer blocks inside
critical software to a minimum. One approach to achieve this is to write code
that ensures that critical functions are called by the minimum number of callers.
In addition, the software inside a critical function should contain the minimum
number of jumps and calls. Another approach is to modify the toolchain to
force it to assign short paths for time-critical functions. Yet another approach
would be to duplicate frequently used critical functions.

4.7 Conclusion

In this chapter, we presented SOFIA, a novel architecture which enforces CFI,
SI, code confidentiality, and reverse engineering protection. SOFIA is the
first known architecture to enforce CFI through instruction-set randomization,
where the instructions are decrypted at runtime with control flow dependent
information. The architecture’s security policies are enforced in hardware
through modifications to the processor’s instruction pipeline. To evaluate the
design, we integrated SOFIA with a LEON3 core, and made an FPGA-based
hardware implementation. The SOFIA core increased the hardware area of the
LEON3 core by 12.9%, and reduced the maximum clock frequency by 23.2%. In
addition, a software toolchain was developed to transform software written in C
to conform to the constraints imposed by our architecture. We compiled several
software benchmarks with our toolchain to evaluate the overhead imposed by
the SOFIA architecture. Altogether SOFIA imposes an average cycle overhead
of 141%, and an average total execution time overhead of 106% when compared
to a stock LEON3 core.

Chapter 5

SCM: Secure Code Memory
Architecture

de Clercq, R., de Keulenaer, R., Maene, P., Preneel, B., De Sutter,
B., and Verbauwhede, I. SCM: Secure Code Memory Architecture.
In Proceedings of the ACM on Asia Conference on Computer and
Communications Security (2017), ASIACCS’17, ACM, pp. 771–776
Contribution: Responsible for hardware designs. Some concepts are the
result of brainstorming sessions with co-authors.

Content Sources

In the previous chapter, we introduced SOFIA, while this chapter introduces
SCM, a lightweight alternative to SOFIA with reduced functionality. The
differences between SOFIA and SCM are as follows. First, SOFIA enforces both
CFI and SI, while SCM only enforces SI. This means that both architectures
can prevent the execution of injected/tampered code, but only SOFIA can
prevent attacks on control flow. Second, SOFIA requires integration with the
processor, while SCM is implemented as an IP core. Third, SCM requires only
a simple code transformation, while SOFIA imposes a more complicated set of
constraints on the software.

101

102 SCM: SECURE CODE MEMORY ARCHITECTURE

5.1 Introduction

Ensuring that attackers cannot perform code injection or code tampering is an
important first line of defence against runtime attacks. This is especially
important when relying on software to perform security-critical or safety-
critical operations. Most modern processor provide page-based protection
mechanisms, such as W⊕X, which ensure that code cannot be modified from
user space. However, page-based protection can be disabled with a syscall to
VirtualProtect()/mprotect, which allows usermode applications to change
page permissions. In addition, page-based protection cannot prevent fault
attacks on the contents of untrusted off-chip memory. Software Integrity (SI)
is an alternative to W⊕X, and works by verifying the integrity of software at
runtime to ensure that the code has not been tampered with. This can lead to
a smaller TCB, since no OS feature needs to be trusted (see Section 3.3.2). SI
is also a security feature relied upon by some CFI architectures (see Chapter 3
and Chapter 4) to protect code memory against tampering.

In this chapter, we propose a new Software Integrity (SI) architecture called
SCM. It is realized as an IP core that verifies the integrity of code as it is
fetched from external memory into the caches of a processor on an SoC. This
IP core communicates via standard bus interfaces, which means it can be added
to existing SoC designs without requiring any changes to the used IP cores,
memories, or interfaces; and without requiring any changes to existing SoC
design flows. In other words, none of the already used components needs
to feature any security support to provide SI. Moreover, our design requires
only minor adaptations to the software build process and offers flexibility in
supporting a range of reaction mechanisms. This includes the guarantee that
not a single tampered instruction can be executed. Furthermore, our solution
fits into many schemes to sign and distribute software. Finally, as we will
demonstrate, the performance overhead of SCM is limited.

Many existing works [23,42,44,45,84,99,112,113] provide SI guarantees. However,
most of these works require modification to the processor, memory hierarchy, or
existing IP cores. Modifying existing IP is difficult, as it requires modification
by the IP vendor (which could be expensive), or requires the IP vendor to release
it’s hardware source files to the client (which could be even more expensive).
SCM provides integrity guarantees without making any modification to the
existing IP on a SoC. The only requirement is that our IP core needs to be
connected to the bus of a SoC, which is a relatively simple task. In this regard,
our approach has some similarities with SecBus [19]. However, SCM only uses
standard bus interfaces, while SecBus interfaces with a memory controller as
well as the bus. Many proposed solutions [23,44,45,84,99,112,113], including
the Memory Encryption Engine [55] of Intel SGX, rely on tree structures [100]

PROBLEM STATEMENT 103

to protect write operations to memory. This is a much more heavy-weight
approach, since an integrity tree requires additional storage, additional memory
accesses, and additional integrity checks for each transaction. All of these
require extra area, which is not appropriate for small embedded platforms.

The remainder of this chapter is structured as follows. First, we provide a
problem statement, which includes a threat model and the system goals. Next,
we present the architecture of SCM, followed, by a discussion of our prototype
implementation. Afterwards, we evaluate our prototype implementation in
terms of the hardware overhead, the system performance, and the security,
followed by a conclusion.

5.2 Problem Statement

5.2.1 Threat Model

The goal of the attacker is to execute tampered code on the system. We focus
on static, native code, and exclude just-in-time compiled code or self-modifying
code. On many instruction set architectures, instructions alone do not express
the semantics of a program efficiently. Instead, instructions are complemented
by read-only data. In the remainder of the chapter, we use the term “code” as
shorthand for instructions and read-only data.

We consider attackers with three powerful capabilities. First, they can tamper
with code after it has been built and before it is installed on a device. Second,
they are in control of all addressable off-chip memory. Third, they can perform
fault attacks on off-chip memory. This includes physical fault attacks, and
software-based fault attacks, such as Rowhammer [69,89].

We use the Dolev-Yao [41] model, which assumes attackers can not break crypto
primitives, but can perform protocol-level attacks. We furthermore assume
the attacker controls the SoC’s digital inputs, such as the General-Purpose
Input/Output, off-chip memory, and networking signals. While we assume the
attacker can perform physical attacks, such as fault attacks and side-channel
analysis, on off-chip memory, we assume he cannot perform physical attacks on
the SoC itself.

5.2.2 System Goal

The goal of SCM is to verify the integrity of code stored in off-chip memory.
One might argue that mutable data needs to be protected as well, seeing as the

104 SCM: SECURE CODE MEMORY ARCHITECTURE

initial values of global, statically allocated and initialized arrays also part of the
program semantics. Protecting mutable memory is out of the scope. However, it
is simple to let compilers generate code such that all static initialization values
are stored in read-only data sections, not in mutable data sections.

To enable fluent integration into a SoC, SCM is implemented as a standalone
IP core that connects to the bus. By doing so, SCM provides the SoC with
security guarantees without requiring modification of other IP cores in the SoC.
Furthermore, we aim for minimal disruption of the traditional SoC design cycle,
by only building on pre-existing interfaces and composition schemes. This is
important, as it enables rapid integration of SCM into SoCs, and improves
prototyping, development, and production costs.

SCM should provide protection from the following types of attacks (1) spoofing:
bits are illegitimately modified, (2) splicing: bits are illegitimately relocated,
and (3) replay: fresh bits (e.g., from an updated program version) are partially
substituted with stale bits (e.g., from an outdated program version or another
user’s program version). SCM works on the principle of verifying the integrity
of bits that have been fetched from memory, and more specifically from the
code sections and the read-only data sections of binaries as they have been
allocated in memory.

In the remainder of this chapter we will use the term memory to refer to any
off-chip memory.

5.3 SCM Design

5.3.1 Conceptual Overview

Modern processors issue memory requests to the memory hierarchy to fetch
code to be executed. To achieve the system goal, SCM verifies the integrity
of code bytes that have been read from an external memory before they are
processed by the processor.

The flow of instructions through the system is shown in Figure 5.1. Using SCM,
memory can be requested from either the protected SCM memory region, or
from untrusted memory. Unprotected code is requested directly from untrusted
memory, where it will be stored in caches before being used by the processor.
The unprotected parts include the mutable memory regions, but can also include
parts of a program that do not require protection. The flexibility to select
parts of the software to be protected eases the integration of our solution with
existing software.

SCM DESIGN 105

SCM

CacheProcessor Memory
Controller

Untrusted
Memory

Protected access

Unprotected access

Figure 5.1: Flow of code and data through system.

