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Abstract The coarsening behavior of three-phase materials, such as eutectic
alloys, is of high technological interest. In this study, 3-D ternary three-phase
polycrystalline materials were modeled to study the effect of bulk diffusion and
phase arrangement on the coarsening kinetics. The diffusion mobilities were
defined to be different in the three phases. By varying the phase boundary
and grain boundary energies, microstructures with different phase arrange-
ments were obtained, in which the different types of grains had a tendency
to alternate or cluster. In all cases, a regime was reached where the average
grain size follows a power growth law with growth exponent n = 3, indicating
bulk diffusion controlled coarsening. The overall growth rate and that of the
individual phases were clearly affected by the phase arrangement, the magni-
tude of the phase boundary energy and the diffusion mobilities of the different
phases. In all cases, the phase with the lowest diffusion mobility showed the
highest growth rate and on average a larger number of grain faces. While the
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average number of grain faces became constant in time in systems with con-
stant grain boundary energy, the average number of grain faces continued to
increase during the whole simulation time when the grain boundary energy
was misorientation dependent.

Keywords phase-field method · multi-phase coarsening · interfacial energy ·
diffusion mobility · three-phase microstructure · ternary system

1 Introduction

As the functionality demands on engineering materials continue to rise, multi-
phase materials become more popular. A number of technologically important
alloys, composites and precipitated hardened materials consist of phases with
different properties. In these materials, the desired functional and mechanical
properties can largely be tailored by the properties of the individual con-
stituent phases. Moreover, some material properties, including the mechanical
and electrical properties, are influenced by the grain size and spatial arrange-
ment of the phases. Many of the enhanced properties in multi-phase materials
are mainly attributed to the inherently different phase boundary and grain
boundary properties.

Although coarsening in multi-phase materials involves both, Ostwald ripen-
ing and grain growth, several previous studies performed for dual-phase coars-
ening of systems with a conserved volume fraction of phases in 2-D [1–6]
and 3-D [7–11] and recent coarsening simulations for 3-D three-phase systems
[12], confirm that Ostwald ripening is the controlling coarsening mechanism
at steady-state coarsening.

In multi-phase materials and under diffusion controlled growth, the struc-
tural evolution is then mainly controlled by the chemical energy, interfacial
energies, volume fractions of the phases and the diffusivities of the different
chemical elements in the constituent phases. When the bulk chemical energy
and volume fraction of phases are assumed to be equal, the microstructural
evolution is governed by the grain boundary and interface energies and the dif-
fusivities in the different phases. Sheng et al. [13] performed 2-D simulations for
a two-phase system, formed by spinodal decomposition, with highly disparate
diffusion mobilities for the 2 phases and obtained a different growth behavior
for different ratios of the diffusion mobilities in the two phases. The evolved
phase arrangements during the microstructural evolution was not meaning-
fully affected by the diffusion mobilities of the phases in this study. Moreover,
for a 3-D ternary three-phase system with different diffusivities in the differ-
ent phases, but equal grain boundary and interface energies, Ravash et al. [12]
showed that the phase with the lowest diffusivity coarsens fastest and the two
other phases grow at a nearly equal rate. Chang et al. [14, 15] and Holm et
al. [16] studied the effect of the interfacial energy ratio (this is the ratio of the
energy of the boundaries between grains of the same phase and that of bound-
aries between grains of dissimilar phases) on the microstructure evolution for
two-phase systems. They found that the interfacial energy ratio determines
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largely the grain topology, phase arrangement and coarsening kinetics in a
microstructure.

So far, the effects of different diffusivities in the different phases and those
of phase arrangement on the evolving morphology of a multi-phase system have
not been considered simultaneously. Moreover, practical conclusions from 2-D
two-phase systems to 3-D three-phase systems may not be relevant.

In the present study, the microstructural evolution in 3-D three-phase sys-
tems was simulated considering different phase arrangements and assuming
different diffusion mobilities in the different phases. A ternary system is consid-
ered, since it follows from Gibbs phase rule that at least 3 components should
be present to have 3-phase regions in a phase diagram at given temperature
and pressure. Different phase arrangements are obtained by using different in-
terfacial energy conditions. If σgb is the energy of boundaries between grains
of the same phase and σpb represents the energy of boundaries between grains
of dissimilar phases, the interfacial energy ratio is defined as ER = σgb/σpb.
Simulations were conducted for microstructures with (a) phase boundary en-
ergy smaller than grain boundary energy (ER = 1.78), (b) phase boundary
energy larger than grain boundary energy (ER = 0.566) and (c) misorienta-
tion dependent grain boundary energy with σgb,max = σpb (0.06 < ER ≤ 1),
assuming a Read-Shockley misorientation dependence. For cases (a) and (b),
the ER ratio was chosen so that there is a considerable difference between the
grain boundary and interface energy to observe an obvious effect on the spa-
tial distribution of the phases, but with 0.5 < ER < 2 to avoid the possibility
of complete wetting of certain boundaries and obtain fully connected grain
structures. For case (c), the lowest ER-value is obtained for a grain boundary
between two grains with a misorientation of 0.18◦, the lowest misorientation
that is resolved in the simulations. In this system, there is a possibility to
observe complete wetting of an interphase or high-angle grain boundary, as
it is energetically favorable to replace such a boundary by 2 low-energy grain
boundaries when locally present in the structure. The grain size and topology
evolution and the grain size and topological class distributions were deter-
mined from the simulated microstructures. Moreover, the growth behavior of
the individual phases is analyzed considering the selected diffusion mobilities
and different phase arrangements. The results are also compared with results
from a previous study [12] for a system with the same chemical and diffusion
properties as those considered in the present study, but an equal energy for
the phase and grain boundaries (i.e. ER = 1).

