
BIVEC/GIBET Transport Research Days 2017

Stochastic User Equilibrium with Full Route Set in
Dynamic Traffic Assignment

Jeroen Verstraete1

Dr. Ir. Willem Himpe1

Prof. Dr. Ir. Chris M.J. Tampère1

Abstract

In current practice, there are two main concepts to handle the route set in an equi-
librium route choice model. The first one is to maintain a fixed route set through-
out the iterations for each OD pair. The second one is to determine the route set
during the execution (every iteration or less), depending on the current congestion
levels. They both have some problems. With a fixed route set, there is a change
that an important route is not considered. While having a flexible route set over
the iterations may negatively affect the convergence, Recursive Logit could re-
solve these issues as it is an implicit route choice model that considers all routes.
It calculates the turning percentages from each node to each destination sepa-
rately. From these percentages, destination based flows can easily be calculated
(in a static assignment). This paper first illustrates how recursive logit converges
very stably to static equilibrium. The main contribution of this paper is the find-
ing of a method to implement a full route choice with recursive logit in a dynamic
assignment. Another contribution is suggestion a few important parameters that
determine the utility for a traveller. Other parameters can easily be added. Finally,
the relation between these parameters and finding a solution is formulated.

Keywords: Dynamic Traffic Assignment, Stochastic User Equilibrium, Recur-
sive Logit, full Route Set

1 Problem

In every traffic assignment model, a route set needs to be chosen. A route set is
a collection of all plausible routes between an origin destination pair. Ideally, the
route set should contain every possible route. Under a fixed route set, a converged
equilibrium is the solution of a convex combination of route fractions, a prob-
lem easily solved by generalized techniques. The problem of finding a consistent

1KU Leuven, L-Mob (Leuven Mobility research Center)

1

BIVEC/GIBET Transport Research Days 2017

route set is on the other hand more difficult and could potentially deteriorate con-
vergence to an equilibrium solution. Considering all routes in the network for
every iteration towards convergence might solve the latter problem.
Let us consider a stochastic user equilibrium (including the extreme case of ap-
proaching zero variance for a deterministic solution), current algorithms work
with an explicit route set, this means that every route considered is explicitly
stated. The opposite of explicit is implicit, an implicit route set does not enu-
merate paths but defines the turns that are plausible. This can be all turns (as will
be done in this research) or only a subset of possible turns (like Dial’s algorithm
proposed in Dial and Voorhees (1971)). In this latter case, the topological order
determines which turns are plausible. Only turns that connect a lower to a higher
node in the topological order are considered. With the change of topological order,
the route set changes. Enumerating all routes in a network with loops is impos-
sible, an explicit route set can not contain all routes in any real network. Some
subset of all possible routes should be chosen. Not including a relevant route in
the subset has a negative impact of the quality of the assignment.
There are two concepts of how to deal with an explicit route set during the iter-
ations of an equilibration algorithm. First, a fixed route set can be used. A fixed
route set is a route set that is determined at the beginning of the algorithm. Work-
ing with a fixed route set gives advantages for computing time and smoothness
of convergence, but increases the chance of missing a relevant route. Second, the
route set can also be flexible. During the execution of the algorithm, the flexi-
ble route set changes, the route set can change every iteration or only when the
algorithm thinks it is necessary, similar to column generation techniques for com-
binatorial problems. A fixed size can be used for the route set, for example only 5
paths, or the size can be variable due to a variety of criteria. An example of such
criterion is the topological order. Frejinger et al. (2009) has an average choice set
size of 9.66, which is constructed by a bias random walk. L Bovy and Ltd TTRV
(2009) uses a branch and bound method to determine the route set.
Let us illustrate by a small example the convergence problems that can arise when
a fixed route set is used. Consider the network in figure 1, the only demand is
from node 1 to node 2. There are two possible routes (note that the links are
unidirectional), namely directly from node 1 to node2 by using link 1 or by using
link 2 and 3. By using high demand and non constant cost functions on the links,
the topological order of the nodes changes while Dial’s algorithm executes. The
resulting poor convergence is plotted in figure 2. How the gap is calculated, will
be explained later. Important now is that a gap is a way to quantify the solution.
The lower the gap, the closer to the equilibrium.

2

BIVEC/GIBET Transport Research Days 2017

Figure 1: A simple network. (Black
numbers represent the node numbers,
coloured numbers the link number.)

