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SUMMARY

Neuroligin-neurexin (NL-NRX) complexes are funda-
mental synaptic organizers in the central nervous
system. An accurate spatial and temporal control of
NL-NRX signaling is crucial to balance excitatory
and inhibitory neurotransmission, and perturbations
are linked with neurodevelopmental and psychiatric
disorders. MDGA proteins bind NLs and control their
function and interaction with NRXs via unknown
mechanisms. Here, we report crystal structures of
MDGA1, the NL1-MDGA1 complex, and a spliced
NL1 isoform. Two large, multi-domain MDGA mole-
cules fold into rigid triangular structures, cradling a
dimeric NL to prevent NRX binding. Structural ana-
lyses guided the discovery of a broad, splicing-
modulated interaction network between MDGA and
NL family members and helped rationalize the impact
of autism-linked mutations. We demonstrate that
expression levels largely determine whether MDGAs
act selectively or suppress the synapse organizing
function of multiple NLs. These results illustrate a
potentially brain-wide regulatory mechanism for
NL-NRX signaling modulation.

INTRODUCTION

Cell-surface synaptic organizing proteins play a central role in the

assembly, maturation, stabilization, and plasticity of neuronal

synapses (Siddiqui andCraig, 2011).Members of thepresynaptic

neurexin (NRX) and postsynaptic neuroligin (NL) transmembrane

protein families form the axis of a signaling pathway that is crucial

for the formation and function of excitatory and inhibitory synap-
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ses throughout the brain (S€udhof, 2008). TheNL-NRX complexes

promote synaptic cell adhesion via direct extracellular interac-

tions and recruit the molecular machinery for neurotransmitter

release and reception. NLs recruit ionotropic glutamate and

GABAA receptors through direct interactions or using DLG (Discs

large) family or gephyrin and collybistin accessory proteins,

respectively (Bemben et al., 2015). NRXs interact intracellularly

with CASK and Mint PDZ domain proteins and the synaptic

vesicle protein synaptotagmin; a-NRXs also functionally link to

presynaptic voltage-gated Ca2+ channels (Reissner et al., 2013).

NLs are generated from five genes in humans or four genes in

mice, and further diversified by two sites of alternative splicing:

spliced sequences A (SSA) and B (SSB). Mammalian NRXs

show even greater diversity: over a thousand variants are gener-

ated from three genes, two promoters (a and b), and six sites of

alternative splicing (SS1–6) (Schreiner et al., 2014; Ullrich et al.,

1995). The extracellular region of the NLs contains a cholines-

terase-like domain that forms a stable interaction with the

a/b-NRX1-3 LNS6 (laminin, NRX, sex-hormone-binding globulin)

domain (Araç et al., 2007; Chen et al., 2008; Fabrichny et al.,

2007). NL1(+B) binds only b-NRXs (Boucard et al., 2005) and

functions at glutamatergic synapses (Song et al., 1999), while

NL2 binds all NRXs and functions at GABAergic synapses

(Graf et al., 2004; Varoqueaux et al., 2004).

Besides NLs, the various NRXs bind a multitude of postsyn-

aptic protein families to organize synapses: leucine-rich repeat

transmembrane proteins (LRRTMs), calsyntenin 3, dystroglycan,

latrophilin 1, cerebellins (reviewed in de Wit and Ghosh, 2016),

and recently, C1q-like proteins (Matsuda et al., 2016). Molecular

interactions are controlled by NRX promoter usage and splicing.

For example, introduction of the 30-residue SS4 into b-NRX1

substantially weakens the NL-NRX1 interaction (Koehnke et al.,

2010), abolishes the LRRTM1-2-NRX1 interaction (Siddiqui

et al., 2010), and directs b-NRX1 into the cerebellin pathway (El-

egheert et al., 2016; Uemura et al., 2010). Likewise, alternative

binding partners for NL have been recognized. Thrombospondin
f Molecular Biology. Published by Elsevier Inc.
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1 (TSP1) (Xu et al., 2010) and the NMDA receptor (NMDAR) (Bu-

dreck et al., 2013) both bind NL1, and the astrocyte-secreted

protein hevin bridges NL1 and a-NRX (Singh et al., 2016) to pro-

mote glutamatergic synaptogenesis.

In contrast to all these positive effectors and modulators, the

discovery of the Ig superfamily (IgSF)MDGA (meprin, A-5 protein,

and receptor protein-tyrosine phosphatase mu [MAM] domain-

containing glycosylphosphatidylinositol anchor) proteins as

negative modulators of NL is remarkable. MDGA1 was found to

block the interaction of NL2 with NRX and suppress inhibitory

synapse development in cultured neurons (Pettem et al., 2013),

while MDGA2 blocks the interaction of NL1 and NL2 with NRX

andcansuppress excitatory and inhibitory synapsedevelopment

(Connor et al., 2016).MDGAproteins are attached to thepostsyn-

aptic membrane via a C-terminal GPI anchor, and their large

(�900 amino acids) extracellular domain consists of six immuno-

globulin-like domains (Ig1-6), a fibronectin type III-like (FnIII7)

domain, and a memprin, A5, mu (MAM8) domain.

Aberrant signaling in the NL-NRX pathway is strongly linked to

autism spectrum disorders (ASDs) and schizophrenia (S€udhof,

2008). Similarly, intronic SNPs in MDGA1 are linked to schizo-

phrenia (K€ahler et al., 2008; Li et al., 2011), and MDGA2 loss-

of-function truncations were found in unrelated cases of ASD

(Bucan et al., 2009). Single-allele knockout of the Mdga2 gene

in mice elevated both excitatory neurotransmission and func-

tional connectivity and produced behavioral phenotypes related

to ASD (Connor et al., 2016). Mdga2 haploinsufficiency pheno-

types were associated with elevated levels of NL1 and DLG fam-

ily proteins and proposed to be due to diminished block of NL1-

NRX signaling (Connor et al., 2016). However, based on a novel

synaptic cleft tagging strategy in cell culture, another recent

study proposed a role for MDGA2 selectively at inhibitory synap-

ses andMDGA1 at excitatory synapses (Loh et al., 2016), raising

controversy about the precise functions of MDGAs and revealing

a need for more in-depth comprehensive analyses.

Despite the recent focus on mapping the complex molecular

landscape of NL-NRX signaling modulators, a structural and

mechanistic understanding of these processes is still lacking.

In this study, we present the crystal structure of the near-com-

plete MDGA1 extracellular domain and that of its prototypical

complex with NL1, providing detailed insight into the structural

basis of the modulation of NL-NRX signaling by MDGA proteins.

We show that human MDGA1 and MDGA2 have the ability to

interact with human NL1–5, thereby extending the previously

proposed restricted, binary NL-MDGA interaction code (Connor

et al., 2016; Lee et al., 2013; Pettem et al., 2013). Furthermore,

we demonstrate that MDGA1 and MDGA2 are able to broadly

block NL synaptogenic activity in a concentration- and splice

insert-dependent fashion. Given the broad distribution of

MDGA and NL-NRX complexes, our work provides a framework

for understanding potential brain-wide modulation of NL-NRX

signaling by MDGA proteins.

RESULTS

Crystal and Solution Structure of MDGA1
As a first step toward solving the structure of an NL-MDGA

complex, we targeted the full-length apo MDGA1 extracellular
domain for crystallization. Following an extensive screen of con-

structs from various species, we obtained diffraction-quality

crystals and solved the structure of the complete chicken

MDGA1 extracellular region (cMDGA1ECTO; Ig1-Mam8; Gln19-

Lys919; 79.5%sequence identity and 88.4%sequence similarity

with humanMDGA1ECTO; Figure S1) using selenomethionine sin-

gle-wavelength anomalous diffraction (Se-SAD) at 3.20 Å (Fig-

ures 1A and 1B; Table S1). cMDGA1ECTO was treated with endo-

glycosidase F1 (Endo F1) prior to crystallization, leaving a single

N-linked N-acetylglucosamine monosaccharide on glycosylated

Asn residues after enzymatic cleavage. Seven domains (Ig1-6 to

FnIII7) could be unequivocally resolved in the electron density

maps; however, the C-terminal MAM8 domain was not visible

and most likely highly mobile and accommodated in the solvent

channels of the crystal. The cMDGA1ECTO Ig1-6-FnIII7 domains

form a surprisingly compact, folded structure that is �120 Å

wide, �110 Å high, and �50 Å deep, fitting comfortably within

the typical height of the synaptic cleft (�20–25 nm). Its approxi-

mately triangular shape, unique among the cell-surface recep-

tors crystallized to date, is a consequence of sharp-angled Ig2-

Ig3, Ig4-Ig5, and Ig6-FnIII7 inter-domain linkers that are stabilized

by numerous inter-domain contacts.

The Ig2-Ig3 domain contacts (341 Å2 buried surface area [BSA])

are formed between (1) the Ig2 b strands bA and bG and (2) the

loop structure connecting Ig2 and Ig3, and also Ig3 loops BC

and FG. The Ig4-Ig5 domain contacts (598 Å2 BSA) are formed

between (1) the Ig4 b strand bA and loop AB and (2) Ig5 loops

BC and FG. The Ig6-FnIII7 domain contacts (396 Å2 BSA) are

formed between (1) the Ig6 b strand bA0 and loops A0B and EF

and (2) the loop connecting Ig6 and FnIII7 and FnIII7 loops BC

and FG. Finally, the Ig1-FnIII7 domain contacts (395 Å2 BSA)

close the cMDGA1ECTO triangle and are formed between (1)

the Ig1 N-terminal stretch (Gln19-Tyr22) and loop BC and (2)

FnIII7 loops AA0 and C0E, and b strands bA and bB (Figure 1C).

The linear orientation of Ig1 and Ig2 is stabilized by a disulfide

bond, distinct from the core Ig domain disulfide bonds, between

Cys36 located on Ig1 loop AA0 and Cys222 located on Ig2 loop

FG (Figures 1A and 1B).

In the crystal, twoMDGAmolecules form an unexpected inter-

twined dimeric arrangement with individual C-terminal ends

pointing in opposite directions (Figure S2A). Homophilic inter-

faces are formed between domain pairs Ig1-Ig5*, Ig2-Ig2*, and

Ig6-FnIII7* (where * denotes contributions from the second

MDGA monomer); their combined BSA is 2,666 Å2, suggesting

a stable association. Interestingly, this arrangement is compat-

ible with both a potential cis- or trans-homophilic interaction

and might indicate formation of an adhesive or self-inhibitory

complex (Figure S2B). Recombinantly expressed MDGA1 tar-

gets to axons and dendrites and partially co-localizes with inhib-

itory and excitatory postsynaptic markers in cultured hippocam-

pal rodent neurons (Loh et al., 2016; Pettem et al., 2013). Native

MDGA1 and MDGA2 were observed in axon tracts in chicken

(Fujimura et al., 2006) and zebrafish (Ingold et al., 2015), and a

putative trans-homophilic interaction of MDGA2 was proposed

to function in directed axonal growth (Joset et al., 2011).

To investigate the dimerization potential of the MDGA1 extra-

cellular region in solution, we pursued multiple experimental av-

enues. First, we determined the cMDGA1ECTO solution structure
Neuron 95, 896–913, August 16, 2017 897



Figure 1. Crystal Structure of MDGA1

(A) Schematic representation of the chicken

MDGA1 (cMDGA1) domain structure. Gln19-

Lys919, spanning Ig1-Mam8, was used for struc-

ture determination. Black diamonds indicate

Asn residues with crystallographically confirmed

N-linked glycosylation (nine positions). Open di-

amonds indicate Asn residues with predicted but

crystallographically unconfirmed N-linked glyco-

sylation (four positions). Orange lines connect

cysteine residues engaged in disulfide bonds.

(B) Crystal structure of cMDGA1ECTO. Disulfide

bridges are shown as yellow spheres. Glycan moi-

eties visible in the electron density maps are shown

in ball and stick representation. N and C termini,

b strands, and selected Ig1-2 loop structures are

annotated to the structure. The MAM8 domain was

not visible in the electron density maps, probably

due to a flexible FnIII7-MAM8 linker.

(C) Details of the cMDGA1ECTO Ig1-FnIII7, Ig2-Ig3,

Ig4-Ig5, and Ig6-FnIII7 domain contacts. Putative

hydrogen bonds and hydrophilic interactions are

indicated with black dashed lines.

See also Figures S1 and S2.
using small-angle X-ray scattering (SAXS) at a concentration of

30 mM. The scattering data were unambiguously incompatible

with a dimeric MDGA1 molecule but were instead accurately

(c2 = 1.17) modeled as a limited ensemble of monomeric con-

formers with pronounced flexibility at the FnIII7-Mam8 domain

linkage (Figure S2C). In accordance with our SAXS data, we

determined using analytical ultracentrifugation (AUC) that human

MDGA1ECTO is monomeric at a concentration of 60 mM (Figures

S2D and S2E). Finally, to probe whether potential MDGA1 self-

association might instead be transient, we performed surface

plasmon resonance (SPR) experiments in which wild-type
898 Neuron 95, 896–913, August 16, 2017
cMDGA1ECTO was compared with a nega-

tive control mutant that contained three

N-linked glycans inserted at distinct

homophilic interfaces (Arg156Asn in Ig2,

Ser502Asn in Ig5, and Arg680Asn in FnIII7)

for binding to wild-type cMDGA1ECTO.

Both cMDGA1ECTO variants failed to interact

with wild-type cMDGA1ECTO up to a con-

centration of 100 mM(FigureS2F), indicating

that no homophilic cMDGA1ECTO interac-

tions occurred. Together, our results pro-

vide no biochemical evidence for an

MDGA1 cis- or trans-homophilic dimer,

and we propose that opening of the trian-

gular cMDGA1ECTO structure by transient

disruption of the limited Ig1-FnIII7 interface

allowed formation of the dimeric arrange-

ment in the crystal lattice.

Crystal Structure of an NL-MDGA
Complex
We performed an extensive crystalliza-

tion screening of the NL-MDGA com-
plexes formed between MDGA1-2ECTO and NL1-2ECTO con-

structs from various species, and succeeded in generating

diffraction-quality crystals and determining the structure of

the Endo F1-treated complex formed between cMDGA1ECTO
and the human NL1 cholinesterase domain lacking splice in-

serts (hNL1ECTO; Gln46-Asp635; Figure S3) at 3.30 Å (Figures

2A and 2B; Table S1). The hNL1ECTO-cMDGA1ECTO complex

has a 2:2 stoichiometry and overall dimensions of �180 Å

wide, �110 Å high, and �120 Å deep. Two MDGA1 monomers

flank the NL1 dimer to form a 2-fold symmetric complex.

Remarkably, the overall root-mean-square deviation (RMSD)



Figure 2. Crystal Structure of an NL-MDGA

Complex

(A) Schematic representation of the constructs

used for co-crystallization of the hNL1(–A–B)ECTO-

cMDGA1ECTO complex. Orange lines connect

cysteine residues engaged in disulfide bonds. SSA

and SSB depict the position of spliced sequences

A and B on NL1, respectively. The MDGA1

Mam8 domain was included in the crystallization

construct but was not observed in the electron

density, similar to the free cMDGA1ECTO structure.

(B) Front, 120� rotated side, and 90� rotated bot-

tom views of the hNL1(–A–B)ECTO-cMDGA1ECTO
complex, shown in surface (NL1) and cartoon

(MDGA1) representation. Disulfide bridges are

shown as yellow spheres. Glycan moieties visible

in the electron density maps are shown in ball and

stick representation. The C termini of MDGA1 and

NL1 point in the same direction, suggesting a

complex formed in cis, located on the postsynaptic

membrane.