SoC

Bus

Processor SCM Memory
Controller

Untrusted
Memory

interrupt

Figure 5.2: Architectural overview of the system

To access and execute a protected program, a group of instructions and integrity
information are first fetched from the untrusted memory by the memory
controller. Next, those bytes are sent to SCM, which verifies their integrity.
If the integrity verification succeeds, the group of bytes is passed on to the
caches and the processor. If an integrity check fails, SCM will not forward the
tampered instructions to the processor. In addition, the processor is notified by
means of an interrupt that a security exception has occurred. The processor
can then take appropriate action, depending on the specific use-case for the
hardware containing SCM.

5.3.2 Architecture

The architecture shown in Figure 5.2 consists of a SoC and untrusted off-chip
memory. The SoC consists of a number of different IP cores, including SCM,
a memory controller, and a processor that includes a number of caches. Each
of these IP cores are able to communicate via the SoC’s main bus. The
memory controller acts as an interface between the SoC and the untrusted
off-chip memory. SCM is responsible for delivering integrity checked code to
the processor.

106 SCM: SECURE CODE MEMORY ARCHITECTURE

SCM Memory

SCM has a read-only memory region associated with it, which we call SCM
memory. Each address in the SCM memory region maps to a physical memory
address, as described in more detail below. The physical address can be assigned
to any untrusted memory, including ROM, DRAM or flash memory. A bus
transaction is the sequence of bus actions that are needed to perform a read
or write. Whenever a bus transaction requests a read from the SCM memory
region, SCM needs to respond by delivering integrity-verified bytes. This non-
trivial procedure requires the following steps. First, upon receiving the read
request from the processor, SCM needs to fetch the bytes from the matching
physical memory address by placing a read request on the bus. Second, after
the requested bytes have been received from the bus, an integrity verification
is performed. Third, if the integrity check succeeds, the requested bytes are
delivered to the bus. If the integrity verification fails, dummy values are delivered
to the bus instead.

Since integrity computations can introduce a large overhead, the integrity
checking algorithm and security parameters need to be chosen carefully to
ensure a low overhead.

With the addition of the SCM memory region, we effectively split the address
range of a program’s main memory into a secured and an unsecured region.

Two port interface

SCM needs to perform two simultaneous bus transactions. One transaction is
needed for the processor’s request to SCM memory, while the second is needed
to fetch the code fragment and integrity information from unprotected physical
memory. We propose to solve this by using two ports to interface with the bus.
Components connected to a bus follow the master/slave communication model.
Therefore, we use a slave port to receive read transactions in the SCM memory
region, and a master port to perform read transactions from physical memory.

Integrity verification

We propose to use a Message Authentication Code (MAC) algorithm to verify
the integrity and authenticity of code. An m-word MAC is precomputed on
each group of n code words. The MACs are stored interleaved with code in
untrusted memory. We use the term memory block to refer to the group of

SCM DESIGN 107

n code words and m precomputed MAC words. At run time, each memory
block’s integrity is verified before delivering its code words to the bus.

The MAC algorithm uses a secret key that is deeply embedded in the hardware
and is only accessible by the MAC algorithm. In addition, the key is only known
by the software provider. Since the MAC key is not known to the attacker, he
cannot forge a MAC without being detected.

The system needs to protect against spoofing, splicing, and replay attacks
(see Section 5.2.2). Computing a MAC over the code words (MAC(inst1 ‖
· · · ‖ instn)), leaves the system vulnerable to a splicing attack, as relocated
memory blocks would not be detected. This issue can be exploited by an
attacker by rearranging existing memory blocks in order to craft malicious
code that cannot be detected by SCM. To prevent this attack, we could use
MAC(addr ‖ inst1 ‖ · · · ‖ instn), where addr is the physical address of the
memory block. This allows the system to detect any changes to the location
of a memory block. However, a replay attack is still possible. Consider the
scenario where multiple different programs were transformed under the same
key. An attacker can then copy a memory block from one program at addr1 to
another program at addr1 without detection. To solve this, we propose to use
MAC(addr ‖ ω ‖ inst1 ‖ · · · ‖ instn), where a nonce ω is unique across different
programs and different program versions.

Memory map

Each group of n words in the SCM memory region maps to n + m words in
physical memory, as shown in Figure 5.3. When a group of instructions is
fetched from SCM, the m MAC words are stripped out and only the requested
instructions are sent to the processor. This has the advantage that the processor
works with a continuous address range that does not contain MAC words.

As shown in Figure 5.1, code typically reaches the processor via caches. To
exploit this, parameter n is chosen to match the cache line size. This ensures
that each cache line read from SCM memory can be handled by verifying and
fetching exactly one memory block.

Software support

The software transformation process is done as follows. First, a customized
linker script forces immutable sections in protected segments (in the SCM
memory region), while mutable sections are placed in unprotected segments (in

108 SCM: SECURE CODE MEMORY ARCHITECTURE

SCM memory Untrusted memory

1 inst1
· · · · · ·
n instn

n + 1 inst1
· · · · · ·
2n instn

m + 1 inst1
· · · · · ·

m + n instn

m MACm

· · · · · ·
1 MAC1

2m + n + 1 inst1
· · · · · ·

2m + 2n instn

2m + n MACm

· · · · · ·
m + n + 1 MAC1

Figure 5.3: Memory mapping between the SCM memory range and untrusted
memory.

unprotected memory). This ensures that the program can execute from the
SCM memory region.

Afterwards, the MAC precomputation is done. First, the protected segments of
the compiled binary is disassembled. Next, a script calculates a MAC on each
group of n opcodes. The MAC is stored interleaved with the opcodes. Finally,
the transformed segments as well as the unprotected segments are compiled
with a linker script that places both segments in unprotected memory.

Finally, the binary is copied to untrusted memory, and is executed from the
SCM memory region.

Integrity failures

If an integrity check fails, SCM needs to initiate an appropriate response to
recover from the exception. What is appropriate depends on the use case, and
hence will differ for each piece of software. While the development of a recovery
mechanism for a specific use case is out of scope for this work, several recovery
options are supported by SCM.

One approach is to reset the processor upon detection of an integrity exception.
However, this cannot be tolerated by some systems, including safety-critical and
real-time systems. Another approach is to reload and restart the program. A
more complex option is to increment a counter every time a program is restarted

PROTOTYPE IMPLEMENTATION 109

due to an integrity failure, and then rebooting when a threshold value is reached.
Some forms of graceful degradation might be useful, or sending notification to
online monitoring services.

To provide the necessary flexibility, i.e., to support many forms of reactions in
a programmable manner, we designed a generic hardware/software mechanism
for SCM to invoke recovery functionality. This mechanism relies on non-
maskable interrupts that SCM generates upon integrity failures. When the
interrupt occurs, the processor stops executing the current instruction, and
transfers control to an interrupt handler. In this handler, any reaction can be
programmed, including reloading a program from flash memory to restart a
task from a consistent state, or rebooting the processor.

The flexibility of interrupt-based integrity failure handling introduces a potential
security problem, as an attacker could also alter the interrupt handler software
before an integrity failure occurs. This would prevent the processor from
correctly responding to the integrity failure. To address this problem the
interrupt handler code can be stored on a small amount of secure memory (e.g.,
on-chip ROM). Alternatively, a more flexible approach could be to store the
interrupt handler in a small SRAM controlled exclusively by SCM. It is then
critical that some restrictions be enforced on programming this memory, such
as only allowing the memory to be programmed once during boot while the
processor is in supervisor mode.

5.4 Prototype Implementation

5.4.1 Target Platform

Zynq SoCs are used to prototype IP cores before fabrication in silicon. Each
Zynq SoC contains an FPGA, known as the Programmable Logic (PL), and a
non-programmable Processing System (PS), as shown in Figure 5.4. The PS
features a dual-core ARM Cortex-A9 processor, a memory controller, and ports
to communicate with the PL. The AXI4 [11] bus is used for communicating
between IP cores located on either the PS or the PL.

AXI4 supports three interface types. The AXI-Stream protocol allows two
components to communicate without the bus. The AXI-Full protocol is used to
transfer large amounts of data via the bus, and supports burst mode transfers.
The AXI-Lite protocol is used for low speed communication, e.g., memory
mapped registers, and implements only a subset of the features of the AXI-Full
interface.

110 SCM: SECURE CODE MEMORY ARCHITECTURE

Off-chip PS PL

DRAM Memory
Controller

A
X
I
B
us

Processor

SCM

Figure 5.4: System overview.

X

SCM

MAC
Verification

Tr
an

sa
ct
or

P
S

interrupt

Slave (GP0)

Master (HP0)

32-bit data
64-bit data

Figure 5.5: The implemented architecture of SCM.