2 Model and Methodology

2.1 Model

An extended description of the model used in this study was presented before
[12]. Only a summary is given here.
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To represent the different grain orientations of the different phases, large
sets of non-conserved phase-field variables, η1,1,. . . ,ηp1,1; η1,2,. . . ,ηp2,2; . . . ,
η1,N ,. . . ,ηpj ,N , were used, with pj the number of grain orientations of phase j
and N the number of phases present in the system. The second index refers to
the phase and the first index to the grain number or grain orientation within
each phase. A ternary system is considered and the local composition at each
point of the system is described using two conserved phase-field variable cs,
with s = 1, 2, representing the local molar fractions of the two independent
components.

The evolution equations of these conserved and non-conserved phase-field
variables were obtained according to the principles of non-equilibrium ther-
modynamics, namely to ensure a monotonous decrease of the Gibbs energy in
time and mass conservation throughout the system, giving for each phase-field
variable ηi, with i = 1 . . . p and p the total number of non-conserved phase-
field variables, N = 3 the number of phases and n = 3 the number of chemical
components,
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and for the two independent conserved composition fields cs,
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∑N
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j
s,r with M j

s,r the interdiffusion mobility of element
s under the chemical potential gradient of element r for phase j.

The model parameters m, γi,j and κ in (1) are related to the interfacial
energy σi,j and width of the diffuse interface assumed in a phase-field repre-
sentation li,j of a boundary between two grains as

σi,j = g(γi,j)
√
κm (3)

and

li,j =
√
κ/(mf0,max(γi,j)) (4)

with g(γi,j) and f0,max(γi,j) functions that were evaluated numerically as de-
scribed in Ref. [17] (the function values are given in the additional material
for a wide range of γi,j-values).
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The model parameters Gl, c
0
k,l and A relate to the bulk chemical energy of

phase l as a function of the composition variables c1 and c2. The bulk chemical
energy is formulated following the model of Folch and Plapp [18]. Since for the
present simulations the equilibrium compositions are taken far from the dilute
limit and coarsening phenomena are considered - the composition remains thus
close to the equilibrium composition - a parabolic composition dependence can
be applied to simplify the model equations. These parameters must be chosen
so that the equilibrium compositions of the phases are reproduced.

The functions Hl, where the suffix l refers to the three phases, are used
to interpolate between the chemical energies of the different phases and are
taken from the multi-phase model of Moelans [19],

Hl(ηi,k) = φl =

∑pl
i=1 η

2
i,l∑N

k=1

∑pk
i=1 η

2
i,k

(5)

where k is taken over the different phases and i over all grain orientations of
phase k, and which equals per definition the phase fraction φl of phase l.

The kinetic coefficient L is formulated as a function of the kinetic constants
related to the different grain boundary and interface boundary mobilities as

L =
[∑p
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, with p again the total

number of non-conserved phase field variables used in the model. This expres-
sion is chosen so that at each interface where only 2 non-conserved phase field
variables have a value different from 0 (η(k 6=i,6=j) = 0), L = Li,j with i and
j the numbers of the 2 phase-field variables representing the adjacent grains.
For an interface between two grains of the same phase, Li,j is related to the
grain boundary mobility µi,j as Li,jκ = σi,jµi,j [17]. The Li,j for the interfaces
between grains of a different phase are chosen to obtain diffusion controlled
growth [19].

In the equation for the conserved concentration fields, M j
s,r is defined as

the interdiffusion mobility of element s in phase j under the chemical potential
gradient of element r [20]. The elements in the diffusion mobility matrix can
be expressed as a function of the atomic mobilities of the individual elements.
In this study, the atomic mobilities are assumed to be equal for all elements
within a phase, i.e. β(1),j = β(2),j = β(3),j = β(1,2,3),j , but different in the
different phases. For a ternary system, and considering a number-fixed frame,
the matrix of diffusion mobilities in each phase Mj has then the form

Mj =

[
c1(1− c1) −c1c2
−c1c2 c2(1− c2)

]
·
β(1,2,3),j

Vm
, (6)

with c1 and c2 the molar fractions of the independent components.

2.2 Implementation

Three-dimensional grain growth and coarsening simulations for polycrystalline
structures containing a statistically relevant number of grains based on equa-
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tions (1) - (2) are extremely computationally intensive due to the large num-
ber of phase-field variables for which an evolution equation has to be solved.
Therefore, the bounding box algorithm based on a sparse data structure repre-
sentation as developed by Vanherpe et al. [21, 22] and extended for multi-phase
systems by Ravash et al. [12] was used. Like many sparse data structure algo-
rithms, the bounding box technique exploits the fact that at a given time t and
a given grid point r of the microstructure, only a few phase-field variables ηi
are active, this means that they have a value different from 0. The method of-
fers a significant speed-up for phase-field models for polycrystalline structures
compared to the conventional techniques, as the computational requirements
only scale with the system size and not with the number of phase-field variables
used to represent the microstructure. For the presented simulations, an explicit
finite difference method with Forward-Euler time stepping and a second-order
central scheme for the Laplacian was used to discretize the partial differential
equations (1) and (2).

2.3 Post processing

For analysis of the simulated microstructures, a so-called sharp-interface rep-
resentation was generated from the resulting phase-fields ηi at different time
steps, by taking at each grid point the number of the phase-fields with the
value closest to 1. The grain volume of the different grains was obtained from
this sharp-interface representation as the number of grid points represented by
a same number in the sharp-interface representation multiplied by the volume
of a grid point, i.e. (∆x)3. The grain radius was obtained as the equivalent
radius of a sphere with a volume equal to that of the grain.

2.4 Input parameters

The parametes in the bulk chemical energy were taken as c01,1 = 0.5, c02,1 = 0.3
for phase 1, c01,2 = 0.4, c02,2 = 0.2 for phase 2, c01,3 = 0.6, c02,3 = 0.1 for phase
3, G1 = G2 = G3 = −1× 105 J/m3, and A =5× 108 J/m3.