(C) Schematic representation of the postsynaptic

NL1-MDGA1 cis complex.

See also Figure S3.
between apo and NL1-bound cMDGA1ECTO structures is only

1.5 Å over 647 Ca atoms, underlining the stability and impor-

tance of this unusual multi-domain architecture. The NL1 and

MDGA1 C termini point in the same direction and thus confirm

an interaction in cis, situated on the postsynaptic membrane

(Figures 2B and 2C). Each MDGA1 molecule spans the NL1

dimer using two large, separate interaction sites located on

both NL1 monomers (Sites I and II) (Figure 3A). The Ig1-3 do-

mains mediate all MDGA1 contacts, consistent with previous

domain-deletion experiments (Pettem et al., 2013). In contrast

with the NL-NRX complex (Araç et al., 2007; Chen et al.,

2008; Fabrichny et al., 2007), there was no evidence for

the presence of coordinated calcium atoms at either Site I or

II interfaces.

The numbering scheme employed in all following structural

analyses is based on UniProt: P58400 (human b-NRX1),

Q0WYX8 (chicken MDGA1), and Q8N2Q7 (human NL1). Annota-

tion of secondary structural elements follows the acetylcholines-

terase (AChE) nomenclature (Fabrichny et al., 2007).

The smaller Site I (859 Å2 BSA) is formed between residues

from (1) MDGA1Ig1 b strands C, F, and G and loop CE and (2)

NL1 loops Leu289-Gln307, Ile377-Asp385 (part of ‘‘loop L1’’),

Gln392-Tyr398, and Phe496-Pro499 and helices a2(4,5) and

a4(6,7) (Figure 3B). HisNL1291, TyrNL1292, AspNL1384, and

GluNL1394 are at the core of Site I. HisNL1291 and TyrNL1292

make Van derWaals (VdW) contacts and form putative hydrogen
bonds with multiple MDGA1Ig1 residues.

AspNL1384 and GluNL1394 form putative

salt bridges with ArgMDGA1105 and

ArgMDGA1123 (Figure S4A).

The larger Site II (1,000 Å2 BSA) is

formed between residues from (2)

MDGA1Ig2 b strands A, B, D, and E and

NL1 a helices a2(7,8) and a3(7,8); (2)
MDGA1Ig2 loop ABIg2 and NL1 loops Ala110-Pro132 (‘‘Cys

loop’’) and Asp361-Asp385 (‘‘loop L1’’); and (3) peripheral inter-

actions contributed by MDGA1Ig3 to NL1 a helix a2(7,8) and loop

Val417-Ser424 (Figure 3B). Notably, MDGA1 loops ABIg2 and

DEIg2 form long protrusions that give Ig2 a concave shape to

accommodate the NL1 a helix a2(7,8) (Figure 3B). The

PheNL1430-PheMDGA1154 p-p sandwich stacking interaction is

central to this interface and is lined by multiple hydrogen-

bonding and charged interactions. The tip of MDGA1 loop

ABIg2 extends into a pocket lined predominantly by hydrophobic

NL1 residues. Part of loop ABIg2 (Ile140-Ser146 stretch) could

not be resolved in the complex electron density map

(Figure S4A).

The NL1 ‘‘Cys loop’’ (part of loop Ala110-Pro132) and ‘‘loop

L1’’ (part of loop Asp361-Asp385) occlude the ‘‘gorge’’ that, in

AChE, leads to the enzyme active site. Interestingly, these loop

structures form an integral part of the NL-MDGA interface. In

this sense, MDGA resembles the snake toxin fasciculin (Fas)

for binding to AChE (Bourne et al., 1995; Harel et al., 1995). There

are, however, no indications that Fas might bind NL and interfere

with MDGA binding.

The function of the NL Leu449-Arg450-Glu451 (LRE) adhe-

sion motif, conserved in all NLs and located in the a3(7,8)

helix (Figures 7B and S3C), is not clear. The LRE motif was

first identified in the extracellular matrix protein laminin b2,

where it is involved in binding the CaV2.2 voltage-gated
Neuron 95, 896–913, August 16, 2017 899



Figure 3. Details and Conservation of the

NL-MDGA Site I and II Interfaces

(A) 180� rotated open book view of the NL1-

MDGA1Site I and Site II interaction interfaces. Site I

(859 Å2 buried surface area [BSA]) and Site II

(859 Å2 BSA) group interactions contributed by

MDGA1 Ig1 and Ig2-Ig3, respectively.

(B) Overview of the NL1 secondary structure ele-

ments contacted by MDGAIg1 to form Site I, and

MDGAIg2-3 to form Site II.

(C) View of the NL1 and MDGA1 interaction in-

terfaces, color-coded by sequence conservation

in vertebrate NL1, NL2, NL3, NL4, and NL5 (1,046

total sequences), and vertebrate MDGA1 and

MDGA2 (420 total sequences).

(D) View of the MDGA1 interaction interface.

Site I and Site II interfaces are outlined by

yellow and green lines, respectively. Per residue

position, equivalent residues in human MDGA1

and MDGA2 are annotated to highlight overall

sequence conservation of the interaction in-

terfaces. Star symbols (*) indicate residues for

which side chain electron density was not clearly

discernable.

See also Figure S4.
calcium channel. Furthermore, the LRE motif is present

in the majority of mammalian AChEs, and besides in NL, it

is also observed in the cholinesterase-like adhesion mole-

cules neurotactin and glutactin (Johnson and Moore,

2013). Both Arg450 and Glu451 form an integral part of

the NL-MDGA interface and interact with Tyr187 and

Leu190, respectively, on MDGA1 loop DEIg2 (Figures 7A and

S4A), offering a first functional role for this LRE-tripeptide

in NLs.
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Sequence conservation analysis indi-

cated that both Site I and Site II interfaces

are highly conserved in vertebrateMDGAs

and NLs (Figures 3C, 3D, and S4B); this

observation strongly points toward a com-

mon bindingmode between all MDGA and

NL family members.

We mapped all predicted N-glycosyla-

tion sites for human MDGA1-2 and

NL1-5 (NLs lacking splice inserts) on the

cMDGA1ECTO and hNL1ECTO structures

(Figures S4C and S4D). The MDGA1-spe-

cific N-glycan at Asn307, experimentally

confirmed by identifying the correspond-

ing N-acetylglucosamine monosaccha-

ride in the hNL1ECTO-cMDGA1ECTO elec-

tron density map, is the only glycan that

is proximal to the binding interface and is

situated in Ig3 at the edge of Site II. Anal-

ysis of the complex structure, however,

indicated that all putative N-linked glycans

can project into the solvent, thereby

avoiding interference with complex forma-

tion. Proteins for subsequent biophysical
and cellular experiments were expressed in HEK293T and

COS-7 cells, respectively, and were not deglycosylated.

MDGA and NRX Share Binding Interfaces on NL
We compared our NL1-MDGA1 structure with previously re-

ported NL1-b-NRX1 complexes (Araç et al., 2007; Chen et al.,

2008; Fabrichny et al., 2007). Using the highest resolution NL1-

b-NRX1 structure available (PDB: 3B3Q; 2.4 Å; Chen et al.,

2008), both complexes align with an RMSD of 0.292 Å over



Figure 4. MDGA and NRX Compete for

Binding to the NL Site I Interface

(A) Comparison of the NL1-MDGA1 and NL1-

b-NRX1 complex binding modes. The NL1-

MDGA1 and NL1-b-NRX1 (based on PDB: 3B3Q;

Chen et al., 2008) interfaces are oriented similarly,

based on structural alignment of one NL1 mono-

mer (0.292 Å RMSD over 453 NL1 Ca positions).

The respective molecular footprints of MDGA1 and

b-NRX1 are outlined with a red stroke. The NL1-

MDGA1 Site I and Site II interfaces, and the NL1-

b-NRX1 Site I interface, are shown in surface

representation.

(B) Detailed comparison of the core NL1 residues

shared between NL1-MDGA1 and NL1-b-NRX1

Site I interfaces. Putative hydrogen bonds and

hydrophilic interactions are indicated with black

dashed lines. The hexadentate coordination shell

of the NL1-b-NRX1 interface calcium (Ca) atom is

indicated with solid orange lines.

(C) Summary of the calorimetric competition assay

binding isotherms, indicating that MDGA1ECTO
can compete with b-NRX1LNS6(–4) for binding to

NL1ECTO in a concentration-dependent fashion.

In each case, the experimental geometry is ‘‘[cell

contents] + syringe contents.’’ For calculation of

the stoichiometry, NL1, MDGA1, and b-NRX1(–4)

were considered in their monomeric state. Ther-

modynamic binding parameters are annotated.

ND, not determined. An �2.5-fold molar excess

of MDGA1 was required to fully block binding of

b-NRX1LNS6(–4) to NL1ECTO.
453 NL1 Ca positions. Strikingly, Site I overlaps nearly

completely with the NL1-b-NRX1 interface, suggesting that

MDGA prevents the NL-NRX interaction via steric hindrance

(Figure 4A). Core NL1 residues shared between NL1-MDGA1

and NL1-b-NRX1 interfaces are His291, Asp294, Asp384,

Gly393-Asn397, Phe496, and Gly497. ArgMDGA1123 mimics

Argb-NRX1232 for binding to AspNL1384. ArgMDGA1123 and

ArgMDGA1105 engage GluNL1394 in ionic interactions, whereas

in NL1-b-NRX1, the latter residue contacts Thrb-NRX1235 and is

part of the hexadentate coordination shell of the obligate inter-

face calcium atom. AspNL1294 forms a hydrogen bond with

TyrMDGA1107, whereas it forms a bifurcated ionic interaction

with Argb-NRX1109 in NL1-b-NRX1. Finally, NL1 residues
Gly393, Phe395, Phe496, and Asn397

are contacted by MDGA1Ig1 loop CE,

preventing their network of hydrogen-

bonded interactions with b-NRX1 resi-

dues (Figure 4B).

We set up an isothermal titration calo-

rimetry (ITC) assay to investigate whether

MDGA1ECTO competes with b-NRX1LNS6
lacking SS4 (b-NRX1LNS6(–4)) for binding

to NL1ECTO. Titration of b-NRX1LNS6(–4)

into NL1ECTO alone revealed a strong

exothermic interaction and a KD of

�390 nM. Application of an equimolar

amount of MDGA1ECTO to NL1ECTO in the
titration cell did not fully block the NL1ECTO-b-NRX1LNS6(–4)

interaction, but decreased its apparent KD (KD,app) �12-fold to

4.76 mM. Application of a 2.5-fold molar excess of MDGA1ECTO
over NL1ECTO was required to fully block binding of

b-NRX1LNS6(–4) to NL1ECTO (Figure 4C). These results are

consistent with the notion that MDGA is not an ultra-high-affinity

decoy receptor, and that by varying the levels of MDGA, the level

of NL-NRX complex formation can be tuned.

MDGA1 and MDGA2 Bind All NL Isoforms
We hypothesized that the interactions between human NLs and

MDGAs are not limited to certain pairs of isoforms, given the high

level of conservation of the Site I and Site II interface residues
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among human NL1–5 and MDGA1-2 (Figures 3C and S4B). To

test this, we determined the binding strengths of all pairwise

NL-MDGA ectodomain interactions using SPR. We initially

focused on the unspliced NL variants for these interaction

studies. As a control, we measured the pairwise interactions be-

tween NL1–5ECTO and b-NRX1LNS6 with and without SS4

(b-NRX1LNS6(±4)). The reference interaction of NL1ECTO with

b-NRX1LNS6(–4) showed an approximately 2-fold higher equilib-

rium dissociation constant (KD) than the one derived from ITC (KD

of 718 ± 14 nM versus 388 ± 23 nM, respectively; Figures 4C

and 5A).

Overall, our measurements revealed KDs for NL-MDGA in the

high nanomolar (nM) to lowmicromolar (mM) range, similar to NL-

b-NRX1(±4) (Figure 5A). Accordingly, MDGA does not appear to

be an ultra-high-affinity decoy receptor for NL. MDGA1 and

MDGA2 interacted most strongly with NL1 and NL2, and

MDGA2 binds NL1 and NL2 2-fold stronger than MDGA1 (KD

of �1 and �2 mM, respectively). Interaction affinities of

MDGA2ECTO and b-NRX1LNS6(–4) for NL1–2ECTO are nearly iden-

tical. Interestingly, both MDGA1 and MDGA2 interacted �10- to

�20-fold weaker with NL3, NL4, and NL5 (KD of �15–25 mM).

Whereas NL3ECTO also binds b-NRX1LNS6(–4) with low affinity

(KD of �8.5 mM), NL4ECTO and NL5ECTO still bind b-NRX1LNS6
(–4) relatively strongly (KD of �2.5–3 mM), meaning that for NL4

and NL5, a larger discrepancy between binding strengths of

b-NRX1(–4) and MDGA1-2 exists (Figure 5A).

Taken together, these experiments show (1) that MDGA1 and

MDGA2 have the ability to interact with NLs that localize to excit-

atory glutamatergic (NL1 and NL3) (Budreck and Scheiffele,

2007; Song et al., 1999), inhibitory GABAergic (NL2 and NL3)

(Budreck and Scheiffele, 2007; Graf et al., 2004; Varoqueaux

et al., 2004), and inhibitory glycinergic (NL2 and NL4) (Hoon

et al., 2011; Varoqueaux et al., 2004) synapses, and (2) that the

subtle divergences in NL and MDGA amino acid composition

(Figures 3D and S4B) may contribute to subtype preferences.

Thus, our results extend the restricted, binary NL-MDGA code

that was previously proposed (Connor et al., 2016; Lee et al.,

2013; Pettem et al., 2013).

We sought to validate the interaction of MDGA1 and MDGA2

with multiple NLs. To this end, we fused the rat MDGA1 and

MDGA2 ectodomains to the Fc region of human IgG. MDGA1-

and MDGA2-Fc proteins were then used as bait to identify NLs

in postnatal day 21 (P21) rat brain synaptosome extracts, using

affinity chromatography coupled with mass spectrometry and

bioinformatics analysis (Savas et al., 2014). For extraction, we

used the detergent Triton X-100 at 1% w/v concentration. In
Figure 5. MDGA1 and MDGA2 Bind All NL Isoforms and Suppress NL-

(A) Schematic representation of the SPR setup, summary of KD values, and

b-NRX1LNS6(±4).

(B) COS-7 cells expressing myc-NL1–4 were co-transfected with HA-CD4 contro

ability of the co-transfected cells to induce synapsin clustering was measured and

themean of three independent experiments for low, medium, and high plasmid ra

condition) with the CD4:myc-NL1–4 co-transfected controls normalized to 100%

Significance is shown for CD4 control versus MDGAs for each NL (one-way A

*p < 0.05, **p < 0.01, ***p < 0.001; n.s., not significant. A detailed statistical quan

(C) Representative images of co-cultures immunostained for surface myc-NL (blu

axonal marker (green). The isolated synapsin signal (white) is shown next to eac

See also Figures S5 and S6.
two independent MDGA1-Fc pull-down experiments, we identi-

fied NL3, NL2, and NL1, ranked by spectral count (Figure S5B;

Table S2). No peptides for NLs were detected in control

experiments using Fc alone or using MDGA lacking Ig1-3
(MDGA1DIg1–3) (Table S2), demonstrating specificity in the

assay. In two independent MDGA2-Fc pull-down experiments,

we identified NL2 and, to a lesser extent, NL3 (Figure S5B). In

the pull-downs, no NL4 or NL5 was detected; NL4 is of very

low abundance (e.g., only �3% of the total NL in mouse brain;

Varoqueaux et al., 2006) and NL5 is restricted to humans. The

pull-down results are consistent with our SPR data that indicated

a stronger binding of NL3 to MDGA1 than to MDGA2 (Figure 5A).