The PS and PL interface with each other via two different types of AXI-based
ports. First, the PS can access PL slave devices via general-purpose ports.
Second, PL master devices can access the PS, which includes off-chip memory,
via AXI high-performance ports. The general-purpose and high-performance
ports both support burst transactions, with data widths of 32-bit and 64-bit,
respectively.

As shown in Figure 5.5, SCM consists of two subcomponents. The Transactor
coordinates memory accesses to the PS, while the MAC verification component
verifies the integrity of memory blocks.

5.4.2 Transactor

The Transactor handles receives requests from the PS, reads memory blocks
from the PS, transfers memory blocks to the MAC verification component, and
delivers integrity checked code to the PS.

Interfaces

An AXI-Full slave port allows the PS to read protected code from the SCM
memory range. It is configured to allow for 128 MB of SCM memory, which

PROTOTYPE IMPLEMENTATION 111

the PS accesses via the 32-bit GP0 port. The 128 MB of SCM memory maps
to 160 MB of DRAM, located in the PS.

The Transactor needs a mechanism to fetch a memory block from physical
memory after receiving an SCM memory read request. For this mechanism,
we evaluated two options. First, using the Xilinx DMA IP core, we measured
it takes 60 cycles to receive the first data of a burst read operation from the
physical memory. Second, a 64-bit AXI-Full master port connected to the
Zynq’s high-performance HP0 port allows for performing burst read operations.
We measured that at least 20 cycles is required to start receiving data after
issuing a burst read request from the PS. Therefore, the AXI-Full approach
was used in our prototype.

After receiving the memory block from the PS, the Transactor passes it to the
MAC verification component, which performs the verification before delivering
the code to the PS via the slave port. In order to avoid causing a data-abort
exception or freezing the PS, it is essential that the slave port responds to read
requests with the requested number of memory elements. So upon a verification
failure, instead of sending the potentially tampered code bytes, the Transactor
simply sends the required number of zero values.

Fetching memory blocks

Each group of n words in SCM memory space maps to a memory block of n+m
elements in physical memory (see Section 5.3.2). Since the cache line size of
the ARM processor is eight 32-bit processor words, we select n = 8. To provide
64-bit security, we use a 64-bit MAC, for which we select m = 2. So to serve
a read request of 8 words from SCM memory, we need to fetch 10 physical
memory words.

With the AXI protocol, the number of words fetched in a burst operation
must be a power of 2. We opted to use one 16-word burst of which 6 words
are dropped over using an 8-word burst followed by a 2 word burst because
every burst involves a 20 cycle delay before the first word arrives, regardless
of the burst size. After that initial delay, one word is received every cycle.
Furthermore, the extra power consumption of unnecessarily reading six more
words is partially compensated by initiating one fewer transaction.

Overlapping read transactions

To allow instructions and read-only data to co-exist inside the SCM memory
range, the Transactor’s AXI-Full slave port needs to support overlapping read

112 SCM: SECURE CODE MEMORY ARCHITECTURE

transactions. Such transactions occur when a new read transaction is issued
while the slave is busy processing another transaction. This can happen when a
program executing from the SCM memory range executes a load instruction
that fetches data from the SCM memory range. This presumably happens when
the instruction prefetcher is busy with a speculative fetch from SCM memory,
while at the same time a load occurs, causing the memory controller to issue
another read request from the SCM memory range.

To support overlapping reads, the Transactor waits for the current read
transaction to finish before processing the next. Therefore, registers should be
used to store address read channel information, as this could be overwritten
when a new transaction arrives.

5.4.3 MAC Verification

The MAC verification component performs integrity verification of memory
blocks. A 64-bit AXI-Stream slave interface is used to receive memory blocks,
addresses, and nonces. While data is received from the Transactor, the
runtime MAC is calculated. For each memory block, tampering is detected
by comparing the runtime MAC to the precomputed MAC. Only untampered
code is forwarded to the PS, and detection of tampering fires an interrupt.

For the MAC cryptographic primitive we selected COPA’s PMAC1 construc-
tion [9]. COPA is an Authenticated Encryption mode of operation for block
ciphers, which means it can be used with any symmetric encryption algorithm.
However, since we only require authentication, we only use PMAC1, and not
the full implementation of COPA.

Although AES is used in COPA’s original design, our implementation uses
PRINCE [18], which is highly efficient [79]. We placed two pipeline registers
inside our PRINCE implementation to allow the MAC verification component
to meet the timing constraint of 100 MHz (see Section 5.5.2). A three cycle
implementation of AES will likely have a huge overhead in terms of area and
delay, as observed by [79] in a comparison of single cycle implementations.
PRINCE’s 64-bit block size allows for more effective use of the Zynq’s 64-bit
HP0 port, since memory blocks received from HP0 can immediately be processed
by our MAC primitive.

The nonce is updated by writing to a special SCM register, thereby facilitating
context-switches between programs with different nonces.

EVALUATION 113

5.4.4 Integrity Violations

To handle integrity failures, we configured the PS to allow for fabric interrupts
via an interrupt request line, and installed a software interrupt handler on the
interrupt line. For our prototype, we implemented an interrupt handler that
displays a message when such an interrupt occurs.

5.5 Evaluation

5.5.1 Security Evaluation

In SCM, memory tampering and MAC forgery are infeasible, since forged blocks
can only be verified online. For an n-bit MAC, an adversary has to perform
an average of 2n−1 random online MAC verifications before this strategy will
succeed [59]. Therefore, a successful forgery of a memory block will require
70,193 years (on average) to succeed on a 100 MHz SCM core.

5.5.2 Hardware evaluation

We evaluated our design on a ZedBoard, which consists of a Xilinx XC7Z020-
CLG484-1 FPGA SoC package. It features a dual-core 667 MHz ARM Cortex
A9, 512 MB DDR3, 32 KB L1 cache for each core, and a 512 KB L2 cache. The
processor supports prefetching of code and data before they are needed by the
processor. The FPGA is comprised of 53,200 LUTs and 106,400 flip flops.

The Xilinx Vivado 2015.2 design suite was used for synthesising our hardware
implementation. It uses an area of 6295 LUTs, and 5880 flip flops. Both the
PS and the FPGA-based PL use a clock frequency of 100 MHz.

5.5.3 Performance Evaluation

The tool support described in Section 5.3.2 was used to transform the
benchmarks. To avoid integrity violations due to the processor’s prefetcher
issuing reads outside the protected segments, the SCM memory region is
expanded by inserting padding data plus correct MACs.

We used the following baremetal benchmarks. First, qsort v1 [58] performs a
Quicksort on 10,000 strings stored in read-only data. Second, qsort v2 [58]

114 SCM: SECURE CODE MEMORY ARCHITECTURE

Table 5.1: Software benchmarks for SCM

Benchmark DRAM SCM Reads Overhead
(cycles) (cycles)

qsort v1 40.35M 40.93M 40.03k 1.43%
qsort v2 36.21M 36.20M 18 -0.02%
sjeng 22.13G 22.13G 899.59k -0.02%
jpeg 97.08M 97.11M 1462 -0.02%

performs a Quicksort on 10,000 strings stored in mutable data. Third, sjeng [61]
plays a game of chess, and jpeg [58] performs jpeg encoding.

Each benchmark was executed from DRAM as well as from SCM memory. For
the latter, both code (.text) and read-only data (.rodata) were mapped to
SCM memory, and measurements were performed in unprotected code. The
average overhead is shown in Table 5.1. The "Reads" column indicate the
number of eight word burst reads that was performed by each benchmark. For
qsort v2, jpeg, and sjeng we measured an overhead of -0.02%, which is below
the noise margin of the performance counters that we used to perform the
measurements, as determined by the standard deviations. For qsort v1 we
measured a significantly larger overhead of 1.43%, which is larger than the noise
margin of the performance counters. These results show that SCM introduces
only a small runtime overhead.

5.6 Conclusion

In this chapter we introduced a new hardware-based SI architecture, called
SCM, that protects the integrity of code and read-only data stored in memory.
SCM is realized as a standalone IP core that connects to the bus of a System-
on-Chip (SoC). The protection mechanism performs a MAC-based integrity
verification of code as it is fetched from external memory into the caches of a
processor on an SoC. SCM is capable of protecting the code integrity against an
attacker that is in control of both data and code memory. We demonstrated the
feasibility of using such an architecture by evaluating the design on an FPGA,
and our evaluation showed a minimal performance overhead when executing
benchmark programs from the protected SCM memory region.

Chapter 6

Conclusions

In this chapter we provide a summary of the contributions of this thesis, together
with possible future work.