The atomic diffusion mobilities of elements 1, 2 and 3 were set as β(1,2,3),1/Vm
= 5× 10−13 mol2/(mJs) for phase 1, β(1,2,3),2/Vm = 1× 10−12 mol2/(mJs) for
phase 2 and β(1,2,3),3/Vm = 2 × 10−13 mol2/(mJs) for phase 3. Diffusion will
thus be fastest in phase 2 and slowest in phase 3 with a mobility ratio of 0.2
between the phases 3 and 2, 0.4 between the phases 3 and 1 and 0.5 between
the phases 1 and 2.

For each system, the model parameters κ, m, γi,j and Lgb were calculated
to reproduce in the simulations the selected interface energies σgb and σpb
and grain boundary mobility µgb. Fig. 1 presents the selected energies for
boundaries between grains of the same phase and between grains of dissimilar
phases for the different interfacial energy conditions considered in this paper.
In each simulation, grains with an orientation number ranging between [0 499],
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[500 999] and [1000 1499] belong to phase 1, 2 and 3, respectively. In this figure,
each color or symbol represents one phase and the given values represent the
σ/σmax associated with the interface between the first selected grain of each
phase (namely grains with types 0, 500 and 1000) and the other grains in the
system.

For all simulations, the maximum boundary energy was taken σmax = 0.25
J/m2 and the diffuse interface width of these boundaries was taken `i,j =
3×10−7m, resulting in the model parameters κ = 5.62×10−8 J/m, γmax = 1.5
andm = 5×106 J/m3. This is for the grain boundary energy for ER = 1.78, the
interphase boundary energy for ER = 0.566 and for the interphase boundary
and high angle grain boundary energies for 0.06 < ER ≤ 1.

For ER = 1.78 and 0.566, the minimum boundary energy is σmin = 0.14
J/m2, resulting in γmin = 0.68 and a diffuse interface width `i,j = 5.3×10−7m
for these boundaries.

These values for σmax and σmin were chosen to obtain the intended ER-
values and independent of a particular material system. They are slightly
lower, but of the same order of magnitude, than the experimentally measured
and MD calculated values of high angle grain boundary energies reported for
a number of fcc materials [23]. For the considered model, the width of the
diffuse boundaries between grains and phases is smaller for boundaries with
a higher energy. Therefore, the diffuse interface width of the boundaries with
energy σmax = 0.25 J/m2 is taken as `i,j = 3 × 10−7m = 5 × ∆x (∆x is
specified further). It was verified before for grain growth [24] and individual
grain boundary [17] and diffusion controlled phase boundary [19] migration
that accurate velocities (i.e. with a relative error smaller than 5% compared
to the analytically expected values for particular grain structure geometries)
are obtained for ` ≥ 0.5∆x. The diffuse interface width of the boundaries with
lower energy follows from this choice and will be slightly larger; they are given
by Equation (3).

In the system with misorientation dependent grain boundary energy (0.06 <
ER ≤ 1), the crystallographic orientations of the grains are assumed to be
identical in one direction and random in the plane perpendicular to this direc-
tion. For certain types of deformation processes, such a structure is observed
after mechanical deformation in metals, for example, compression of fcc met-
als causes a fiber texture with 〈110〉 aligned with the fiber axis [25]. In this
study, however, the assumption was made merely to simplify the formalism
while still having the opportunity to study the effect of varying grain bound-
ary properties within the phases. A crystal with 4-fold symmetry and pj = 500
grain orientations for each phase were assumed resulting in an orientation dis-
cretization 4(θ) = 90◦/pj = 0.18◦ within one quadrant. The misorientation
angle θ associated with the boundary between two neighboring grains assigned
by orientations i and j is calculated using

θi,j =

{
4θ · |j − i| if |j − i| ≤ pj

2

−90◦ +4θ · |j − i| if |j − i| > pj
2

. (7)
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For 4-fold symmetry θi,j ranges from −45◦ to +45◦. The minimum interfacial
energy ratio ER = 0.06 corresponds to the boundaries with the lowest misori-
entation angle (≤ 0.18◦). The corresponding boundary energies σi,j = σgb(θi,j)
are obtained, assuming the Read-Shockley dependence for low misorientations,
using Eq. (8) [26], giving

σgb(θ) =

{
σm
|θ|
θm

(
1− ln

( |θ|
θm

))
if |θ| < θm

σm if |θ| ≥ θm
, (8)

where |θ| < θm and |θ| ≥ θm correspond to the low-angle and high-angle
boundaries. In the presented simulation, θm = 15◦ and σm = 0.25 J/m2 are
assumed. The grain boundary energy varied between σ = 0.016 J/m2 (θi,j =
0.18) and σ = 0.25 J/m2 (θi,j ≥ 15). The γi,j parameters reproducing this
Read-Shockley dependence were calculated using the matlab script given in
the additional material.

For all grain boundaries between grains of a same phase, a grain boundary
mobility µgb = 2.25×10−12 m2s/kg was assumed, giving Lgb = 10−5 m3/Js for
the grain boundaries with σgb = 0.25 J/m2 and Lgb = 0.56 × 10−5 m3/Js for
boundaries with σgb = 0.14 J/m2 for the kinetic coefficients in the Ginzburg-
Landau equations. The Lgb(θi,j) for the system with misorientation dependent
grain boundary energy was calculated such that the grain boundary mobility
was the same and equal to µgb = 2.25× 10−12 m2s/kg for all misorientations
using the matlab script given in the additional material. The grain bound-
ary mobility of materials can vary over orders of magnitude, depending on
amongst others temperature, the amount of solutes segregated to the boundary
and boundary orientation. In the present study, the grain boundary mobility
was chosen based on computational considerations, namely sufficiently large
to reach the steady-state regime with growth controlled by long range bulk
diffusion within the accessible simulation time, however not larger to allow for
a reasonably large time step.