MDGA1 and MDGA2 Modulate NL-Induced Recruitment
of Hippocampal Synaptic Terminals
To assess whether MDGA1 and MDGA2 are able to broadly

modulate NL-NRX-induced synapse formation, we set up a

cellular hemi-synapse formation assay in which COS-7 cells

co-expressing full-length (FL) N-terminally myc-tagged NL1–4

(myc-NL1–4FL) and full-length N-terminally HA-tagged

MDGA1-2 (HA-MDGA1-2FL) variants were co-cultured with rat

hippocampal neurons (Figures 5B, 5C, S6C, and S6D). These

neurons express the –SS4 and +SS4 forms of all three a- and

b-NRXs (a/b-NRX1-2-3) (Aoto et al., 2013). Accordingly, this

assay integrates signals from multiple NRX isoforms, in contrast

with our SPR or ITC assays, which only used b-NRX1(±4) as

reference interactions (Figures 4C and 5A). To test our hypothe-

sis that by varying the expression levels of MDGA1-2, the extent

of NL-NRX complex formation and hence recruitment of synaptic

terminals can be influenced, we tested three different plasmid ra-

tios of MDGA1 andMDGA2. For MDGA1, low, medium, and high

plasmid ratios designate a 2.2-, 3.5-, and 5.0-fold excess of

plasmid DNA over NL, respectively. For MDGA2, these ratios

were chosen to be 1.5-fold higher to achieve similar surface pro-

tein levels asMDGA1 (Figure S6A). The low ratios used herewere

similar to the ratios used in our previous co-culture assays of ro-

dent MDGA1-2 with NL1 and NL2 (Connor et al., 2016; Pettem

et al., 2013). Similar results were found here for human

MDGA1-2 with NL1-2 (see Figures 5B and 8D, low ratio results).

However, these earlier studies did not assess the effects of NL

alternative splicing, varying ratios of MDGA to NL, or MDGA on

NL3-4.

We observed here that MDGA1 and MDGA2 appeared to

reduce the ability of all NLs to recruit presynaptic terminals,

but with different potency. MDGA1 and MDGA2 both blocked

NL1-induced recruitment of synaptic terminals, although a
Induced Recruitment of Synaptic Terminals in Co-culture

binding isotherms for the interaction of NL1–5ECTO with MDGA1-2ECTO and

l, HA-MDGA1, or HA-MDGA2 and co-cultured with hippocampal neurons. The

normalized to the area of tau-positive axon contact. The bar graphs represent

tios (Figure S6A) of human HA-MDGA1-2:myc-NL1–4 (n > 24 total cells for each

to show the relative change of synapsin integrated intensity at each ratio.

NOVA with Bonferroni post hoc comparison). Error bars represent the SEM.

tification can be found in Table S3.

e), surface HA-MDGA or CD4 control (data not shown), synapsin (red), and tau

h color image. Scale bar, 30 mm.
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higher ratio was needed to obtain this effect for MDGA1 than for

MDGA2 (Figure 5B; Table S3). Both MDGA1 and MDGA2

potently blocked NL2-induced recruitment of synaptic termi-

nals. Thus, there was a weaker effect of MDGA1 on NL1 relative

to NL2 activity in this neuron culture-based assay in comparison

with similar binding seen with purified proteins in our equilibrium

SPR experiments (Figure 5A). Differential effects in the co-cul-

ture were not due to any differences in surface levels of MDGAs

or NLs (Figure S6B). We observed a stronger differential effect

when evaluating NL3-induced synapse formation. Whereas

MDGA1 was able to block recruitment of synaptic terminals at

all ratios, MDGA2 was not. This is consistent with our SPR anal-

ysis, which derived lower responses and corresponding lower

interaction affinities for the NL3-MDGA2 interaction (Figures

5A and S5A). Finally, both MDGA1 and MDGA2 were unable

to significantly block NL4-induced synapse formation, although

there was a trend toward suppression; this agrees with our

SPR analysis that indicated that b-NRX1(–4) binds NL4 �6-

fold stronger than MDGA1-2. We suggest that even higher

MDGA:NL plasmid ratios would be needed to fully block NRX

binding. However, these conditions were not experimentally

accessible in the assay format used, which imposed limits on

the total amount of plasmid DNA that can be reliably

transfected.

Overall, our results confirm that MDGA1 and MDGA2 can

interfere with a broad range of NL-NRX interactions to modulate

presynaptic differentiation. The functional outcome will ulti-

mately be influenced by the relative abundances of all molecular

players.

Assessment of Binding of NL1 with Hevin,
Thrombospondin-1, and the NMDAR
Given that the interactions of thrombospondin 1 (TSP1) (Xu et al.,

2010), hevin (Singh et al., 2016), and the NMDAR (Budreck et al.,

2013) with NL1 are all dependent on the coupling of their respec-

tive extracellular domains, we hypothesized that MDGA might

have the potential to also block binding of these proteins to

NL, thereby assigning a more general inhibitory function to

MDGA. To test this, we first set out to reproduce the interactions

of NL1with recombinant hevin, TSP1, and NMDAR using SPR. In

our setup, secreted human hevin and TSP1 and detergent-solu-

bilized rat NMDAR (GluN1a-GluN2B heterotetramer) (Karakas

and Furukawa, 2014) were immobilized on the chip surface (Fig-

ure S7A). We found that, in contrast to the reference interaction

of NL1(–A–B)ECTO with mouse a-NRX1ECTO(–4), all three proteins
Figure 6. Uncoupling of MDGA and NRX Binding to NL

(A) Annotation of the NL1 Site I (DSite I: H291A, Y292A, D384A, and E394A) and

(B) Schematic representation of the SPR setup, summary of KD values, and bindin

with MDGA1-2ECTO and b-NRX1LNS6(±4).

(C) COS-7 cells expressing myc-NLs were co-transfected with HA-CD4 control,

ability of the co-transfected cells to induce synapsin clustering was measured and

themean of three independent experiments for high plasmid ratios (Figure S6A) of

shown for CD4 control versusMDGA1-2 for each NL1 variant (one-way ANOVAwi

n.s., not significant. Mutation of Site II renders NL1(–A–B) insensitive to supp

quantification can be found in Table S4.

(D) Representative images of co-cultures immunostained for surface myc-NL (blu

axonal marker (green). The isolated synapsin signal (white) is shown next to eac

See also Figure S8.
failed to interact with NL1(–A–B)ECTO up to a concentration of

25 mM (Figures S7B and S7C).

Uncoupling of MDGA and NRX Binding to NL
Given that the NL-MDGA crystal structure revealed a composite

Site I-II interface, whereas NL-NRX uses only Site I (Figure 4A),

we hypothesized that NRX and MDGA binding can be un-

coupled, i.e., NL can be rendered insensitive for modulation by

MDGA by mutating the Site II interface. We introduced four

core interface mutations into the NL1 Site I interface (NL1DSite I:

His291Ala, Tyr292Ala, Asp384Ala, and Glu394Ala) and five

into the Site II interface (NL1DSite II: Asp429Ala, Phe430Ala,

Ser433Ala, Asn434Ala, and Arg450Ala) (Figure 6A). We opted

to combine multiple mutations of key interface residues instead

of using single-position alanine mutants to maximize our

chances of obtaining a clear binding differential and cellular

phenotype.

Consistent with both NL-MDGA and NL-b-NRX1 complex

structures, we found using SPR that the DSite II mutant blocked

MDGA1 binding but maintained binding of b-NRX1, whereas the

DSite I and combined DSite I+II mutants fully abolished both

b-NRX1 and MDGA1 interactions (Figures 6B and S8A).

Using the co-culture assay, we tested the impact of the DSite I

and DSite II mutations on the recruitment of synaptic terminals

by full-length NL1. Consistent with our SPR analysis, introduc-

tion of the NL1DSite I and NL1DSite I+II mutations, but not the

NL1DSite II mutations, prevented NL-NRX-induced synapse for-

mation (Figures 6C and 6D; Table S4). Simultaneously, co-

expression at high plasmid ratio of MDGA1 or MDGA2 with

NL1 carrying the DSite II mutations did not lead to diminished

recruitment of synaptic terminals (Figures 6C and 6D; Table

S4). We concluded that the NL DSite II mutant selectively un-

coupled NL-NRX binding and recruitment of synaptic terminals

from inhibition by MDGA.

The ASD-Linked NL3 Mutation Arg451Cys Prevents
Suppression of Synapse Formation by MDGA1
The well-characterized NL3 mutation Arg451Cys (R451C) leads

to a number of ASD-linked phenotypes in mice (Tabuchi et al.,

2007). In this knockin mouse model, R451C acts as a gain-of-

function mutation by actually increasing inhibitory synaptic

transmission, a result that is seemingly at odds with the severe

reduction of NL3 in these mutant mice (Tabuchi et al., 2007).

Indeed, complete knockout of NL3 has no such effect (Tabuchi

et al., 2007).
Site II (DSite II: D429A, F430A, S433A, N434A, and R450A) mutations.

g isotherms for the interaction of wild-type and mutant human NL1(–A–B)ECTO

HA-MDGA1, or HA-MDGA2 and co-cultured with hippocampal neurons. The

normalized to the area of tau-positive axon contact. The bar graphs represent

humanHA-MDGA1-2:myc-NL1 (n > 22 total cells for each ratio). Significance is

th Bonferroni post hoc comparison). Error bars represent the SEM. ***p < 0.001;

ression of synapse formation by MDGA1 and MDGA2. A detailed statistical

e), surface HA-MDGA or CD4 control (data not shown), synapsin (red), and tau

h color image. Scale bar, 30 mm.
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Our hNL1ECTO-cMDGA1ECTO complex crystal structure shows

that NL1 Arg450, which is equivalent to NL3 Arg451 and part of

the NL1 Leu449-Arg450-Glu451 (LRE) motif (Figures 7B and

S3C), is an integral part of the Site II interface (Figure 7A). We

introduced the Arg450Cys (R450C) and Arg451Cys (R451C) mu-

tations into NL1(–A–B)ECTO and NL3(–A)ECTO, respectively. We

observed diminished secretion for the mutants as compared to

wild-type proteins (Figure S8B), consistent with reported traf-

ficking defects and protein destabilization (Chih et al., 2004; Co-

moletti et al., 2004; Tabuchi et al., 2007). Using SPR, we then

measured the interaction of b-NRX1(±4) and MDGA1-2 with

thesemutant proteins and compared them to the wild-type inter-

actions. Our measurements revealed that for both NL1 and NL3,

introduction of the R450/451C mutation nearly completely abol-

ished binding of both MDGA1 and MDGA2, while leaving the

binding of b-NRX1(±4) unaffected (Figures 7C and S8B). This is

consistent with the fact that the R450/451C mutation is situated

in the MDGA-specific Site II interface. In this sense, the mutation

thus phenocopies our NL1 DSite II mutant (Figure 6B).

Using the co-culture assay, we tested the impact of the R451C

mutation on the recruitment of synaptic terminals by full-length

NL3. Importantly, although impaired relative to wild-type NL3,

the R451C mutant can traffic to the surface of transfected

COS-7 cells (Figure S8C) and rat hippocampal neurons (Fig-

ure S8D; consistent with Chih et al., 2004). Thus, for the co-cul-

ture analysis, we again selected COS-7 cells that displayed

equal amounts of surface NL to ensure meaningful readout of

synapse formation (Figure S8C). Consistent with our SPR anal-

ysis, introduction of the R451C mutation had no impact on NL-

NRX-induced synapse formation when compared to wild-type

NL3 (Figure 7D). Then, co-expression at low plasmid ratio of

MDGA1, but not MDGA2, with NL3 wild-type led to diminished

recruitment of synaptic terminals. This result closely reproduces

our earlier observation (Figure 5B). Introduction of R451C, how-

ever, prevented the diminished recruitment of synaptic terminals

mediated by MDGA1 (Figures 7D and 7E; Table S5). We

concluded that R451C selectively uncoupled NL3-NRX binding

and recruitment of synaptic terminals from inhibition by MDGA1.

Tuning of the NL-MDGA Interaction by NL SSA and SSB
Alternative splicing leads to insertion of SSA and SSB onto the

NL cholinesterase scaffold. SSB is restricted to NL1, whereas

distinct SSA sequences are present in NL1, NL2, and NL3. In

NL1 and NL3, the two possible SSA sequences (A1 and A2)

can also occur in tandem (denoted as A1A2) (Figure S3B).

Whereas NL1 mRNAs containing and lacking splice insert A

are detected at similar levels at hippocampal, cortical, and cere-

bellar excitatory synapses, mRNA coding for NL1(+B) is more

abundant than for NL1(–B) (Chih et al., 2006). Simultaneously,

the insertion point for SSB in NL1 is in close proximity to the

Site I interface (Koehnke et al., 2010), suggesting that presence

of SSB might affect MDGA binding. These observations promp-

ted us to investigate the effect of insertion of SSA and SSB on the

NL-MDGA complex formation. First, we mapped SSA, derived

from a published NL1(+A1) crystal structure (PDB: 3VKF; Tanaka

et al., 2012), onto the NL1-MDGA1 (0.399 Å RMSD over 477 NL1

Ca positions) and NL1-NRX1 (0.375 Å RMSD over 453 NL1 Ca

positions) structures (Figure 8B).
906 Neuron 95, 896–913, August 16, 2017
Interestingly, although SSA is spatially distant from both Site I

and Site II binding interfaces, it is in close proximity to the

MDGA Ig5 and Ig6 domains (Figure 8B). As such, SSA might

have the potential to either clash with Ig5-Ig6 or, conversely, pro-

vide an additional binding site for MDGA. We tested using SPR

whether insertion of the distinct SSA sequences into NL1, NL2,

or NL3 had an effect on the NL-MDGA or NL-NRX interactions.

We were unable to detect a robust or meaningful impact of the

SSA sequences on the binding strength of any NL1-3ECTO-

MDGA1-2ECTO or NL1-3ECTO-b-NRX1LNS6(±4) pair (Figures

S9A, S9B, S10A, and S10B), suggesting that SSA possesses

sufficient conformational freedom to not perturb the core NL-

MDGA interaction. Accordingly, we suggest that SSA is not

involved in modulating the NL-MDGA interaction.

Next, we determined the crystal structure of human NL1 con-

taining SSB (hNL1(+B)) at 2.55 Å (Figure 8A; Table S1). The nine-

residue SSB (NRWSNSTKG), inserted between Gly295 and

Leu305, was clearly visible in the electron density; the N-linked

glycan at Asn300, a modulator of the NL-NRX interaction (Chih

et al., 2006; Comoletti et al., 2003), was, however, not fully

resolved due to conformational flexibility (Figure 8A). Super-

position of NL1(+B) and NL1-MDGA1 (0.308 Å RMSD over 434

NL1 Ca positions) or NL1-NRX1 (0.306 Å RMSD over 428 NL1

Ca positions) structures revealed that SSB is spatially immedi-

ately adjacent to both Site I interfaces (Figure 8B). We found, us-

ing SPR, that insertion of SSB weakened the NL1-MDGA1-2

interaction �7-fold, while reducing the NL1-b-NRX1(±4) interac-

tion less than 2-fold (Figure 8C). We propose that this differential

effect is due to the much larger molecular footprint of MDGA and

the resulting close proximity of the MDGA Ig5 and Ig6 domains to

the N-linked glycan at Asn300, suggesting that SSB reduces the

NL-MDGA interaction due to steric hindrance (Figure 8B).