6.1 Conclusions

In this thesis, we investigated security mechanisms to prevent software from
misbehaving. To this end, we focused on hardware support to detect runtime
attacks, prevent the illegal modification of software, and provide support for
isolating software. This encompassed three fields of research, namely, Control
Flow Integrity (CFI), which aims to detect illegal control flow modifications,
Software Integrity (SI), which aims to prevent the execution of tampered
software, and Protected Module Architectures (PMAs), which facilitate the
secure execution of security-sensitive code in an area that is isolated from the
rest of the system. The main contributions of this thesis are two-fold. We
designed three new security mechanisms to detect and prevent runtime attacks,
and further analysed existing hardware-based security mechanisms to detect
attacks on control flow. In general, we typically consider the attacker capable
of controlling data memory, while sometimes also controlling program memory.
However, in some cases we even consider attackers with additional capabilities.

In Chapter 2 we presented a mechanism for handling interrupts for a program
counter-based PMA that maintains the confidentiality of the protected module
data. Our mechanism requires both software and hardware techniques. We
explored the trade-off between performance and hardware area by making three

115

116 CONCLUSIONS

designs, each with a different hardware cost. Our FPGA prototype showed that
interrupt support can be provided at a small cycle overhead, while incurring a
minimal hardware area overhead.

In Chapter 3 we described and analysed 21 hardware-based CFI architectures
in terms of their policies, security, and practical limitations. We found that
all current CFI architectures are vulnerable to non-control data attacks, since
current CFI architectures only ensure that the executed edges are valid, and do
not ensure that the sequence of executed edges are correct. Most architectures
relied upon a Shadow Call Stack (SCS) to protect backward edges, while using
different mechanisms to protect forward edges. We found that SCSs provide
practical and excellent protection against attacks on backward edges. However,
we found that it is difficult to provide practical and strong protection for
forward edges. A major problem is that high-security CFI, aka fine-grained
CFI, relies on a CFG which is generated through static analysis. In practice it
is difficult to generate a fully precise CFG on programs which contain calculated
branches, and current software tools resort to over-approximation to solve this.
Alternatively, low-security CFI, aka coarse-grained CFI, can provide practical
protection which does not require static analysis. However, it enforces a much
less strict policy that can not prevent all illegal branches. We therefore believe
that CFI still has unsolved problems.

In Chapter 4 we presented SOFIA, which enforces both CFI and SI through
processor modifications. SOFIA is the only known architecture to enforce CFI
using instruction-set randomization. This is achieved by decrypting instructions
with information derived from the control flow of a program, and verifying the
integrity of instructions using a MAC. This enables SOFIA to protect software
against runtime attacks, and is implemented as an extension to a processor’s
instruction pipeline. SOFIA is designed to be security-critical, since it prevents
the execution of tampered instructions as well as instructions resulting from
illegal control flow. It also protects against fault attacks on control flow, since
only valid control flow can allow for the correct decryption of instructions. While
SOFIA does rely on a CFG, precise static analysis is ensured by disallowing
the use of indirect forward branches. In addition, launching a CRA is near
impossible, since gadgets cannot be identified from the encrypted binary. In
order to ensure that the software complies to the strict constraints imposed
by the architecture, a software toolchain was developed. The toolchain was
used to compile several benchmarks, and SOFIA was evaluated on an FPGA,
which showed an average performance overhead of 106%, while incurring a
hardware area increase of 12.9% LUTs, and a clock speed reduction of 23.2%
when compared to an unmodified processor.

In Chapter 5 we presented a design called SCM, which is a light-weight
alternative to SOFIA, with a reduced functionality. While SOFIA enforces

FUTURE WORK 117

both CFI and SI through processor modifications, SCM enforces only SI and is
implemented as an IP core. In fact, it is the first hardware-based SI architecture
that is realised as a standalone IP core that connects to the bus via standard
interfaces. This allows for the integration into an SoC without requiring changes
to the used IP, such as the processor or memory hierarchy. SCM protects
against code tampering by verifying the integrity of code as it is fetched from
external memory into the caches of the SoC’s processor. A limitation of only
protecting the integrity of software at runtime (as is done in the current SCM),
is that it cannot protect against CRAs. Our FPGA prototype showed a minimal
performance overhead, while incurring a hardware area cost of 6295 LUTs and
5880 registers.

6.2 Future work

Control Flow Integrity

One of the most important limitations of CFI is that it cannot protect against
non-control data attacks. A promising new line of work, called Control Flow
Attestation [7, 40], aims to address this problem by recording the control flow
paths that were taken inside an executed program, and reporting it to an
external party for verification. However, the biggest limitation of this approach
is that the security checks are not performed online, since an external party is
required to verify the correctness of the measured control flow after the program
has executed. Therefore, there is a need to develop security architectures that
can solve this problem through online checks.

Providing strong and practical protection against attacks on forward edges
cannot be done with the current available solutions. Fine-grained CFI aims
to solve this, but it suffers from practical problems. It is well-known that a
precise CFG cannot be computed for some types of programs. This is especially
problematic for certain programming constructs that rely on indirect forward
branches, such as function pointers passed between functions and C++ virtual
methods. To solve this, over-approximation is used, which leads to a CFG that
contains many more edges than what is strictly necessary. This is a fundamental
limitation for fine-grained CFI policies, since the security of the enforced policy
relies on the precision of the CFG.

As such, there is a strong need to develop security policies which do not require
CFG. It is not yet clear how to achieve this. However, Code Pointer Integrity
is a promising solution that could provide fine-grained protection, while at the
same time not relying on a CFG.

118 CONCLUSIONS

Another direction is to follow an incremental approach, where a number of
different CFI policies are designed to each defend against a specific attack. The
idea is that the designs should be used simultaneously in order to create a strong
defence against many different attacks. This will likely be an iterative process,
which requires re-evaluating the system after each added policy in order to
find the remaining exploitable attack vectors. For instance, we know that SCS
provides an excellent defence against ROP. Furthermore, using SCS together
with Branch Regulation (Section 3.6.8), which ensures that the semantics of
basic blocks are followed, could make sense since it reduces the number of
exploitable JOP gadgets. However, even when these two policies are used
simultaneously, some attacks will not be detected, such as manipulating a
pointer to execute an unwanted shared library function. To solve this, another
security policy can be introduced to address the specific issue. However, it is
likely that after fixing that problem, another attack vector will be discovered,
which may require the design of yet another security policy to prevent it.

A common problem when evaluating a given CFI architecture is to determine
the precise level of protection provided. To solve this, there is a need for a
standardised testing methodology to evaluate the security attained by a given
solution. This is non-trivial, since new attack vectors are frequently discovered.
One solution could be to create a repository of code re-use attacks, and attacks
that can circumvent the security of a specific CFI architecture. Ideally the
project should be open-source to allow researchers to add newly discovered
attack vectors to expand the knowledge of possible attacks, and further allow
the evolution of defence mechanisms.

Low-latency block ciphers

Hardware security architectures often make use of cryptographic primitives, such
as block ciphers, that are integrated into the pipeline stages of the processor.
This allows the architectures to make security guarantees that would otherwise
be impossible, such as preventing the execution of tampered instructions or
preventing tampered control flow. A tight relationship is created between
the crypto and the processor’s instruction pipeline stages, which causes the
efficiency of the crypto to severely impact the performance of the processor.
For instance, the critical path of the crypto can limit the maximum clock
frequency of the processor, or the processor might stall the processor’s pipeline
while waiting for the crypto to finish a computation. In the past, there have
been only a few proposals for low-latency ciphers, such as PRINCE [18] and
QARMA [14]. As such, there is a need for the further development of low-latency
cryptographic primitives to enable the next generation of hardware supported
security architectures.

FUTURE WORK 119

SOFIA

SOFIA suffers from a large performance overhead due to increased code size,
cycle overhead, and clock speed degradation. The increase in code size and
cycle overhead is largely due to the strict set of constraints that are imposed on
the software, leading to the insertion of a large number of padding instructions
and multiplexer trees. In the future, the toolchain can be optimised to improve
the cycle overhead by reducing the number of inserted and executed padding
instructions. The current toolchain cannot handle optimisation passes, and can
be improved by providing support for optimisation flags, such as "-O2". Further
improvements in cycle overhead could be obtained by optimising the length of
the paths taken through the multiplexer trees.

SCM

The current implementation of SCM can only protect immutable data. In
the future, the architecture can be extended by developing a light-weight
mechanism to provide support for protecting mutable data. Furthermore, it
could be valuable to experiment with an implementation of SCM that protects
different memory regions in the system, e.g., ROM, flash, and on-chip memory.
Yet another direction is to explore the necessary steps to allow SCM to operate
alongside an OS with virtual memory support.