The kinetic coefficients for boundaries between grains of different phases
were taken from previous work [12] and estimated to approach diffusion con-
trolled phase boundary movement [19]. The kinetic coefficient for a boundary
between grains of the phases 1 and 2 was taken as L12 = L21 = 4.7 × 10−5

m3/Js, between the phases 1 and 3 as L13 = L31 = 2.2 × 10−5 m3/Js and
between the phases 2 and 3 as L23 = L32 = 3.7× 10−5 m3/Js.

For all simulations, a threshold value for the bounding box of ε = 10−5, a
system size of 256 × 256 × 256 grid points with grid size 4x = 6 × 10−8 m
and 4t = 1.8× 10−4 s were chosen.

2.5 Initial microstructure

To generate initial polycrystalline 3-phase microstructures, the following steps
were taken. First, for every phase field variable ηi, a grid point Ci was chosen
according to a uniform distribution over the domain of the microstructure.
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Second, a spherical grain region with small radius was defined around each
center Ci. Next, for every spherical grain region, the corresponding phase
field variable ηi was initialized such that ηi equals 1 inside and 0 outside
the respective grain region. Then, the phase-field equations for grain growth
of a single-phase material were solved using the bounding-box algorithm as
explained in [21]. Once the polycrystalline microstructure was fully developed,
it was used as the initial microstructure for the three-phase system simulation
by distributing the grains among the phases based on their numbers, namely
1-499 to phase 1, 500-999 to phase 2 and 1000-1499 to phase 3. Finally, the
composition variables at each grid point were set equal to the equilibrium
composition of the phase present at that point. Fig. 2(a) represents such an
initial microstructure composed of phases 1, 2 and 3.

Large-scale simulations were performed for a cubic system containing three
solid phases each with volume fraction fp ≈ 0.333 for a total simulation time
of t = 300×103∆t. During the simulation time, the number of grains decreases
from approximately 1500 to approximately 150-200 grains, which is a consider-
able number of grains and evolution time. Considering the recent findings from
normal grain growth simulations [15, 27, 28], however, a larger initial structure
may be required to draw firm conclusions on the true steady-state character-
istics. Since 3-phase coarsening may be affected by several processes (not only
grain boundary movement, but also diffusion controlled phase-boundary move-
ment), we can expect that an even longer time and substantially more grains
will be required to obtain true steady-state behavior. It is possible, for exam-
ple, that the systems pass several regimes with close to self-similar behavior
before true steady-state is reached depending on the relative kinetics of grain
boundary and interphase boundary movement. With the current knowledge on
multi-phase multi-component coarsening, it is impossible to predict how large
the compute power required to investigate such a scenario is. Therefore, we
have chosen the initial number of grains as large as possible but such that the
simulations can be performed with the available compute power within a rea-
sonable time. For all considered systems, we find an extended regime where the
average grain size as a function of time evolves according to the power growth
law with growth coefficient 3, which makes it anyway interesting to compare
the growth behavior within this regime for different system properties.

To improve the statistical relevance of the conclusions, all simulations were
performed for three different initial structures, each containing an initial num-
ber of 1500 grains, and the measured properties of the grain structures were
averaged over the three simulations for identical system properties but with
different initial grain structure, every 2000 time steps.
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3 Results

3.1 Microstructural features

Fig. 2 presents 3-D images and 2-D sections of the simulated microstruc-
tures for ER = 1.78 (a), ER = 0.566 (b) and 0.06 ≤ ER ≤ 1 (c) at time
t = 150 × 103∆t. From Fig. 2a, it is evident that grains of different phases
evolve next to each other in an alternating pattern for ER = 1.78. On the
other hand, the microstructure attained for ER = 0.566 is characterized by
a continuous clustering of grains of a same phase (see Fig. 2b). In the sim-
ulation with misorientation dependent grain boundaries (0.06 ≤ ER ≤ 1),
there is clearly tendency to form clusters of grains of a similar phase, as well
(Fig. 2c). Moreover, the elongated and curvy boundaries are characteristic for
this microstructure. We even observe isolated grains.

Quadruple junctions consisting of 2 grain and 2 phase boundaries, persist-
ing for a considerable time are seen in the simulations for ER = 1.78 (indicated
with the white boxes in the 2D section in Fig. 2a), but not in the simulations
for the other ER conditions considered in this study. In the system with mis-
orientation dependent grain boundary energy (0.06 < ER ≤ 1), quadruple
junctions formed of 4 grain boundaries can be observed.

3.2 Grain coarsening

The mean grain radius as obtained from the simulations as a function of time
was fitted with a power growth law,

〈rp(t)〉n − 〈rp(0)〉n = Kt (9)

where 〈r〉, n and K denote the average grain radius, growth rate exponent and
rate constant, respectively.

For all 3 systems a constant growth exponent n = 3.01 ± 0.02 is ob-
tained over an extended simulation time. The rate constants K varied with
the interfacial energy conditions: K = 60 × 10−21 ± 2 × 10−21 was obtained
for ER = 1.78, K = 121 × 10−21 ± 6 × 10−21 for ER = 0.566 and K =
135× 10−21± 3× 10−21 for 0.06 < ER ≤ 1. The error indicates the maximum
deviation from the mean value over the 3 simulations performed for each in-
terfacial energy condition. For ER = 1 and all system properties the same as
in the current simulations, K = 102×10−21±1×10−21 was found in previous
work [12]. As shown in Fig. 3, the simulation for ER = 1.78 where σpb = 0.14
and with alternating phases, shows a clearly lower growth rate than the other
systems, for which σpb = 0.25. The K-value obtained for ER = 1.78 is also
considerably lower than those obtained for the other conditions.