Figure 2: Convergence of the Dial algo-
rithm, a ’o’ indicates only one route is in
the route set, while a ’.’ indicates both
routes are in the set.

A solution to this problem is working with a full route set, which considers all
possible routes in each iteration. Due to the fact that in many networks, an infinite
number of routes exists, the route set will be implicit. This means that not every
route in the route set is explicitly written. Bell (1995) formulated alternatives to
Dial’s logit assignment algorithm, this inspired Fosgerau et al. (2013) to formulate
the recursive logit.
The idea of Bell is simple, let W be a matrix of weights constructed as follows:
wn,m = exp(−α ∗ Costn,m). Then W expresses the weights between each pair
of two links directly (with a weight of 0 if the path doesn’t exists). Bell shows
then that W 2 expresses the combined weights of all the routes between each pair
of links consisting of exactly 2 links. The combined weights of all routes between
each pair of links consisting of any number of links is W + W 2 + W 3 + . . . =
(I − W)−1 − I . This can only be calculated if (I-W) can be inverted, thus not
every network (with its specific parameters) can have such combined matrix of
weights. The probability that a link k (connecting node r to node s) is used for an
OD-pair i to j can be calculated by Pijk = wir ∗ exp (−α ∗ Costk ∗ wsj/wij). The
path choice is thus reduced to a sequential link choice model.
Fosgerau more explicitly states the conditional probability for a traveller n going

3

BIVEC/GIBET Transport Research Days 2017

to a destination d will use link k given the traveller is on link a. (For formulas, see
later.) This probability depends on the utility for going from link a to k (this can
include a random utility component εn) and the expected downstream utility. This
leads to a system of equations that under certain conditions can be solved. This
recursive logit will be handled in more detail in the next section.
After recursive logit is introduced (section 2), it is implemented in a static assign-
ment (section 3). When implementing it, focus is given to parameters and network
characteristics that determine the utility a traveller experience. This paper shows
how all destinations can be handled together in a static assignment, rather than
one by one. The positive features of the static assignment gives enough reasons
to research if it can also be implemented in a dynamic assignment. This is done
in section 4, where a method is developed to show how recursive logit can be of
use in a dynamic assignment. This method is then illustrated on a medium sized
network in section 6.

2 Recursive Logit

This section is strongly based on the work of Fosgerau et al. (2013). Some details
are explained with another view, to better understand the steps the research took
afterwards.
The recursive logit states the conditional probability that a certain turn will be
taken to a destination, given the traveller is at the end of a link. A matrix P is
formed which collects all the probabilities towards a given destination. This ma-
trix will have dimensions [(l+2c) * (l+2c)], with l the number of links and c the
number of connectors. Pij gives then the probability of going to link (or connec-
tor) j given travellers location on link (or connector) i. Note that links are defined
in only one way, making a two-way road modelled as two separate links. Given
these probabilities, a path probability can be calculated by multiplying every turn
along the path. For example the probability that traveller n uses path 1 → 3 → 4
is calculated as: P1,3 ∗ P3,4.
The questions now remains on how to calculate such matrix P. For convenience,
the same notation is used as in the paper of Fosgerau et al. (2013). See figure 3 for
the visualisation of the notation. While a and k are links, d is the destination link
(a connector). Connectors are links without a sink node (destination) or source
node (origin). Connectors are the only place traffic can appear or disappear. A(k)
is the set of outgoing links from the sink node of link k. Another way to look at
A(k) is a set of possible turns one can make at the end of link k. Turns are fully
described with the two links connected by that turn.

4

BIVEC/GIBET Transport Research Days 2017

Figure 3: Illustration of notation (Fosgerau et al., 2013)

If a traveller n, on link k needs to chose which turn to take to destination d, he
compares the (instantaneous) utilities for each turn with their expected down-
stream utility (V d

n (a), the last term in equation 1). The (instantaneous) utility
consists of two parts, a part that for every traveller is the same vn(a|k) and a part
that is unknown and different for every traveller µεn(a). The first part consist of
the travel time on link k and possible turn impedances. To use the properties of
logit, this random term εn(a) is assumed independent and identically distributed
extreme value type 1 with zero mean. The expected utility from the traveller on
link k is the maximum sum of these utilities, namely:

V d
n (k) = E

[
max
a∈A(k)

(
vn(a|k) + µεn(a) + V d

n (a)
)]

(1)

By using a multinomial logit model, the probability that a link will be used for a
route to destination d, given link k is:

P d
n(a|k) =

exp
(

1
µ

(
vn(a|k) + V d

n (a)
))

∑
a′∈A

(
exp

(
1
µ

(vn(a′|k) + V d
n (a′))

)) (2)

The Expected Maximum Perceived Utility function in a logit is the logsum over
all possible choices that can be made. The expected downstream utility (V d

n (k))
can then be written as follows:

V d
n (k) =

{
µ ln

∑
a∈A

(
δ(a|k) exp

(
1
µ

(
vn(a|k) + V d

n (a)
)))

∀k ∈ A \ d
0 k = d

(3)

With δ(a|k) equal to one if a ∈ A(k) and zero otherwise. If link k is the destina-
tion, the utility is zero. If the network contains a loop, the value for the utility on

5

BIVEC/GIBET Transport Research Days 2017

a link will depend on others and its own value. If equation 3 is written for every
link, then a system of non-linear equations is obtained. To make a linear system
of equations, the variables needs to be transformed.
If from both sides of the equation the exponential is taken and raised to the power

of
1

µ
, then this is the result:

exp

(
1

µ
V d
n (k)

)
=

{∑
a∈A

(
δ(a|k) exp

(
1
µ

(
vn(a|k) + V d

n (a)
)))

∀k ∈ A \ d
1 k = d

(4)
To write the system of equations in matrix notation, three matrices are introduced:
b (|A| × 1), z (|A| × 1) and M (|A| × |A|). With b being a vector with bk = 0
for k 6= d and bd = 1, z a vector that gives the destination dependent transformed

utility of the end node of a link, namely zk = exp

(
1

µ
V d
n (k)

)
. Note that zk is the

same for each link sharing the same end node. M is a matrix of utilities for each
turn, this is destination independent.

Mka =

{
δ(a|k) exp

(
1
µ
vn(a|k)

)
k ∈ A(k)

0 k /∈ A(k)
(5)

The component vn(a|k) consists of turn dependent utilities but also the travel time
on link a. The system of equations can now be formulated as followed:

z = Mz + b⇐⇒ (I−M) z = b (6)

Where I is the identity matrix. It is clear that the system only has a solution if I-M
is invertible. This will be handled later.
Probabilities can now be calculated:

Pk =
Mk • zT

Mkz
(7)

With • the element by element multiplier. The P matrix is thus calculated row per
row, where a row represents the given state (link). Mk is the corresponding row
of matrix M. With these probabilities, Fosgerau et al. (2013) gives another system
of equations to solve the link flows (towards one destination).(

I − P T
)
F = G (8)

6

BIVEC/GIBET Transport Research Days 2017

With F a vector (|A| × 1) the link flows (towards one destination), G a vector
(|A| × 1) with Gk = demand from link k to destination d.
There is a matrix P for every destination, as recursive logit is destination based.
There are no differences in probabilities when the traveller had begun his journey
from another origin.

3 Static Assignment

To fully understand the concept of the Recursive Logit, it was implemented in a
static assignment first. Because the dynamic assignment’s first step will be a static
assignment, it is useful to elaborate this a little.
The recursive logit part in a static assignment takes place in the inner loop part of
the algorithm. Outside of this loop, another loop tries to achieve equilibrium con-
ditions. Figure 4 gives the steps of the algorithm. The algorithm is implemented
in Matlab R2016b.
The inner loop consists of the recursive logit part. As explained above, all calcu-
lations are destination based and for a whole OD-matrix, a loop is introduced. To
reduce calculations, the transformed utilities for each link towards a destination
(the Zk elements) are now calculated in a matrix Z, where Zkd is the transformed
utility for link k to destination d. One column of Z is a previously calculated
vector z. Equation 6 is then formulated as:

Z = MZ + B⇐⇒ (I−M) Z = B (9)

The matrix Z has the dimensions (|A| × |D|), where |D| is the total number of
destinations. M and I remain the same. B (|A| × |D|) is the destination matrix,
with in every column one element that equals 1. If all the links are split in: real
links, origin connectors and destination connectors, then B typically has the fol-
lowing layout:

B =

DestinationConnectors

RealLinks 0
OriginConnectors 0
DestinationConnectors I

With these adjustments, all transformed utilities for each link to each destination
are calculated in one system of equations. The probabilities and link flows can
only be calculated for each destination. Link flows are added together to get the

7

BIVEC/GIBET Transport Research Days 2017

Figure 4: Overview of the algorithm used in the static assignment case

8

BIVEC/GIBET Transport Research Days 2017

total link flows (independent of the destination), this is the output of the Recursive
Logit part.
To find the solution of the static assignment, the equilibrium needs to be calcu-
lated. To do this, three functions needs to be further defined. The first functions
defines what the new link flows will be, will it be the direct outcome from the re-
cursive logit or will a MSA step (Robbins and Monro, 1951) or any other smooth-
ing of the step size be introduced. The second function needs to calculate the new
link costs with the new link flows. The last function needs to calculate a ’gap’
or improvement with the last iteration. This gap will then be used as a stopping
criterion. Besides a gap, a maximum number of iterations can also be used to be
certain the loop will end. These three functions will be handled in the next three
paragraphs.
Once a new iteration is calculated, the overall solution takes a step in the new
calculated direction. How big this step is depends on the algorithm used. A much
used algorithm to determine the step size is MSA, where the step size is the in-
verse of the iteration number. This means that the influence of the new calculated
iteration decreases. In other words, the amount of traffic that can change route de-
creases. The fact that recursive logit works with a (implicit) full route set, makes
the algorithm more stable. This is logical because the route set can no longer
change over iterations (as is possible in Dial’s algorithm). Instead of a MSA step,
a proportional step size is used. A proportional step size gives a fixed weight to
the new calculated average between the previous (averaged) and new calculated
results. This way new calculations have a larger impact on the new averaged re-
sult. In this research a proportional step size of 0.5 is used. This means that the
new flows are the average of the previous flows and new calculated flows. An
example of a smooth convergence of recursive logit is found in figure 5.
In this static assignment a simple BPR function is used to determine the costs on
each link.
For the gap function, the sum of the absolute values of the difference between the
old link flows and the link flows from the recursive logit is taken. ε is set at 10−3

(with a maximum number of iterations of 2000). This means that when the new
outcome of flows only make a maximum of 10−3 vehicles reroute, the algorithm
takes the new link flows as the equilibrium.
As stated above, the utility to make the turn from link k to link a (vn(a|k)) contains
the travel time on link a and other characteristics of the turn. A few examples will
show how these characteristics influence the results and what these characteristics

9

BIVEC/GIBET Transport Research Days 2017

Figure 5: Convergence of recursive logit with proportional update

can be. The utility from a turn is:

vn(a|k) = βTT ∗ TT + βUTurn ∗ Uturn+ β3 ∗ Characteristic3 + . . . (10)

Each characteristic has it own parameter. When calibrating, only the proportion
between different beta parameters will have to be calibrated. Which means that
βTT can equal one for simplicity.
An example of a characteristic that can be used is a penalty for an U-turn. In most
assignments ’searching traffic’ (traffic that for example is looking for a parking
spot), is not considered hence U-turns are not an expected behaviour. An extra
penalty for U-turns in the utility (10) will then reduce the probability for routes
with U-turns (hence also for routes with 2 successive U-turns which would form
unrealistic cycles). To demonstrate this, an assignment has been done to a small
network (figure 6). Figures 7 shows an assignment without any u-turn penalties
(7a) and one with a very high u-turn penalty (7b).
The corresponding P-matrices are given in table 1. With the u-turn penalty, the
probability has lowered but is still larger than zero. With these matrices, the prob-
ability of a path can be calculated. These matrices shows also that every possible
path is always considered as a possibility. In table 2 a few of these paths probabil-
ities are calculated. Without any penalty, the probability of using a path without
any u-turn is only 0.207 + 0.10 = 0.307 or 30.7%. This means that al the other
traffic uses a path with a u-turn. The probability lowers with every extra loop the
traffic takes.

10

BIVEC/GIBET Transport Research Days 2017

Figure 6: A simple network. Black numbers represents node numbers, while
coloured ones gives the link number.

