

Citation Hans Reyserhove, Wim Dehaene, (2017)

Design Margin Elimination in a Near-Threshold Timing Error Masking-
Aware 32-bit ARM Cortex M0 in 40nm CMOS
Proceedings of the IEEE European Solid State Circuits Conference

(ESSCIRC), pp. 155-158, Leuven, Belgium, 2017

Archived version Author manuscript: the content is identical to the content of the published

paper, but without the final typesetting by the publisher

Published version https://doi.org/10.1109/ESSCIRC.2017.8094549

Journal homepage http://esscirc-essderc2017.org

Author contact Hans.Reyserhove@esat.kuleuven.be

+ 32 (0)16 321169

(article begins on next page)

Design Margin Elimination in a Near-Threshold Timing Error
Masking-Aware 32-bit ARM Cortex M0 in 40nm CMOS

Hans Reyserhove and Wim Dehaene
KU Leuven, ESAT-MICAS

Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

Email: Hans.Reyserhove@esat.kuleuven.be, Wim.Dehaene@esat.kuleuven.be

Abstract—This paper presents a timing error masking-aware
ARM Cortex M0 microcontroller system. Timing errors are
detected through a timing error detection strategy, consisting of
a soft edge flip-flop combined with a transition detector and an
error latch. The time borrowing realized through soft edge flip-
flops allows data to propagate after the clock edge (timing error
masking). Thus operation at the point-of-first-failure is possible,
effectively eliminating any timing margin. At the same time,
time borrowing events are flagged which prevents corrupting the
system state and allows dynamic voltage scaling. The error-aware
microcontroller was implemented in a 40nm CMOS process and
realizes ultra-low voltage operation down to 0.29V at 5MHz and
12.90pJ/cycle. 37% is energy overhead due to error detection.
Minumum energy operation is achieved at 7.5MHz, 0.31V and
11.11pJ/cycle. A total of 75% energy is saved when comparing to
a reference design without error detection running at slow-slow
corner static timing analysis speed.

Index Terms—CMOS digital integrated circuits, nearthresh-
old logic, better-than-worst-case design, transmission gate logic,
variation resilience, timing margin elimination, soft edge flip-
flop, time borrowing, transition detector, error detection, error
masking, point-of-first-failure.

I. INTRODUCTION

Advanced technologies suffer from ever increasing varia-
tions. Traditionally, timing margins are added at design time
to guarantee functionality over a wide PVT range, leading to a
significant energy overhead. While energy consumption is the
key figure of merit for applications targeted by near-threshold
designs, the exponential sensitivity to variations leads to even
bigger timing margins combined with an increased energy
overhead. Hence, a significant part of the energy gained
through near-threshold operation is lost by introducing timing
margins. On-die monitors based on canary circuits or critical
path replicas track PVT conditions and can significantly de-
crease this margin. However, intra-die variations between the
monitor and the actual critical path induce additional margins,
especially at ULV. In situ timing error monitoring combined
with dynamic voltage scaling (DVS) has been proposed to
overcome all these timing margins [1]. By monitoring critical
paths in real time, a digital system can work close to its
point-of-first-failure (PoFF), irrespective of the PVT condition.
Hence, all timing margin and energy overhead is removed. Ad-
ditionally, a timing error correction strategy allows operation
beyond the PoFF, possibly leading to even higher energy gains.

A wide range of timing error resilient techniques has
been proposed in recent literature. As described in [2], a
distinction can be made between either detecting, predicting
or masking errors. Detecting errors ([1], [3]) means the timing
error has occurred and should be corrected. Hence, detec-
tion occurs after the original clock edge. Correction usually