Comparison of the growth rate of the individual phases over the time in-
terval where n = 3 (Fig. 4), shows that phase 3 has the highest growth rate of
the three phases for all considered interfacial energy conditions. When grains
of different phases alternate (ER = 1.78), phase 1 and phase 2 grow at a fairly
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similar rate, while in the case of clustering (ER = 0.566, 0.06 < ER ≤ 1),
phase 2 has a higher growth rate than phase 1. The different growth rates
of the phases are related to the different diffusion mobilities in the different
phases.

The grain size distributions obtained for the different interfacial energy
conditions, always normalized with the average grain size, are presented in
Fig. 5. They are obtained by averaging the distributions measured between
t = 100 × 103∆t and t = 200 × 103∆t and averaging over the 3 simulations
for each ER value. Over this time interval, the grain growth exponent is close
to 3 and almost constant, the normalized grain size distributions tend to be
self-similar and topologically self-similar evolution is found for the 3 interfa-
cial energy conditions considered in the figure (see section 3.3 ), while there
are still sufficient grains remaining in the system to obtain meaningful results.
Since no topologically self-similar evolution was found for 0.06 < ER ≤ 1,
where grain boundary energies are misorientation dependent, the grain size
distribution was not included in this figure. For all three cases, the grain size
distributions are found to be symmetrical around their mean, as also found
for 3D simulations of two-phase coarsening for equal volume fractions of the 2
phases [7, 10]. There are no significant differences between the grain size distri-
bution curves obtained for ER = 1, ER = 1.78 and ER = 0.566. It is possible
however that smaller deviations in the shape of the grain size distributions
may become clear if considerably larger grain structures can be considered.
For comparison, the grain size distributions obtained from 3D simulations for
2-phase coarsening with equal volume fraction of the 2 phases (fp = 50%) of
Poulsen et al. [7] and from experimental data of two-phase coarsening with
fp = 52% and fp = 78% from Rowenhorst et al. [29] for Sn-rich particles dis-
persed in a Pb-Sn eutectic matrix are added in Fig. 5, showing that the shape
and range of the steady-state normalised grain size distributions obtained for
two- and three-phase coarsening in conserved systems are very similar.

Fig 6 shows for ER = 1.78 and ER = 0.566 the grain size distribution
of each phase normalized with respect to the mean grain size of that phase.
They are also obtained by averaging the distributions measured between t =
100× 103∆t and t = 200× 103∆t and averaging over the 3 simulations for the
same ER-value. Although the statistics obtained for the individual phases are
much lower than those for the whole system, it seems that for the considered
systems with equal volume fractions of the 3 phases, the normalised grain
size distributions of the individual phases have a similar shape as the overall
normalised grain size distribution.

3.3 Topology evolution

Fig. 7 shows the evolution of the mean number of grain faces for all simulations
over the total simulation time (the curves in the upper part of the graphs). For
ER = 1.78 and ER = 0.566, the average number of grain faces evolves towards
a constant value which is measured to be 〈F 〉 = 14.12 ± 0.1. The measured
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values are averaged over the last 105 time steps of the simulations. A same
value was found in our previous work for ER = 1 [12]. For 0.06 < ER ≤ 1, the
average number of faces increases from 〈F 〉 = 14.29 to 〈F 〉 = 18.94 during the
considered simulation time, indicating that the evolution is topologically not
self-similar, although fitting of the growth curve gave n = 3 over a considerable
simulation time. The curves in the lower part of the graphs represent the
average values of faces shared between grains of the same phase and shared
with grains of a different phase. When comparing the average number of grain
faces for the different phases, it is clear that phase 3 has the highest number
of faces in all cases.

For ER = 1.78, the average number of faces for phase 1 and phase 2
〈F1〉 = 〈F2〉 = 13.50 ± 0.03 are equal and considerably smaller than that of
phase 3 〈F3〉 = 15.92. Furthermore, it is noted that the mean numbers of faces
of phase 3 shared with phases 1 and 2 are almost equal and the most frequent
types of interface, while the mean number of faces shared between grains of
phase 3 are lowest. In addition, the number of grain faces which are shared
between phase 1 and phase 2 are almost equal (see Fig. 4), which is expected
as they exhibit fairly similar growth behavior. These observations are very
similar to our previous findings for ER = 1 [12].

For ER = 0.566, the average number of faces for phase 1 〈F1〉 = 13.46,
phase 2 〈F2〉 = 14.26 and phase 3 〈F3〉 = 14.64 are obtained. Here, phase 2
shows a higher average number of faces than phase 1, but still lower compared
to that of phase 3. This can be correlated with the results of the average grain
size evolution of the different phases which shows that phase 2 grows at a higher
rate than phase 1 for ER = 0.566. The mean number of faces shared between
grains of the same phase is also higher than for ER = 1 and ER = 1.78. This
is in good agreement with the clustering feature of the evolved microstructure
seen for ER = 0.566.

Finally, for 0.06 ≤ ER ≤ 1, the maximum increase in average number of
faces is seen for phase 3 while the least increase is seen for phase 1. A more
detailed study on the evolution of the average number of faces for each phase
reveals that the largest increase is seen for boundaries shared between grains
of phase 3, namely F33.