Secure Interrupts

The secure interrupts architecture is currently limited to protecting the
confidentiality of the data stored inside the secure world. The architecture can
be improved by developing protection against interrupt spoofing by ensuring
that secure world interrupts can only be invoked by a legitimate interrupt. The
availability of the system can also be improved by ensuring that a malicious
interrupt service routine cannot hijack the control flow by executing code which
never returns. Furthermore, the architecture can benefit from having support
for multiple protection domains.

Bibliography

[1] Microsoft. Data Execution Prevention (DEP). http://support.
microsoft.com/kb/875352/EN-US/, 2006.

[2] OpenCores project web site. http://www.opencores.org/, 2014.
Accessed: 2014-02-20.

[3] BCC - Bare-C Cross-Compiler User’s Manual. Cobham (2016).

[4] Pointer Authentication on ARMv8.3. Qualcomm Technologies, Inc. (2017).

[5] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-
Flow Integrity. In Proceedigns of the ACM Conference on Computer &
Communications Security (2005), ACM, pp. 340–353.

[6] Abadi, M., Budiu, M., Erlingsson, Ú., and Ligatti, J. Control-
Flow Integrity Principles, Implementations, and Applications. ACM
Transactions on Information and System Security 13, 1 (2009).

[7] Abera, T., Asokan, N., Davi, L., Ekberg, J.-E., Nyman, T.,
Paverd, A., Sadeghi, A.-R., and Tsudik, G. C-flat: Control-
flow attestation for embedded systems software. In Proceedings of the
Conference on Computer and Communications Security (2016), CCS ’16,
ACM, pp. 743–754.

[8] Alexander, S. Defeating compiler-level buffer overflow protection. ;login
issue: June 2005, Volume 30, Number 3 .

[9] Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B.,
Tischhauser, E., and Yasuda, K. AES-COPA v.2. CAESAR
submission (2015).

[10] ARM. ARM Security Technology - Building a Secure System using
TrustZone Technology, 2009.

121

http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/
http://www.opencores.org/

122 BIBLIOGRAPHY

[11] ARM. ARM AMBA AXI and ACE Protocol Specification - AXI3, AXI4,
and AXI4-Lite, ACE and ACE-Lite. White paper, 2011.

[12] Arora, D., Ravi, S., Raghunathan, A., and Jha, N. K. Hardware-
assisted run-time monitoring for secure program execution on embedded
processors. IEEE Transactions on Very Large Scale Integrated Systems
14, 12 (Dec. 2006), 1295–1308.

[13] Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., and Seifert,
J.-P. Fault Attacks on RSA with CRT: Concrete Results and Practical
Countermeasures. In International Workshop on Cryptographic Hardware
and Embedded Systems (2003), CHES ’02, Springer-Verlag, pp. 260–275.

[14] Avanzi, R. The QARMA block cipher family. almost MDS matrices over
rings with zero divisors, nearly symmetric even-mansour constructions
with non-involutory central rounds, and search heuristics for low-latency
s-boxes. IACR Transactions on Symmetric Cryptology 2017, 1 (2017),
4–44.

[15] Balasch, J., Gierlichs, B., and Verbauwhede, I. An In-depth
and Black-box Characterization of the Effects of Clock Glitches on 8-bit
MCUs. In Proceedings of the Workshop on Fault Diagnosis and Tolerance
in Cryptography (2011), FDTC ’11, IEEE Computer Society, pp. 105–114.

[16] Baratloo, A., Singh, N., and Tsai, T. Transparent run-time defense
against stack smashing attacks. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference (2000), ATEC ’00, USENIX
Association, pp. 21–21.

[17] Bletsch, T., Jiang, X., Freeh, V. W., and Liang, Z. Jump-
oriented programming: a new class of code-reuse attack. In Symposium
on Information, Computer & Communications Security (2011), ACM,
pp. 30–40.

[18] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E. B.,
Knežević, M., Knudsen, L. R., Leander, G., Nikov, V., Paar,
C., Rechberger, C., Rombouts, P., Thomsen, S. S., and Yalçin,
T. PRINCE: A Low latency Block Cipher for Pervasive Computing
Applications. In Proceedings of the International Conference on The
Theory and Application of Cryptology and Information Security (2012),
ASIACRYPT’12, Springer-Verlag, pp. 208–225.

[19] Brunel, J., Pacalet, R., Ouaarab, S., and Duc, G. SecBus, a
Software/Hardware Architecture for Securing External Memories. In
Proceedings of the IEEE International Conference on Mobile Cloud

BIBLIOGRAPHY 123

Computing, Services, and Engineering (2014), MOBILECLOUD ’14, IEEE
Computer Society, pp. 277–282.

[20] Burow, N., Carr, S. A., Nash, J., Larsen, P., Franz, M.,
Brunthaler, S., and Payer, M. Control-flow integrity: Precision,
security, and performance. ACM Computing Surveys 50, 1 (Apr. 2017),
16:1–16:33.

[21] Carlini, N., Barresi, A., Payer, M., Wagner, D., and Gross,
T. R. Control-flow bending: On the effectiveness of control-flow integrity.
In Proceedings of the USENIX Security Symposium (Aug. 2015), USENIX
Association, pp. 161–176.

[22] Carlini, N., and Wagner, D. ROP is Still Dangerous: Breaking
Modern Defenses. In Proceedings of the USENIX Security Symposium
(2014), USENIX Association, pp. 385–399.

[23] Champagne, D., and Lee, R. Scalable architectural support for trusted
software. In International Symposium on High-Performance Computer
Architecture (2010), IEEE, pp. 1–12.

[24] Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., and Xie, L. Drop:
Detecting return-oriented programming malicious code. In Proceedings
of the International Conference on Information Systems Security (2009),
ICISS ’09, Springer-Verlag, pp. 163–177.

[25] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K. Non-
control-data attacks are realistic threats. In Proceedings of the USENIX
Security Symposium (2005), USENIX Association, pp. 177–191.

[26] Cheng, Y., Zhou, Z., Miao, Y., Ding, X., and Deng, H. R.
ROPecker: A Generic and Practical Approach for Defending Against
ROP Attacks. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014 (2014).

[27] Christoulakis, N., Christou, G., Athanasopoulos, E., and
Ioannidis, S. HCFI: Hardware-enforced Control-Flow Integrity. In
Proceedings of the ACM Conference on Data and Application Security
and Privacy (2016), CODASPY ’16, ACM, pp. 38–49.

[28] Conti, M., Crane, S., Davi, L., Franz, M., Larsen, P., Negro,
M., Liebchen, C., Qunaibit, M., and Sadeghi, A.-R. Losing control:
On the effectiveness of control-flow integrity under stack attacks. In
Proceedings of the Conference on Computer and Communications Security
(2015), CCS ’15, ACM, pp. 952–963.

124 BIBLIOGRAPHY

[29] Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke,
P., Beattie, S., Grier, A., Wagle, P., and Zhang, Q. Stackguard:
Automatic adaptive detection and prevention of buffer-overflow attacks.
In Proceedings of the USENIX Security Symposium (1998), USENIX
Association, pp. 5–5.

[30] Das, S., Zhang, W., and Liu, Y. A fine-grained control flow integrity
approach against runtime memory attacks for embedded systems. IEEE
Transactions on Very Large Scale Integrated Systems 24, 11 (Nov. 2016),
3193–3207.

[31] Davi, L., Hanreich, M., Paul, D., Sadeghi, A.-R., Koeberl, P.,
Sullivan, D., Arias, O., and Jin, Y. HAFIX: Hardware-assisted Flow
Integrity Extension. In Proceedings of the Design Automation Conference
(2015), DAC ’15, ACM, pp. 74:1–74:6.

[32] Davi, L., Sadeghi, A.-R., Lehmann, D., and Monrose, F. Stitching
the gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection. In Proceedings of the USENIX Security Symposium (Aug.
2014), USENIX Association, pp. 401–416.

[33] de Clercq, R., De Keulenaer, R., Coppens, B., Yang, B.,
Maene, P., de Bosschere, K., Preneel, B., de Sutter, B.,
and Verbauwhede, I. SOFIA: Software and Control Flow Integrity
Architecture. In Proceedings of the Conference on Design, Automation &
Test in Europe (2016), DATE ’16, IEEE, pp. 1172–1177.

[34] de Clercq, R., de Keulenaer, R., Maene, P., Preneel, B.,
De Sutter, B., and Verbauwhede, I. SCM: Secure Code Memory
Architecture. In Proceedings of the ACM on Asia Conference on Computer
and Communications Security (2017), ASIACCS’17, ACM, pp. 771–776.

[35] de Clercq, R., Götzfried, J., David, U., Maene, P., and
Verbauwhede, I. SOFIA: Software and Control Flow Integrity
Architecture. In Computers & Security (2017), vol. 68, pp. 16–35.