Indeed, removal of the N-linked glycan (Asn300Gln mutant)

partially recovered the NL1-MDGA1-2 interaction affinity,

whereas it had almost no effect on the NL1-b-NRX1(±4) interac-

tion (Figure 8C).

Using the co-culture assay, we tested the effect of the pres-

ence of SSB on the ability of MDGA1-2 to block recruitment of

synaptic terminals by full-length NL1(–B) and NL1(+B). Co-

expression of MDGA1-2 at low, medium, and high plasmid ratios

(as previously defined; Figure S6A) led to a decreased recruit-

ment of terminals by both NL1(–B) and NL1(+B) (Figures 8D

and 8E; Table S3); however, we found a concentration-depen-

dent decrease for MDGA1. At the medium ratio, MDGA1 signifi-

cantly blocked recruitment of terminals by NL1(–B), but not

NL1(+B), consistent with the difference in binding observed in

the SPR assay (Figure 8C). Taken together, our results suggest

that, despite the proximity of SSB to the Site I interface, its pres-

ence does not eliminate the ability of MDGA to block NL-NRX

signaling. Rather, SSB provides a way to fine-tune the NL1-

MDGA1-2 interaction at excitatory synapses.

DISCUSSION

In this work, we present the structure of the near-complete

MDGA1 extracellular domain and its complex with NL1, estab-

lishing the general recognition paradigm between these synaptic

organizing molecules. Simultaneously, our structural analyses



Figure 7. The ASD-Linked NL3 Mutation Arg451Cys Prevents Suppression of Synapse Formation by MDGA1

(A) NL1 Arg450, equivalent to NL3 Arg451, is engaged in p-stacking interactions with TyrMDGA1187 and its side chain is oriented by charged interactions with

AspNL1447 and GluNL1451.

(B) Sequence alignment of human, mouse, and rat NL1–5. Helices a2(7,8) and a3(7,8) of Hs_NL1 are annotated above the alignment. NL residues unique to the

‘‘core’’ and ‘‘rim’’ of the NL-MDGA interface are highlighted in black and gray, respectively. The Leu-Arg-Glu (LRE) motif, conserved in all NLs and located in the

a3(7,8) helix, is boxed in yellow. The equivalent NL1 Arg450 and NL3 Arg451 residues are part of the Site II interface and central to the LRE motif. Hs; Homo

sapiens, Mm; Mus musculus, Rn; Rattus norvegicus.

(C) Schematic representation of the SPR setup, summary of KD values, and binding isotherms for the interaction of NL1, NL1 Arg450Cys, NL3, and NL3

Arg451Cys with MDGA1-2ECTO and b-NRX1LNS6(±4).

(D) COS-7 cells expressing myc-NL3 wild-type or myc-NL3 Arg451Cys were co-transfected with HA-CD4 control, HA-MDGA1, or HA-MDGA2 and co-cultured

with hippocampal neurons. The ability of the co-transfected cells to induce synapsin clustering was measured and normalized to the area of tau-positive axon

contact. The bar graphs represent the mean of three independent experiments for the low plasmid ratio (Figure S6A) of human HA-MDGA1-2:myc-NL3 (n > 21

total cells for each condition). Significance is shown for CD4 control versusMDGAs (one-way ANOVAwith Bonferroni post hoc comparison). Error bars represent

the SEM. ***p < 0.001; n.s., not significant. A detailed statistical quantification can be found in Table S5.

(E) Representative images of co-cultures immunostained for surface myc-NL3 (blue), surface HA-MDGA or CD4 control (data not shown), synapsin (red), and tau

axonal marker (green). The isolated synapsin signal (white) is shown next to each color image. Scale bar, 30 mm.

See also Figure S8.
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guided the discovery of a broad splicing-modulated interaction

network between all MDGA and NL isoforms that is able to block

NL-NRX complex formation and modulate NL-induced recruit-

ment of synaptic terminals.

Two large, triangular MDGA1 molecules cradle dimeric NL to

shield it from interacting with NRX. We tested whether this

arrangement also has the potential to negatively influence the

interaction of NL with the astrocyte-secreted proteins TSP1

(Xu et al., 2010) and hevin (Singh et al., 2016) and with the

NMDAR (Budreck et al., 2013). However, we failed to reproduce

these interactions using SPR. Our results suggest that, at least

using isolated recombinantly produced proteins and in an SPR

setup with defined components and buffer conditions, these in-

teractions are very weak, require the membrane environment, or

are mediated through as-yet-unidentified auxiliary proteins or

small-molecule ligands. Future studies will have to identify the

exact molecular components required for these interactions.

The structure of the NL1-MDGA1 complex uncovers Site II, a

hitherto unrecognized interaction site on NL that is distinct

from the canonical NL-NRX Site I interface, highlighting the abil-

ity of the NL cholinesterase fold to accommodate a diverse array

of ligand interaction modes. Furthermore, the NL DSite II mutant

is a useful molecular tool to selectively uncouple NL-NRX com-

plex formation from inhibition by MDGA, or from other proteins

that would utilize Site II.

MDGA Ig domains 1–3 mediate all contacts with NL (Fig-

ure 3A). We speculate that MDGAmight have more binding part-

ners besides NL. Indeed, the MDGA1 MAM domain binds a re-

ceptor on axons (Fujimura et al., 2006) and enhances cell

motility and adhesion to non-MDGA1-expressing cells (Dı́az-Ló-

pez et al., 2010). The Ig domains 4–6 are reported to play a role in

determining synaptic localization of MDGA1 and MDGA2 (Loh

et al., 2016). Adhesive interactions of MDGA with as-yet-uniden-

tified partners may be responsible for the MDGA-dependent ag-

gregation of basal progenitor cells in the subventricular zone

(Perez-Garcia and O’Leary, 2016), radial migration of cortical

neurons (Takeuchi and O’Leary, 2006), and directed axon

outgrowth (Ingold et al., 2015; Joset et al., 2011). The wide-

spread expression of NLs (Varoqueaux et al., 2006) and NRXs

(Brown et al., 2011; Górecki et al., 1999) from early postnatal

ages also raises the interesting possibility thatMDGAsmay func-
Figure 8. NL1 SSB Differentially Modulates NL1-NRX and NL1-MDGA C

(A) Crystal structure of humanNL1(+B). The inset shows 2mFo-DFc electron densi

indicates the position of the N-linked glycan at Asn300. The glycan tree itself wa

(B) Structural mapping of spliced sequences A (SSA) and B (SSB) onto NL1. T

structural alignment of one NL1monomer (0.292 Å RMSD over 453 NL1Ca positio

position of SSA is derived from a published crystal structure of rat NL1(+A1) (PD

(C) Schematic representation of the SPR setup, summary of KD values, and bindi

NL1(–A+B_N300Q)ECTO with MDGA1-2ECTO and b-NRX1LNS6(±4).

(D) COS-7 cells expressing myc-NLs were co-transfected with HA-CD4 control,

ability of the co-transfected cells to induce synapsin clustering was measured and

themean of three independent experiments for low, medium, and high plasmid ra

each ratio) with the CD4:myc-NL1(–A ± B) co-transfected controls normalized to 1

Significance is shown for CD4 control versus MDGAs for each NL1 (one-way ANO

0.05, **p < 0.01, ***p < 0.001; n.s., not significant. A detailed statistical quantifica

(E) Representative images of co-cultures immunostained for surface myc-NL (blu

axonal marker (green). The isolated synapsin signal (white) is shown next to eac

See also Figures S9–S11.
tion to shield NLs at the stage of process outgrowth to prevent

premature axon-dendrite adhesion and synaptogenesis.

Given the similar interaction affinities of MDGA1-2 and NRX

with NL, the balance between NL-NRX and NL-MDGA complex

formation will be determined by their relative abundances and

binding availability at each synapse in vivo. The net effect of

MDGA on synaptic NL-NRX signaling may be influenced by the

presence of other protein partners of MDGA, NRX (LRRTMs, cal-

syntenin 3, dystroglycan, latrophilin 1, cerebellins, and C1q-like

proteins), and NL (hevin, thrombospondin, and NMDARs). The

complexity of NL-NRX signaling is compounded even further by

the existence of postsynaptic cis NL-NRX silencing complexes

(Taniguchi et al., 2007) and by the recent report of MDGA-like

functions for g-protocadherins (Molumby et al., 2017).

The capacity of NLs to form heterodimers (Poulopoulos et al.,

2012) will differentially affect MDGA and NRX binding since the

MDGA interface spans both NL monomers, whereas the NRX

interface does not. For example, NL1/3, the most prevalent NL

heterodimer located at excitatory synapses (Budreck and

Scheiffele, 2007; Poulopoulos et al., 2012), would harbor an

asymmetric set of Site I-II interfaces: Site II on one side of the

dimer will come from NL3, while Site I will be donated by NL1.

At the other side of the dimer, this will be inverted. Since NL3 in-

teracts �10-fold more weakly with MDGA than NL1(–B) (Fig-

ure 5A), a composite interface will likely lead to an intermediate

strength binding event. Insertion of SSB into NL1 near Site I,

however, brings the affinity of NL1 for MDGA in the range of

that of NL3 (Figure 8C).

The direct interaction affinities with NL1 and NL2 do not seem

to account for selectivity of MDGAs to suppress excitatory or

inhibitory synapses. Consistent with the role of MDGA2 to sup-

press excitatory synapses in vivo (Connor et al., 2016),

MDGA2, but not MDGA1, suppressed the synaptogenic activity

of the major NL at excitatory synapses, NL1(+B), in co-culture

experiments at low-medium ratios (Figure 8D). Yet MDGA2

showed�12-fold andMDGA1�6-fold greater affinity for thema-

jor NL at inhibitory synapses, NL2, than for NL1(+B) (Figures 5A

and 8C). Factors other than direct MDGA-NL1-2 binding affin-

ities that may contribute include differential glycosylation,

although we could find no indication for such (Figures S4C and

S4D); additional interacting proteins; or differential cell-type
omplex Formation

ty contoured at 1.0s (cyanmesh) for spliced sequence B (SSB). The star symbol

s not visible in the electron density due to structural flexibility.

he NL1-MDGA1 and NL1-b-NRX1 interfaces are oriented similarly, based on

ns). The position of SSB is derived from the crystal structure of NL1(+B), and the

B: 3VKF; Tanaka et al., 2012).

ng isotherms for the interaction of human NL1(–A–B)ECTO, NL1(–A+B)ECTO, and

HA-MDGA1, or HA-MDGA2 and co-cultured with hippocampal neurons. The

normalized to the area of tau-positive axon contact. The bar graphs represent

tios (Figure S6A) of human HA-MDGA1-2:myc-NL1(–A ± B) (n > 24 total cells for

00% to show the relative change of synapsin integrated intensity at each ratio.

VA with Bonferroni post hoc comparison). Error bars represent the SEM. *p <

tion can be found in Table S3.

e), surface HA-MDGA or CD4 control (data not shown), synapsin (red), and tau

h color image. Scale bar, 30 mm.
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expression and subcellular targeting in the brain. As summarized

in the introduction, there are conflicting reports on the roles of

MDGAs at excitatory versus inhibitory synapses, perhaps

related to the use of different model systems, reinforcing the

need to consider the native abundance of eachmolecular player.

The newly discovered interaction of MDGAs with NL3 and NL4,

particularly the strong association of MDGA1 with NL3 in the

pull-down assay and functional modulation of NL3 by MDGA1

in co-culture, may help in better understanding the roles of

MDGAs in specific circuits in vivo.

In the rat andmouse brain, MDGA1 andMDGA2 are widely ex-

pressed by neuronal populations in both the central and periph-

eral nervous systems. These include neurons of the basilar pons,

inferior olivary nucleus, cerebellum, cerebral cortex, olfactory

bulb, spinal cord, dorsal root and trigeminal ganglia, and hippo-

campus (Connor et al., 2016; Lee et al., 2013; Litwack et al.,

2004; Takeuchi et al., 2007). There are regional differences: for

example, MDGA1 is more abundant in superficial cortical layers

and MDGA2 in deep layers. NL and NRX are also very widely ex-

pressed in the mouse brain, such that most neurons likely ex-

press NL1–4 andNRX1–3 at varying levels (Hoon et al., 2011; Ull-

rich et al., 1995; Varoqueaux et al., 2006). We propose that the

structural mechanism we described here will be representative

for the full range of CNS synapses at which NL, NRX, and

MDGA family members are present. Through NL2 and NL4, the

range of synapses modulated by MDGA is likely to include glyci-

nergic synapses, not just GABAergic and glutamatergic synap-

ses as shown previously. The differential affinities of specific

MDGA and NL isoforms as well as isoform selective interactions

of NL with NRX, interactions with other partners regulating

bioavailability, and cell-type expression patterns of all molecular

players will serve to fine-tune MDGA modulation of synapse

development and function.

An important finding of this study is the discovery that both

MDGAs interact with and regulate NL3 and NL4. This is of partic-

ular interest since rare mutations in NLs, particularly NL3 and

NL4, have been associated with ASD and schizophrenia in hu-

man genetic studies (S€udhof, 2008; Simons Foundation Autism

Research Initiative database, https://gene.sfari.org). Interest-

ingly, two mutations in the MDGA interaction-selective Site II of

NL3 have been reported in patients with ASD: Arg451Cys

(R451C; corresponding to NL1 residue Arg450 and part of the

Leu449-Arg450-Glu451 LRE motif) and Gly426Ser (G426S; cor-

responding to NL1 residue Ala425) (Jamain et al., 2003; Xu et al.,

2014) (Figures 7A and 7B). This raises the possibility that selec-

tive modulation of MDGA binding to NLs in patients carrying mu-

tations in Site II could contribute to the development of ASD.

R451C was characterized as an NL3 gain-of-function mutation

in mice, leading to both increased inhibitory synaptic transmis-

sion in the somatosensory cortex (Tabuchi et al., 2007) and

increased excitatory synaptic transmission in the hippocampus

(Etherton et al., 2011), despite resulting in trafficking defects

and protein destabilization (Chih et al., 2004; Comoletti et al.,

2004). Nonetheless, we observed surface expression of the

mutant in both transfected COS-7 cells (Figure S8C) and rat hip-

pocampal neurons (Figure S8D). The latter observation agrees

with a report showing cell-surface expression of NL3 R451C in

a subset of transfected hippocampal neurons with high expres-
910 Neuron 95, 896–913, August 16, 2017
sion level (Chih et al., 2004). This also led to an increase in the

number of contacting presynaptic terminals, suggesting that

the NL3 R451C that trafficked to the surface is functional (Chih

et al., 2004). Importantly, we found that, similarly to the NL DSite

II mutant, the NL3 R451C mutation selectively uncoupled NL3-

NRX binding and recruitment of synaptic terminals from inhibi-

tion by MDGA1 (Figure 7D), suggesting that the R451C gain-

of-function phenotype is achieved by preventing the inhibition

of NL3 by MDGA1, thereby leading to disruption of the overall

balance of excitatory/inhibitory (E/I) synaptic transmission.