(a) Without a penalty for u-turns (b) With a penalty for u-turns

Figure 7: Link flows on a simple network, demand is 3000 from bottom node (1) to
top node (2)

11

BIVEC/GIBET Transport Research Days 2017

Table 1: P-matrix of the assignment

Without u-turn penalties

P 1 2 3 4 5 6 7 8
1 0,23 0,77
2 1
3 1
4 1
5 1
6 0,23 0,77
7 0,90 0,10
8

With u-turn penalties

P 1 2 3 4 5 6 7 8
1 1 ∼0
2 1
3 1
4 1
5 1
6 1 ∼0
7 0,67 0,33
8

Blank entries represents zero, while ∼0 represents a value close to zero but slightly larger. Link 7
is the connector to node 1 (origin), while link 8 is the connector to node 2 (destination).

Table 2: Probability of paths

Path Probability without penalty Probability with penalty
7→1→4→8 0.90 * 0.23 * 1 = 0.207 0.67 * 1 * 1 = 0.67
7→2→3→8 0.10 * 1 * 1 = 0.10 0.33 * 1 * 1 = 0.33
7→1→5→6→4→8 0.90 * 0.77 * 1 * 0.23 *1 = 0.159 ∼0
7→1→5→6→5→6→4→8 0.90 * 0.77 * 1 * 0.77 * 1 * 0.23 * 1 = 0.123 ∼0
.
Link 7 is the connector to node 1 (origin), while link 8 is the connector to node 2 (destination).

4 Dynamic Assignment

The algorithm based on Recursive logit made for this research, is only a part
of a total dynamic traffic assignment. The dynamic network loading (DNL) of
the link transmission model (LTM)(Himpe et al., 2016) will be used to test and
evaluate the developed algorithm. This software is freely available on the inter-
net (http://www.mech.kuleuven.be/en/cib/traffic/downloads). The algorithm de-
scribed below can easily be implemented in other algorithms. We consider no
departure time choice, hence demand is fixed for every time interval.
An overview of the algorithm is displayed in figure 8. The outer loop consist of
iterating over all destinations. First the maximum perceived utility per time step
is determined (the yellow block in the figure). After that, the turning fractions are
calculated (per node per time step for each destination). These turning fractions
are slightly different defined then the P matrix in the static assignment. Turning
fractions are defined per node instead of one P matrix for the whole network. This
is done because the DNL of LTM works with turning fractions. The algorithm
can easily be adjusted to a 3d P matrix, with the 3rd dimension being the time.

12

BIVEC/GIBET Transport Research Days 2017

With these turning fractions, DNL will calculate the link flows which leads to new
travel times.
To determine the (transformed) maximum perceived utility, a static assignment
is used in the last (totT+1) time step. Next the other time steps are calculated
in an upwind order. This is done because Z(t) can depend only on time steps
t∗ ≥ t. To calculate the other time steps, the algorithm will interpolate between
two (already given) values of Z(t′). This is true because the utility at a node
depends on the experienced downstream utilities. These are linked through the
travel time between two nodes. To make the algorithm simpler, only time steps
that are smaller than the minimum travel time are used. In this case Z(t) will
only depend on time steps t∗ > t. Section 8 will go into more detail about this
and also propose a suggestion to make the algorithm handle the extra complexity.
This extra complexity comes from the fact that V d

n (a, t) requires (for example)
V d
n (k, t) which itself can be related to V d

n (a, t), all in the same time step.
To calculated the maximum perceived utilities of the next time step, the logsum is
taken. The logsum is the natural logarithm of the sum of utilities of all possibili-
ties. An example on how to do this, assume a small port of a network, plotted in
figure 9. In the figure, three nodes are plotted on the x-axes. Node 1 is connected
to the two other nodes by links a and b. The y-axes defines the time. t1, t2, t3
and t4 are different time steps used in the algorithm. The vertical distance of a
link represents the travel time of the link at time of the beginning of the link. The
travel time on link a (tta(t1)) is exact a time step, while the travel time on link b
(ttb(t1)) is between one and two time steps at time t1. To calculate the value of
V d
n (k, t1). Node 1 has two different outgoing links, a and b. The end of link a is

reached at time t1 + tta(t1) = t2 when leaving link k at time t1(the same holds
for b with time t1 + ttb(t1) = t∗). As stated before, V d

n (k, t1) is calculated as:

V d
n (k, t1) =

1

µ
∗ ln

[(
vdn (k, a, t1) + V d

n (a, t2)
)