means restoring the system state and comes at the cost of a
throughput reduction. Predicting errors ([4], [5]) consists of
preventing errors before they occur and corrupt the system.
This prediction happens before the clock edge, taking some
time out of the original clock period. Although such a system
can outperform a margined design, some margin is needed on
the error prediction to prevent the system from going corrupt.
Hence, performance is sub-optimal. An error masking strategy
([2], [6]) combines aspects of both: it detects errors after the
original clock edge, but propagates the correct values anyway,
effectively borrowing time from the next pipeline stage. The
system state remains intact because the next pipeline stage
can cope with the reduced clock period. Error correction is
unnecessary and throughput is guaranteed. In a DVS system,
the error masking information can be used to operate the
system at the PoFF: all timing margin is eliminated and there
is no speed performance penalty when compared to a system
without error masking. The energy overhead due to the error
masking logic should be smaller than the overhead sustained
by adding timing margin, resulting in an overall energy gain.
While some strategies use flip-flop based pipelines ([1], [2],
[4], [6]), other use (pulsed) latches ([2], [3], [5]). Although
challenges caused by latch-based design can be overcome,
flip-flop based design is generally considered more suited for
timing closure. The soft edge flip-flops used in this work
combine the time borrowing properties of latches with the easy
timing closure found in flip-flop based designs.

All three mentioned strategies have been succesfully imple-
mented in recent literature [1]–[6]. Their relative performance
is application and implementation dependant. Allthough tim-
ing margins worsen drastically when decreasing supply volt-
age, relatively few work has been done to implement such
strategies at ultra-low voltage. All strategies rely on timing
windows related to the original clock, which is difficult to
realize under variation sensitive conditions.

This work achieves timing error masking and detection in a
32-bit ARM Cortex M0 microcontroller. The system is realized
using a differential transmission gate design flow [7] to allow
ultra-low voltage variation resilient operation. Error masking
and detection is guaranteed down to 290mV supply voltage
by means of a robust soft edge flip-flop, transition detector
and error latch. DVS can be used to operate at the PoFF
for a specific target frequency. Section II elaborates on the
circuit design. Section III discusses the implementation of
the error masking-aware strategy in a 32-bit microcontroller.
Section IV discusses the measurement results and compares
with a reference implementation. Finally, section V draws a
conclusion.

Master Slave

Flipflop

timing/controlclock

transition
detector

Error
Processor

Error detection Flip-Flop

differential
logic

stage i

D

D Q

Q

error i

error i

differential
logic

stage i+1

mclk sclk

error latch
rst
window

window
control

AHB Bus

IRQ[2:0]

Fig. 1. Overview of the timing error-aware soft edge flip-flop, consisting of
a timing/control block, a flip-flop, a transition detector and an error latch.

II. CIRCUIT DESIGN

Timing errors are masked and detected by means of an
error detection flip-flop. A conceptual view of the flip-flop
is shown in Fig. 1. It replaces normal master/slave flip-flops
only on the most critical paths. The error detection flip-flop
consists of a timing/control block, a master/slave flip-flop, a
transition detector and an error latch. The timing/control block
generates a separate master and slave clock which have some
overlap. Hence, the latches form a soft edge flip-flop: during
overlap, the flip-flop is fully transparant, allowing data arriving
late to propagate through the flip-flop, even when it arrives
after the original clock edge. The clock overlap defines a
timing window that enables the error latch. In this window,
the transition detector triggers the error latch when a data
transition occurs. Since the data can pass through the flip-flop,
a timing error is prevented and the pipeline state is kept intact.
The error latch propagates an error signal which can be used to
implement DVS at the system level. Because data is allowed to
propagate after the clock edge, time is borrowed from the next
pipeline stage. A circuit implementation of the error detection
flip-flop is shown in Fig. 2. The timing window can be
controlled through a biased delay line. Adding a timing/control
block to each flip-flop omits the need for multiple clock trees
with tight skew constraints. The differential data input of the
flip-flop is used for transition detection. Key in this transition
detection strategy is the use of the internal delay of the master
latch to detect a rising edge on either of the differential signals.
No additional logic is required in the data path. The window
signal enables the transition detector to switch the error latch.
At the end of every cycle the error latch is reset, which allows
new error detection to take place.