[36] de Clercq, R., Roy, S. S., Vercauteren, F., and Verbauwhede, I.
Efficient Software Implementation of ring-LWE Encryption. In Proceedings
of the Design, Automation & Test in Europe Conference & Exhibition
(2015), DATE ’15, ACM, pp. 339–344.

[37] De Clercq, R., Schellekens, D., Piessens, F., and Verbauwhede,
I. Secure Interrupts on Low-End Microcontrollers. In International
Conference on Application-specific Systems, Architectures and Processors
(ASAP) (2014), IEEE, pp. 147–152.

BIBLIOGRAPHY 125

[38] de Clercq, R., Uhsadel, L., Van Herrewege, A., and
Verbauwhede, I. Ultra Low-Power Implementation of ECC on the
ARM Cortex-M0+. In Proceedings of the Design Automation Conference
(2014), DAC ’14, ACM, pp. 112:1–112:6.

[39] de Clercq, R., and Verbauwhede, I. A Survey of Hardware-based
Control Flow Integrity. In ArXiv CoRR (2017), abs/1706.07257.

[40] Dessouky, G., Zeitouni, S., Nyman, T., Paverd, A., Davi, L.,
Koeberl, P., Asokan, N., and Sadeghi, A.-R. LO-FAT: Low-
Overhead Control Flow ATtestation in Hardware. In Proceedings of the
Design Automation Conference (2017), DAC ’17, ACM, pp. 24:1–24:6.

[41] Dolev, D., and Yao, A. C. On the security of public key protocols.
IEEE Transactions on Information Theory 29, 2 (1983), 198–208.

[42] Domingo-Ferrer, J. Software run-time protection: A cryptographic
issue. In Workshop on the Theory and Application of Cryptographic
Techniques (1990), Springer, pp. 474–480.

[43] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A., Bailey,
M., Li, F., Weaver, N., Amann, J., Beekman, J., Payer, M., and
Paxson, V. The matter of heartbleed. In Proceedings of the Conference
on Internet Measurement Conference (2014), IMC ’14, ACM, pp. 475–488.

[44] Elbaz, R., Champagne, D., Gebotys, C., Lee, R., Potlapally, N.,
and Torres, L. Hardware mechanisms for memory authentication:
A survey of existing techniques and engines. In Transactions on
Computational Science IV. Springer, 2009, pp. 1–22.

[45] Elbaz, R., Torres, L., Sassatelli, G., Guillemin, P.,
Bardouillet, M., and Martinez, A. A parallelized way to provide
data encryption and integrity checking on a processor-memory bus. In
Proceedings of the Design Automation Conference (2006), ACM, pp. 506–
509.

[46] Eldefrawy, K., Tsudik, G., Francillon, A., and Perito, D.
SMART: Secure and Minimal Architecture for (Establishing Dynamic)
Root of Trust. In Proceedings of the Network and Distributed System
Security Symposium (2012).

[47] Embedded Microprocessor Benchmark Consortium (EEMBC).
Coremark. http://www.eembc.org/coremark, 2016. [Online; accessed
19-Sep-2016].

http://www.eembc.org/coremark

126 BIBLIOGRAPHY

[48] Evans, I., Fingeret, S., Gonzalez, J., Otgonbaatar, U., Tang, T.,
Shrobe, H., Sidiroglou-Douskos, S., Rinard, M., and Okhravi,
H. Missing the point(er): On the effectiveness of code pointer integrity.
In Proceedings of the IEEE Symposium on Security and Privacy (2015),
SP ’15, IEEE Computer Society, pp. 781–796.

[49] Francillon, A., Nguyen, Q., Rasmussen, K. B., and Tsudik, G.
A Minimalist Approach to Remote Attestation. In Proceedings of the
Conference on Design, Automation & Test in Europe (2014), DATE ’14,
European Design and Automation Association, pp. 244:1–244:6.

[50] Francillon, A., Perito, D., and Castelluccia, C. Defending
embedded systems against control flow attacks. In Proceedings of the First
ACM Workshop on Secure Execution of Untrusted Code (2009), SecuCode
’09, ACM, pp. 19–26.

[51] Gaisler. Cobham Gaisler AB. LEON3 synthesizable processor. http:
//www.gaisler.com, 2015. [Online; accessed 26-Nov-2015].

[52] Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H.,
and Portokalidis, G. Size does matter: Why using gadget-chain length
to prevent code-reuse attacks is hard. In Proceedings of the USENIX
Security Symposium (2014), USENIX Association, pp. 417–432.

[53] Goktas, E., Athanasopoulos, E., Bos, H., and Portokalidis, G.
Out of control: Overcoming control-flow integrity. In IEEE Security &
Privacy (2014), IEEE, pp. 575–589.

[54] Götzfried, J., Müller, T., de Clercq, R., Maene, P., Freiling,
F., and Verbauwhede, I. Soteria: Offline Software Protection Within
Low-cost Embedded Devices. In Proceedings of the Annual Computer
Security Applications Conference (2015), ACSAC 2015, ACM, pp. 241–250.

[55] Gueron, S. A memory encryption engine suitable for general purpose
processors. Cryptology ePrint Archive, Report 2016/204, 2016.

[56] Guo, Z., Bhakta, R., and Harris, I. G. Control-flow checking for
intrusion detection via a real-time debug interface. In 2014 International
Conference on Smart Computing Workshops (Nov 2014), pp. 87–92.

[57] Gupta, A., Kerr, S., Kirkpatrick, M. S., and Bertino, E. Marlin:
Making it harder to fish for gadgets. In Proceedings of the ACM Conference
on Computer and Communications Security (2012), CCS ’12, ACM,
pp. 1016–1018.

http://www.gaisler.com
http://www.gaisler.com

BIBLIOGRAPHY 127

[58] Guthaus R., M., Ringenberg, J. S., Ernst, D., Austin, T. M.,
Mudge, T., and Brown, R. B. MiBench: A free, commercially
representative embedded benchmark suite, 2001.

[59] Handschuh, H., and Preneel, B. Minding your MAC algorithms.
Information Security Bulletin 9, 6 (2004), 213–221.

[60] He, W., Das, S., Zhang, W., and Liu, Y. No-jump-into-basic-block:
Enforce basic block cfi on the fly for real-world binaries. In Proceedings of
the Design Automation Conference 2017 (2017), DAC ’17, ACM, pp. 23:1–
23:6.

[61] Henning, J. L. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News 34, 4 (2006), 1–17.

[62] Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., and
Liang, Z. Data-oriented programming: On the expressiveness of non-
control data attacks. In Proceedings of the IEEE Symposium on Security
and Privacy (2016), IEEE, pp. 969–986.

[63] Intel. Intel Control-flow Enforcement Technology Preview.
https://software.intel.com/sites/default/files/managed/
4d/2a/control-flow-enforcement-technology-preview.pdf, 2017.
[Online; accessed 19-Jun-2017].

[64] International Organization for Standardization and Inter-
national Electrotechnical Commission. Infomation technology -
Secruity techniques - Message Authentication Codes (MACs). ISO/IEC
9797-1:1999(E), 1999.

[65] Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N., and Ponomarev,
D. Branch regulation: Low-overhead protection from code reuse attacks.
In International Symposium on Computer Architecture (2012), IEEE,
pp. 94–105.

[66] Kayaalp, M., Ozsoy, M., Ghazaleh, N. A., and Ponomarev, D.
Efficiently securing systems from code reuse attacks. IEEE Transactions
on Computers 63, 5 (2014), 1144–1156.

[67] Kayaalp, M., Schmitt, T., Nomani, J., Ponomarev, D., and Abu-
Ghazaleh, N. Scrap: Architecture for signature-based protection from
code reuse attacks. In Proceedings of the IEEE International Symposium
on High Performance Computer Architecture (HPCA) (2013), HPCA ’13,
IEEE Computer Society, pp. 258–269.

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

128 BIBLIOGRAPHY

[68] Kc, G. S., Keromytis, A. D., and Prevelakis, V. Countering Code-
injection Attacks with Instruction-set Randomization. In Proceedings of
the Conference on Computer and Communications Security (2003), CCS
’03, ACM, pp. 272–280.

[69] Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D.,
Wilkerson, C., Lai, K., and Mutlu, O. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance
errors. In ACM SIGARCH Computer Architecture News (2014), vol. 42,
IEEE Press, pp. 361–372.

[70] Kinder, J., and Kravchenko, D. Alternating control flow
reconstruction. In Proceedings of the 13th International Conference
on Verification, Model Checking, and Abstract Interpretation (2012),
VMCAI’12, Springer-Verlag, pp. 267–282.