+
(
vdn (k, b, t1) + V d

n (b, t∗)
)]
(11)

With vdn(k, a, t1) being the utility for going from link k to link a at time t1. Of
course not every time is represented in time steps. For time t∗ that is in between
t2 and t3, a linear interpolation is used. Take for example that t∗ = t2 + 0.4 ∗∆t.
This means that V d

n (b, t2) will be calculated as: 0.6 ∗ V d
n (b, t2) + 0.4 ∗ V d

n (b, t3).
To do this, V d

n (b, t2) and V d
n (b, t3) needs to be known at the time of calculation

of time step t1, which is why we proceed through time from the latest time totT in
upwind order.
Once all maximum perceived utilities are calculated, the last thing remaining is

13

BIVEC/GIBET Transport Research Days 2017

Figure 8: The algorithm used in the dynamic assignment

14

BIVEC/GIBET Transport Research Days 2017

Figure 9: A simple network plotted with its time dimension. The time (z-axes) indi-
cates the time the end of the link will be reached.

15

BIVEC/GIBET Transport Research Days 2017

to calculate the turning fractions. To calculate these turning fractions (or prob-
abilities) the utilities for each possibility is needed. These depend on turning
characteristics, the travel times (per time interval) and maximum perceived utility
of the end node. All these ingredients are already known, this means that every
calculation towards probabilities is independent of other results. In this algorithm
all nodes are iterated from the start time to the end time. Returning to the example
in figure 9, the probability of going to link a (at time t1) is then:

P (k, a, t1) =
exp

[
µ
(
vdn (k, a, t1) + V d

n (a, t2)
)]

exp [µ (vdn (k, a, t1) + V d
n (a, t2))] + exp [µ (vdn (k, b, t1) + V d

n (b, t∗))]
(12)

As before, the maximum utility of a node at a time between time intervals may
needed to be known. Linear interpolation between the two known time steps is
again the solution to this problem.
The output of this algorithm are the turning fractions, which are stored in a data
structure of size |N | × |T | × |D|, with |N |, |T |and|D| the total number of nodes,
time steps and destinations respectively. Each TF (n, t, d) is a matrix (|IL| ∗
|OL|), with |IL|&|OL| being the number of incoming and outgoing links on the
node n respectively. TF (n, t, d)a,b is the percentage of flow going to link b that
was on link a towards destination d at node n at time t. Each row of a TF (n, t, d)
matrix is summed to one, because destinations are defined as links. Over iterations
towards convergence, these TF are proportionally averaged.
In this research the time steps used in the algorithm determining the turning frac-
tions and the one used in the DNL are the same. This does not necessary have to
be the only option. When different time steps are used, the question remains on
how to interpret these turning fractions. One possibility is to assume the turning
fractions fixed between the time steps of the algorithm described. Another pos-
sibility is to (linearly) interpolate between the turning fractions. For simplicity
of this research, both time steps are taken the same size (which can be done here
without constraint on the DNL because the time step in the iterative version of
LTM does not need to comply with CFL conditions (Himpe et al., 2016)).
Another thing to notice is that the algorithm can be part of a warm started assign-
ment. A warm start means, that results from a previous calculation are used as
the initial condition. This way less calculations are needed if only a small part in
the network has changed. As this algorithm takes travel times as input, free flow
travel times (in the case of cold start) or travel times from a previous calculation
on the same network (warm start) can both be used.
One last thing to notice is the fact that nothing this dynamic assignment procedure

16

BIVEC/GIBET Transport Research Days 2017

can easily be combined with a departure time choice model. The Recursive Logit
algorithm is constructed in such way that only the travel times and network char-
acteristics are needed as input for calculation of the turning fractions, regardless
of the magnitude of the demand or flow on the links.