An E/I imbalance surpassing the capacity of neuronal popula-

tions and circuits to regulate synaptic homeostasis is a proposed

hallmark of ASD (Nelson and Valakh, 2015; Rubenstein andMer-

zenich, 2003). Disruptions in the regulatory NL-MDGA network

we report here contribute to ASD based on human genetics (Bu-

can et al., 2009; K€ahler et al., 2008; Li et al., 2011; S€udhof, 2008)

and can generate such an E/I imbalance in animal models (e.g.,

Connor et al., 2016; Tabuchi et al., 2007). Our findings consider-

ably broadened this interaction network beyond that previously

envisioned. Moreover, our structural studies constitute an

essential guide toward the generation of directed therapies tar-

geting these gene products to restore E/I balance.
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Górecki, D.C., Szklarczyk, A., Lukasiuk, K., Kaczmarek, L., and Simons, J.P.

(1999). Differential seizure-induced and developmental changes of neurexin

expression. Mol. Cell. Neurosci. 13, 218–227.

Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W., and Craig, A.M. (2004).

Neurexins induce differentiation of GABA and glutamate postsynaptic special-

izations via neuroligins. Cell 119, 1013–1026.

Guttman, M., Weinkam, P., Sali, A., and Lee, K.K. (2013). All-atom ensemble

modeling to analyze small-angle x-ray scattering of glycosylated proteins.

Structure 21, 321–331.

Hammel, M. (2012). Validation of macromolecular flexibility in solution by

small-angle X-ray scattering (SAXS). Eur. Biophys. J. 41, 789–799.

Harel, M., Kleywegt, G.J., Ravelli, R.B., Silman, I., and Sussman, J.L. (1995).

Crystal structure of an acetylcholinesterase-fasciculin complex: interaction

of a three-fingered toxin from snake venom with its target. Structure 3,

1355–1366.

Heckman, K.L., and Pease, L.R. (2007). Gene splicing and mutagenesis by

PCR-driven overlap extension. Nat. Protoc. 2, 924–932.

Hoon,M., Soykan, T., Falkenburger, B., Hammer, M., Patrizi, A., Schmidt, K.F.,
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and Scheiffele, P. (2014). Targeted combinatorial alternative splicing gener-

ates brain region-specific repertoires of neurexins. Neuron 84, 386–398.

Schrodinger, L.L.C. (2010). The PyMOL Molecular Graphics System. https://

www.pymol.org/.

Siddiqui, T.J., and Craig, A.M. (2011). Synaptic organizing complexes. Curr.

Opin. Neurobiol. 21, 132–143.

Siddiqui, T.J., Pancaroglu, R., Kang, Y., Rooyakkers, A., and Craig, A.M.

(2010). LRRTMs and neuroligins bind neurexins with a differential code to

cooperate in glutamate synapse development. J. Neurosci. 30, 7495–7506.

Singh, S.K., Stogsdill, J.A., Pulimood, N.S., Dingsdale, H., Kim, Y.H., Pilaz,

L.J., Kim, I.H., Manhaes, A.C., Rodrigues, W.S., Jr., Pamukcu, A., et al.

(2016). Astrocytes assemble thalamocortical synapses by bridging NRX1a

and NL1 via hevin. Cell 164, 183–196.
Song, J.Y., Ichtchenko, K., S€udhof, T.C., and Brose, N. (1999). Neuroligin 1 is a

postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad.

Sci. USA 96, 1100–1105.

S€udhof, T.C. (2008). Neuroligins and neurexins link synaptic function to cogni-

tive disease. Nature 455, 903–911.

Tabuchi, K., Blundell, J., Etherton, M.R., Hammer, R.E., Liu, X., Powell, C.M.,

and S€udhof, T.C. (2007). A neuroligin-3 mutation implicated in autism in-

creases inhibitory synaptic transmission in mice. Science 318, 71–76.

Takeuchi, A., and O’Leary, D.D. (2006). Radial migration of superficial layer

cortical neurons controlled by novel Ig cell adhesion molecule MDGA1.

J. Neurosci. 26, 4460–4464.

Takeuchi, A., Hamasaki, T., Litwack, E.D., and O’Leary, D.D. (2007). Novel

IgCAM,MDGA1, expressed in unique cortical area- and layer-specific patterns

and transiently by distinct forebrain populations of Cajal-Retzius neurons.

Cereb. Cortex 17, 1531–1541.

Tanaka, H., Miyazaki, N., Matoba, K., Nogi, T., Iwasaki, K., and Takagi, J.

(2012). Higher-order architecture of cell adhesion mediated by polymorphic

synaptic adhesion molecules neurexin and neuroligin. Cell Rep. 2, 101–110.

Taniguchi, H., Gollan, L., Scholl, F.G., Mahadomrongkul, V., Dobler, E.,

Limthong, N., Peck, M., Aoki, C., and Scheiffele, P. (2007). Silencing of neuro-

ligin function by postsynaptic neurexins. J. Neurosci. 27, 2815–2824.

Terwilliger, T.C., Adams, P.D., Read, R.J., McCoy, A.J., Moriarty, N.W.,

Grosse-Kunstleve, R.W., Afonine, P.V., Zwart, P.H., and Hung, L.W. (2009).

Decision-making in structure solution using Bayesian estimates of map qual-

ity: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65,

582–601.

Uemura, T., Lee, S.J., Yasumura, M., Takeuchi, T., Yoshida, T., Ra, M.,

Taguchi, R., Sakimura, K., and Mishina, M. (2010). Trans-synaptic interaction

of GluRdelta2 and neurexin through Cbln1 mediates synapse formation in the

cerebellum. Cell 141, 1068–1079.

Ullrich, B., Ushkaryov, Y.A., and S€udhof, T.C. (1995). Cartography of neurex-

ins: more than 1000 isoforms generated by alternative splicing and expressed

in distinct subsets of neurons. Neuron 14, 497–507.

Varoqueaux, F., Jamain, S., and Brose, N. (2004). Neuroligin 2 is exclusively

localized to inhibitory synapses. Eur. J. Cell Biol. 83, 449–456.

Varoqueaux, F., Aramuni, G., Rawson, R.L., Mohrmann, R., Missler, M.,

Gottmann, K., Zhang, W., S€udhof, T.C., and Brose, N. (2006). Neuroligins

determine synapse maturation and function. Neuron 51, 741–754.

Walter, T.S., Diprose, J.M., Mayo, C.J., Siebold, C., Pickford, M.G., Carter, L.,

Sutton, G.C., Berrow, N.S., Brown, J., Berry, I.M., et al. (2005). A procedure

for setting up high-throughput nanolitre crystallization experiments.

Crystallization workflow for initial screening, automated storage, imaging

and optimization. Acta Crystallogr. D Biol. Crystallogr. 61, 651–657.

Walter, T.S., Mancini, E.J., Kadlec, J., Graham, S.C., Assenberg, R., Ren, J.,

Sainsbury, S., Owens, R.J., Stuart, D.I., Grimes, J.M., and Harlos, K. (2008).

Semi-automated microseeding of nanolitre crystallization experiments. Acta

Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 14–18.

Webb, B., and Sali, A. (2014). Comparative protein structure modeling using

MODELLER. Curr. Protoc. Bioinformatics 47, 1–32.

Weinkam, P., Pons, J., and Sali, A. (2012). Structure-based model of allostery

predicts coupling between distant sites. Proc. Natl. Acad. Sci. USA 109,

4875–4880.

Winter, G., Lobley, C.M., and Prince, S.M. (2013). Decision making in xia2.

Acta Crystallogr. D Biol. Crystallogr. 69, 1260–1273.

Xu, J., Xiao, N., and Xia, J. (2010). Thrombospondin 1 accelerates synaptogen-

esis in hippocampal neurons through neuroligin 1. Nat. Neurosci. 13, 22–24.

Xu, X., Xiong, Z., Zhang, L., Liu, Y., Lu, L., Peng, Y., Guo, H., Zhao, J., Xia, K.,

and Hu, Z. (2014). Variations analysis of NLGN3 and NLGN4X gene in Chinese

autism patients. Mol. Biol. Rep. 41, 4133–4140.
Neuron 95, 896–913, August 16, 2017 913

http://refhub.elsevier.com/S0896-6273(17)30688-8/sref65
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref65
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref66
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref66
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref66
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref67
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref67
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref67
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref67
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref68
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref68
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref68
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref68
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref69
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref69
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref69
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref70
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref70
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref70
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref71
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref71
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref71
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref72
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref72
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref73
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref73
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref73
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref73
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref73
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref74
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref74
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref75
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref75
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref75
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref76
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref76
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref77
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref77
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref77
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref77
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref78
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref78
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref79
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref79
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref80
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref80
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref80
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref81
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref81
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref81
https://www.pymol.org/
https://www.pymol.org/
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref83
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref83
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref84
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref84
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref84
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref85
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref85
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref85
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref85
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref86
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref86
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref86
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref86
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref87
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref87
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref87
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref88
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref88
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref88
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref88
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref89
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref89
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref89
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref90
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref90
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref90
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref90
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref91
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref91
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref91
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref92
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref92
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref92
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref93
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref93
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref93
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref93
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref93
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref94
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref94
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref94
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref94
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref95
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref95
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref95
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref95
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref96
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref96
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref97
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref97
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref97
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref97
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref98
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref98
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref98
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref98
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref98
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref99
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref99
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref99
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref99
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref100
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref100
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref101
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref101
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref101
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref102
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref102
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref103
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref103
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref104
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref104
http://refhub.elsevier.com/S0896-6273(17)30688-8/sref104


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-c-myc, rabbit polyclonal Sigma-Aldrich Cat# C3956; RRID: AB_439680

Anti-HA, mouse monoclonal IgG2b Roche Cat# 11583816001; RRID: AB_514505

Anti-synapsin1, mouse monoclonal IgG1 Synaptic Systems Cat # 106011

Anti-tau, mouse monoclonal IgG2a Millipore Cat# MAB3420; RRID: AB_94855

Anti-V5, mouse monoclonal IgG2a Thermo Fisher Cat# R960-25; RRID: AB_2556564

AMCA goat anti-rabbit IgG (H+L) Jackson ImmunoResearch Cat# 111-155-144; RRID: AB_2337994

Alexa Fluor 488 goat anti-rabbit IgG (H+L) Thermo Fisher Cat# R37116; RRID: AB_2556544

Alexa Fluor 488 goat anti-mouse IgG2b Thermo Fisher Cat# A-21141; RRID: AB_2535778
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Streptavidin-HRP conjugate Sigma-Aldrich Cat# GERPN1231
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Neurobasal Medium Thermo Fisher Cat# 21103049

GlutaMAX Thermo Fisher Cat# 35050061

B27 serum-free supplement Thermo Fisher Cat# 17504044

APV Abcam Cat# ab120271

Dulbecco’s Modified Eagle Medium,

high glucose

Sigma-Aldrich Cat# D5796

Dulbecco’s Modified Eagle Medium,

high glucose, no L-Methionine

Sigma-Aldrich Cat# D0422

Bovine growth serum GE Healthcare Cat# SH30541.03

Penicillin/streptomycin Thermo Fisher Cat# 15070063

TransIT-LT1 transfection reagent Mirus Bio Cat# MIR2305

Pyrobest DNA Polymerase Takara Cat# R005A

Seleno-L-Methionine Sigma-Aldrich Cat# S3132

D-biotin Sigma-Aldrich Cat# B4639

Streptavidin Sigma-Aldrich Cat# S4762

Bovine serum albumin Sigma-Aldrich Cat# A7638

Polyethylenimine, branched Sigma-Aldrich Cat# 408727

Ammonium bicarbonate Sigma-Aldrich Cat# 09830

Urea Thermo Scientific Cat# 29700

Tris(2-carboxyethyl)phosphine hydrochloride

(TCEP)

Sigma-Aldrich Cat# C4706

Iodoacetamide Sigma-Aldrich Cat# I1149

Pierce Trypsin Protease, MS Grade Thermo Scientific Cat# 90057

ProteaseMAX Surfactant, Trypsin Enhancer Promega Cat# V2072

Formic Acid Optima LC/MS Thermo Fisher Cat# A117

Trifluoroacetic Acid (TFA) Thermo Fisher Cat# O4902

Acetonitrile Optima LC/MS Thermo Fisher Cat# A955

Deposited Data

hNL1(–A+B)ECTO This paper PDB: 5OJK

cMDGA1ECTO This paper PDB: 5OJ2

hNL1ECTO–cMDGA1ECTO This paper PDB: 5OJ6
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

COS-7 ATCC Cat# CRL-1651; RRID: CVCL_0224

HEK293T ATCC Cat# CRL-3216; RRID: CVCL_0063

HEK293S GnTI�/� ATCC Cat# CRL-3022; RRID: CVCL_A785

Experimental Models: Organisms/Strains

Sprague Dawley rat, female timed

pregnant d18

Charles River Canada Strain code 400

Software and Algorithms

MetaMorph Molecular Devices https://www.moleculardevices.com/systems/metamorph-

research-imaging/metamorph-microscopy-automation-and-

image-analysis-software

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/download.html

GraphPad Prism GraphPad Software http://www.graphpad.com/scientific-software/prism/

SHELXD Schneider and Sheldrick, 2002 http://shelx.uni-ac.gwdg.de/SHELX/

Phenix Adams et al., 2010 https://www.phenix-online.org/

XIA2 Winter et al., 2013 http://xds.mpimf-heidelberg.mpg.de/

PISA Krissinel and Henrick, 2007 http://www.ebi.ac.uk/pdbe/pisa/

Intervor Loriot and Cazals, 2010 N/A

Coot Emsley et al., 2010 http://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/

PyMOL Schrodinger, 2010 https://www.pymol.org/

BLAST Altschul et al., 1990 https://blast.ncbi.nlm.nih.gov/

MUSCLE Edgar, 2004 http://www.ebi.ac.uk/Tools/msa/muscle/

ALINE Bond and Sch€uttelkopf, 2009 http://bondxray.org/software/aline.html

Consurf Ashkenazy et al., 2010 http://consurf.tau.ac.il/2016/

ATSAS Petoukhov et al., 2012 https://www.embl-hamburg.de/biosaxs/software.html

ScÅtter Rambo and Tainer, 2013 http://www.bioisis.net/

SWISS-MODEL Biasini et al., 2014 https://swissmodel.expasy.org/

MODELER Webb and Sali, 2014 https://salilab.org/modeller/

UCSF CHIMERA Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

AllosMod-FoXS Guttman et al., 2013 http://modbase.compbio.ucsf.edu/allosmod-foxs/

Scrubber2 BioLogic Software http://www.biologic.com.au/

BIAevaluation GE Healthcare https://www.biacore.com/

Origin ITC Malvern https://www.malvern.com/en/

Sedfit Brown and Schuck, 2006 http://www.analyticalultracentrifugation.com/default.htm

GUSSI Brautigam, 2015 http://biophysics.swmed.edu/MBR/software.html

Integrated Proteomics Pipeline Savas et al., 2014 http://www.integratedproteomics.com/

Other

HisTrap FF GE Healthcare Cat# 17-5255-01

Superdex 16/60 200 PG HiLoad GE Healthcare Cat# 28989335

QuixStand GE Healthcare Cat# 56-4107-78

Biacore T200 GE Healthcare Cat# 28975001

Sensor Chip CM5 GE Healthcare Cat# BR100012

EASY-nLC 1000 Liquid Chromatograph Thermo Scientific Cat# LC120

Orbitrap Fusion Tribrid Mass

Spectrometer

Thermo Scientific Cat# IQLAAEGAAPFADBMBCX

Acclaim PepMap 100 75 um x 2 cm

nanoViper

Thermo Scientific Cat# 164946

Acclaim PepMap RSLC 75 um x 50 cm

nanoViper

Thermo Scientific Cat# 164942
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, A. Radu Aricescu (radu@

mrc-lmb.cam.ac.uk).