Figure. 8 shows the normalized grain size in the different topological classes
for the simulated microstructures with different interfacial energy conditions at
t = 250×103∆t. It should be noted that the normalization for each simulation
is made with respect to the average grain size in that particular simulation.
It is evident that for most of the topological classes, the normalized grain size
associated with each class is smaller for the simulation with 0.06 ≤ ER ≤ 1
than that of the other simulations. The average number of faces for grains
with a size equal to the average grain size is 15.5, 15.9 and 15.8 for ER = 1,
ER = 1.78 and ER = 0.566, respectively, and 17 for the system with varying
grain boundary energies 0.06 < ER ≤ 1.
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3.3.1 Evolution of the grain boundary characteristics for misorientation
dependent grain boundary energy

For 0.06 < ER ≤ 1, the area-weighted misorientation distribution function
continues to evolve during the simulation. In the initial microstructure, grain
orientations were assigned randomly and consequently the initial misorien-
tation distribution is close to uniform. During grain evolution, the fraction
of low misorientation boundaries (those with the lowest energy) increases
in time, while the fractions of boundaries with another misorientation de-
creases in time. The area-weighted misorientation distribution obtained at
t = 250× 103∆t is shown in Fig. 9. Since the applied boundary energy skim is
symmetric, the grain boundary properties can be studied within the range of
θ ∈ [0, 45◦] with ∆θ = 0.18◦. Similar evolution was observed in single-phase
systems with misorientation dependent grain boundary energies [30–32]. It is
unclear from the present simulations whether the evolution of the misorienta-
tion distribution function was stagnated by the end of the simulation time.

4 Discussion

4.1 Microstructural features

The presented simulation results show clearly that the characteristics of the
evolved microstructures are affected by the interfacial energy ratios. For ER =
0.566 and 0.06 < ER ≤ 1, grains of a same phase tend to cluster, while for
ER = 1.78, grains of different phases tend to alternate in the microstructure.
Furthermore, in our previous study [12] on the coarsening of a similar 3-phase
system with ER = 1, we also found that grains of different phases have the
tendency to alternate. These findings are in essence similar to those obtained
in several studies on two-phase coarsening in 2-D [14, 16, 33] and 3-D [7,
10]. For example, for 2-D grain structures, Holm et al. [16] observed that
for ER < 1, the microstructure favors interfaces shared between grains of
the same phase while for ER > 1, it favors the interfaces shared between
grains of dissimilar phases. Furthermore, for 3D 2-phase systems, Poulsen et
al. [7] found for ER = 0.8 a tendency for clustering and Yadav et al. [10]
found for ER = 1 that phases rather have the tendency to alternate. The
fact that the same observations are made about the tendency to cluster or to
alternate for conserved and non-conserved systems and two- and three-phase
systems indicates that this feature is determined by the ER-value (i.e the
interphase boundary and grain boundary energies), while the chemical and
diffusion properties of the individual phases seem not to have an important
effect on the mutual spatial arrangement of the phases.

Extending Cahn’s [33] analysis and the findings from other studies [14–
16] on the stability of triple and quadruple junctions for 2-phase systems to
3-phase systems, gives that

(i) for ER <
√

2 u 1.41 only triple junctions are stable,
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(ii) quadruple junctions are stable for ER ≥
√

2,
(iii) type 111 (this is a triple junction in which 3 grain boundaries between
grains of a same phase, here phase 1, end), 222 and 333 triple junctions
are only stable for ER ≤

√
3 u 1.73, and

(iv) for ER >
√

3 triple junctions (other than type 111, 222 and 333)
coexist with quadruple junctions,

which are all confirmed by our simulation results. Analysis of the 2-D sections
of the simulated microstructures in Figure 2 namely shows that while for ER =
0.566 and ER = 1 (see [12]), triple lines are the only stable type of junctions,
for ER = 1.78, both triple and quadruple lines exist, as marked with white
boxes in the 2-D section in Figure. 2a. Moreover, for ER = 1.78, triple lines
of type 111, 222 and 333 are not stable, and when occurring, were penetrated
by another phase, as can be observed in Figure. 2a, where a triple line of type
111 is destabilized and being penetrated by another phase (indicated with the
red box). In the simulations for 0.06 < ER ≤ 1, the grain boundary energy
varies over a sufficiently large range, so that quadruple junctions formed of 2
high angle grain boundaries and 2 low angle grain boundaries can be stable,
namely when σhigh/σlow >

√
2, which is also observed in the simulations.

Furthermore, in the evolved microstructure for 0.06 ≤ ER ≤ 1 (Figure. 2
c), an interesting feature is found where the formation of one grain inside
another one occurs, as marked by the white frames. This is devoted to the
fact that all grain boundaries have the same mobility in this simulation study,
as the grain boundaries with low energy move consequently relatively slow.
In reality, low angle grain boundaries have typically also a lower mobility and
will thus migrate even slower, increasing the frequency of this feature in the
microstructure.

4.2 Coarsening mechanism

The grain growth exponent n ≈ 3 measured for the different simulations shows
that for all considered interfacial energy conditions, grain coarsening is mainly
controlled by long range diffusion (Ostwald ripening) and that a reduction
of the boundaries between different phases is the controlling driving force for
coarsening. Since all simulations consider phases with a similar thermodynamic
behavior around the equilibrium composition (i.e. the second derivative of the
free energy is equal for all phases, namely equal to A in Eq. 2) and equal
volume fractions, the coarsening rates of the individual phases are determined
by the diffusion mobilities in the different phases and the phase arrangement
developed during coarsening.

In [12], where only the condition ER = 1 was considered, a difference in
diffusion mobility in the different phases was found to be the responsible for
the different growth rates of the different phases. Phase 3, the phase with the
lowest diffusivity, i.e. 0.2 of that of phase 2 and 0.4 of that of phase 1, was
shown to have the highest growth rate, while the phases 1 and 2 were growing
at a nearly equal rate. This was explained by the rate controlling effect of long
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range diffusion. The growth rate of the phases 1 and 2 is namely determined
by the long range diffusion of elements through phase 3, the phase with the
slowest diffusivity. The growth of phase 1 requires long range diffusion through
phases 2 and 3; however, as the diffusion through phase 3 is slower, diffusion
through phase 3 is rate limiting; and similar for phase 2. The growth rate of
phase 3 is determined by the diffusion rate of the elements through phase 1,
which has a lower diffusivity than phase 2, but a higher than phase 3.