5 Guaranteed solution

As said before, there is no guarantee that that the recursive logit calculation on a
network will have a (feasible, meaningful) solution. To get a meaningful solution,
I-M needs to be invertible. The physics of the network (which links connect
to which links) and also the used turn characteristics with their beta parameters
will determine the characteristics of M. When I-M is almost singular, z will have
values larger than 1. This means that the maximum perceived utilities will be
positive.
Another more intuitive way to look at this is the following: if there are many links
with low costs and the variance of the random utility ε is large, then it is possible
that the utility will be larger than zero. An utility larger than zero is bad because
if travellers take this link, they gain utility. This of course results in the fact that
travellers want to use this link, if possible even multiple times. Imagine that now
a small loop consist only of links with a positive utility, then travellers will never
leave the loop because they keep gaining utility.
If such singularities occurs, introducing extra penalties (negative utility) is a way
to avoid it. To check if such singularities can occur on a network, it is sufficient
to construct the matrix M with the highest utility possible. The highest utility
possible is reached when the travel time is the free flow travel time. The travel
time can only grow, herewith reducing utility. The same holds for penalties, M
needs to be tested with the lowest possible penalty to the utility. In this research
all penalties are fixed, but nothing prevents the penalty to be dynamic. If with this
worst case matrix M no singularities occurs, then neither will they occur during
computations where utility can only decrease.

6 Results of a larger network

To show how the algorithm performers on a more real network, the algorithm is
executed on the network of Rotterdam. The network is a rudimentary representa-
tion of the ring road and main arterial roads in the Rotterdam area. This network
consists of 560 links and 331 nodes. There are in total 44 nodes that serve as
origin and 44 different nodes as destination. The network is plotted in figure 10.

17

BIVEC/GIBET Transport Research Days 2017

Figure 11 shows that the convergence is linear (with the y-axes of the gap in
logarithmic scale), this is because a proportional step size is used. Between the
first and second iteration, a large gap is noticed. This is normal considering that
in the first iteration all travel times are free flow travel times, so the improvement
towards a second iteration with (quite severe) congestion is large.

Figure 10: The network of Rotterdam

Figure 11: Convergence of the Rotterdam network

The matlab traffic toolbox of LTM makes it easy to animate the flows over the
network. This way results can easily been interpreted. To show what the algorithm
can do, the turning fractions for one link towards one destination are visualised
over time in figure 12. Two possibilities remain at zero probability, while the other
two are taken both by the traffic. Due to circumstances, like more demand or more
congestion, the ratio of probabilities between the two changes.

18

BIVEC/GIBET Transport Research Days 2017

Figure 12: Turning fractions from one link towards one destination over time

7 Further research: Path correlations

It is a well-known deficiency of the logit-model that biases occur in the choice
probabilities if the error terms of the options are correlated. This typically occurs
with overlapping routes. Recursive logit also suffers this deficiency.
This gives a first topic to research further. ”In real networks, paths connecting
a given origin destination pair share links. Due to this physical overlap it is
generally thought that paths share unobserved attributes meaning that the path
utilities are correlated. Ignoring this correlation may result in erroneous path
probabilities and substitution patterns.” argues Fosgerau et al. (2013). He gives
an example how to handle path size logit (Ben-akiva et al., 2012) in a full route
set model for a static assignment. Further research needs to be done to see if the
same approach can be made in a dynamic assignment.

8 Further research: larger time steps

Suppose the time steps are twice as big as in figure 9, then V d
n (a, t′) will need to

be interpolated between V d
n (a, t1) and V d

n (a, t2). (This is visualized in figure 13)
The problem that now occurs is that V d

n (a, t1) is not yet (fully) calculated, making
the interpolation impossible. A possible solution to this problem is introducing an
extra loop around each time step. At first the maximum perceived utility of a node
is set equal to the values of the maximum perceived utilities at one time step later.
After all transformed utilities from that time step are calculated, the calculations
(interpolations) are repeated. This will now result in different results, this process
is repeated until a fixed point is reached. Bigger time steps will reduce the general
computation cost (for a given time domain), while introducing new iteration costs.

19

BIVEC/GIBET Transport Research Days 2017

Figure 13: Same as figure 9 but with twice as big time steps.

A consideration is needed. But first further research is needed to find out if it is
possible at all. Note that larger time steps in the the total assignments means that
also the DNL part of the algorithm should be able to handle these larger time
steps. Most DNL algorithms are however constrained in their time step size due
to so-called CFL conditions, with only a few exceptions like LTM Himpe et al.
(2016).