METHOD DETAILS

Expression and purification of recombinant proteins
List of cDNAs and construct boundaries for secreted protein production: chicken MAM domain-containing glycosylphosphatidylino-

sitol anchor protein (MDGA) 1 (MDGA1; GenBank: AB241390.1; Gln19-Lys919), human MDGA1 (GenBank: NM_153487.3; Gln19-

Lys925), human MDGA2 (GenBank: AY369208.1; Gln21-Lys927), human neuroligin-1 (NL1; GenBank: NM_014932.3; Gln46-

Asp635), human neuroligin-2 (NL2; GenBank: NM_020795.3; Glu38-His612), human neuroligin-3 (NL3; GenBank: NM_181303;

Gln38-Asp636), human neuroligin-4 (NL4 or NL4(X); GenBank: NM_020742.3; Gln42-Glu602), human neuroligin-5 (NL5 or NL4(Y);

GenBank: NM_014893.4; Gln42-Glu602), human b-neurexin-1 (GenBank: NM_138735; b-NRX1: His85-Val265), human thrombo-

spondin-1 (TSP1; GenBank: X04665.1; Asn19-Pro1170), human hevin (or SPARC-like protein 1; GenBank: BC033721.1; Ile17-

Phe664), mouse a-Neurexin-1 (GenBank: XM_006523816.3; Leu31-Val1337).

These cDNAswere fusedC-terminally with a hexa-histidine (His6) tag or Avitag3, andwere cloned into the pHLsec vector (Aricescu

et al., 2006b). For large-scale protein production, His6-tagged proteins were expressed by transient transfection in HEK293T (for

biophysical studies) or HEK293S-GnTI�/� (Reeves et al., 2002) (for crystallographic studies) cells. Five (HEK293T) to ten

(HEK293S-GnTI�/�) days post-transfection, the conditioned Dulbecco’s Modified Eagle Medium (DMEM) medium was collected

and buffer-exchanged using a QuixStand benchtop diafiltration system (GE Healthcare) and proteins were purified by immobilized

metal-affinity chromatography (IMAC) using pre-packed Nickel Sepharose columns (GE Healthcare). Proteins were concentrated

and further purified by size-exclusion chromatography (SEC; Superdex 200 16/60 PG HiLoad column, GE Healthcare) in 10 mM

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) pH 7.50, 150 mM sodium chloride and 3mM calcium chloride (HBS-C).

Expression and purification of recombinant NMDA receptor
The rat GluN1a-GluN2B heterotetrameric NMDA receptor (NMDAR) was expressed and purified as previously described (Karakas

and Furukawa, 2014), with the exception that the OneStrep tag was not cleaved. The final purification buffer was 200 mM NaCl,

20 mM HEPES pH 7.4, 10 mM Glycine, 10 mM Glutamate, 0.0025% LMNG.

Gene splicing and site-directed mutagenesis
A multiple-step overlap-extension PCR (Pyrobest Polymerase, Takara Bio) was used for site-directed mutagenesis, construction of

chimeric protein constructs and introduction or deletion of splice inserts (Heckman and Pease, 2007); the resulting PCR products

were cloned into the pHLsec-His6, pHLsec-Avitag3, or derived vectors (Aricescu et al., 2006b).

NL1

The following internal primer pair was used for the introduction of human NL1 spliced sequence ‘‘A1’’ (VKRISKECARKPGKKICRKG)

into human NL1(–A ± B) (UniProt: Q8N2Q7; between Asp164 and Asp182);

FP: 50-CCAAGGAATGTGCCAGAAAGCCCGGCAAGAAAATATGTAGAAAAGGAGATATTCGGGACAGTGGGGGTCCCAAACCAG-30

RP: 50-CTTGCCGGGCTTTCTGGCACATTCCTTGGATATTCTTTTTACATCCTCAGTCGGGACATATATATTTAAATATAG-30

The following internal primer pair was used for the introduction of human NL1 spliced sequence ‘‘A2’’ (GPLTKKQTDD

LGDNDGAEDE) into human NL1(–A ± B) (between Asp164 and Asp182);

FP: 50-GAAACAGACAGATGATTTAGGTGATAATGACGGTGCTGAAGATGAAGATATTCGGGACAGTGGGGGTCCCAAACCAG-30

RP: 50-CTTGCCGGGCTTTCTGGCACATTCCTTGGATATTCTTTTTACATCCTCAGTCGGGACATATATATTTAAATATAG-30

The following internal primer pair was used for the introduction of human NL1 spliced sequence ‘‘A2’’ (GPLTKKQTDDL

GDNDGAEDE) into human NL1(+A1 ± B) (after spliced sequence A1);

FP: 50-GAAACAGACAGATGATTTAGGTGATAATGACGGTGCTGAAGATGAAGATATTCGGGACAGTGGGGGTCCCAAACCAG-30

RP: 50-CATTATCACCTAAATCATCTGTCTGTTTCTTTGTAAGGGGACCTCCTTTTCTACATATTTTCTTGCCGGGCTTTC-30

The following internal primer pair was used for the introduction of human NL1 spliced sequence ‘‘B’’ (NRWSNSTKG) into human

NL1(±A–B) (between Gly295 and Leu305);

FP: 50-GTAACCGTTGGAGCAATTCAACCAAAGGACTTTTTCAACGAGCAATAGCTCAAAG-30

RP: 50-GTCCTTTGGTTGAATTGCTCCAACGGTTACCTTCAGAATAATGGGATAAAGTC-30

The following internal primer pairs were used for constructing the human NL1 DSite I mutant (H291A-Y292A-D384A-E394A);

H291A Y292A (LTLSHYSEGL to LTLSAASEGL);

FP: 50-GTCAACCTGCTGACTTTATCCGCTGCTTCTGAAGGTCTTTTTCAACGAG-30

RP: 50-CTCGTTGAAAAAGACCTTCAGAAGCAGCGGATAAAGTCAGCAGGTTGAC-30

D384A (VIPDDPQI to VIPADPQI);

FP: 50-GGTGATGTAATACCAGCCGACCCCCAGATATTG-30

RP: 50-CAATATCTGGGGGTCGGCTGGTATTACATCACC-30
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E394A (MEQGEFLNY to MEQGAFLNY);

FP: 50-GATGGAGCAAGGAGCGTTTCTCAACTATG-30

RP: 50-CATAGTTGAGAAACGCTCCTTGCTCCATC-30

The following internal primer pairs were used for constructing the human NL1 DSite II mutant (D429A-F430A-S433A-N434A-R450A);

D429A F430A S433A N434A (ASDFDFAVSNFVDN to ASDFAAAVAAFVDN);

FP: 50-GCCGCTGCTGTTGCAGCTTTTGTTGATAATTTATATGGATATCCTGAAGGCAAAGATG-30

RP: 50-AGCTGCAACAGCAGCGGCAAAATCACTAGCTGATATACCATCATCGCTATCTAC-30

R450A (KDVLRETIK to KDVLAETIK);

FP: 50-GAAGGCAAAGATGTTTTGGCAGAAACCATTAAGTTCATG-30

RP: 50-CATGAACTTAATGGTTTCTGCCAAAACATCTTTGCCTTC-30

The following internal primer pair was used for introducing the R450C mutation into human NL1(–A–B) (DVLRETI to DVLCETI);

FP: 50-GGCAAAGATGTTTTGTGCGAAACCATTAAGTTC-30

RP: 50-GAACTTAATGGTTTCGCACAAAACATCTTTGCC-30

The following internal primer pair was used for introducing the Asn300Gln (N300Q) mutation into human NL1 spliced sequence ‘‘B’’

(NRWSNSTKG to NRWSQSTKG);

FP: 50-GGTAACCGTTGGAGCCAGTCAACCAAAGGAC-30

RP: 50-GTCCTTTGGTTGACTGGCTCCAACGGTTACC-30

NL2

The following internal primer pair was used for the introduction of human NL2 spliced sequence ‘‘A’’ (GPLTKKRDEATLNPPDT) into

human NL2(–A) (UniProt: Q8NFZ4; between Asp152 and Asp170);

FP: 50-CACAAAAAAACGTGACGAGGCGACGCTCAATCCGCCAGACACAGATATCCGGGACCCTGGGAAGAAACCTGTC-30

RP: 50-GATTGAGCGTCGCCTCGTCACGTTTTTTTGTGAGCGGACCGTCCTCAGTGGGCACGTAGAGGTTGAGGTAC-30

NL3

The following internal primer pair was used for the introduction of human NL3 spliced sequence ‘‘A1’’ (VKRISKECARKPNKKICRKG)

into human NL3(–A) (UniProt: Q9NZ94; between Asp152 and Asp193);

FP: 50-CCAAGGAATGCGCCCGAAAGCCCAACAAGAAAATTTGTAGGAAAGGAGACATCCGGGACAGTGGTGCTAAACCCGTC-30

RP: 50-GTTGGGCTTTCGGGCGCATTCCTTGGAAATCCGCTTTACATCCTCCGTCGGCACATAGACGTTCAGGTAG-30

The following internal primer pair was used for the introduction of human NL3 spliced sequence ‘‘A2’’ (GSGAKKQGEDLADNDG

DEDE) into human NL3(–A) (between Asp152 and Asp193);

FP: 50-GAAACAGGGCGAGGACTTAGCGGATAATGACGGGGATGAAGATGAAGACATCCGGGACAGTGGTGCTAAACCCGTC �30

RP: 50-CCGCTAAGTCCTCGCCCTGTTTCTTAGCGCCGGATCCATCCTCCGTCGGCACATAGACGTTC-30

The following internal primer pair was used for the introduction of human NL3 spliced sequence ‘‘A2’’ (GSGAKKQGEDLADNDG

DEDE) into human NL3(+A1) (after spliced sequence A1);

FP: 50-GAAACAGGGCGAGGACTTAGCGGATAATGACGGGGATGAAGATGAAGACATCCGGGACAGTGGTGCTAAACCCGTC-30

RP: 50-CATTATCCGCTAAGTCCTCGCCCTGTTTCTTAGCGCCGGATCCTCCTTTCCTACAAATTTTCTTGTTGGGCTTTC-30

The following internal primer pair was used for introducing the R451C mutation into human NL3(–A) (DTLRETI to DTLCETI);

FP: 50-GGTAAGGACACCCTGTGCGAGACCATCAAGTTC-30

RP: 50-GAACTTGATGGTCTCGCACAGGGTGTCCTTACC-30

MDGA1

The following internal primer pair was used for introducing the R120K mutation into chicken MDGA1 (UniProt: Q0WYX8; VPAIRSIRV

to VPAIKSIRV);

FP: 50-GTTGGGGTCCCTGCCATCAAGTCCATTCGAGTAGATGTGCAG-30

RP: 50-CTGCACATCTACTCGAATGGACTTGATGGCAGGGACCCCAAC-30

The following internal primer pairs were used for constructing the chicken MDGA1 R156N-S502N-R680N glycan wedge mutant;

R156N (TVFLRCTVN to TVFLNCTVN);

FP: 50-GAGAAGACTGTCTTCCTCAATTGTACCGTCAACTCCAAC-30

RP: 50-GTTGGAGTTGACGGTACAATTGAGGAAGACAGTCTTCTC-30

S502N (LRLESVSRD to LRLENVSRD);

FP: 50-GGAAGCTGCGCCTGGAGAATGTCAGCCGAGACATGAG-30

RP: 50-CTCATGTCTCGGCTGACATTCTCCAGGCGCAGCTTCC-30

R680N (LAQRNTIQ to LAQNNTIQ);

FP: 50-GTCAGGCAGCTGGCTCAGAACAACACCATCCAAACCTTC-30

RP: 50-GAAGGTTTGGATGGTGTTGTTCTGAGCCAGCTGCCTGAC-30

b-NRX1

The following internal primer pair was used for the introduction of human b-NRX1 spliced sequence #4 (SS4;

GNNDNERLAIARQRIPYRLGRVVDEWLLDK) into human b-NRX1(–4) (UniProt: P58400; between Ala204 and Gly205);

FP: 50-CGCATTCCCTATCGGCTAGGGAGAGTGGTGGACGAATGGCTGCTCGATAAAGGGAGGCAACTGACCATCTTCAACTCAC-30

RP: 50-CCCTAGCCGATAGGGAATGCGTTGCCGTGCTATGGCTAACCTCTCATTGTCGTTGTTTCCAGCTGGGTATCTCTCAATGAC-30
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TSP1

The following internal primer pair was used for introducing the C992S mutation (Kvansakul et al., 2004) into human TSP1 (UniProt:

P07996; QTVNCDPGL to QTVNSDPGL);

FP: 50-CAGACTGTCAACAGTGATCCTGGACTC-30

RP: 50-GAGTCCAGGATCACTGTTGACAGTCTG-30

Protein crystallization
Crystallization trials, using 100 nL protein solution plus 100 nL reservoir solution in sitting drop vapor diffusion format, were set up in

96-well Greiner plates using a Cartesian Technologies robot (Walter et al., 2005).

Purified chicken MDGA1ECTO (cMDGA1ECTO; Gln19-Lys919), containing the Arg120Lys mutation, concentrated to 5.0 g/L and

treated with endoglycosidase F1 (Endo F1; 1:100 w/w) for 30 min at 294K immediately prior to dispensing the crystallization drops,

crystallized in 0.1M HEPES pH7.5, 4% w/v polyethylene glycol 8000. The Arg120Lys mutation was introduced into cMDGA1ECTO to

bring the sequence in line with rat, mouse and human isoforms (Figure S1B).

Crystals of cMDGA1ECTO grown in this condition were fragmented, and the obtained seed stock (Walter et al., 2008) was used as an

additive during crystallization trials of selenomethionine- (SeMet) labeled cMDGA1ECTO. Matrix screens were performed using pre-

cipitant concentration and seed stock dilution as variables. SeMet-labeled cMDGA1ECTO, concentrated to 5.0 g/L, crystallized in

0.1M HEPES pH7.5, 3% w/v polyethylene glycol 8000, using a 32-fold diluted native cMDGA1ECTO seed stock dispensed in 20 nL

drops. Crystals were cryoprotected using reservoir solution containing 20% (v/v) PEG200.

Purified glycosylated humanNL1(–A+B)ECTO (hNL1(–A+B)ECTO; Gln46-Asp635), concentrated to 10.0 g/L, crystallized in 0.2MKSCN,

0.1M Bis-tris propane pH 8.5, 20%w/v PEG3350. Crystals were cryoprotected using reservoir solution containing 20% (v/v) PEG200.