The procedure becomes even more clear in the timing
diagram in Fig. 3. In phase 1, the data arrives on time: data
(D or DBAR) propagates to the output (Q or QBAR) as soon
as the slave latch becomes transparant. The transition detector
detects the transition outside of the timing window. Hence, no
error is flagged. The flip-flop does not borrow time and the
next pipeline stage can equip the entire clock cycle. In phase
2, data (D or DBAR) arrives late: after the slave latch becomes
transparant, but before the master latch locks. Hence, D can
ripple through the entire flip-flop at once, propagating the

Transition Detector Error Latch

D D

Dd Dd

D

D Dd

Dd

window

clock

sclk

error error

clock sclk
sclk clkd

clkd

rst

TG
TG

sclk
clkd

mclk sclk
clkd

window
mclk

rst

Timing/Control

D Q

QD

mclk sclk

rst
rst

Dd

Ddmclk sclk

Flip-Flop

edge

window
control

Fig. 2. Circuit implementation of timing error-aware soft edge flip-flop,
consisting of a timing/control unit, flip-flop, transition detector and error latch.

correct data (error masking). In this timing window, transition
detection triggers the error latch, which propagates an error
signal to an error processing unit. Because of the differential
data, a rising edge occurs each transition. Leveraging the delay
of the master latch, 1-1 overlap on either D, DBAR, Dd or
Dd,BAR is used to create a pulse on the edge signal, which
toggles the error latch. With a normal flip-flop, data arriving
at this moment would not be able to propagate, and a timing
error would occur, corrupting the system state. The amount
of time the data can arrive late is limited and is determined
by the timing window created by the master and slave clock
(mclk and sclk). The amount of time the data arrives late is
borrowed from the next pipeline stage. This constrains the next
pipeline stage, but is no problem as long as that stage is not
critical. If it is critical, an error detection flip-flop is present
there, similar to other critical paths. Time borrowing occurs
over the pipeline stages, averaging the timing variation and
mitigating a timing error. In phase 3, the error signal is reset
and operation continues, either detecting a new timing error
or not, depending on when the next data arrives.

Two trade-offs are key to implementing the proposed error
detection strategy. First, choosing the window width has a
severe impact on performance. A wide window makes error
detection easy and enables coarse DVS. However, it severly
constrains the pipeline stage following the error detection flip-
flop. Additionally, more short path padding is required: as the
flip-flop is transparant during the timing window, paths shorter
than the timing window can propagate through the flip-flop
within the same clock cycle. This can be considered as a hold
time constraint and is resolved during hold time optimization,
but introduces some overhead. Second, the amount of flip-flops
that are enhanced with error detection capabilities has a severe
influence on the overall performance of the system. It is clear
that error detection introduces a significant overhead compared
to a normal flip-flop. As such, that overhead should be

clock

mclk
sclk

clkd

window

edge
error

D
D
Dd

Dd

td

Q

phase 1:
data on time

normal operation
data late / time borrowing

transition detection / error flagged

thold -tsetuptransparent

transparent
lock

lock

tclk-q

tborrow

td-q

tTD

tmaster

tmaster

tTD

terror treset

error reset
normal operation

tborrow

twindow

phase 2: phase 3:

Fig. 3. Timing diagram of timing error masking and detection. Operation
is divided in 3 phases: normal operation, error masking operation and error
reset.

minimized, keeping in mind that more error detection flip-flops
also result in more timing error information. Additionally, the
amount of error detection flip-flops required also depends on
the slack distribution of the targeted system and the timing
variation of the targeted paths. Overall, it should be made
impossible for a timing error to occur without being detected.
In its turn, the amount of overhead that can be tolerated
depends on the overhead introduced by taking timing margins,
something which is unnecessary in the proposed timing error
detecting system. Section III discusses how these trade-offs
were made for the presented microcontroller system.

III. IMPLEMENTATION

To demonstrate the error detection strategy discussed in
section II, the timing error masking strategy was integrated in a
32-bit ARM Cortex M0 microcontroller system. An overview
of the system can be seen in Fig. 4. The system is similar
to the one presented in [7], as it equips a ARM Cortex M0
core, a 64KB SRAM and some peripherals. Error detection
flip-flops as in section II were added to make it timing error-
aware. The full system was built using an automated design
flow using differential transmission gate logic of two different
gate lengths to enable ultra-low voltage variation resilient
operation and minimize energy consumption [7]. To select
which paths require error detection, the timing slack histogram
of the path endpoints is plotted in Fig. 5. 6% of total flip-
flops were replaced by error detection flip-flops, a trade-off
between overhead and slack distribution. The biased delay
line controlling the timing window can scale from 3% to 25%
of the clock cycle during test, but was fixed to 5% during
timing analysis. The hold time optimization resulted in a 30%
increase in hold time buffers compared to a design without
error detection.