In the current study, we have added the effect of phase arrangement, by
changing the ER value, while keeping the diffusivities of the 3 phases the same.
While phase 3 still shows the highest growth rate for all considered interfacial
energy conditions, the growth rate of phases 1 and 2 are found to be equal
only for ER = 1 and ER = 1.78, namely when grains of a different phase
tend to alternate. In the simulations with ER = 0.566 and 0.06 < ER ≤ 1,
where grains of a same phase tend to form chains and clusters, the growth
rate of phase 2 is found to be higher than that of phase 1. These results show
that the spacial arrangement of the phases has an important effect on the
long range diffusion of atoms and the growth behavior of the different phases.
One explanation for this effect could be that the disappearance of another
type grain within a cluster of grains of a similar type is controlled by diffusion
through the major type grains in the cluster. Therefore, a type 1 or 3 grain
within a type 2 cluster will disappear faster than a type 2 or 3 grain within
a type 1 cluster, resulting in a faster growth of type 2 grains in the case of
clustering.

Comparing the growth rate obtained in the different simulations (see Fig. 3)
reveals that the microstructure with ER = 1.78 shows by far the lowest growth
rate and the microstructure with 0.06 < ER ≤ 1 grows at the highest rate.
The differences in the overall growth rate between the different systems can be
related to the different values of the energy of the boundaries between different
phases σpb and the different phase arrangements in the different simulations.
The energy of the boundaries between different phases is the lowest in the
simulation with ER = 1.78, while it has a same value for the 3 other cases
ER = 1, ER = 0.566 and 0.06 < ER ≤ 1 (see Fig. 1). The smaller differences
in coarsening rate between simulations with ER = 1, ER = 0.566 and 0.06 <
ER ≤ 1 are mainly attributed to the different diffusion patterns introduced by
the different phase arrangement in these microstructures. Note that although
the grain boundaries in the simulation with ER = 1 had a higher energy than
those in the simulation with ER = 0.566, and the low energy grain boundaries
when 0.06 < ER ≤ 1, a higher growth rate is obtained for ER = 0.566 and
0.06 < ER ≤ 1, where grains of a same phase tend to form clusters. This
shows that the phase arrangement has a more important effect on the overall
growth rate than the grain boundary energy itself.

In the current study considering only systems with equal volume fractions
of the 3 phases, we did not find a significant difference between the grain size
distributions for ER = 1, ER = 1.78 and ER = 0.566. Phase-field simulations
[7, 10] of coarsening in 2-phase systems, with equal diffusivities in the two
phases, have shown however that the peak of the grain size distribution shifts
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towards lower grain sizes and the distribution seems to be slightly wider for
systems where the volume fractions of the 2 phases is different. If the volume
fraction of one of the two phases is very low, e.g. a volume fraction of 10%, the
distribution becomes bimodal. Similar effects can be expected for the grain size
distribution of 3-phase systems with different volume fractions of the phases.
The current modeling approach would be particularly suited to study in the
future the influence of different volume fractions of the different phases on the
coarsening behavior and grain size distribution in 2- and 3-phase systems and
the effect of different diffusivities in the different phases on this.

4.3 Topological evolution

The evolution of the mean number of grain faces in the microstructures with
ER = 1 (see [12]), ER = 1.78 and ER = 0.566 reveals that the mean number
of faces does not change in time over de considered regime, for the overall
microstructures as well as for the individual phases. In all 3 cases with constant
grain boundary energy within the phases, the average value of grain faces is
found to be 〈F 〉 = 14.12±0.01, which is almost similar to the average number
of grain faces obtained from 3-D simulations for dual phase materials with
〈F 〉 = 14.09± 0.05 as determined by Poulsen et al. [7] and 〈F =〉14.13± 0.14
for 50-50 percent volume fractions of the 2 phases by Yadav et al. [10]. This is a
slightly higher value than the average number of grain faces typically obtained
for single phase materials by Rowenhorst et al. [29] and Krill and Chen [34],
where 〈F 〉 = 13.7. Since, Yadav et al. obtained 〈F 〉 = 13.7 for non-conserved
growth and 〈F 〉 = 14.09± 0.05 for conserved growth under similar simulation
conditions, we conclude that the average number of phases is different for
conserved and non-conserved growth, but is not affected by the number of
phases involved or the diffusion properties of the phases.

5 Conclusion

In this study, three-dimensional phase-field simulations were performed to
study the coarsening behavior of ternary 3-phase materials. The effects of
the diffusivities of the individual phases and of the spatial arrangement of
the phases were analyzed. Different phase arrangements were obtained using
different interfacial energy ratios ER, defined as the ratio of the energy of
the interphase boundaries and grain boundaries. A microstructure with the
phase boundary energy smaller than the grain boundary energy (ER = 1.78),
a microstructure with the phase boundary energy larger than the grain bound-
ary energy (ER = 0.566) and a microstructure with misorientation dependent
grain boundary energy within the phases with the maximum grain boundary
energy equal to the phase boundary energy (0.06 < ER ≤ 1) were considered.
The results from this work were also compared with results from previous work
considering a microstructure with equal energy for the phase boundaries and
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grain boundaries (i.e. ER = 1) and the same thermodynamic and diffusion
properties as the systems considered in this work.

We found that for the interfacial energy ratios ER = 1.78 and ER = 1,
different phases tend to alternate in the microstructure and for ER = 0.566
and 0.06 < ER ≤ 1 grains of a same phase tend to cluster.

For all cases, a growth rate exponent of n ≈ 3 was obtained, indicating
long range diffusion controlled growth, but different average growth rates were
found, which was attributed to the different values of the energy of the phase
boundaries and the different phase arrangements. In all cases, the phase with
the lowest diffusivity had the highest growth rate and on average a larger
number of grain faces. The growth rate of the other 2 phases was equal in the
cases where different phases tend to alternate and different in the cases where
grains of a same phase tend to cluster, showing the effect of phase arrangement
on the coarsening kinetics of a microstructure.