To crystallize the hNL1(–A–B)ECTO–cMDGA1ECTO complex, purified hNL1(–A–B)ECTO (Gln46-Asp635; concentrated to 2.92 g/L =

45.30 mM) and cMDGA1ECTO (Gln19-Lys919 with Arg120Lys mutation; concentrated to 4.41 g/L = 42.94 mM) were mixed as follows;

80 mL hNL1(–A–B)ECTOwas combinedwith 102 mL cMDGA1ECTO (resulting in a 1:1.25NL1:MDGA1monomer-to-monomermolar stoi-

chiometric ratio), 18 mL purification buffer (10 mM HEPES pH7.5, 150 mM NaCl), and 50 mL dilution buffer (10 mM HEPES pH7.5,

150 mM NaCl, 1M NDSB-256). The final concentration of hNL1(–A–B)ECTO thus was 0.93 g/L; that of cMDGA1ECTO was 1.76 g/L;

and that of NDSB-256 was 250 mM. This preparation was treated with endoglycosidase F1 (Endo F1; 1:100 w/w) for 30 min at

294K immediately prior to dispensing the crystallization drops. The hNL1(–A–B)ECTO–cMDGA1ECTO complex crystallized in 0.1M

Na.HEPES pH 7.0, 7.5% w/v PEG8000. Crystals were cryoprotected using reservoir solution containing 33% (v/v) PEG200.

Crystallographic data collection and structure determination
Diffraction data for cMDGA1ECTO were collected at Diamond Light Source (DLS) beamline I03 to a nominal resolution of 3.20 Å in

space group (SG) P212121. X-ray fluorescence wavelength scans were performed to experimentally determine the Selenium absorp-

tion K-edge peak. The cMDGA1ECTO structure was determined using Single Anomalous Diffraction (SAD); the heavy-atom Selenium

substructure was solved using SHELXD (Schneider and Sheldrick, 2002) at 3.70 Å, and phase determination, phase extension and

density modification was performed using PHENIX Autosol (Terwilliger et al., 2009). Automated model building programs failed to

reliably place stretches of b strand, necessitating manual model building of the complete structure.

Diffraction data for hNL1(–A+B)ECTO were collected at Diamond Light Source (DLS) beamline I24 to a nominal resolution of 2.55 Å in

SG P22121. The structure was determined by molecular replacement using the program Phaser (McCoy et al., 2007), and using the

mouse NL1 (PDB: 3BIX) crystal structure as search model.

Diffraction data for the hNL1(–A–B)ECTO–cMDGA1ECTO complex were collected at Diamond Light Source (DLS) beamline I04-1 to a

nominal resolution of 3.30 Å in SG P21212. The structure was determined by molecular replacement using the program Phaser

(McCoy et al., 2007), employing the refined hNL1(–A+B)ECTO (in which the spliced sequence Bwas excised from themolecular model)

and cMDGA1ECTO crystal structures we determined here as search models.

All data were indexed, integrated, and scaled using the automated XIA2 expert system (Winter et al., 2013), using the Labelit

(Sauter et al., 2004), POINTLESS and AIMLESS (Evans, 2006, 2011), and XDS (Kabsch, 2010) programs. Crystallographic data

collection and refinement statistics are presented in Table S1.

Crystallographic refinement and model analysis
Maximum-likelihood refinement of cMDGA1ECTO, hNL1(–A+B)ECTO and the hNL1(–A–B)ECTO–cMDGA1ECTO complex was initially per-

formed with Refmac using ‘‘jelly body’’ restraints (Murshudov et al., 2011), and finally with the PHENIX suite (Adams et al., 2010), with

automated X-ray and atomic displacement parameter (ADP) weight optimization applied throughout, and torsion angle non-crystal-

lographic symmetry (NCS) and high-resolution reference structure restraints applied where suitable. All manual model building was

performed using Coot (Emsley et al., 2010). Structure validation was performed with the PHENIX program suite usingMolProbity rou-

tines (Adams et al., 2010; Chen et al., 2010).

Interface analysis was performed using PISA (Krissinel and Henrick, 2007) as implemented in Coot (Emsley et al., 2010), and using

the program Intervor (Loriot and Cazals, 2010). Calculation of pairwise root-mean-square deviations (rmsd) between structural model
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coordinates was performed using the program PyMol (Schrodinger, 2010). Molecular representations were made using the program

PyMol (Schrodinger, 2010).

Sequence alignments and conservation analysis
Mining of protein sequence databases was performed using the Delta-Blast program (Altschul et al., 1990). Sequence lists were

manually curated and sequences were aligned using the program MUSCLE (Edgar, 2004). Sequence conservation scores for indi-

vidual residue positions of NL1,�2,�3,�4, and�5 (1046 total unique sequences) andMDGA1 and�2 (420 total unique sequences)

homologs were assigned to NL1 and MDGA1 structural templates extracted from the hNL1(–A–B)ECTO–cMDGA1ECTO complex,

respectively, using the ConSurf web server (Ashkenazy et al., 2010). Sequence alignments were visualized using the program ALINE

(Bond and Sch€uttelkopf, 2009).

Small-angle X-ray scattering (SAXS)
Purified cMDGA1ECTO (Gln19-Lys919; with Arg120Lys mutation) was treated with endoglycosidase F1 (Endo F1; 1:100 w/w) for 12 hr

at 294K and re-purified using SEC in 10 mM HEPES pH 7.50, 150 mM NaCl. SAXS data were collected at beamline BM29 of the Eu-

ropean Synchrotron Radiation Facility (ESRF, Grenoble, France) (Pernot et al., 2013) at 293 Kwithin amomentum transfer (q) range of

0.01 Å�1 < q < 0.45 Å�1, where q = 4psin(q)/l, and 2q is the scattering angle. The X-ray wavelength was 0.9950 Å, and data were

collected on a Pilatus 1M detector. cMDGA1ECTO was measured at concentrations of 1.50 and 3.36 g/L in 10 mM HEPES pH

7.50, 150mM NaCl. Data reduction and calculation of invariants was carried out using standard procedures implemented in the

ATSAS (Petoukhov et al., 2012) and ScÅtter (Rambo and Tainer, 2013) suites. A merged dataset was obtained by merging the

low-angle part of the low-concentration dataset with the high-angle part of the high-concentration dataset.

Amolecular model for the C-terminal Mam8 domain was generated by homology modeling starting from the crystal structure of the

N-terminal RPTPmu MAM domain (PDB: 2C9A, UniProt: P28827) (Aricescu et al., 2006a) using the SWISS-MODEL server (Biasini

et al., 2014). This model was concatenated with the cMDGA1ECTO crystal structure, and manually placed near the C terminus of

the FnIII7 domain. Missing side chains, loops, and C-terminal His6-tag were added to the resulting assembled model using the

MODELER (Webb and Sali, 2014) ‘‘Model/Refine Loops’’ routine as implemented in Chimera (Pettersen et al., 2004).

Coarse-grained molecular dynamics (MD) simulations were performed using the program Allosmod (Weinkam et al., 2012). Five

independent runs were performed, each consisting of 30 independent trajectories generating 100 models. From this total pool of

15,000 models, automated selection of the minimal set of models that best described the scattering data was performed with the

program MES (Hammel, 2012), and calculation and fitting of scattering patterns were performed with the program FoXS (Schneid-

man-Duhovny et al., 2013). This whole procedure was automated with the AllosMod-FoXS web server (Guttman et al., 2013). The

MDGA1 solution structure was accurately (c2 = 1.17) modeled as a five-membered ensemble of monomeric conformers with pro-

nounced flexibility at the FnIII7-Mam8 domain linkage.

Surface plasmon resonance (SPR) with soluble proteins
cDNA for the immobilized proteins was cloned into the pHLsec-Avitag3 vector (Aricescu et al., 2006b), resulting in proteins carrying a

C-terminal biotin ligase (BirA) recognition sequence (Avitag). Constructs were co-transfected with pDisplay-BirA-ER (Addgene

plasmid 20856; coding for an ER-resident biotin ligase) (Howarth et al., 2008) for in vivo biotinylation in HEK293T cells in small-scale

6- or 12-well plates in a 3:1 pHLsec:pDisplay stoichiometric ratio. A final concentration of 100 mM D-biotin was maintained in the

expression medium to ensure near-complete biotinylation of the recognition sequence. After 48 hr of expression, conditioned me-

dium was collected and dialysed against 10 mM Tris pH 7.4, 150 mM sodium chloride, 3 mM calcium chloride and 0.005% (v/v)

Tween-20 (TBS-CT). SPR experiments were performed on a Biacore T200 machine (GE Healthcare) operated at a data collection

frequency of 10 Hz; i.e. a temporal resolution of 0.1 s. Streptavidin (Sigma-Aldrich) was chemically coupled via amine coupling chem-

istry onto CM5 chips to a response unit (RU) level of 5000 RU. Then, biotinylated proteins were captured to the desired RU level. In

each instance, for every two analyte binding cycles, a buffer injection was performed, allowing for double referencing of the binding

responses (Myszka, 1999).

Due to (i) sample consumption associated with equilibrium affinity experiments of high-nanomolar to low-micromolar interactions

and (ii) the limited production yield of MDGA1 and�2 proteins, we prioritized testing the full matrix of NL–MDGA isoform interactions

over performing replicate experiments of only a selected number of interactions.

Interaction of chicken MDGA1ECTO with chicken MDGA1ECTO and MDGA1ECTO
GLYCAN WEDGE

cMDGA1ECTO and cMDGA1ECTO
GLYCAN WEDGE (triple glycan wedge (GW) mutant; Arg680Asn-Ser502Asn-Arg156Asn) variants

were immobilized at a level of 2000 RU tomaximize the likelihood of detecting a potentially weak binding event. SPR running buffer

composition was TBS-CT supplemented with 1.0 g/L bovine serum albumin (BSA; yielding TBS-CTB buffer) as passivating agent

to prevent binding to the carboxymethyldextran-based SPR chips. MDGA1ECTO was prepared by SEC in TBS-CT. BSA was added

to the concentrated stock solutions to a final concentration of 1.0 g/L. Injection of 18 concentrations of cMDGA1ECTO prepared in a

two-fold dilution series from a 100 mM stock concentration was performed in order of increasing concentration. Each sample was

injected for 150 s at a flow rate of 25 mL/min, followed by a 180 s dissociation phase. No self-association binding event could be

detected.
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Interaction of human b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO with human NL1(–A–B)ECTO,

NL2(–A)ECTO, NL3(–A)ECTO, NL4ECTO and NL5ECTO

NL1(–A–B)ECTO, NL2(–A)ECTO, NL3(–A)ECTO, NL4ECTO and NL5ECTO were immobilized at a level of 500 RU. SPR running buffer compo-

sition was TBS-CTB. b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO were prepared by SEC in TBS-CT. BSA was

added to the concentrated stock solutions to a final concentration of 1.0 g/L. Injection of 15 concentrations of b-NRX1LNS6(–4),

b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO, prepared in a two-fold dilution series from a 50 mM stock concentration, was per-

formed in order of increasing concentration. Each sample was injected for 150 s at a flow rate of 25 mL/min, followed by a 180 s disso-

ciation phase. In the case of MDGA1ECTO and MDGA2ECTO, the surfaces were regenerated using consecutive 30 s injections of

10 mM Tris pH 7.4, 100 mM L-Arginine/L-Glutamate, 1M NaCl. Equilibrium binding analysis was performed using Scrubber 2.0

(BioLogic Software) and data was fitted to a 1:1 Langmuir binding model in Prism 6 (Graphpad).

Interaction of human NL1(–A–B)ECTO with human hevin, human TSP1, and mouse a-NRX1ECTO(–4)

Human hevin, human TSP1 and mouse a-NRX1ECTO(–4) were immobilized at a level of 2000 RU. SPR running buffer composition

was TBS-CTB. Human NL1(–A–B)ECTO was prepared by SEC in TBS-CT. BSA was added to the concentrated stock solutions

to a final concentration of 1.0 g/L. Injection of 14 concentrations of NL1(–A–B)ECTO, prepared in a two-fold dilution series from a

25 mM stock concentration, was performed in order of increasing concentration. Each sample was injected for 150 s at a flow

rate of 25 mL/min, followed by a 180 s dissociation phase. In the case of the interaction with a-NRX1ECTO(–4), the surfaces were

regenerated using a 30 s injection of 10 mM Tris pH 8.0, 350 mM EDTA, 100 mM NaCl. Equilibrium binding analysis was performed

using Scrubber 2.0 (BioLogic Software) and the a-NRX1ECTO(–4) data was fitted to a two-state Langmuir binding model in Prism 6

(Graphpad).

Interaction of human b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO with human NL1(–A–B)ECTO,

NL1(–A–B)ECTO DSite I, NL1(–A–B)ECTO DSite II and NL1(–A–B)ECTO DSite I+II

NL1(–A–B)ECTO, NL1(–A–B)ECTO DSite I, NL1(–A–B)ECTO DSite II and NL1(–A–B)ECTO DSite I+II were immobilized at a level of 550 RU.

SPR running buffer composition was TBS-CTB. b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO were prepared by

SEC in TBS-CT. BSAwas added to the concentrated stock solutions to a final concentration of 1.0 g/L. Injection of 15 concentrations

of b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO, prepared in a two-fold dilution series from a 50 mM stock con-

centration, was performed in order of increasing concentration. Each sample was injected for 150 s at a flow rate of 25 mL/min, fol-

lowed by a 180 s dissociation phase. In the case of MDGA1ECTO and MDGA2ECTO, the surfaces were regenerated using consecutive

30 s injections of 10 mM Tris pH 7.4, 100 mM L-Arginine/L-Glutamate, 1M NaCl. Equilibrium binding analysis was performed using

Scrubber 2.0 (BioLogic Software) and data was fitted to a 1:1 Langmuir binding model in Prism 6 (Graphpad).

Interaction of human b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO with human NL1(–A–B)ECTO,

NL1(–A–B)ECTO Arg450Cys, NL3(–A)ECTO, and NL3(–A)ECTO Arg451Cys

NL1(–A–B)ECTO andNL1(–A–B)ECTO Arg450Cyswere immobilized at a level of 500 RU. NL3(–A)ECTO andNL3(–A)ECTO Arg451Cyswere

immobilized at a level of 1000 RU. SPR running buffer composition was TBS-CTB. b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO
and MDGA2ECTO were prepared by SEC in TBS-CT. BSA was added to the concentrated stock solutions to a final concentration

of 1.0 g/L. Injection of 15 concentrations of b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO, prepared in a two-

fold dilution series from a 50 mM stock concentration, was performed in order of increasing concentration. Each sample was injected

for 150 s at a flow rate of 25 mL/min, followed by a 180 s dissociation phase. In the case of MDGA1ECTO andMDGA2ECTO, the surfaces

were regenerated using consecutive 30 s injections of 10 mM Tris pH 7.4, 100 mM L-Arginine/L-Glutamate, 1M NaCl. Equilibrium

binding analysis was performed using Scrubber 2.0 (BioLogic Software) and data was fitted to a 1:1 Langmuir bindingmodel in Prism

6 (Graphpad).

Interaction of human b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO with human NL1ECTO SSA variants

NL1(–A–B)ECTO, NL1(+A1–B)ECTO, NL1(+A2–B)ECTO and NL1(+A1+A2–B)ECTO were immobilized at a level of 500 RU. SPR running

buffer composition was TBS-CTB. b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO were prepared by SEC in

TBS-CT. BSA was added to the concentrated stock solutions to a final concentration of 1.0 g/L. Injection of 15 concentrations of

b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO, prepared in a two-fold dilution series from a 50 mM stock concen-

tration, was performed in order of increasing concentration. Each sample was injected for 150 s at a flow rate of 25 mL/min, followed

by a 180 s dissociation phase. In the case of MDGA1ECTO and MDGA2ECTO, the surfaces were regenerated using consecutive 30 s

injections of 10 mM Tris pH 7.4, 100 mM L-Arginine/L-Glutamate, 1M NaCl. Equilibrium binding analysis was performed using

Scrubber 2.0 (BioLogic Software) and data was fitted to a 1:1 Langmuir binding model in Prism 6 (Graphpad).