[71] Koeberl, P., Schulz, S., Sadeghi, A.-R., and Varadharajan,
V. Trustlite: A security architecture for tiny embedded devices. In
Proceedings of the European Conference on Computer Systems (2014),
EuroSys ’14, ACM, pp. 10:1–10:14.

[72] Kumar, R., Singhania, A., Castner, A., Kohler, E., and
Srivastava, M. B. A System For Coarse Grained Memory Protection
In Tiny Embedded Processors. In Design Automation Conference (2007),
pp. 218–223.

[73] Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R.,
and Song, D. Code-pointer integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14) (Oct. 2014),
USENIX Association, pp. 147–163.

[74] Lee, J., Heo, I., Lee, Y., and Paek, Y. Efficient Security Monitoring
with the Core Debug Interface in an Embedded Processor. ACM
Transactions on Design Automation of Electronic Systems 22, 1 (May
2016), 8:1–8:29.

[75] Lee, Y., Heo, I., Hwang, D., Kim, K., and Paek, Y. Towards a
Practical Solution to Detect Code Reuse Attacks on ARM Mobile Devices.
In Workshop on Hardware and Architectural Support for Security and
Privacy (2015), ACM, pp. 3:1–3:8.

[76] Lee, Y., Lee, J., Heo, I., Hwang, D., and Paek, Y. Integration of
ROP/JOP Monitoring IPs in an ARM-based SoC. In Proceedings of the
Conference on Design, Automation & Test in Europe (2016), DATE ’16,
IEEE, pp. 331–336.

BIBLIOGRAPHY 129

[77] Lee, Y., Lee, J., Heo, I., Hwang, D., and Paek, Y. Using CoreSight
PTM to Integrate CRA Monitoring IPs in an ARM-Based SoC. ACM
Transactions on Design Automation of Electronic Systems 22, 3 (Apr.
2017), 52:1–52:25.

[78] Maene, P., Götzfried, J., de Clercq, R., Muller, T., Freiling,
F., and Verbauwhede, I. Hardware-Based Trusted Computing
Architectures for Isolation and Attestation. IEEE Transactions on
Computers PP(99) (2017).

[79] Maene, P., and Verbauwhede, I. Single-cycle implementations of
block ciphers. In International Workshop on Lightweight Cryptography
for Security and Privacy - Volume 9542 (2016), LightSec 2015, Springer-
Verlag, pp. 131–147.

[80] Mahmood, A., and McCluskey, E. J. Concurrent error detection
using watchdog processors-a survey. IEEE Transactions on Computers
37, 2 (Feb. 1988), 160–174.

[81] Mao, S., and Wolf, T. Hardware support for secure processing in
embedded systems. IEEE Transactions on Computers 59, 6 (2010), 847–
854.

[82] Mashtizadeh, A. J., Bittau, A., Boneh, D., and Mazières, D.
CCFI: Cryptographically Enforced Control Flow Integrity. In Proceedings
of the Conference on Computer and Communications Security (2015),
CCS ’15, ACM, pp. 941–951.

[83] Masti, R. J., Marforio, C., Ranganathan, A., Francillon, A.,
and Capkun, S. Enabling trusted scheduling in embedded systems. In
Proceedings of the Annual Computer Security Applications Conference
(2012), ACM, pp. 61–70.

[84] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C. V.,
Shafi, H., Shanbhogue, V., and Savagaonkar, U. R. Innovative
instructions and software model for isolated execution. In Proceedings of
the International Workshop on Hardware and Architectural Support for
Security and Privacy (2013), HASP ’13, ACM, pp. 10:1–10:1.

[85] Namprempre, C., Rogaway, P., and Shrimpton, T. Reconsidering
generic composition. In Advances in Cryptology–EUROCRYPT 2014.
Springer, 2014, pp. 257–274.

[86] Newsham, T. Format string attacks, 2000.

130 BIBLIOGRAPHY

[87] Noorman, J., Agten, P., Daniels, W., Strackx, R., Herrewege,
A. V., Huygens, C., Preneel, B., Verbauwhede, I., and Piessens,
F. Sancus: Low-cost trustworthy extensible networked devices with a
zero-software Trusted Computing Base. In Proceedings of the USENIX
Security Symposium (2013), pp. 479–494.

[88] Ozdoganoglu, H., Vijaykumar, T. N., Brodley, C. E., Kuperman,
B. A., and Jalote, A. Smashguard: A hardware solution to prevent
security attacks on the function return address. IEEE Transactions on
Computers 55, 10 (Oct. 2006), 1271–1285.

[89] Qiao, R., and Seaborn, M. A New Approach for Rowhammer Attacks.
In IEEE International Workshop on Hardware-Oriented Security and
Trust, HOST’16 (2016), pp. 161––166.

[90] Rahmatian, M., Kooti, H., Harris, I. G., and Bozorgzadeh, E.
Hardware-assisted detection of malicious software in embedded systems.
IEEE Embedded Systems Letters 4, 4 (Dec. 2012), 94–97.

[91] Reparaz, O., de Clercq, R., Roy, S. S., Vercauteren, F., and
Verbauwhede, I. Additively homomorphic ring-LWE masking. In
International Workshop on Post-Quantum Cryptography (2016), Springer,
pp. 233–244.

[92] Reparaz, O., Roy, S. S., de Clercq, R., Vercauteren, F.,
and Verbauwhede, I. Masking ring-LWE. Journal of Cryptographic
Engineering 6, 2 (2016), 139–153.

[93] Salwan, J. ROPgadget. http://shell-storm.org/project/
ROPgadget, 2017. [Online; accessed 16-Mar-2017].

[94] Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi,
A.-R., and Holz, T. Counterfeit object-oriented programming: On
the difficulty of preventing code reuse attacks in c++ applications. In
Proceedings of the IEEE Symposium on Security and Privacy (2015), SP
’15, IEEE Computer Society, pp. 745–762.

[95] Shacham, H. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of the
ACM Conference on Computer & Communications Security (2007), ACM,
pp. 552–561.

[96] Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N.,
and Boneh, D. On the effectiveness of address-space randomization.
In Proceedings of the 11th ACM Conference on Computer and
Communications Security (2004), CCS ’04, ACM, pp. 298–307.

http://shell-storm. org/project/ROPgadget
http://shell-storm. org/project/ROPgadget

BIBLIOGRAPHY 131

[97] SPARC International, Inc. The SPARC Architecture Manual, Version
8. http://www.gaisler.com/doc/sparcv8.pdf, 1991.

[98] Strackx, R., Piessens, F., and Preneel, B. Efficient Isolation of
Trusted Subsystems in Embedded Systems. In Security and Privacy in
Communication Networks (2010), pp. 344–361.

[99] Suh, G., Clarke, D., Gassend, B., Van Dijk, M., and Devadas, S.
Aegis: architecture for tamper-evident and tamper-resistant processing.
In Proceedings of the International Conference on Supercomputing (2003),
ACM, pp. 160–171.

[100] Suh, G., Clarke, D., Gassend, B., van Dijk, M., and Devadas,
S. Efficient memory integrity verification and encryption for secure
processors. In Proceedings of the IEEE/ACM International Symposium
on Microarchitecture (2003), MICRO 36, IEEE Computer Society, pp. 339–
350.

[101] Sullivan, D., Arias, O., Davi, L., Larsen, P., Sadeghi, A.-R.,
and Jin, Y. Strategy without tactics: Policy-agnostic hardware-enhanced
control-flow integrity. In Proceedings of the Design Automation Conference
(2016), DAC ’16, ACM, pp. 163:1–163:6.

[102] Szekeres, L., Payer, M., Wei, T., and Song, D. Sok: Eternal war in
memory. In Proceedings of the IEEE Symposium on Security and Privacy
(2013), SP ’13, IEEE Computer Society, pp. 48–62.

[103] Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., and
Ning, P. On the expressiveness of return-into-libc attacks. In Recent
Advances in Intrusion Detection (2011), Springer, pp. 121–141.

[104] Turan, F., De Clercq, R., Maene, P., Reparaz, O., and
Verbauwhede, I. Hardware Acceleration of a Software-based VPN. In
International Conference on Field Programmable Logic and Applications
(FPL) (2016), IEEE, pp. 1–9.

[105] Turing, A. M. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society
2, 42 (1936), 230–265.

[106] Van Bulck, J., Noorman, J., Mühlberg, J. T., and Piessens,
F. Towards availability and real-time guarantees for protected module
architectures. In Companion Proceedings of the International Conference
on Modularity (2016), ACM, pp. 146–151.

http://www.gaisler.com/doc/sparcv8.pdf

132 BIBLIOGRAPHY

[107] Verbauwhede, I., Karaklajic, D., and Schmidt, J.-M. The fault
attack jungle - a classification model to guide you. In Proceedings of
the Workshop on Fault Diagnosis and Tolerance in Cryptography (2011),
FDTC ’11, IEEE Computer Society, pp. 3–8.