To analyze timing errors and enable DVS, an error processor
was implemented in the microcontroller system. It joins all 224
errors signals using an OR-tree prioritized according to timing
slack. Acting as a fully functional peripheral on the AHB bus,
the error processor can average timing errors over multiple
clock cycles and send interrupts to the M0 core at predefined
error thresholds. As such, the M0 core becomes timing error-
aware and can implement DVS with simple commands on the
GPIO ports or UART tied to interrupt handlers.

Test/
Debug

Interface

UART

GPIO

ARM Cortex-M0

ULV
Differential
TG Library

0.6V
Single Ended
IO Library +
Macros

SRAM

AM
BA

3 A
HB

-L
ite

 B
US

Error Processor

DC/DC

PCB

Vdd,ULV

FPGA

er
ro

r
fe

ed
ba

ck

Fig. 4. Overview of the 32-bit ARM Cortex M0 microcontroller system,
including error processor and dynamic voltage scaling loop.

0 0.2 0.4 0.6 0.8 1
Slack [% T clk]

0

50

100

150

200

250

300

350

En

dp
oi

nt
s

224 error detection flip-flops

3689 normal flip-flops

Fig. 5. Timing slack histogram of path endpoints of the microcontroller
system before error detecting flip-flops are added. 6% of flip-flops are replaced
by error detection flip-flops.

IV. MEASUREMENT RESULTS & ANALYSIS

The microcontroller discussed in section III was fabricated
in a General Purpose 40nm CMOS process. The chip micro-
grap is shown in Fig. 6. Replacing a normal flip-flop with an
error detection flip-flop increases flip-flop area by about 93%.
The entire timing error detection strategy increased active area
by about 7% compared when compared to [7]. M0 core area
increased by about 10% due to larger flip-flops and short path
padding. While the error processor can be seen as pure over-
head, it enables easy DVS and can be tuned to the application,
severely reducing its area and energy overhead. Fig. 7 shows
measured points-of-first-failure for a wide frequency range
and their respective core energy consumption per clockcycle.
Each point is the result of running the DVS loop for the
targeted frequency, decreasing the voltage until timing errors
are detected, all while running the Dhrystone benchmark C
code and averaged over 5 dies. Because errors are masked
rather than corrected, operating far beyond the PoFF can not
guarantee correct operation. The system achieves minimum
energy operation at 7.5MHz, corresponding to a supply voltage

1.
3m

m
1.3mm

SRAM
0.19mm2

M0 Core

Peripherals
Error Proc

0.17mm2

0.015mm2

0.04mm2

Error detection
area overhead

1 flip-flop +97%

M0 core +10%

M0 system +7%

Fig. 6. Chip micrograph of the microcontroller system. Active area is
0.42mm2.

0 5 10 15 20 25 30
Target Frequency [MHz]

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Su
pp

ly
 V

ol
ta

ge
 [V

]

10

12

14

16

18

20

En
er

gy
/c

yc
le

 [p
J]

PoFF - Vdd
PoFF - E/cycle

1MHz
75.80pJ

SS simulation
1MHz, 0.35V

SS simulation
5MHz, 0.5V

5MHz
51.72pJ

SS simulation - Vdd

Measurement - E/cycle

Fig. 7. Measurement of the PoFF curve for a wide frequency range,
showing achieved minimum supply voltage and required energy consumption.
Slow-slow corner static timing analysis and measured energy/cycle are also
indicated.

of 306mV and 11.11pJ/cycle. As a reference, the slow-slow
simulation corners resulting from static timing analysis for
350mV and 500mV are also indicated. Energy measurements
on a reference design [7] without error detection are indicated
as well. This work achieves 5MHz operation at a supply
voltage of 290mV compared to the 500mV required when
taking timing margins. Core energy consumption at this point
is 12.90pJ/cycle, a 75% energy reduction when compared to
the margined design. 20MHz operation is achieved at 422mV
and 15.25pJ/cycle.