Interaction of human b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO with human NL2ECTO and NL3ECTO

SSA variants

NL2(–A)ECTO, NL2(+A)ECTO, NL3(–A)ECTO, NL3(+A1)ECTO, NL3(+A2)ECTO and NL3(+A1+A2)ECTO were immobilized at a level of 500 RU.

SPR running buffer composition was TBS-CTB. b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO were prepared by

SEC in TBS-CT. BSAwas added to the concentrated stock solutions to a final concentration of 1.0 g/L. Injection of 15 concentrations

of b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO, prepared in a two-fold dilution series from a 50 mM stock con-

centration, was performed in order of increasing concentration. Each sample was injected for 150 s at a flow rate of 25 mL/min, fol-

lowed by a 180 s dissociation phase. In the case of MDGA1ECTO and MDGA2ECTO, the surfaces were regenerated using consecutive
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30 s injections of 10 mM Tris pH 7.4, 100 mM L-Arginine/L-Glutamate, 1M NaCl. Equilibrium binding analysis was performed using

Scrubber 2.0 (BioLogic Software) and data was fitted to a 1:1 Langmuir binding model in Prism 6 (Graphpad).

Interaction of human b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO with human NL1(–A–B)ECTO,

NL1(–A+B)ECTO, and NL1(–A+B Asn300Gln)ECTO
NL1(–A–B)ECTO, NL1(–A+B)ECTO, and NL1(–A+B Asn300Gln)ECTO were immobilized at a level of 500 RU. SPR running buffer compo-

sition was TBS-CTB. b-NRX1LNS6(–4), b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO were prepared by SEC in TBS-CT. BSA was

added to the concentrated stock solutions to a final concentration of 1.0 g/L. Injection of 15 concentrations of b-NRX1LNS6(–4),

b-NRX1LNS6(+4), MDGA1ECTO and MDGA2ECTO, prepared in a two-fold dilution series from a 50 mM stock concentration, was per-

formed in order of increasing concentration. Each sample was injected for 150 s at a flow rate of 25 mL/min, followed by a 180 s disso-

ciation phase. In the case of MDGA1ECTO and MDGA2ECTO, the surfaces were regenerated using consecutive 30 s injections of

10 mM Tris pH 7.4, 100 mM L-Arginine/L-Glutamate, 1M NaCl. Equilibrium binding analysis was performed using Scrubber 2.0

(BioLogic Software) and data was fitted to a 1:1 Langmuir binding model in Prism 6 (Graphpad).

Surface plasmon resonance (SPR) with the NMDA receptor
SPR experiments were performed on a Biacore T200machine (GE Healthcare) operated at a data collection frequency of 10 Hz; i.e. a

temporal resolution of 0.1 s. Streptactin XT (IBA Lifesciences) was chemically coupled via amine coupling chemistry onto CM5 chips

to a response unit (RU) level of 5000 RU. Then, OneStrep-tagged rat GluN1a-GluN2B heterotetrameric NMDA receptor (NMDAR) was

captured to a level of 5000 RU. SPR running buffer composition was 200 mM NaCl, 20 mM HEPES pH 7.4, 10 mM Glycine, 10 mM

Glutamate, 3mM CaCl2, 0.010% LMNG. For the interaction with NL1(–A–B)ECTO, a single-cycle kinetics (SCK) approach was adop-

ted. Injection of 5 concentrations of NL1(–A–B)ECTO, prepared in a two-fold dilution series from a 25 mM stock concentration, was

performed in order of increasing concentration. Each sample was injected for 120 s at a flow rate of 25 mL/min, followed by a

60 s intermittent dissociation phase or a final 600 s dissociation phase.

Isothermal titration calorimetry (ITC)
Calorimetric measurements were carried out using samples purified by SEC in HBS-C buffer (10 mM HEPES pH 7.50, 150 mM so-

dium chloride and 3 mM calcium chloride). Experiments were carried out using a VP-ITC MicroCalorimeter (GE Healthcare) at 295 K,

and data were analyzed using the Origin ITC analysis software package. Titrations were always preceded by an initial injection of 3 mL

and were carried out using sequential 10 mL injections with continuous stirring. The data were fitted to the ‘‘one binding site model’’

and apparent molar reaction enthalpy (DH�), apparent entropy (DS�), association constant (KA), and binding stoichiometry (N) was

determined.

Analytical ultracentrifugation (AUC)
Sedimentation velocity (SV) experiments were performed using a Beckman Optima XL-I analytical centrifuge operated at a run

temperature of 293K. Human MDGA1ECTO was concentrated to 60 mM (6.31 g/L) in TBS-CT buffer. Samples were held in Epon

sector-shaped 2-channel centerpieces (6 mm path length) and were spun at 40,000 rpm. 200 sample distribution scans were taken

incrementally, spaced 4 min apart. Data were collected using 280 nm absorbance optics.

Data were analyzed using the program Sedfit (Brown and Schuck, 2006). Scans 7-200 were used in the continuous c(s) distribution

analysis. Analysis was performed with a floating frictional ratio and baseline, SMIN = 0.0, SMAX = 20, and a resolution value of 100. A

value of 0.73 mL/g was used for the partial specific volumes. A buffer density value of 1.00527 g/cm3 and buffer viscosity value of

0.01022 Poise was calculated using the Sednterp online application. Figures were prepared using the program GUSSI (Brautigam,

2015).

Co-culture and immunocytochemistry
Constructs of the native, full-length (FL) humanMDGA1 (Gln19-Arg955), and humanMDGA2 (Gln21-Arg956), fused N-terminally with

a HA epitope tag, and without C-terminal tags (yielding HA-MDGA1-2FL), were cloned into the pHLsec vector (Aricescu et al., 2006b).

Constructs of the full-length human NL1 (–A ± B, –A ± B_Asn300Gln, DSite I, DSite II, DSite I+II, –A–B_Arg450Cys; Gln46-Val840),

human NL2 (–A; Glu38-Val835), human NL3 (–A, –A_Arg451Cys; Gln38-Val848), and human NL4 (NL4(X); Gln42-Val816), fused

N-terminally with a Myc epitope tag and fused C-terminally with ECFP (enhanced cyan fluorescent protein; yielding myc-NL1-

4FL), were cloned into the pHLsec vector (Aricescu et al., 2006b). NL1(–A–B)FL_Arg450Cys and NL3(–A)FL_Arg451Cys used native

signal sequences andwere not C-terminally fused to ECFP, to avoid the potential impact of thesemodifications on surface trafficking

of the mutants.

Lowdensity primary hippocampal cultures were prepared fromE18 rat embryos as previously described (Kaech andBanker, 2006)

and as approved by the University of British Columbia Animal Care Committee. Neuron cultures were maintained in Neurobasal (NB)

medium (Thermo Fisher Scientific) supplemented with GlutaMAX-I (Thermo Fisher Scientific), B-27 supplement (Thermo Fisher Sci-

entific) and 100 mMAPV (Abcam). COS-7 cells were cultured in DMEMsupplementedwith 10%bovine growth serum and 100 I.U./mL

penicillin-streptomycin. Cells were transfected using TransIT-LT1 transfection reagent (Mirus Bio) with (i) 0.5 mg myc-NL1-4FL
and 1.1 mg HA-CD4, 1.1 mg HA-MDGA1FL, or 1.6 mg HA-MDGA2FL for low ratio experiments; (ii) 0.5 mg myc-NL1-4FL and 1.75 mg

HA-CD4, 1.75 mg HA-MDGA1FL, or 2.5 mg HA-MDGA2FL for medium ratio experiments; and (iii) 0.5 mg myc-NL1-4FL and 2.5 mg
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HA-CD4, 2.5 mg HA-MDGA1FL, or 3.6 mg HA-MDGA2FL for high ratio experiments. HA-MDGA1FL and HA-MDGA2FL plasmid DNA

amounts were adjusted to achieve similar surface protein levels. One day post-transfection, COS-7 cells were seeded onto

14 day in vitro (DIV) hippocampal cultures. After 20-24 hr the co-cultures were fixed in 4% paraformaldehyde (PFA) and 4% sucrose

in PBS (pH 7.4) for 12 min at room temperature and incubated with blocking solution (3% bovine serum albumin, 5% normal goat

serum in PBS) for 30min at 310K. Surface NLs andMDGAswere labeled by incubating with anti-myc and anti-HA antibodies, respec-

tively, for 1 hr at 310K. The cells were permeabilized with 0.2% Triton X-100 in PBS, blocked for 30 min at 310K and incubated with

anti-synapsin1 and anti-tau antibodies overnight at 277K. Secondary antibodies were applied for 30 min at 310K and the coverslips

were mounted onto glass slides with elvanol (Tris-HCl, glycerol, and polyvinyl alcohol with 2% 1,4-diazabi-cyclo[2,2,2]octane).

The following primary antibodies were used: rabbit polyclonal anti-c-myc (1:1000, Sigma), mouse monoclonal anti-HA (1:1000,

IgG2b, clone 12CA5, Roche), mouse monoclonal anti-synapsin1 (1:8000, IgG1, clone 46.1, Synaptic Systems), mouse monoclonal

anti-tau1 (1:4000, IgG2a, clone PC1C6,Millipore). The following secondary antibodies were used: goat AMCA-conjugated anti-rabbit

(1:400, Jackson ImmunoResearch), goat Alexa Fluor 488-conjugated anti-mouse IgG2b (1:1000, Thermo Fisher Scientific), goat

Alexa Fluor 568-conjugated anti-mouse IgG1 (1:1000, Thermo Fisher Scientific), goat Alexa Fluor 647-conjugated anti-mouse

IgG2a (1:1000, Thermo Fisher Scientific).

Image acquisition and analysis
Fluorescence microscopy was performed using a Zeiss Axioplan2 microscope. All images were acquired with a 63x oil immersion

objective (NA 1.4) using MetaMorph imaging software (Molecular Devices). COS-7 cells with similar levels of both surface myc

and HA were chosen for imaging and analysis for each co-culture experiment (Figure S6B). Image acquisition and analysis was per-

formed with the experimenter blind to the experimental condition. Analysis was performed using NIH ImageJ software (Schneider

et al., 2012). The total integrated intensity of punctate synapsin staining signal on a COS-7 cell was measured and normalized to

the tau-positive axon contacting area. Cell surface levels of NLs and MDGAs were quantified by measuring mean intensity of myc

and HA staining, respectively, on cells. Post-analysis images were adjusted for brightness and contrast across the entire image

for presentation. Statistical analysis was performed using GraphPad Prism software. One-way ANOVAwith post hoc Bonferroni mul-

tiple comparison test was used and statistical significance was set at p < 0.05. All data are presented as mean ± SEM from three

independent experiments. Statistics are presented in Tables S3–S5.

Surface expression of the NL3(–A) Arg451Cys mutant
Constructs of full-length (Gln38-Val848) wild-type human NL3(–A) and mutant NL3(–A) Arg451Cys, fused N-terminally to a Myc and

V5 epitope tag, were cloned into the pCAGGS vector, generating pCAGGS-myc-V5-NL3(WT) and pCAGGS-myc-V5-NL3(R451C).

Both constructs used native signal sequences and were not C-terminally fused to ECFP. Low density primary hippocampal cultures

were prepared from E18 rat embryos as previously described (Kaech and Banker, 2006). Neuron cultures were maintained in Neuro-

basal (NB) medium (Thermo Fisher Scientific) supplemented with GlutaMAX-I (Thermo Fisher Scientific), B-27 supplement (Thermo

Fisher Scientific) and 100 mMAPV (Abcam). Cells were transfected by nucleofection using 2 mg of plasmid DNA and were then plated

on coverglasses. After 3 days in vitro (DIV) the neurons were fixed in 4% paraformaldehyde (PFA) and 4% sucrose in PBS (pH 7.4) for

12 min at room temperature and incubated with blocking solution (3% bovine serum albumin, 5% normal goat serum in PBS) for

30 min at 310K. Surface NL3 was labeled by incubating with anti-V5 antibody overnight at 277K. The cells were permeabilized

with 0.2% Triton X-100 in PBS, blocked for 30 min at 310K and incubated with anti-myc antibody overnight at 277K.

The following primary antibodies were used: rabbit polyclonal anti-c-myc (1:1000, Sigma) and mouse monoclonal anti-V5 (1:1000,

IgG2a, Thermo Fisher). The following secondary antibodies were used: goat Alexa Fluor 488-conjugated anti-rabbit (1:1000, Thermo

Fisher Scientific) and goat Alexa Fluor 647-conjugated anti-mouse IgG2a (1:1000, Thermo Fisher Scientific).

Fluorescence microscopy was performed using a Zeiss Axioplan2 microscope. All images were acquired using MetaMorph imag-

ing software (Molecular Devices) and with a 10x air objective to capture the entire neuron in one field of view. The neurons were visu-

alized using the 488 channel for myc and 647 channel for V5.

Pulldown and mass spectrometry
Affinity chromatography was performed as previously described (Savas et al., 2014). Briefly, for each MDGA-Fc bait protein, five P21

rat brains were homogenized in homogenization buffer (4 mMHEPES, 0.32 M sucrose) with protease inhibitors using a glass Dounce

homogenizer. Homogenates were centrifuged at 1,000 g for 15 min at 277 K. Supernatants were centrifuged again at 1000 g for

15 min. The resulting supernatants were then centrifuged at 10,000 g for 20 min. The pellet P2, containing crude synaptosomes,

was resuspended in homogenization buffer and centrifuged at 10,000 g for 20 min, yielding pellet P20 that contained washed crude

synaptosomes. Pellet P20 was extracted in 20 mM Tris pH 8.0, 0.1 mM CaCl2 and 1% (w/v) Triton X-100 for 2 hr at 277 K. Extracts

were centrifuged at 10,000 g for 30 min and the supernatants were diluted 1:1 with extraction buffer. Protein A beads (Pierce, 250 mL

slurry) bound to 100 mg human Fc control protein or MDGA1-, MDGA1DIg1-3, or MDGA2-Fc proteins were added and rotated O/N at

277 K. Beads were packed into Poly-Prep chromatography columns (BioRad) and washed with 50 mL of high-salt wash buffer

(50 mM HEPES pH 7.4, 300 mM NaCl, 0.1 mM CaCl2, 5% glycerol and protease inhibitors), followed by a wash with 10 mL low-

salt wash buffer (50 mM HEPES pH 7.4, 150 mM NaCl, 0.1 mM CaCl2, 5% glycerol and protease inhibitors). Bound proteins were

eluted from the beads by incubation with Pierce elution buffer and TCA precipitated overnight. For the MS analysis, we required
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each protein to have two peptide matches and each peptide to have at least 1 tryptic terminus and an overall protein false discovery

rate (FDR) < 1.2% for each dataset. Proteins shown in Figure S5B and Table S2 are the complete set of proteins found in both

MDGA1- or MDGA2-Fc purifications after removing background proteins identified in Fc negative control purifications. Only proteins

identified with two or more spectral counts were included in the analysis.

DATA AND SOFTWARE AVAILABILITY

The accession number for the crystal structure of human NL1(–A+B)ECTO reported in this paper is PDB: 5OJK. The accession number

for the crystal structure of chickenMDGA1ECTO reported in this paper is PDB: 5OJ2. The accession number for the crystal structure of

the complex between human NL1(–A–B)ECTO and chicken MDGA1ECTO reported in this paper is PDB: 5OJ6.
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