[108] Wartell, R., Mohan, V., Hamlen, K. W., and Lin, Z. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code.
In Proceedings of the ACM Conference on Computer and Communications
Security (2012), CCS ’12, ACM, pp. 157–168.

[109] Werner, M., Wenger, E., and Mangard, S. Protecting the control
flow of embedded processors against fault attacks. In International
Conference on Smart Card Research and Advanced Applications - Volume
9514 (2016), CARDIS 2015, Springer-Verlag New York, Inc., pp. 161–176.

[110] Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., and
Joosen, W. RIPE: Runtime Intrusion Prevention Evaluator. In
Proceedings of the Annual Computer Security Applications Conference
(2011), ACSAC ’11, ACM, pp. 41–50.

[111] Wilken, K., and Shen, J. P. Continuous signature monitoring: efficient
concurrent-detection of processor control errors. In International Test
Conference 1988 Proceeding (Sep 1988), pp. 914–925.

[112] Williams, P., and Boivie, R. CPU support for secure executables. In
International Conference on Trust and Trustworthy Computing (2011),
Springer, pp. 172–187.

[113] Yan, C., Englender, D., Prvulovic, M., Rogers, B., and Solihin,
Y. Improving cost, performance, and security of memory encryption and
authentication. In ACM SIGARCH Computer Architecture News (2006),
vol. 34, IEEE Computer Society, pp. 179–190.

[114] Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., and
Verbauwhede, I. RECTANGLE: a bit-slice lightweight block cipher
suitable for multiple platforms. Science China Information Sciences 58,
12 (2015), 1–15.

Curriculum Vitae

Ruan de Clercq was born on September, 11 1981 in Pretoria, South Africa. He
obtained a Bachelor’s degree in Computer Engineering from the University of
Pretoria, South Africa in 2010, and a Master’s degree in Electrical Engineering
from the KU Leuven, Belgium in 2013. He was generously funded by an Erasmus
Mundus Action 2 scholarship during his Master’s degree studies.

In September 2013, he joined the COSIC (Computer Security and Industrial
Cryptography) research group as a research assistant. Prior to this, he spent
some time working as a software engineer at Saab Systems Grintek as well as
LQS International Ltd. in South Africa.

133

List of publications

Journals

1. de Clercq, R., Götzfried, J., David, U., Maene, P., and
Verbauwhede, I. SOFIA: Software and Control Flow Integrity
Architecture. In Computers & Security (2017), vol. 68, pp. 16–35

2. Maene, P., Götzfried, J., de Clercq, R., Muller, T., Freiling,
F., and Verbauwhede, I. Hardware-Based Trusted Computing
Architectures for Isolation and Attestation. IEEE Transactions on
Computers PP(99) (2017)

3. Reparaz, O., Roy, S. S., de Clercq, R., Vercauteren, F., and
Verbauwhede, I. Masking ring-LWE. Journal of Cryptographic
Engineering 6, 2 (2016), 139–153

International Conferences

1. de Clercq, R., de Keulenaer, R., Maene, P., Preneel, B.,
De Sutter, B., and Verbauwhede, I. SCM: Secure Code Memory
Architecture. In Proceedings of the ACM on Asia Conference on Computer
and Communications Security (2017), ASIACCS’17, ACM, pp. 771–776

2. Turan, F., De Clercq, R., Maene, P., Reparaz, O., and
Verbauwhede, I. Hardware Acceleration of a Software-based VPN. In
International Conference on Field Programmable Logic and Applications
(FPL) (2016), IEEE, pp. 1–9

3. de Clercq, R., De Keulenaer, R., Coppens, B., Yang, B.,
Maene, P., de Bosschere, K., Preneel, B., de Sutter, B.,
and Verbauwhede, I. SOFIA: Software and Control Flow Integrity

135

136 LIST OF PUBLICATIONS

Architecture. In Proceedings of the Conference on Design, Automation &
Test in Europe (2016), DATE ’16, IEEE, pp. 1172–1177

4. Reparaz, O., de Clercq, R., Roy, S. S., Vercauteren, F., and
Verbauwhede, I. Additively homomorphic ring-LWE masking. In
International Workshop on Post-Quantum Cryptography (2016), Springer,
pp. 233–244

5. Götzfried, J., Müller, T., de Clercq, R., Maene, P., Freiling,
F., and Verbauwhede, I. Soteria: Offline Software Protection Within
Low-cost Embedded Devices. In Proceedings of the Annual Computer
Security Applications Conference (2015), ACSAC 2015, ACM, pp. 241–250

6. de Clercq, R., Roy, S. S., Vercauteren, F., and Verbauwhede, I.
Efficient Software Implementation of ring-LWE Encryption. In Proceedings
of the Design, Automation & Test in Europe Conference & Exhibition
(2015), DATE ’15, ACM, pp. 339–344

7. De Clercq, R., Schellekens, D., Piessens, F., and Verbauwhede,
I. Secure Interrupts on Low-End Microcontrollers. In International
Conference on Application-specific Systems, Architectures and Processors
(ASAP) (2014), IEEE, pp. 147–152

8. de Clercq, R., Uhsadel, L., Van Herrewege, A., and Ver-
bauwhede, I. Ultra Low-Power Implementation of ECC on the ARM
Cortex-M0+. In Proceedings of the Design Automation Conference (2014),
DAC ’14, ACM, pp. 112:1–112:6

Unpublished Manuscripts

1. de Clercq, R., and Verbauwhede, I. A Survey of Hardware-based
Control Flow Integrity. In ArXiv CoRR (2017), abs/1706.07257

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

COSIC
Kasteelpark Arenberg 10, bus 2452

B-3001 Leuven
ruan.declercq@esat.kuleuven.be

http://www.esat.kuleuven.be/cosic/

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Defending against runtime attacks
	Thesis objectives
	Summary of Contributions
	Thesis Structure
	Other Publications

	Towards Secure Interrupts on Low-End Microcontrollers
	Introduction
	Architecture
	Attacker model
	Domain isolation
	Context switching between domains

	Secure Interrupts
	Standard interrupt mechanism
	Domain isolation support
	Interrupting non-secure task with secure ISR
	Interrupting secure task with non-secure ISR
	Scheduling

	Implementation
	MSP430
	Software-based implementation
	Hardware-based implementation
	Hidden registers optimization

	Evaluation
	Results
	Limitations

	Conclusion

	Control Flow Integrity
	Introduction
	Attacks and countermeasures: an arms-race
	Background
	Control Flow Integrity (CFI)
	The need for hardware-based CFI
	Hardware monitor

	Attacker model
	Classical CFI
	Labels
	Shadow Call Stack (SCS)
	Challenges and limitations

	Hardware-based CFI Policies
	Shadow Call Stack (SCS)
	HAFIX: Shadow stack alternative
	Labels
	Table
	Finite State Machine (FSM)
	Heuristics
	Monitoring graph (MG)
	Branch Regulation (BR)
	BB-CFI: Branch Regulation on Basic Blocks
	Branch Limitation (BL)
	Instruction Set Randomisation (ISRAND)
	Signature Modeling (SM)
	Code Pointer Integrity (CPI)

	CFI enforcement via the debug interface
	Implementations
	Limitations

	Comparison of Architectures
	Protection provided
	Requirements
	Overhead

	Conclusion

	SOFIA: Software and Control Flow Integrity Architecture
	Introduction
	Problem Statement
	Threat Model
	System goals

	Architecture
	Control Flow Integrity (CFI)
	Software Integrity (SI)
	Control Flow Integrity with Software Integrity (CFI and SI)
	Blocks with Multiple Predecessors
	Support for blocks with single and multiple predecessors
	MAC Chaining

	Hardware implementation
	Overview
	Block cipher
	Hardware design
	Scheduling the Block Cipher
	Limitations

	Software Implementation
	Toolchain Design
	Toolchain Implementation
	Limitations

	Evaluation
	Security Evaluation
	Hardware Evaluation
	Performance Evaluation
	Practical feasibility in time constrained cyber physical systems

	Conclusion

	SCM: Secure Code Memory Architecture
	Introduction
	Problem Statement
	Threat Model
	System Goal

	SCM Design
	Conceptual Overview
	Architecture

	Prototype Implementation
	Target Platform
	Transactor
	MAC Verification
	Integrity Violations

	Evaluation
	Security Evaluation
	Hardware evaluation
	Performance Evaluation

	Conclusion

	Conclusions
	Conclusions
	Future work

	Bibliography
	Curriculum Vitae
	List of publications