9 Conclusion

Explicit route sets have some down sides, they do not contain every possible route
and with a flexible route set the convergence problem is harder to solve. A fixed
route set makes the algorithm more stable. An implicit full route set, guarantees
that no possible route is missed, because it considers all possible routes (can be an
infinity number) always. In this research it is done by using recursive logit, which
calculates the probability of each turn given the traveller’s destination. The utility
of a turn depends on the turn characteristics. As always, the travel time is part of
the utility. The utility of a turn is constructed in such a way, it is easily to add new

20

BIVEC/GIBET Transport Research Days 2017

turn characteristics. A characteristic can be a toll or a boolean for left-turns to a
boolean indicating an increase (or decrease) in link hierarchy. The latter could for
instance be used to avoid unrealistic routes that leave a higher road category over
a very short distance (e.g. off-on-ramp combinations; or unrealistic rat-running
through residential streets).
This makes the researched method promising to replace current algorithms used.
Of course further research needs to be done. A first issue is that not all networks-
parameter sets will have a solution. Without a dedicated check for singularities,
the algorithm would produce unrealistic flows. However, if the calibrated param-
eters are in the feasible solution space, a solution is guaranteed. By using a fixed
full route set, the algorithm appears to be more stable. This results in fewer it-
erations needed for convergence, as now a fixed proportional update can be used
instead of an update that has lower impact the more iterations are done, like an
MSA step.
This paper has shown that the static procedure described by (Fosgerau et al., 2013)
can be generalized to a dynamic traffic assignment by interpolating the maximum
perceived utilities in an upwind order. After the maximum perceived utilities are
determined, the probabilities of each turn can be calculated. These are then the
input of a DNL.
By implementing penalties, turn characteristics can be implemented in the algo-
rithm. There is no limit on how many penalties are allowed, neither on what they
represents. This makes it easy to adjust utilities.
With these promising results, further research is needed. One topic can be finding
a smarter way to determine if the network is guaranteed to have a feasible solu-
tion or how to change the network the smartest way possible in order to render a
singular network feasible.
Another obvious topic for future research is embedding the stochastic DTA with
recursive logit full route set of this paper in a framework that considers departure
time adjustments as well.
Faster computation times and smoother convergence are desirable properties of
an assignment. With a warm start, which gives even faster computation times, the
algorithm can be used in a real time setting. The algorithm can also works on its
own to quickly determine the turning fractions if something small changes (for
example an accident on the highway witch makes the capacity drop). In this case
the travel times could be handled as instantaneous.

21

BIVEC/GIBET Transport Research Days 2017

References

M. G. H. Bell. Alternatives to Dial’s logit assignment algorithm. Transportation
Research Part B, 29(4):287–295, 1995. ISSN 01912615. doi: 10.1016/0191-
2615(95)00005-X.

M. E. Ben-akiva, S. Gao, Z. Wei, and Y. Wen. A dynamic traffic assign-
ment model for highly congested urban networks. Transportation Research
Part C: Emerging Technologies, 24:62–82, 2012. ISSN 0968090X. doi:
10.1016/j.trc.2012.02.006.

R. B. Dial and A. M. Voorhees. PROBABILISTIC MULTIPATH TRAFFIC
ASSIGNMENT WHICH OBVIATES PATH ENUMERATION The problem.
Transpn Res, 5:83–111, 1971.

M. Fosgerau, E. Frejinger, and A. Karlstrom. A link based network route choice
model with unrestricted choice set. Transportation Research Part B: Method-
ological, 56:70–80, 2013. ISSN 01912615. doi: 10.1016/j.trb.2013.07.012.

E. Frejinger, M. Bierlaire, and M. Ben-Akiva. Sampling of alternatives for route
choice modeling. Transportation Research Part B: Methodological, 43(10):
984–994, 2009. ISSN 01912615. doi: 10.1016/j.trb.2009.03.001.

W. Himpe, R. Corthout, and M. J. C. Tampère. An efficient iterative link trans-
mission model. Transportation Research Part B: Methodological, 92:170–190,
oct 2016. ISSN 01912615. doi: 10.1016/j.trb.2015.12.013.

P. H. L Bovy and F. Ltd TTRV. On Modelling Route Choice Sets in Transportation
Networks: A Synthesis. Transport Reviews, 29(1):43–68, 2009. ISSN 0144-
1647. doi: 10.1080/01441640802078673.

H. Robbins and S. Monro. A Stochastic Approximation Method. The An-
nals of Mathematical Statistics, 22(3):400–407, 1951. ISSN 0003-4851. doi:
10.1214/aoms/1177729586.

22