The microcontroller system published in [7] acts as a
reference design and allows to evaluate energy overhead
caused by timing error detection. Fig. 8 shows an energy
consumption comparison for the targeted frequencies between
the two designs measured performance: one with timing error
detection, one without timing error detection, both operating
at the same supply voltage and frequency. Energy overhead
ranges from 35% to 60% at frequencies from 5MHz to
30MHz. As mentioned in section III, this overhead is due
to both error detection circuitry, short path padding and the
error processor. Thanks to this overhead the presented work
can operate at the PoFF. This would be impossible without
the enabled timing error detection. A 75% energy decrease
is realized when compared to the measured energy of the
reference design operating at the slow-slow corner operating

5 10 15 20 25 30
Frequency [MHz]

0

5

10

15

20

En
er

gy
/c

yc
le

 [p
J]

0.31V 0.34V

0.36V
0.38V

0.41V 0.42V 0.43V
0.45V

+37%

+38% +35%

+35%
+46%

+54% +57% +58%
+59%-75%

0.29V

Timing Error Masking-Aware ARM Cortex M0 Core
ARM Cortex M0 Core [7]
Slow-slow static timing analysis 0.47V

+60%

Fig. 8. Measured core energy overhead due to error detection system
when compared to [7]. Overheads between 35% and 60% are measured for
frequencies between 5 and 30MHz.

speed acquired through static timing analysis.

V. CONCLUSION

This work presents a timing-error aware ARM Cortex M0
microcontroller system. The system succeeds in eliminating
traditional timing margins by detecting timing errors through
a soft edge flip-flop augmented with a transition detector and
an error latch. The microcontroller cooperates with an on-chip
error processor to implement DVS for a target frequency range
up to 30MHz. Measurements of both the proposed design and
a reference design show an energy overhead down to 35%
due to the error detection. The PoFF curve shows minimum
energy per operation at 7.5MHz and 11.11pJ/cycle. Thanks
to the error detection this work overcomes the large energy
overhead due to margins typically incurred when employing
near-threshold circuits, resulting in 75% energy savings.

REFERENCES

[1] S. Das, et al., “A self-tuning DVS processor using delay-error detection
and correction,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp.
792–804, April 2006.

[2] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken, “TIMBER:
Time borrowing and error relaying for online timing error resilience,” in
2010 Design, Automation Test in Europe Conference Exhibition (DATE
2010), March 2010, pp. 1554–1559.

[3] M. Fojtik, et al., “Bubble Razor: Eliminating Timing Margins in an ARM
Cortex-M3 Processor in 45 nm CMOS Using Architecturally Independent
Error Detection and Correction,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 1, pp. 66–81, Jan 2013.

[4] K. Bowman, et al., “Circuit techniques for dynamic variation tolerance,”
in 2009 46th ACM/IEEE Design Automation Conference, July 2009, pp.
4–7.

[5] M. Hiienkari, J. Teittinen, L. Koskinen, M. Turnquist, and M. Kaltiokallio,
“A 3.15pJ/cyc 32-bit RISC CPU with timing-error prevention and adaptive
clocking in 28nm CMOS,” in Proceedings of the IEEE 2014 Custom
Integrated Circuits Conference, Sept 2014, pp. 1–4.

[6] M. Wieckowski, et al., “Timing yield enhancement through soft edge flip-
flop based design,” in 2008 IEEE Custom Integrated Circuits Conference,
Sept 2008, pp. 543–546.

[7] H. Reyserhove and W. Dehaene, “A Differential Transmission Gate
Design Flow for Minimum Energy Sub-10pJ/cycle ARM Cortex-M0
MCUs,” accepted for publication in IEEE Journal of Solid-State Circuits,
July 2017.