In the microstructures with ER = 1, ER = 1.78 and ER = 0.566, the mean
number of grain faces evolved towards a value that is constant in time and
close to the mean number of faces found in 3-dimensional 2-phase coarsening
simulations, revealing topologically self-similar growth behaviour. However,
in the microstructure with misorientation dependent grain boundary energy,
0.06 < ER ≤ 1, the average number of grain faces continued to increase. A
longer simulation time using a substantially larger domain and higher number
of grains is required to further verify this effect.

The presented results show that the applied modeling approach is par-
ticularly suited to study the effect of various parameters on the coarsening
behavior of three-phase systems. Especially interesting for further work are an
investigation of the combined effects of different volume fractions and different
diffusivities for the different phases on the growth characteristics of the indi-
vidual phases and the overall grain structure, as well as, a study of the effect of
the grain boundary mobility on the grain structure evolution and coarsening
characteristics during initial transient growth, i.e. in the time before steady-
state diffusion controlled growth is reached. Furthermore, the model has the
possibility to include more than 3 phases.
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Fig. 1 The selected interface energies, expressed as σ/σmax with σmax = 0.25 J/m2 for
the considered structures with ER = 1.78, ER = 0.566 and 0.06 < ER ≤ 1. Each color or
symbol represents one phase and the given values represent the interface energy between
the first selected grain of each phase (namely grains with types 0, 500 and 1000) and the
other grains in the system.
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a)

b)

c)

Fig. 2 3-D images with 2-D cross-section of the evolved microstructures for (a) ER = 1.78
at time t = 200× 103∆t, (b) ER = 0.566 at time t = 150× 103∆t and (c) 0.06 < ER ≤ 1
at time t = 150 × 103∆t. The white squares indicate stable quadruple junctions. The red
square indicates an unstable triple junction of the type 111 penetrated by another phase.
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Fig. 3 Mean grain radius as a function of time as obtained in the different simulations
within the time frame 105 ×∆t to 3 · 105 ×∆t : curve 1 was obtained in previous work for
ER = 1 [12] and is added for comparison with the curves obtained in this work, curve 2 is
obtained for ER = 1.78, curve 3 for ER = 0.566 and curve 4 for 0.06 < ER ≤ 1. Broken
lines are the least-square fits of the power growth law with 〈R〉 the mean grain radius and
n the growth rate exponent, as fitted to the data points over a time frame where n = 3
is constant. For curve 2, this constant growth rate coefficient is reached at approximately
105×∆t. For curves 1,3 and 4, the constant growth rate coefficient was obtained at a slightly
later time; therefore the earliest data points in this figure, which were not included in the
fit, deviate slightly from the linear line for these curves.
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Fig. 4 Mean grain size evolution obtained in the simulations for the 3 individual phases
and for the overall microstructure for ER = 1.78, ER = 0.566 and 0.06 < ER ≤ 1.
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Fig. 5 Steady state normalized overall (including all phases) grain size distribution obtained
from the simulations for ER = 1 (taken from [12] for comparison), ER = 1.78 and ER =
0.566. For each system, the grain size is normalized with respect to its mean grain size. For
comparison, the distribution obtained from a simulation of two-phase coarsening with 50%
volume fraction of each phase [7] and experimental data [29] obtained for 2-phase structures
with volume fraction of one of the phases 52% and 78%, respectively, are added.
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a)

b)

Fig. 6 Steady-state normalized grain size distributions of the individual phases 1, 2 and 3
and the overall microstructure for (a) ER = 1.78 and (b) ER = 0.566. The grain sizes of an
individual phase are normalized with respect to the mean grain size of that phase.
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(a)

(b)

(c)

Fig. 7 Evolution of the mean number of grain faces for phase 1, 2 and 3 and the overall
microstructure obtained in the simulations for (a) ER = 1.78, (b) ER = 0.566, and (c)
0.06 ≤ ER ≤ 1. The curves in the lower part of the figures represent the average number
of faces shared between the grains of each phase with grains of the same phase or grains
of other phases. For example, F11 is the average number of faces shared between grains of
phase 1 and F12 is the average number of faces shared between grains of phase 1 and phase
2. For ER = 1.78 (a), 〈F11〉 = 3.92 < 〈F13〉 = 4.46 < 〈F12〉 = 5.19, 〈F22〉 = 3.70 < 〈F23〉 =
4.51 < 〈F21〉 = 5.36 and 〈F33〉 = 3.60 < 〈F32〉 = 6.11 < 〈F31〉 = 6.25. For ER = 0.566 (b),
〈F11〉 = 4.17 < 〈F13〉 = 4.61 < 〈F12〉 = 4.73, 〈F22〉 = 4.07 < 〈F23〉 = 4.80 < 〈F21〉 = 5.48
and 〈F33〉 = 4.04 < 〈F32〉 = 5.03 < 〈F31〉 = 5.61. For 0.06 < ER ≤ 1 (c), no topologically
self-similar evolution was found.



Title Suppressed Due to Excessive Length 27

Fig. 8 Normalized grain size as a function of the number of grain faces obtained for the 4
considered interfacial energy ratios (the data for ER = 1 were taken from [12] ). Individual
values are marked with small symbols and the average values over each topological class are
marked with large symbols for the simulations with different interfacial energy conditions.

Fig. 9 Area-weighted misorientation distribution obtained in the simulation with 0.06 ≤
ER ≤ 1 after t = 250× 103∆t. The displayed area fraction on the vertical axis is the ratio
of the total boundary area associated with the misorientation angle corresponding to each
bin with respect to the total grain boundary area.


